1
|
Wei J, Zhuang Y, Jiang C, Chen L, Yuan B, Zhao Y, Li H, Mao JH, Hang B, Ye C, Wang L, Wang P. Cohort-based pan-cancer analysis and experimental studies reveal ISG15 gene as a novel biomarker for prognosis and immunotherapy efficacy prediction. Cancer Immunol Immunother 2025; 74:168. [PMID: 40208307 PMCID: PMC11985735 DOI: 10.1007/s00262-025-04026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
ISG15, an interferon-stimulated ubiquitin-like protein, plays a multifaceted role in tumorigenesis and immune regulation. This study comprehensively evaluates ISG15 as a prognostic biomarker and predictor of immunotherapy response through pan-cancer bioinformatics analysis and experimental validation. By integrating multiomics data from TCGA, GEO, and clinical cohorts, we found that ISG15 is significantly overexpressed in multiple cancers and generally correlates with poor prognosis. Elevated ISG15 expression is associated with increased immune checkpoint gene expression, particularly PD-L1, and immune infiltration, notably M2-like tumor-associated macrophages. Immunohistochemistry and multiplexed immunofluorescence confirmed a strong positive correlation between ISG15, PD-L1, and M2-TAM infiltration in lung and gastric cancer samples. Functional analysis at the single-cell level revealed significant associations between ISG15 and tumor proliferation, angiogenesis, and immune suppression. Immunotherapy cohort analysis demonstrated that tumors with high ISG15 expression responded favorably to PD-L1 inhibitors but exhibited resistance to CTLA-4 blockade, findings further validated in lung cancer patients receiving anti-PD-1 therapy. These results suggest that ISG15 is a promising biomarker for prognosis and immunotherapy response prediction across cancers. Its integration into clinical decision-making may enhance personalized treatment strategies, improve immunotherapy outcomes, and provide new insights into the tumor immune microenvironment, cancer progression, and potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingjia Zhuang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Ultrasound, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Chengfei Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyan Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Binbin Yuan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yue Zhao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Happi Li
- Saratoga High School, 20300 Herriman Ave, Saratoga, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Lone IM, Zohud O, Midlej K, Brenner C, Iraqi FA. System genetic analysis of intestinal cancer and periodontitis development as influenced by aging and diabesity using Collaborative Cross mice. Animal Model Exp Med 2025; 8:758-770. [PMID: 39921239 PMCID: PMC12008441 DOI: 10.1002/ame2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 02/10/2025] Open
Abstract
It is increasingly recognized that young, chow-fed inbred mice poorly model the complexity of human carcinogenesis. In humans, age and adiposity are major risk factors for malignancies, but most genetically engineered mouse models (GEMM) induce carcinogenesis too rapidly to study these influences. Standard strains, such as C57BL/6, commonly used in GEMMs, further limit the exploration of aging and metabolic health effects. A similar challenge arises in modeling periodontitis, a disease influenced by aging, diabesity, and genetic architecture. We propose using diverse mouse populations with hybrid vigor, such as the Collaborative Cross (CC) × ApcMin hybrid, to slow disease progression and better model human colorectal cancer (CRC) and comorbidities. This perspective highlights the advantages of this model, where delayed carcinogenesis reveals interactions with aging and adiposity. Unlike ApcMin mice, which develop cancer rapidly, CC × ApcMin hybrids recapitulate human-like progression. This facilitates the identification of modifier loci affecting inflammation, diet susceptibility, organ size, and polyposis distribution. The CC × ApcMin model offers a transformative platform for studying CRC as a disease of adulthood, reflecting its complex interplay with aging and comorbidities. The insights gained from this approach will enhance early detection, management, and treatment strategies for CRC and related conditions.
Collapse
Affiliation(s)
- Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Charles Brenner
- Department of Diabetes and Cancer MetabolismBeckman Research InstituteDuarteCaliforniaUSA
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
3
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols. Viruses 2025; 17:276. [PMID: 40007031 PMCID: PMC11861806 DOI: 10.3390/v17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Lentiviral vector-transduced T cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the effects of host genetic variation on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that the CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, a moderate correlation between mouse-strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intrastrain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes found in the above QTLs are potential targets for personalized gene therapy protocols. Importantly, we identified two mouse strains that open new directions for characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel clinical protocols should be considered for non-fatal diseases.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Jiang C, Chen L, Ye C, Schick SF, Jacob P, Zhuang Y, Inman JL, Chen C, Gundel LA, Chang H, Snijders AM, Zou X, Mao JH, Hang B, Wang P. Thirdhand smoke exposure promotes gastric tumor development in mouse and human. ENVIRONMENT INTERNATIONAL 2024; 191:108986. [PMID: 39255676 DOI: 10.1016/j.envint.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
The pollution of indoor environments and the consequent health risks associated with thirdhand smoke (THS) are increasingly recognized in recent years. However, the carcinogenic potential of THS and its underlying mechanisms have yet to be thoroughly explored. In this study, we examined the effects of short-term THS exposure on the development of gastric cancer (GC) in vitro and in vivo. In a mouse model of spontaneous GC, CC036, we observed a significant increase in gastric tumor incidence and a decrease in tumor-free survival upon THS exposure as compared to control. RNA sequencing of primary gastric epithelial cells derived from CC036 mice showed that THS exposure increased expression of genes related to the extracellular matrix and cytoskeletal protein structure. We then identified a THS exposure-induced 91-gene expression signature in CC036 and a homologous 84-gene signature in human GC patients that predicted the prognosis, with secreted phosphoprotein 1 (SPP1) and tribbles pseudokinase 3 (TRIB3) emerging as potential targets through which THS may promote gastric carcinogenesis. We also treated human GC cell lines in vitro with media containing various concentrations of THS, which, in some exposure dose range, significantly increased their proliferation, invasion, and migration. We showed that THS exposure could activate the epithelial-mesenchymal transition (EMT) pathway at the transcript and protein level. We conclude that short-term exposure to THS is associated with an increased risk of GC and that activation of the EMT program could be one potential mechanism. Increased understanding of the cancer risk associated with THS exposure will help identify new preventive and therapeutic strategies for tobacco-related disease as well as provide scientific evidence and rationale for policy decisions related to THS pollution control to protect vulnerable subpopulations such as children.
