1
|
Trelford CB, Shepherd TG. Insights into targeting LKB1 in tumorigenesis. Genes Dis 2025; 12:101402. [PMID: 39735555 PMCID: PMC11681833 DOI: 10.1016/j.gendis.2024.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 12/31/2024] Open
Abstract
Genetic alterations to serine-threonine kinase 11 (STK11) have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by STK11) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of STK11 genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor. However, the role of LKB1 in tumorigenesis is paradoxical as LKB1 activates autophagy and reactive oxygen species scavenging while dampening anoikis, which contribute to cancer cell survival. Due to the pro-tumorigenic properties of LKB1, targeting LKB1 pathways is now relevant for cancer treatment. With the recent successes of targeting LKB1 signaling in research and clinical settings, and enhanced cytotoxicity of chemical compounds in LKB1-deficient tumors, there is now a need for LKB1 inhibitors. However, validating LKB1 inhibitors is challenging as LKB1 adaptor proteins, nucleocytoplasmic shuttling, and splice variants all manipulate LKB1 activity. Furthermore, STE-20-related kinase adaptor protein (STRAD) and mouse protein 25 dictate LKB1 cellular localization and kinase activity. For these reasons, prior to assessing the efficacy and potency of pharmacological candidates, the functional status of LKB1 needs to be defined. Therefore, to improve the understanding of LKB1 in physiology and oncology, this review highlights the role of LKB1 in tumorigenesis and addresses the therapeutic relevancy of LKB1 inhibitors.
Collapse
Affiliation(s)
- Charles B. Trelford
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Trevor G. Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
2
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2025; 14:e202400232. [PMID: 39434498 PMCID: PMC11726697 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| | - Natarajan Chandrasekaran
- Senior Professor & Former DirectorCentre for NanobiotechnologyVellore Institute of Technology (VIT)Vellore Campus, Tiruvalam roadTamil NaduKatpadiVellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| |
Collapse
|
3
|
Kang J, Gallucci S, Pan J, Oakhill JS, Sanij E. The role of STK11/LKB1 in cancer biology: implications for ovarian tumorigenesis and progression. Front Cell Dev Biol 2024; 12:1449543. [PMID: 39544365 PMCID: PMC11560430 DOI: 10.3389/fcell.2024.1449543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
STK11 (serine-threonine kinase 11), also known as LKB1 (liver kinase B1) is a highly conserved master kinase that regulates cellular metabolism and polarity through a complex signaling network involving AMPK and 12 other AMPK-related kinases. Germline mutations in LKB1 have been causatively linked to Peutz-Jeghers Syndrome (PJS), an autosomal dominant hereditary disease with high cancer susceptibility. The identification of inactivating somatic mutations in LKB1 in different types of cancer further supports its tumor suppressive role. Deleterious mutations in LKB1 are frequently observed in patients with epithelial ovarian cancer. However, its inconsistent effects on tumorigenesis and cancer progression suggest that its functional impact is genetic context-dependent, requiring cooperation with other oncogenic lesions. In this review, we summarize the pleiotropic functions of LKB1 and how its altered activity in cancer cells is linked to oncogenic proliferation and growth, metastasis, metabolic reprogramming, genomic instability, and immune modulation. We also review the current mechanistic understandings of this master kinase as well as therapeutic implications with particular focus on the effects of LKB1 deficiency in ovarian cancer pathogenesis. Lastly, we discuss whether LKB1 deficiency can be exploited as an Achilles heel in ovarian cancer.
Collapse
Affiliation(s)
- Jian Kang
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Gallucci
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Junqi Pan
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan S. Oakhill
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Elaine Sanij
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Jacquemin P. On the Effects of Gene Mutations in Pancreatic Tumorigenesis, Depending on the Cell Types and Times When They Are Induced. Cell Mol Gastroenterol Hepatol 2024; 18:101394. [PMID: 39288898 PMCID: PMC11519692 DOI: 10.1016/j.jcmgh.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Affiliation(s)
- Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium.