Collapse
Affiliation(s)
- Chengfei Jiang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lingyan Chen
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Suzaynn F Schick
- Department of Medicine, Division of Occupational Environmental and Climate Medicine, University of California, San Francisco, CA 94143, USA
| | - Peyton Jacob
- Department of Medicine, Division of Cardiology, Clinical Pharmacology Program, University of California, San Francisco, CA 94143, USA
| | - Yingjia Zhuang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, China
| | - Lara A Gundel
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Pin Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
6
|
Yang H, Wang X, Blanco-Gómez A, He L, García-Sancha N, Corchado-Cobos R, Pérez-Baena MJ, Jiménez-Navas A, Wang P, Inman JL, Snijders AM, Threadgill DW, Balmain A, Chang H, Perez-Losada J, Mao JH. A susceptibility gene signature for ERBB2-driven mammary tumour development and metastasis in collaborative cross mice. EBioMedicine 2024; 106:105260. [PMID: 39067134 PMCID: PMC11338061 DOI: 10.1016/j.ebiom.2024.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Deeper insights into ERBB2-driven cancers are essential to develop new treatment approaches for ERBB2+ breast cancers (BCs). We employed the Collaborative Cross (CC) mouse model to unearth genetic factors underpinning Erbb2-driven mammary tumour development and metastasis. METHODS 732 F1 hybrid female mice between FVB/N MMTV-Erbb2 and 30 CC strains were monitored for mammary tumour phenotypes. GWAS pinpointed SNPs that influence various tumour phenotypes. Multivariate analyses and models were used to construct the polygenic score and to develop a mouse tumour susceptibility gene signature (mTSGS), where the corresponding human ortholog was identified and designated as hTSGS. The importance and clinical value of hTSGS in human BC was evaluated using public datasets, encompassing TCGA, METABRIC, GSE96058, and I-SPY2 cohorts. The predictive power of mTSGS for response to chemotherapy was validated in vivo using genetically diverse MMTV-Erbb2 mice. FINDINGS Distinct variances in tumour onset, multiplicity, and metastatic patterns were observed in F1-hybrid female mice between FVB/N MMTV-Erbb2 and 30 CC strains. Besides lung metastasis, liver and kidney metastases emerged in specific CC strains. GWAS identified specific SNPs significantly associated with tumour onset, multiplicity, lung metastasis, and liver metastasis. Multivariate analyses flagged SNPs in 20 genes (Stx6, Ramp1, Traf3ip1, Nckap5, Pfkfb2, Trmt1l, Rprd1b, Rer1, Sepsecs, Rhobtb1, Tsen15, Abcc3, Arid5b, Tnr, Dock2, Tti1, Fam81a, Oxr1, Plxna2, and Tbc1d31) independently tied to various tumour characteristics, designated as a mTSGS. hTSGS scores (hTSGSS) based on their transcriptional level showed prognostic values, superseding clinical factors and PAM50 subtype across multiple human BC cohorts, and predicted pathological complete response independent of and superior to MammaPrint score in I-SPY2 study. The power of mTSGS score for predicting chemotherapy response was further validated in an in vivo mouse MMTV-Erbb2 model, showing that, like findings in human patients, mouse tumours with low mTSGS scores were most likely to respond to treatment. INTERPRETATION Our investigation has unveiled many new genes predisposing individuals to ERBB2-driven cancer. Translational findings indicate that hTSGS holds promise as a biomarker for refining treatment strategies for patients with BC. FUNDING The U.S. Department of Defense (DoD) Breast Cancer Research Program (BCRP) (BC190820), United States; MCIN/AEI/10.13039/501100011039 (PID2020-118527RB-I00, PDC2021-121735-I00), the "European Union Next Generation EU/PRTR," the Regional Government of Castile and León (CSI144P20), European Union.