| |
Collapse
|
5
|
Saeki K, Wood IS, Wang WCK, Patil S, Sun Y, Schaeffer DF, Su GH, Kopp JL. Acvr1b Loss Increases Formation of Pancreatic Precancerous Lesions From Acinar and Ductal Cells of Origin. Cell Mol Gastroenterol Hepatol 2024; 18:101387. [PMID: 39111635 PMCID: PMC11404226 DOI: 10.1016/j.jcmgh.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma can develop from precursor lesions, including pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasm (IPMN). Previous studies indicated that loss of Acvr1b accelerates the Kras-mediated development of papillary IPMN in the mouse pancreas; however, the cell type predominantly affected by these genetic changes remains unclear. METHODS We investigated the contribution of cellular origin by inducing IPMN associated mutations (KRASG12D expression and Acvr1b loss) specifically in acinar (Ptf1aCreER;KrasLSL-G12D;Acvr1bfl/fl mice) or ductal (Sox9CreER;KrasLSL-G12D;Acvr1bfl/fl mice) cells in mice. We then performed magnetic resonance imaging and a thorough histopathologic analysis of their pancreatic tissues. RESULTS The loss of Acvr1b increased the development of pancreatic intraepithelial neoplasia and IPMN-like lesions when either acinar or ductal cells expressed a Kras mutation. Magnetic resonance imaging, immunohistochemistry, and histology revealed large IPMN-like lesions in these mice that exhibited features of flat, gastric epithelium. In addition, cyst formation in both mouse models was accompanied by chronic pancreatitis. Experimental acute pancreatitis accelerated the development of large mucinous cysts and pancreatic intraepithelial neoplasia when acinar, but not ductal, cells expressed mutant Kras and lost Acvr1b. CONCLUSIONS These findings indicate that loss of Acvr1b in the presence of the Kras oncogene promotes the development of large and small precancerous lesions from both ductal and acinar cells. However, the IPMN-like phenotype was not equivalent to that observed when these mutations were made in all pancreatic cells during development. Our study underscores the significance of the cellular context in the initiation and progression of precursor lesions from exocrine cells.
Collapse
Affiliation(s)
- Kiyoshi Saeki
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Ian S Wood
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Wei Chuan Kevin Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shilpa Patil
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Yanping Sun
- Oncology Precision Therapeutics and Imaging Core (OPTIC), Columbia University Medical Center, New York, New York
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Hu Y, Jones D, Esnakula AK, Krishna SG, Chen W. Molecular Pathology of Pancreatic Cystic Lesions with a Focus on Malignant Progression. Cancers (Basel) 2024; 16:1183. [PMID: 38539517 PMCID: PMC10969285 DOI: 10.3390/cancers16061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/11/2024] Open
Abstract
The malignant progression of pancreatic cystic lesions (PCLs) remains understudied with a knowledge gap, yet its exploration is pivotal for effectively stratifying patient risk and detecting cancer at its earliest stages. Within this review, we delve into the latest discoveries on the molecular level, revealing insights into the IPMN molecular landscape and revised progression model, associated histologic subtypes, and the role of inflammation in the pathogenesis and malignant progression of IPMN. Low-grade PCLs, particularly IPMNs, can develop into high-grade lesions or invasive carcinoma, underscoring the need for long-term surveillance of these lesions if they are not resected. Although KRAS and GNAS remain the primary oncogenic drivers of neoplastic development in IPMNs, additional genes that are important in tumorigenesis have been recently identified by whole exome sequencing. A more complete understanding of the genes involved in the molecular progression of IPMN is critical for effective monitoring to minimize the risk of malignant progression. Complicating these strategies, IPMNs are also frequently multifocal and multiclonal, as demonstrated by comparative molecular analysis. Algorithms for preoperative cyst sampling and improved radiomic techniques are emerging to model this spatial and temporal genetic heterogeneity better. Here, we review the molecular pathology of PCLs, focusing on changes associated with malignant progression. Developing models of molecular risk stratification in PCLs which can complement radiologic and clinical features, facilitate the early detection of pancreatic cancer, and enable the development of more personalized surveillance and management strategies are summarized.
Collapse
Affiliation(s)
- Yan Hu
- James Molecular Laboratory, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (Y.H.); (D.J.)
| | - Dan Jones
- James Molecular Laboratory, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (Y.H.); (D.J.)
| | - Ashwini K. Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
7
|
Zheng C, Wang J, Wang J, Zhang Q, Liang T. Cell of Origin of Pancreatic cancer: Novel Findings and Current Understanding. Pancreas 2024; 53:e288-e297. [PMID: 38277420 PMCID: PMC11882172 DOI: 10.1097/mpa.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2023] [Indexed: 01/28/2024]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal diseases globally, boasting a grim 5-year survival prognosis. The origin cell and the molecular signaling pathways that drive PDAC progression are not entirely understood. This review comprehensively outlines the categorization of PDAC and its precursor lesions, expounds on the creation and utility of genetically engineered mouse models used in PDAC research, compiles a roster of commonly used markers for pancreatic progenitors, duct cells, and acinar cells, and briefly addresses the mechanisms involved in the progression of PDAC. We acknowledge the value of precise markers and suitable tracing tools to discern the cell of origin, as it can facilitate the creation of more effective models for PDAC exploration. These conclusions shed light on our existing understanding of foundational genetically engineered mouse models and focus on the origin and development of PDAC.
Collapse
Affiliation(s)
- Chenlei Zheng
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jianing Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Junli Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Qi Zhang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
8
|
Jain M, Atayan D, Rakhmatullin T, Dakhtler T, Popov P, Kim P, Viborniy M, Gontareva I, Samokhodskaya L, Egorov V. Cell-Free Tumor DNA Detection-Based Liquid Biopsy of Plasma and Bile in Patients with Various Pancreatic Neoplasms. Biomedicines 2024; 12:220. [PMID: 38255325 PMCID: PMC10813046 DOI: 10.3390/biomedicines12010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The key challenge of cell-free tumor DNA (cftDNA) analysis in pancreatic ductal adenocarcinoma (PDAC) is overcoming its low detection rate, which is mainly explained by the overall scarcity of this biomarker in plasma. Obstructive jaundice is a frequent event in PDAC, which enables bile collection as a part of routine treatment. The aim of this study was to evaluate the performance of KRAS-mutated cftDNA detection-based liquid biopsy of plasma and bile in patients with pancreatic neoplasms using digital droplet PCR. The study included healthy volunteers (n = 38), patients with PDAC (n = 95, of which 20 had obstructive jaundice) and other pancreatic neoplasms (OPN) (n = 18). The sensitivity and specificity compared to the control group were 61% and 100% (AUC-ROC-0.805), and compared to the OPN group, they were 61% and 94% (AUC-ROC-0.794), respectively. Bile exhibited higher cftDNA levels than plasma (248.6 [6.743; 1068] vs. 3.26 [0; 19.225] copies/mL) and a two-fold higher detection rate (p < 0.01). Plasma cftDNA levels were associated with distant metastases, tumor size, and CA 19-9 (p < 0.05). The probability of survival was worse in patients with higher levels of cftDNA in plasma (hazard ratio-2.4; 95% CI: 1.3-4.6; p = 0.005) but not in bile (p > 0.05). Bile is a promising alternative to plasma in patients with obstructive jaundice, at least for the diagnostic purposes of liquid biopsy.
Collapse
Affiliation(s)
- Mark Jain
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - David Atayan
- Joint Stock Company “Ilyinsky Hospital”, 143421 Moscow, Russia; (D.A.); (T.D.); (P.P.); (P.K.); (M.V.); (I.G.); (V.E.)
| | - Tagir Rakhmatullin
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Tatyana Dakhtler
- Joint Stock Company “Ilyinsky Hospital”, 143421 Moscow, Russia; (D.A.); (T.D.); (P.P.); (P.K.); (M.V.); (I.G.); (V.E.)
| | - Pavel Popov
- Joint Stock Company “Ilyinsky Hospital”, 143421 Moscow, Russia; (D.A.); (T.D.); (P.P.); (P.K.); (M.V.); (I.G.); (V.E.)
| | - Pavel Kim
- Joint Stock Company “Ilyinsky Hospital”, 143421 Moscow, Russia; (D.A.); (T.D.); (P.P.); (P.K.); (M.V.); (I.G.); (V.E.)
| | - Mikhail Viborniy
- Joint Stock Company “Ilyinsky Hospital”, 143421 Moscow, Russia; (D.A.); (T.D.); (P.P.); (P.K.); (M.V.); (I.G.); (V.E.)
| | - Iuliia Gontareva
- Joint Stock Company “Ilyinsky Hospital”, 143421 Moscow, Russia; (D.A.); (T.D.); (P.P.); (P.K.); (M.V.); (I.G.); (V.E.)
| | - Larisa Samokhodskaya
- Medical Research and Educational Center, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Vyacheslav Egorov
- Joint Stock Company “Ilyinsky Hospital”, 143421 Moscow, Russia; (D.A.); (T.D.); (P.P.); (P.K.); (M.V.); (I.G.); (V.E.)