Collapse
Affiliation(s)
- Hui Yang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xinzhi Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, 37007, Spain; Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Li He
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430079, China
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, 37007, Spain; Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, 37007, Spain; Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, 37007, Spain; Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, 37007, Spain; Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Pin Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - David W Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA; Department of Molecular and Cellular Medicine and Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Jesus Perez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, Salamanca, 37007, Spain; Instituto de Investigación Biosanitaria de Salamanca (IBSAL), Salamanca, 37007, Spain.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Zhang W, Wang S, Zhang H, Meng Y, Jiao S, An L, Zhou Z. Modeling human gastric cancers in immunocompetent mice. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0124. [PMID: 38940675 PMCID: PMC11271222 DOI: 10.20892/j.issn.2095-3941.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Meng
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Shannon T, Cotter C, Fitzgerald J, Houle S, Levine N, Shen Y, Rajjoub N, Dobres S, Iyer S, Xenakis J, Lynch R, de Villena FPM, Kokiko-Cochran O, Gu B. Genetic diversity drives extreme responses to traumatic brain injury and post-traumatic epilepsy. Exp Neurol 2024; 374:114677. [PMID: 38185315 DOI: 10.1016/j.expneurol.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Traumatic brain injury (TBI) is a complex and heterogeneous condition that can cause wide-spectral neurological sequelae such as behavioral deficits, sleep abnormalities, and post-traumatic epilepsy (PTE). However, understanding the interaction of TBI phenome is challenging because few animal models can recapitulate the heterogeneity of TBI outcomes. We leveraged the genetically diverse recombinant inbred Collaborative Cross (CC) mice panel and systematically characterized TBI-related outcomes in males from 12 strains of CC and the reference C57BL/6J mice. We identified unprecedented extreme responses in multiple clinically relevant traits across CC strains, including weight change, mortality, locomotor activity, cognition, and sleep. Notably, we identified CC031 mouse strain as the first rodent model of PTE that exhibit frequent and progressive post-traumatic seizures after moderate TBI induced by lateral fluid percussion. Multivariate analysis pinpointed novel biological interactions and three principal components across TBI-related modalities. Estimate of the proportion of TBI phenotypic variability attributable to strain revealed large range of heritability, including >70% heritability of open arm entry time of elevated plus maze. Our work provides novel resources and models that can facilitate genetic mapping and the understanding of the pathobiology of TBI and PTE.
Collapse
Affiliation(s)
- Tyler Shannon
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Christopher Cotter
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Julie Fitzgerald
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Samuel Houle
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA
| | - Noah Levine
- Electrical and Computer Engineering Program, Ohio State University, Columbus, USA
| | - Yuyan Shen
- Department of Neuroscience, Ohio State University, Columbus, USA; College of Veterinary Medicine, Ohio State University, Columbus, USA
| | - Noora Rajjoub
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Shannon Dobres
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - Sidharth Iyer
- Department of Neuroscience, Ohio State University, Columbus, USA
| | - James Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Rachel Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Olga Kokiko-Cochran
- Department of Neuroscience, Ohio State University, Columbus, USA; Institute for Behavioral Medicine Research, Neurological Institute, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA
| | - Bin Gu
- Department of Neuroscience, Ohio State University, Columbus, USA; Chronic Brain Injury Program, Ohio State University, Columbus, USA.
| |
Collapse
|
9
|
Li D, Zhong C, Yang M, He L, Chang H, Zhu N, Celniker SE, Threadgill DW, Snijders AM, Mao JH, Yuan Y. Genetic and microbial determinants of azoxymethane-induced colorectal tumor susceptibility in Collaborative Cross mice and their implication in human cancer. Gut Microbes 2024; 16:2341647. [PMID: 38659246 PMCID: PMC11057575 DOI: 10.1080/19490976.2024.2341647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The insights into interactions between host genetics and gut microbiome (GM) in colorectal tumor susceptibility (CTS) remains lacking. We used Collaborative Cross mouse population model to identify genetic and microbial determinants of Azoxymethane-induced CTS. We identified 4417 CTS-associated single nucleotide polymorphisms (SNPs) containing 334 genes that were transcriptionally altered in human colorectal cancers (CRCs) and consistently clustered independent human CRC cohorts into two subgroups with different prognosis. We discovered a set of genera in early-life associated with CTS and defined a 16-genus signature that accurately predicted CTS, the majority of which were correlated with human CRCs. We identified 547 SNPs associated with abundances of these genera. Mediation analysis revealed GM as mediators partially exerting the effect of SNP UNC3869242 within Duox2 on CTS. Intestine cell-specific depletion of Duox2 altered GM composition and contribution of Duox2 depletion to CTS was significantly influenced by GM. Our findings provide potential novel targets for personalized CRC prevention and treatment.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Chenhan Zhong
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mengyuan Yang
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
| | - Li He
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ning Zhu
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine and Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ying Yuan
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, ZJ, China
- Cancer Center, Zhejiang University, Hangzhou, ZJ, China
| |
Collapse
|
10
|
He L, Zhong C, Chang H, Inman JL, Celniker SE, Ioakeim-Ioannidou M, Liu KX, Haas-Kogan D, MacDonald SM, Threadgill DW, Kogan SC, Mao JH, Snijders AM. Genetic architecture of the acute and persistent immune cell response after radiation exposure. CELL GENOMICS 2023; 3:100422. [PMID: 38020972 PMCID: PMC10667298 DOI: 10.1016/j.xgen.2023.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
Hematologic toxicity is a common side effect of multimodal cancer therapy. Nearly all animal studies investigating the causes of radiotherapy-induced hematologic toxicity use inbred strains with limited genetic diversity and do not reflect the diverse responses observed in humans. We used the population-based Collaborative Cross (CC) mouse resource to investigate the genetic architecture of the acute and persistent immune response after radiation exposure by measuring 22 immune parameters in 1,720 CC mice representing 35 strains. We determined relative acute and persistent radiation resistance scores at the individual strain level considering contributions from all immune parameters. Genome-wide association analysis identified quantitative trait loci associated with baseline and radiation responses. A cross-species radiation resistance score predicted recurrence-free survival in medulloblastoma patients. We present a community resource of immune parameters and genome-wide association analyses before and after radiation exposure for future investigations of the contributions of host genetics on radiosensitivity.