| |
Collapse
|
9
|
Nagao M, Ueo T, Fukuda A, Ohana M. Intraductal papillary mucinous carcinoma with co-mutations of KRAS/STK11. BMJ Case Rep 2023; 16:e255945. [PMID: 38011945 PMCID: PMC10685908 DOI: 10.1136/bcr-2023-255945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Affiliation(s)
- Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, kyoto, Japan
- Department of Gastroenterology and Hepatology, Tenri Hospital, Tenri, Nara, Japan
| | - Taro Ueo
- Department of Gastroenterology and Hepatology, Tenri Hospital, Tenri, Nara, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, kyoto, Japan
| | - Masaya Ohana
- Department of Gastroenterology and Hepatology, Tenri Hospital, Tenri, Nara, Japan
| |
Collapse
|
10
|
Luchini C, Mattiolo P, Basturk O, Mafficini A, Ozcan K, Lawlor RT, Hong SM, Brosens LA, Marchegiani G, Pea A, Manfrin E, Sciacca G, Zampieri F, Polati R, De Robertis R, Milella M, D'Onofrio M, Malleo G, Salvia R, Adsay V, Scarpa A. Acinar Cystic Transformation of the Pancreas: Histomorphology and Molecular Analysis to Unravel its Heterogeneous Nature. Am J Surg Pathol 2023; 47:379-386. [PMID: 36649476 DOI: 10.1097/pas.0000000000002017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acinar cystic transformation (ACT) of the pancreas, previously called acinar cell cystadenoma, is a poorly understood and rare entity among pancreatic cystic lesions. This study aims to clarify its real nature. This research cohort included 25 patients with pancreatic ACT, representing the largest series in the literature. We describe their clinicopathological features and molecular profile using next-generation sequencing. ACT arose more often in women (F/M≃2:1), in the body-tail region, with a mean size of ~4 cm. At the latest follow-up, all patients were alive and disease free. Histologically, a typical acinar epithelium lined all cysts, intermingled with ductal-like epithelium in 11/25 (44%) cases. All the cases lacked any evidence of malignancy. Three ACT showed peculiar features: 1 showed an extensive and diffuse microcystic pattern, and the other 2 harbored foci of low-grade pancreatic intraepithelial neoplasia (PanIN) in the ductal-like epithelium. Next-generation sequencing revealed the presence of 2 pathogenic/likely pathogenic mutations in 2 different cases, 1 with ductal-like epithelium and 1 with PanIN, and affecting KRAS (c.34G>C, p.G12R) and SMO (c.1685G>A, p.R562Q) genes, respectively. The other case with PanIN was not available for sequencing. Overall, our findings support that ACT is a benign entity, potentially arising from heterogeneous conditions/background, including: (1) acinar microcysts, (2) malformations, (3) obstructive/inflammatory setting, (4) genetic predisposition, (5) possible neoplastic origin. Although all indications are that ACT is benign, the potential occurrence of driver mutations suggests discussing a potential role of long-term surveillance for these patients.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Kerem Ozcan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Lodewijk A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, and Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Antonio Pea
- Department of Surgery, The Pancreas Institute
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Section of Pathology
| | - Giuseppe Sciacca
- Department of Diagnostics and Public Health, Section of Pathology
| | | | - Rita Polati
- Department of Diagnostics and Public Health, Section of Pathology
| | | | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Section of Radiology
| | | | | | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Serine/Threonine Kinase 11 Plays a Canonical Role in Malignant Progression of KRAS -Mutant and GNAS -Wild-Type Intraductal Papillary Mucinous Neoplasms of the Pancreas. Ann Surg 2023; 277:e384-e395. [PMID: 33914475 DOI: 10.1097/sla.0000000000004842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to elucidate the clinicopathobiological significance of Serine/Threonine Kinase 11 (STK11) in pancreatic intraductal papillary mucinous neoplasms (IPMNs). BACKGROUND STK11 is a tumor suppressor involved in certain IPMNs; however, its significance is not well known. METHODS In 184 IPMNs without Peutz-Jeghers syndrome, we analyzed expression of STK11 and phosphorylated-AMPKa in all cases, and p16, p53, SMAD4, and β-catenin in 140 cases by immunohistochemistry; and we analyzed mutations in 37 genes, including whole coding exons of STK11, CDKN2A, TP53, and SMAD4, and hotspots of KRAS, BRAF, and GNAS in 64 cases by targeted sequencing. KRAS and GNAS were additionally analyzed in 86 STK11-normal IPMNs using digital-PCR. RESULTS Consistent loss or reduction of STK11 expression was observed in 26 of 184 (14%) IPMNs. These STK11-aberrant IPMNs were 17 of 45 (38%) pancreatobiliary, 8 of 27 (30%) oncocytic, 1 of 54 (2%) gastric, and 0 of 58 (0%) intestinal subtypes ( P = 8.5E-11), and 20 of 66 (30%) invasive, 6 of 74 (8%) high-grade, and 0 of 44 (0%) low-grade ( P = 3.9E-06). Sixteen somatic STK11 mutations (5 frameshift, 6 nonsense, 1 splicing, and 4 missense) were detected in 15/26 STK11-aberrant IPMNs ( P = 4.1E-06). All STK11-aberrantIPMNs were GNAS -wild-type and 96% of them were KRAS or BRAF -mutant.Morphologically, STK11-aberrant IPMNs presented "fern-like" arborizing papillae with thin fibrovascular core. Phosphorylated-AMPKa was down-regulated in STK11-aberrant IPMNs (92%, P = 6.8E-11). Patients with STK11-aberrant IPMNs showed poorer survival than patients with STK11-normal IPMNs ( P = 3.6E-04 overall; P = 6.1E-04 disease-free). CONCLUSION STK11 may play a canonical role in malignant progression and poor survival of patients with IPMNs. Aberrant STK11-driven phosphorylated AMPK downregulation may provide therapeutic opportunities with mTOR inhibitors/AMPK activators.
Collapse
|
12
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
13
|
Huang X, Feng Y, Ma D, Ding H, Dong G, Chen Y, Huang X, Zhang J, Xu X, Chen C. The molecular, immune features, and risk score construction of intraductal papillary mucinous neoplasm patients. Front Mol Biosci 2022; 9:887887. [PMID: 36090038 PMCID: PMC9459388 DOI: 10.3389/fmolb.2022.887887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a common pancreatic precancerous lesion, with increasing incidence in recent years. However, the mechanisms of IPMN progression into invasive cancer remain unclear. The mRNA expression data of IPMN/PAAD patients were extracted from the TCGA and GEO databases. First, based on GSE19650, we analyzed the molecular alterations, tumor stemness, immune landscape, and transcriptional regulation of IPMN progression. The results indicated that gene expression changed dramatically, specifically at the intraductal papillary-mucinous adenoma (IPMA) stage. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Kyoto Encyclopedia of Genes and Genomes (GSEA) pathway analyses showed that glycoprotein-related, cell cycle, and P53 pathways displayed the most significant changes during progression. With IPMN progression, tumor stemness increased continuously, and KRAS, ERBB3, RUNX1, and ELF3 are essential driver genes affecting tumor stemness. Motif analysis suggested that KLF4 may be a specific transcription factor that regulates gene expression in the IPMA stage, while MYB and MYBL1 control gene expression in the IPMC and invasive stages, respectively. Then, GSE19650 and GSE71729 transcriptome data were combined to perform the least absolute shrinkage and selection operator (LASSO) method and Cox regression analysis to develop an 11-gene prediction model (KCNK1, FHL2, LAMC2, CDCA7, GPX3, C7, VIP, HBA1, BTG2, MT1E, and LYVE1) to predict the prognosis of pancreatic cancer patients. The reliability of the model was validated in the GSE71729 and TCGA databases. Finally, 11 additional IPMN patients treated in our hospital were included, and the immune microenvironment changes during IPMN progression were analyzed by immunohistochemistry (IHC). IHC results suggest that Myeloid-derived suppressor cells (MDSCs) and macrophages may be key in the formation of immunosuppressive microenvironment of IPMN progression. Our study deepens our understanding of IPMN progression, especially the changes in the immune microenvironment. The findings of this work may contribute to the development of new therapeutic strategies for IPMN.
Collapse
Affiliation(s)
- Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Dawei Ma
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hanlin Ding
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyuan Zhang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Chen, ; Xinyu Xu, ; Jingyuan Zhang,
| | - Xinyu Xu
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Chen, ; Xinyu Xu, ; Jingyuan Zhang,
| | - Chen Chen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Chen, ; Xinyu Xu, ; Jingyuan Zhang,
| |
Collapse
|
14
|
Wang Y, Cuggia A, Chen YI, Parent J, Stanek A, Denroche RE, Zhang A, Grant RC, Domecq C, Golesworthy B, Shwaartz C, Borgida A, Holter S, Wilson JM, Chong G, O'Kane GM, Knox JJ, Fischer SE, Gallinger S, Gao ZH, Foulkes WD, Waschke KA, Zogopoulos G. Is Biannual Surveillance for Pancreatic Cancer Sufficient in Individuals With Genetic Syndromes or Familial Pancreatic Cancer? J Natl Compr Canc Netw 2022; 20:663-673.e12. [PMID: 35714671 DOI: 10.6004/jnccn.2021.7107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Individuals with a family history of pancreatic adenocarcinoma (PC) or with a germline mutation in a PC susceptibility gene are at increased risk of developing PC. These high-risk individuals (HRIs) may benefit from PC surveillance. METHODS A PC surveillance program was developed to evaluate the detection of premalignant lesions and early-stage PCs using biannual imaging and to determine whether locally advanced or metastatic PCs develop despite biannual surveillance. From January 2013 to April 2020, asymptomatic HRIs were enrolled and followed with alternating MRI and endoscopic ultrasound every 6 months. RESULTS Of 75 HRIs, 43 (57.3%) had a germline mutation in a PC susceptibility gene and 32 (42.7%) had a familial pancreatic cancer (FPC) pedigree. Branch-duct intraductal papillary mucinous neoplasms (BD-IPMNs) were identified in 26 individuals (34.7%), but only 2 developed progressive lesions. One patient with Peutz-Jeghers syndrome (PJS) developed locally advanced PC arising from a BD-IPMN. Whole-genome sequencing of this patient's PC and of a second patient with PJS-associated PC from the same kindred revealed biallelic inactivation of STK11 in a KRAS-independent manner. A review of 3,853 patients from 2 PC registries identified an additional patient with PJS-associated PC. All 3 patients with PJS developed advanced PC consistent with the malignant transformation of an underlying BD-IPMN in <6 months. The other surveillance patient with a progressive lesion had FPC and underwent resection of a mixed-type IPMN that harbored polyclonal KRAS mutations. CONCLUSIONS PC surveillance identifies a high prevalence of BD-IPMNs in HRIs. Patients with PJS with BD-IPMNs may be at risk for accelerated malignant transformation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, Quebec
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Adeline Cuggia
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Yen-I Chen
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Division of Gastroenterology and Hepatology, and
| | - Josée Parent
- Division of Gastroenterology and Hepatology, and
| | - Agatha Stanek
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec
| | | | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario
| | - Robert C Grant
- Ontario Institute for Cancer Research, Toronto, Ontario
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Céline Domecq
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Bryn Golesworthy
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Chaya Shwaartz
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Ayelet Borgida