Collapse
Affiliation(s)
- Li He
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430079, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jamie L. Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon M. MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
- Departments of Nutrition and Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Scott C. Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Yang H, Wang X, Wang P, He L, Schick SF, Jacob P, Benowitz N, Gundel LA, Zhu C, Xia Y, Inman JL, Chang H, Snijders AM, Mao JH, Hang B. Thirdhand tobacco smoke exposure increases the genetic background-dependent risk of pan-tumor development in Collaborative Cross mice. ENVIRONMENT INTERNATIONAL 2023; 174:107876. [PMID: 36940581 PMCID: PMC11439420 DOI: 10.1016/j.envint.2023.107876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Increasing evidence has shown that thirdhand smoke (THS) exposure is likely to induce adverse health effects. An important knowledge gap remains in our understanding of THS exposure related to cancer risk in the human population. Population-based animal models are useful and powerful in investigating the interplay between host genetics and THS exposure on cancer risk. Here, we used the Collaborative Cross (CC) mouse population-based model system, which recapitulates the genetic and phenotypic diversity observed in the human population, to assess cancer risk after a short period of exposure, between 4 and 9 weeks of age. Eight CC strains (CC001, CC019, CC026, CC036, CC037, CC041, CC042 and CC051) were included in our study. We quantified pan-tumor incidence, tumor burden per mouse, organ tumor spectrum and tumor-free survival until 18 months of age. At the population level, we observed a significantly increased pan-tumor incidence and tumor burden per mouse in THS-treated mice as compared to the control (p = 3.04E-06). Lung and liver tissues exhibited the largest risk of undergoing tumorigenesis after THS exposure. Tumor-free survival was significantly reduced in THS-treated mice compared to control (p = 0.044). At the individual strain level, we observed a large variation in tumor incidence across the 8 CC strains. CC036 and CC041 exhibited a significant increase in pan-tumor incidence (p = 0.0084 and p = 0.000066, respectively) after THS exposure compared to control. We conclude that early-life THS exposure increases tumor development in CC mice and that host genetic background plays an important role in individual susceptibility to THS-induced tumorigenesis. Genetic background is an important factor that should be taken into account when determining human cancer risk of THS exposure.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xinzhi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Suzyann F Schick
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, San Francisco, CA 94143, USA
| | - Peyton Jacob
- Department of Medicine, Division of Cardiology, Clinical Pharmacology Program, University of California, San Francisco, CA 94143, USA
| | - Neal Benowitz
- Department of Medicine, Division of Cardiology, Clinical Pharmacology Program, University of California, San Francisco, CA 94143, USA
| | - Lara A Gundel
- Indoor Environment Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chi Zhu
- Hanszen College, Rice University, Houston, TX 77005, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Cekanaviciute E, Tran D, Nguyen H, Lopez Macha A, Pariset E, Langley S, Babbi G, Malkani S, Penninckx S, Schisler JC, Nguyen T, Karpen GH, Costes SV. Mouse genomic associations with in vitro sensitivity to simulated space radiation. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:47-58. [PMID: 36682829 DOI: 10.1016/j.lssr.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/17/2023]
Abstract
Exposure to ionizing radiation is considered by NASA to be a major health hazard for deep space exploration missions. Ionizing radiation sensitivity is modulated by both genomic and environmental factors. Understanding their contributions is crucial for designing experiments in model organisms, evaluating the risk of deep space (i.e. high-linear energy transfer, or LET, particle) radiation exposure in astronauts, and also selecting therapeutic irradiation regimes for cancer patients. We identified single nucleotide polymorphisms in 15 strains of mice, including 10 collaborative cross model strains and 5 founder strains, associated with spontaneous and ionizing radiation-induced in vitro DNA damage quantified based on immunofluorescent tumor protein p53 binding protein (53BP1) positive nuclear foci. Statistical analysis suggested an association with pathways primarily related to cellular signaling, metabolism, tumorigenesis and nervous system damage. We observed different genomic associations in early (4 and 8 h) responses to different LET radiation, while later (24 hour) DNA damage responses showed a stronger overlap across all LETs. Furthermore, a subset of pathways was associated with spontaneous DNA damage, suggesting 53BP1 positive foci as a potential biomarker for DNA integrity in mouse models. Our results suggest several mouse strains as new models to further study the impact of ionizing radiation and validate the identified genetic loci. We also highlight the importance of future human in vitro studies to refine the association of genes and pathways with the DNA damage response to ionizing radiation and identify targets for space travel countermeasures.
Collapse
Affiliation(s)
- Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Duc Tran
- Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA
| | - Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA
| | - Alejandra Lopez Macha
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Blue Marble Space Institute of Science, 600 1st Avenue, 1st Floor, Seattle, WA 98104, USA
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Sasha Langley
- Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA, and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Giulia Babbi
- Bologna Biocomputing Group, FABIT, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Sherina Malkani
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Blue Marble Space Institute of Science, 600 1st Avenue, 1st Floor, Seattle, WA 98104, USA
| | - Sébastien Penninckx
- Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA, and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA; Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA
| | - Gary H Karpen
- Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA, and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
13
|
Fuochi S, Galligioni V. Disease Animal Models for Cancer Research. Methods Mol Biol 2023; 2645:105-125. [PMID: 37202613 DOI: 10.1007/978-1-0716-3056-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite nonanimal methods (NAMs) are more and more exploited and new NAMs are developed and validated, animal models are still used in cancer research. Animals are used at multiple levels, from understanding molecular traits and pathways, to mimicking clinical aspects of tumor progression, to drug testing. In vivo approaches are not trivial and involve cross-disciplinary knowledge: animal biology and physiology, genetics, pathology, and animal welfare.The aim of this chapter is not to list and address all animal models used in cancer research. Instead, the authors would like to guide experimenters in the strategies to adopt in both planning and performing in vivo experimental procedures, including the choice of cancer animal models.