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario
| | - Spring Holter
- Ontario Institute for Cancer Research, Toronto, Ontario
| | | | - George Chong
- Molecular Diagnostics Laboratory, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec
| | - Grainne M O'Kane
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Jennifer J Knox
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | | | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario
| | | | - William D Foulkes
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Department of Human Genetics, and
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, Quebec
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| |
Collapse
|
15
|
Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models. Cancers (Basel) 2021; 14:cancers14010071. [PMID: 35008235 PMCID: PMC8750056 DOI: 10.3390/cancers14010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful tools to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. In this review, we summarize the main molecular alterations found in pancreatic neoplasms and GEMMs developed based on these alterations. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, and the seventh leading cause of cancer-related deaths worldwide. An improved understanding of tumor biology and novel therapeutic discoveries are needed to improve overall survival. Recent multi-gene analysis approaches such as next-generation sequencing have provided useful information on the molecular characterization of pancreatic tumors. Different types of pancreatic cancer and precursor lesions are characterized by specific molecular alterations. Genetically engineered mouse models (GEMMs) of PDAC are useful to understand the roles of altered genes. Most GEMMs are driven by oncogenic Kras, and can recapitulate the histological and molecular hallmarks of human PDAC and comparable precursor lesions. Advanced GEMMs permit the temporally and spatially controlled manipulation of multiple target genes using a dual-recombinase system or CRISPR/Cas9 gene editing. GEMMs that express fluorescent proteins allow cell lineage tracing to follow tumor growth and metastasis to understand the contribution of different cell types in cancer progression. GEMMs are widely used for therapeutic optimization. In this review, we summarize the main molecular alterations found in pancreatic neoplasms, developed GEMMs, and the contribution of GEMMs to the current understanding of PDAC pathobiology. Furthermore, we attempted to modify the categorization of altered driver genes according to the most updated findings.
Collapse
|
16
|
Li J, Wei T, Zhang J, Liang T. Intraductal Papillary Mucinous Neoplasms of the Pancreas: A Review of Their Genetic Characteristics and Mouse Models. Cancers (Basel) 2021; 13:cancers13215296. [PMID: 34771461 PMCID: PMC8582516 DOI: 10.3390/cancers13215296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers with the lowest survival rate. Little progress has been achieved in prolonging the survival for patients with pancreatic adenocarcinoma. Hence, special attention should be paid to pre-cancerous lesions, for instance, an intraductal papillary mucinous neoplasm (IPMN). Here, we reviewed its genetic characteristics and the mouse models involving mutations in specific pathways, and updated our current perception of how this lesion develops into a precursor of invasive cancer. Abstract The intraductal papillary mucinous neoplasm (IPMN) is attracting research attention because of its increasing incidence and proven potential to progress into invasive pancreatic ductal adenocarcinoma (PDAC). In this review, we summarized the key signaling pathways or protein complexes (GPCR, TGF, SWI/SNF, WNT, and PI3K) that appear to be involved in IPMN pathogenesis. In addition, we collected information regarding all the genetic mouse models that mimic the human IPMN phenotype with specific immunohistochemistry techniques. The mouse models enable us to gain insight into the complex mechanism of the origin of IPMN, revealing that it can be developed from both acinar cells and duct cells according to different models. Furthermore, recent genomic studies describe the potential mechanism by which heterogeneous IPMN gives rise to malignant carcinoma through sequential, branch-off, or de novo approaches. The most intractable problem is that the risk of malignancy persists to some extent even if the primary IPMN is excised with a perfect margin, calling for the re-evaluation and improvement of diagnostic, pre-emptive, and therapeutic measures.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-571-87236688
| |
Collapse
|
17
|
Grimont A, Leach SD, Chandwani R. Uncertain Beginnings: Acinar and Ductal Cell Plasticity in the Development of Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:369-382. [PMID: 34352406 PMCID: PMC8688164 DOI: 10.1016/j.jcmgh.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The pancreas consists of several specialized cell types that display a remarkable ability to alter cellular identity in injury, regeneration, and repair. The abundant cellular plasticity within the pancreas appears to be exploited in tumorigenesis, with metaplastic, dedifferentiation, and transdifferentiation processes central to the development of pancreatic intraepithelial neoplasia and intraductal papillary neoplasms, precursor lesions to pancreatic ductal adenocarcinoma. In the face of shifting cellular identity, the cell of origin of pancreatic cancer has been difficult to elucidate. However, with the extensive utilization of in vivo lineage-traced mouse models coupled with insights from human samples, it has emerged that the acinar cell is most efficiently able to give rise to both intraductal papillary neoplasms and pancreatic intraepithelial neoplasia but that acinar and ductal cells can undergo malignant transformation to pancreatic ductal adenocarcinoma. In this review, we discuss the cellular reprogramming that takes place in both the normal and malignant pancreas and evaluate the current state of evidence that implicate both the acinar and ductal cell as context-dependent origins of this deadly disease.