Collapse
Affiliation(s)
- Sara Fuochi
- Universität Bern, Experimental Animal Center, Bern, Switzerland
| | - Viola Galligioni
- Netherlands Institute for Neuroscience - KNAW, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Genetic Mapping of Behavioral Traits Using the Collaborative Cross Resource. Int J Mol Sci 2022; 24:ijms24010682. [PMID: 36614124 PMCID: PMC9821145 DOI: 10.3390/ijms24010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.
Collapse
|
15
|
Hackett J, Gibson H, Frelinger J, Buntzman A. Using the Collaborative Cross and Diversity Outbred Mice in Immunology. Curr Protoc 2022; 2:e547. [PMID: 36066328 PMCID: PMC9612550 DOI: 10.1002/cpz1.547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Collaborative Cross (CC) and the Diversity Outbred (DO) stock mouse panels are the most powerful murine genetics tools available to the genetics community. Together, they combine the strength of inbred animal models with the diversity of outbred populations. Using the 63 CC strains or a panel of DO mice, each derived from the same 8 parental mouse strains, researchers can map genetic contributions to exceptionally complex immunological and infectious disease traits that would require far greater powering if performed by genome-wide association studies (GWAS) in human populations. These tools allow genes to be studied in heterozygous and homozygous states and provide a platform to study epistasis between interacting loci. Most importantly, once a quantitative phenotype is investigated and quantitative trait loci are identified, confirmatory genetic studies can be performed, which is often problematic using the GWAS approach. In addition, novel stable mouse models for immune phenotypes are often derived from studies utilizing the DO and CC mice that can serve as stronger model systems than existing ones in the field. The CC/DO systems have contributed to the fields of cancer immunology, autoimmunity, vaccinology, infectious disease, allergy, tissue rejection, and tolerance but have thus far been greatly underutilized. In this article, we present a recent review of the field and point out key areas of immunology that are ripe for further investigation and awaiting new CC/DO research projects. We also highlight some of the strong computational tools that have been developed for analyzing CC/DO genetic and phenotypic data. Additionally, we have formed a centralized community on the CyVerse infrastructure where immunogeneticists can utilize those software tools, collaborate with groups across the world, and expand the use of the CC and DO systems for investigating immunogenetic phenomena. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Jeffrey Frelinger
- University of Arizona, Valley Fever Center for Excellence, Tucson, Arizona
- Department of Microbiology and Immunology, University of North Carolina System, Chapel Hill, North Carolina
| | - Adam Buntzman
- University of Arizona, BIO5 Institute, Valley Fever Center for Excellence, Tucson, Arizona
| |
Collapse
|
16
|
Hackett JB, Glassbrook JE, Muñiz MC, Bross M, Fielder A, Dyson G, Movahhedin N, McCasland J, McCarthy-Leo C, Gibson HM. A diversity outbred F1 mouse model identifies host-intrinsic genetic regulators of response to immune checkpoint inhibitors. Oncoimmunology 2022; 11:2064958. [PMID: 35481286 PMCID: PMC9037414 DOI: 10.1080/2162402x.2022.2064958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) have improved outcomes for a variety of malignancies; however, many patients fail to benefit. While tumor-intrinsic mechanisms are likely involved in therapy resistance, it is unclear to what extent host genetic background influences response. To investigate this, we utilized the Diversity Outbred (DO) and Collaborative Cross (CC) mouse models. DO mice are an outbred stock generated by crossbreeding eight inbred founder strains, and CC mice are recombinant inbred mice generated from the same eight founders. We generated 207 DOB6F1 mice representing 48 DO dams and demonstrated that these mice reliably accept the C57BL/6-syngeneic B16F0 tumor and that host genetic background influences response to ICI. Genetic linkage analysis from 142 mice identified multiple regions including one within chromosome 13 that associated with therapeutic response. We utilized 6 CC strains bearing the positive (NZO) or negative (C57BL/6) driver genotype in this locus. We found that 2/3 of predicted responder CCB6F1 crosses show reproducible ICI response. The chromosome 13 locus contains the murine prolactin family, which is a known immunomodulating cytokine associated with various autoimmune disorders. To directly test whether prolactin influences ICI response rates, we implanted inbred C57BL/6 mice with subcutaneous slow-release prolactin pellets to induce mild hyperprolactinemia. Prolactin augmented ICI response against B16F0, with increased CD8 infiltration and 5/8 mice exhibiting slowed tumor growth relative to controls. This study highlights the role of host genetics in ICI response and supports the use of F1 crosses in the DO and CC mouse populations as powerful cancer immunotherapy models.
Collapse
Affiliation(s)
- Justin B. Hackett
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - James E. Glassbrook
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Biochemistry Microbiology Immunology, Wayne State University, Detroit, MI, USA
| | - Maria C. Muñiz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Madeline Bross
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Abigail Fielder
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Gregory Dyson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Nasrin Movahhedin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Jennifer McCasland
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Heather M. Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
17
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
18
|
Glenny EM, Coleman MF, Giles ED, Wellberg EA, Hursting SD. Designing Relevant Preclinical Rodent Models for Studying Links Between Nutrition, Obesity, Metabolism, and Cancer. Annu Rev Nutr 2021; 41:253-282. [PMID: 34357792 PMCID: PMC8900211 DOI: 10.1146/annurev-nutr-120420-032437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.
Collapse
Affiliation(s)
- Elaine M Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
19
|
He L, Wang P, Schick SF, Huang A, Jacob P, Yang X, Xia Y, Snijders AM, Mao JH, Chang H, Hang B. Genetic background influences the effect of thirdhand smoke exposure on anxiety and memory in Collaborative Cross mice. Sci Rep 2021; 11:13285. [PMID: 34168244 PMCID: PMC8225773 DOI: 10.1038/s41598-021-92702-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Growing evidence indicates that thirdhand smoke (THS) exposure induces many adverse health effects. However, it is unclear how THS exposure affects behavior and how host genetic background modulates phenotypic changes. Here we used the Collaborative Cross (CC) mouse population-based model to assess behavioral alterations immediately after THS exposure from 4 to 9 weeks of age. We first measured anxiety-like behavior in six strains using light/dark box combined with a custom multivariate mouse tracking system. We developed an anxiety risk scoring system based on anxiety-related traits and then evaluated the THS impact on them. THS exposure significantly decreased anxiety risk in CC019 (P = 0.002) and CC051 (P = 0.009), but increased anxiety risk in CC036 (P < 0.001), while the other three strains did not show significant changes in anxiety-related traits. Such differences were driven by female mice for the six measures of anxiety-like behavior. Memory potential was measured in the same cohort of mice using the passive avoidance assay. Both THS-exposed male and female CC019 mice displayed significant memory loss compared to controls while no significant changes were found in the other five strains. This study provides strong evidence that THS exposure leads to strain-dependent changes in anxiety-like behavior and memory, suggesting that host genetic variations play a critical role in individual susceptibility to THS-induced effects.
Collapse
Affiliation(s)
- Li He
- Department of Internal Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Suzyann F Schick
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Abel Huang
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, CA, 94143, USA
| | - Peyton Jacob
- Division of Cardiology, Department of Medicine, Clinical Pharmacology Program, University of California, San Francisco, CA, 94143, USA
| | - Xu Yang
- School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yankai Xia
- School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Li W, Cao L, Li M, Yang X, Zhang W, Song Z, Wang X, Zhang L, Morahan G, Qin C, Gao R. Novel spontaneous myelodysplastic syndrome mouse model. Animal Model Exp Med 2021; 4:169-180. [PMID: 34179724 PMCID: PMC8212821 DOI: 10.1002/ame2.12168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a group of disorders involving hemopoietic dysfunction leading to leukemia. Although recently progress has been made in identifying underlying genetic mutations, many questions still remain. Animal models of MDS have been produced by introduction of specific mutations. However, there is no spontaneous mouse model of MDS, and an animal model to simulate natural MDS pathogenesis is urgently needed. Methods In characterizing the genetically diverse mouse strains of the Collaborative Cross (CC) we observed that one, designated JUN, had abnormal hematological traits. This strain was thus further analyzed for phenotypic and pathological identification, comparing the changes in each cell population in peripheral blood and in bone marrow. Results In a specific-pathogen free environment, mice of the JUN strain are relatively thin, with healthy appearance. However, in a conventional environment, they become lethargic, develop wrinkled yellow hair, have loose and light stools, and are prone to infections. We found that the mice were cytopenic, which was due to abnormal differentiation of multipotent bone marrow progenitor cells. These are common characteristics of MDS. Conclusions A mouse strain, JUN, was found displaying spontaneous myelodysplastic syndrome. This strain has the advantage over existing models in that it develops MDS spontaneously and is more similar to human MDS than genetically modified mouse models. JUN mice will be an important tool for pathogenesis research of MDS and for evaluation of new drugs and treatments.
Collapse
Affiliation(s)
- Weisha Li
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Lin Cao
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Mengyuan Li
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Xingjiu Yang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Wenlong Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Zhiqi Song
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Xinpei Wang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Lingyan Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Grant Morahan
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| |
Collapse
|
21
|
Li C, Hou X, Yuan S, Zhang Y, Yuan W, Liu X, Li J, Wang Y, Guan Q, Zhou Y. High expression of TREM2 promotes EMT via the PI3K/AKT pathway in gastric cancer: bioinformatics analysis and experimental verification. J Cancer 2021; 12:3277-3290. [PMID: 33976737 PMCID: PMC8100818 DOI: 10.7150/jca.55077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Background: To date, the pathogenesis of gastric cancer (GC) remains unclear. We combined public database resources and bioinformatics analysis methods, explored some novel genes and verified the experiments to further understand the pathogenesis of GC and to provide a promising target for anti-tumor therapy. Methods: We downloaded the chip data related to GC from the Gene Expression Omnibus (GEO) database, extracted differentially expressed genes (DEGs), and then determined the key genes in the development of GC via PPI networks and model analysis. Functional annotation via GO and KEGG enrichment of DEGs was used to understand the latent roles of DEGs. The expression of the triggering receptor expressed on myeloid cells 2 (TREM2) gene in GC cell lines was verified via RT-PCR and western blotting. Moreover, the CCK-8, wound healing assay, and transwell migration and invasion assays were used to understand the changes in the proliferation, migration, and invasion abilities of GC cells after silencing TREM2. Western blotting verified the interaction between TREM2 and PI3K predict of the string website, as well as the effect of TREM2 on EMT. Finally, a lung metastasis model was used to explore the relationship between TREM2 and metastasis. Results: Our study identified 16 key genes, namely BGN, COL1A1, COL4A1, COL5A2, NOX4, SPARC, HEYL, SPP1, TIMP1, CTHRC1, TREM2, SFRP4, FBXO32, GPX3, KIF4A, and MMP9 genes associated with GC. The EMT-related pathway was the most significantly altered pathway. TREM2 expression was higher in GC cell lines and was remarkably associated with tumor invasion depth, TNM stage, histological grade, histological type, anatomic subdivision, and Helicobacter pylori state. Knockdown of TREM2 expression inhibited the proliferation, migration, and invasion of GC cells as well as the progression of EMT by PI3K/AKT signaling in vitro. In addition, lung metastasis were decreased in vivo. Conclusions: We identified some important genes associated with the progression of GC via public database analysis, explored and verified the effects of proto-oncogene TREM2 on EMT via the PI3K/AKT pathway. TREM2 may be a novel target in the GC therapy.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shuqiao Yuan
- Department of medical laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenzhen Yuan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoguang Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Rheumatology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Jin X, Zhang Y, Celniker SE, Xia Y, Mao JH, Snijders AM, Chang H. Gut microbiome partially mediates and coordinates the effects of genetics on anxiety-like behavior in Collaborative Cross mice. Sci Rep 2021; 11:270. [PMID: 33431988 PMCID: PMC7801399 DOI: 10.1038/s41598-020-79538-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests that the gut microbiome (GM) plays a critical role in health and disease. However, the contribution of GM to psychiatric disorders, especially anxiety, remains unclear. We used the Collaborative Cross (CC) mouse population-based model to identify anxiety associated host genetic and GM factors. Anxiety-like behavior of 445 mice across 30 CC strains was measured using the light/dark box assay and documented by video. A custom tracking system was developed to quantify seven anxiety-related phenotypes based on video. Mice were assigned to a low or high anxiety group by consensus clustering using seven anxiety-related phenotypes. Genome-wide association analysis (GWAS) identified 141 genes (264 SNPs) significantly enriched for anxiety and depression related functions. In the same CC cohort, we measured GM composition and identified five families that differ between high and low anxiety mice. Anxiety level was predicted with 79% accuracy and an AUC of 0.81. Mediation analyses revealed that the genetic contribution to anxiety was partially mediated by the GM. Our findings indicate that GM partially mediates and coordinates the effects of genetics on anxiety.