Collapse
Affiliation(s)
- Adrien Grimont
- Department of Surgery, Weill Cornell Medicine, New York, New York; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Steven D Leach
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, New York, New York; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York; Department of Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York.
| |
Collapse
|
18
|
Ma G, Li G, Xiao Z, Gou A, Xu Y, Song S, Guo K, Liu Z. Narrative review of intraductal papillary mucinous neoplasms: pathogenesis, diagnosis, and treatment of a true precancerous lesion. Gland Surg 2021; 10:2313-2324. [PMID: 34422602 PMCID: PMC8340339 DOI: 10.21037/gs-21-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Although considerable progress has been made in our understanding of intraductal papillary mucinous neoplasm (IPMN) of the pancreas, there are still some problems to be solved. BACKGROUND IPMN is one of the most important precancerous lesions of pancreatic cancer, but the relationship between IPMN and pancreatic cancer, and the specific mechanism of the development from IPMN to invasive carcinoma, remain to be explored in depth. With the development of imaging, the detection rate of IPMN has been greatly improved. However, the degree of malignancy of IPMN is difficult to assess, and its classification criteria and surgical treatment strategies are still controversial. Therefore, there is an urgent need for the best treatment plan for IPMN and research that can better predict IPMN recurrence and tumor malignancy. METHODS From the online database Web of Science (https://webofknowledge.com/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/), we use specific retrieval strategies to retrieve relevant articles based on the topics we discussed, and we review and discuss them. CONCLUSIONS This paper discusses the related research and progress of IPMN in recent years to improve the understanding of the incidence, diagnosis, treatment, and prognosis of this disease. The follow-up and monitoring of IPMN is particularly important, but the specific strategy also remains controversial.
Collapse
Affiliation(s)
- Gang Ma
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Guichen Li
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Zhihuan Xiao
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Anjiang Gou
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yuanhong Xu
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shaowei Song
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Kejian Guo
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Intraductal Papillary Mucinous Carcinoma Versus Conventional Pancreatic Ductal Adenocarcinoma: A Comprehensive Review of Clinical-Pathological Features, Outcomes, and Molecular Insights. Int J Mol Sci 2021; 22:ijms22136756. [PMID: 34201897 PMCID: PMC8268881 DOI: 10.3390/ijms22136756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/18/2022] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMN) are common and one of the main precursor lesions of pancreatic ductal adenocarcinoma (PDAC). PDAC derived from an IPMN is called intraductal papillary mucinous carcinoma (IPMC) and defines a subgroup of patients with ill-defined specificities. As compared to conventional PDAC, IPMCs have been associated to clinical particularities and favorable pathological features, as well as debated outcomes. However, IPMNs and IPMCs include distinct subtypes of precursor (gastric, pancreato-biliary, intestinal) and invasive (tubular, colloid) lesions, also associated to specific characteristics. Notably, consistent data have shown intestinal IPMNs and associated colloid carcinomas, defining the “intestinal pathway”, to be associated with less aggressive features. Genomic specificities have also been uncovered, such as mutations of the GNAS gene, and recent data provide more insights into the mechanisms involved in IPMCs carcinogenesis. This review synthetizes available data on clinical-pathological features and outcomes associated with IPMCs and their subtypes. We also describe known genomic hallmarks of these lesions and summarize the latest data about molecular processes involved in IPMNs initiation and progression to IPMCs. Finally, potential implications for clinical practice and future research strategies are discussed.