Collapse
Affiliation(s)
- X Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - S E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Y Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - J-H Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - H Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Low JT, Christie M, Ernst M, Dumoutier L, Preaudet A, Ni Y, Griffin MDW, Mielke LA, Strasser A, Putoczki TL, O'Reilly LA. Loss of NFKB1 Results in Expression of Tumor Necrosis Factor and Activation of Signal Transducer and Activator of Transcription 1 to Promote Gastric Tumorigenesis in Mice. Gastroenterology 2020; 159:1444-1458.e15. [PMID: 32569771 DOI: 10.1053/j.gastro.2020.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Activity of nuclear factor κB transcription factors and signaling via signal transducer and activator of transcription (STAT) are frequently altered in gastric cancer cells. Mice lacking NFKB1 (Nfkb1-/- mice) develop invasive gastric cancer, and their gastric tissues have increased levels of cytokines, such as interleukin (IL) 6, IL22, IL11, and tumor necrosis factor (TNF), as well as increased activation of STAT1. We investigated whether these cytokines were required for STAT1 activation in gastric tissues of mice and critical for gastric tumorigenesis. METHODS We crossed Nfkb1-/- mice with Il6-/-, Il22-/-, Il11Rα-/-, and Tnf-/- mice. Stomach tissues from compound mutant mice were analyzed by histology, immunoblotting, and RNA sequencing. Lymphoid, myeloid, and epithelial cells were isolated from stomachs, and the levels of cytokines were determined by flow cytometric analysis. RESULTS Nfkb1-/- mice developed gastritis, oxyntic atrophy, gastric dysplasia, and invasive tumors, whereas Nfkb1-/-Stat1-/- mice did not, even when followed for as long as 2 years. The levels of Il6, Il11, Il22, and Tnf messenger RNA were increased in the body and antrum of the stomachs from Nfkb1-/- mice, from 3-6 months of age. However, Nfkb1-/-Il6-/-, Nfkb1-/-Il22-/-, and Nfkb1-/-Il11Rα-/- mice still developed gastric tumors, although the absence of IL11 receptor (IL11R) significantly reduced development of invasive gastric tumors. Stomachs from Nfkb1-/-Tnf-/- mice exhibited significantly less gastritis and oxyntic atrophy and fewer tumors than Nfkb1-/- mice. This correlated with reduced activation of STAT1 and STAT3 and fewer numbers of T cells and B cells infiltrating the gastric body. Loss of STAT1 or TNF significantly reduced expression of PD-L1 on epithelial and myeloid (CD11b+) cells in the gastric mucosa of Nfkb1-/- mice-indeed, to the levels observed on the corresponding cells from wild-type mice. CONCLUSIONS In studies of gastric tumor development in knockout mice, we found that loss of NFKB1 causes increased expression of TNF in the stomach and thereby drives activation of STAT1, resulting in an inflammatory immune response and the development of gastric cancer. IL11R appears to be required for the progression of gastric tumors to the invasive stage. These findings suggest that inhibitors of TNF, and possibly also inhibitors of IL11/IL11Rα, might be useful in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Christie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | | | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yanhong Ni
- Visiting scientist from Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China to The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
24
|
Gu B, Shorter JR, Williams LH, Bell TA, Hock P, Dalton KA, Pan Y, Miller DR, Shaw GD, Philpot BD, Pardo-Manuel de Villena F. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia 2020; 61:2010-2021. [PMID: 32852103 DOI: 10.1111/epi.16617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Animal studies remain essential for understanding mechanisms of epilepsy and identifying new therapeutic targets. However, existing animal models of epilepsy do not reflect the high level of genetic diversity found in the human population. The Collaborative Cross (CC) population is a genetically diverse recombinant inbred panel of mice. The CC offers large genotypic and phenotypic diversity, inbred strains with stable genomes that allow for repeated phenotypic measurements, and genomic tools including whole genome sequence to identify candidate genes and candidate variants. METHODS We evaluated multiple complex epileptic traits in a sampling of 35 CC inbred strains using the flurothyl-induced seizure and kindling paradigm. We created an F2 population of 297 mice with extreme seizure susceptibility and performed quantitative trait loci (QTL) mapping to identify genomic regions associated with seizure sensitivity. We used quantitative RNA sequencing from CC hippocampal tissue to identify candidate genes and whole genome sequence to identify genetic variants likely affecting gene expression. RESULTS We identified new mouse models with extreme seizure susceptibility, seizure propagation, epileptogenesis, and SUDEP (sudden unexpected death in epilepsy). We performed QTL mapping and identified one known and seven novel loci associated with seizure sensitivity. We combined whole genome sequencing and hippocampal gene expression to pinpoint biologically plausible candidate genes (eg, Gabra2) and variants associated with seizure sensitivity. SIGNIFICANCE New mouse models of epilepsy are needed to better understand the complex genetic architecture of seizures and to identify therapeutics. We performed a phenotypic screen utilizing a novel genetic reference population of CC mice. The data we provide enable the identification of protective/risk genes and novel molecular mechanisms linked to complex seizure traits that are currently challenging to study and treat.
Collapse
Affiliation(s)
- Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - John R Shorter
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services, Copenhagen, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Lucy H Williams
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine A Dalton
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Yiyun Pan
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Outcome of a novel modified endoscopic papillectomy for duodenal major papilla adenoma. Surg Endosc 2020; 34:5160-5167. [PMID: 32666256 PMCID: PMC7572334 DOI: 10.1007/s00464-020-07715-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Background and aims In recent years, with the development of endoscopic techniques, endoscopic resection is widely used for duodenal papillary adenomas, but conventional endoscopic resection has a high rate of incomplete resection and recurrence. On this basis, we have employed a novel modified endoscopic papillectomy (ESP). In this study, we evaluated the feasibility and advantages of this ESP for the treatment of duodenal major papilla adenoma. Methods A total of 56 patients with duodenal major papilla adenoma confirmed by endoscopic ultrasonography, intraluminal ultrasound and gastroscopic biopsy from October 2007 to June 2017 were collected in the Department of Gastroenterology, Nanjing Drum Tower Hospital. The diameter of the adenoma ranged from 1.41 to 2.02 cm. 16 cases were given the conventional method and 40 cases underwent the modified ESP procedure in which a small incision was made by cutting current when anchoring the snare tip on the distal side of the adenoma. Results En bloc resection rate was significantly higher in the modified group (100%, 40/40) than that in the conventional group (81.3%, 13/16; P = 0.02). However, no significance was seen between the modified group and the conventional group in complete resection rate (92.5%, 37/40 vs 93.8%, 15/16; P = 1.00). There was no significant difference in the number and difficulty of postoperative pancreatic and biliary stents placement between the two groups (P = 0.20). Total bleeding occurrence was much lower in the modified group (37.5%, 15/40 vs 87.5%, 14/16; P = 0.001), and no significant differences were found in other short-term complications and the 3, 6, 12 and 24 months recurrences rate between the conventional and modified ESP groups. Conclusions The modified ESP improves the treatment outcome of duodenal major papilla adenoma with higher en bloc resection rate and lowering bleeding rate. Electronic supplementary material The online version of this article (10.1007/s00464-020-07715-0) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
de Conti A, Tryndyak V, Willett RA, Borowa-Mazgaj B, Watson A, Patton R, Khare S, Muskhelishvili L, Olson GR, Avigan MI, Cerniglia CE, Ross SA, Sanyal AJ, Beland FA, Rusyn I, Pogribny IP. Characterization of the variability in the extent of nonalcoholic fatty liver induced by a high-fat diet in the genetically diverse Collaborative Cross mouse model. FASEB J 2020; 34:7773-7785. [PMID: 32304142 DOI: 10.1096/fj.202000194r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Interindividual variability and sexual dimorphisms in the development of nonalcoholic fatty liver disease (NAFLD) are still poorly understood. In the present study, male and female strains of Collaborative Cross (CC) mice were fed a high-fat and high-sucrose (HF/HS) diet or a control diet for 12 weeks to investigate interindividual- and sex-specific variations in the development of NAFLD. The severity of liver steatosis varied between sexes and individual strains and was accompanied by an elevation of serum markers of insulin resistance, including increases in total cholesterol, low-density lipoproteins, high-density lipoproteins, phospholipids, and glucose. The development of NAFLD was associated with overexpression of the critical fatty acid uptake and de novo lipogenesis genes Pparg, Mogat1, Cd36, Acaab1, Fabp2, and Gdf15 in male and female mice. The expression of Pparg, Mogat1, and Cd36 was positively correlated with liver triglycerides in male mice, and Mogat1 and Cd36 expression were positively correlated with liver triglycerides in female mice. Our results indicate the value of CC mice in combination with HF/HS diet-induced alterations as an approach to study the susceptibility and interindividual variabilities in the pathogenesis of nonalcoholic fatty liver and early nonalcoholic steatohepatitis at the population level, uncovering of susceptible and resistant cohorts, and identifying sex-specific molecular determinants of disease susceptibility.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Rose A Willett
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara Borowa-Mazgaj
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Anna Watson
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Ralph Patton
- Toxicologic Pathology Associates, Jefferson, AR, USA
| | - Sangeeta Khare
- Division of Microbiology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Greg R Olson
- Toxicologic Pathology Associates, Jefferson, AR, USA
| | - Mark I Avigan
- Office of Pharmacovigilance and Epidemiology, FDA-Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Carl E Cerniglia
- Division of Microbiology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Sharon A Ross
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|