Collapse
|
20
|
Fujikura K, Hosoda W, Felsenstein M, Song Q, Reiter JG, Zheng L, Beleva Guthrie V, Rincon N, Dal Molin M, Dudley J, Cohen JD, Wang P, Fischer CG, Braxton AM, Noë M, Jongepier M, Fernández-Del Castillo C, Mino-Kenudson M, Schmidt CM, Yip-Schneider MT, Lawlor RT, Salvia R, Roberts NJ, Thompson ED, Karchin R, Lennon AM, Jiao Y, Wood LD. Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic KLF4 mutations predominantly in low-grade regions. Gut 2021; 70:928-939. [PMID: 33028669 PMCID: PMC8262510 DOI: 10.1136/gutjnl-2020-321217] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Intraductal papillary mucinous neoplasms (IPMNs) are non-invasive precursor lesions that can progress to invasive pancreatic cancer and are classified as low-grade or high-grade based on the morphology of the neoplastic epithelium. We aimed to compare genetic alterations in low-grade and high-grade regions of the same IPMN in order to identify molecular alterations underlying neoplastic progression. DESIGN We performed multiregion whole exome sequencing on tissue samples from 17 IPMNs with both low-grade and high-grade dysplasia (76 IPMN regions, including 49 from low-grade dysplasia and 27 from high-grade dysplasia). We reconstructed the phylogeny for each case, and we assessed mutations in a novel driver gene in an independent cohort of 63 IPMN cyst fluid samples. RESULTS Our multiregion whole exome sequencing identified KLF4, a previously unreported genetic driver of IPMN tumorigenesis, with hotspot mutations in one of two codons identified in >50% of the analyzed IPMNs. Mutations in KLF4 were significantly more prevalent in low-grade regions in our sequenced cases. Phylogenetic analyses of whole exome sequencing data demonstrated diverse patterns of IPMN initiation and progression. Hotspot mutations in KLF4 were also identified in an independent cohort of IPMN cyst fluid samples, again with a significantly higher prevalence in low-grade IPMNs. CONCLUSION Hotspot mutations in KLF4 occur at high prevalence in IPMNs. Unique among pancreatic driver genes, KLF4 mutations are enriched in low-grade IPMNs. These data highlight distinct molecular features of low-grade and high-grade dysplasia and suggest diverse pathways to high-grade dysplasia via the IPMN pathway.
Collapse
Affiliation(s)
- Kohei Fujikura
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Waki Hosoda
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Matthäus Felsenstein
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, Charité Universitätsmedizin, Berlin, Germany
| | - Qianqian Song
- State Key Lab of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Johannes G Reiter
- Canary Center for Cancer Early Detection in Department of Radiology, Stanford Cancer Institute, and Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Lily Zheng
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Natalia Rincon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marco Dal Molin
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Dudley
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pei Wang
- State Key Lab of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alicia M Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michaël Noë
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martine Jongepier
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Rita T Lawlor
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery Department, The Pancreas Institute and Hospital Trust of Verona, Verona, Italy
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel Karchin
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anne Marie Lennon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Huang L, Desai R, Conrad DN, Leite NC, Akshinthala D, Lim CM, Gonzalez R, Muthuswamy LB, Gartner Z, Muthuswamy SK. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell 2021; 28:1090-1104.e6. [PMID: 33915081 PMCID: PMC8202734 DOI: 10.1016/j.stem.2021.03.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The exocrine pancreas, consisting of ducts and acini, is the site of origin of pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Our understanding of the genesis and progression of human pancreatic diseases, including PDAC, is limited because of challenges in maintaining human acinar and ductal cells in culture. Here we report induction of human pluripotent stem cells toward pancreatic ductal and acinar organoids that recapitulate properties of the neonatal exocrine pancreas. Expression of the PDAC-associated oncogene GNASR201C induces cystic growth more effectively in ductal than acinar organoids, whereas KRASG12D is more effective in modeling cancer in vivo when expressed in acinar compared with ductal organoids. KRASG12D, but not GNASR201C, induces acinar-to-ductal metaplasia-like changes in culture and in vivo. We develop a renewable source of ductal and acinar organoids for modeling exocrine development and diseases and demonstrate lineage tropism and plasticity for oncogene action in the human pancreas.
Collapse
Affiliation(s)
- Ling Huang
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ridhdhi Desai
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel N Conrad
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nayara C Leite
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dipikaa Akshinthala
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christine Maria Lim
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Raul Gonzalez
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lakshmi B Muthuswamy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA; NSF Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Hsieh MJ, Weng CC, Lin YC, Wu CC, Chen LT, Cheng KH. Inhibition of β-Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice. Int J Mol Sci 2021; 22:ijms22094649. [PMID: 33924999 PMCID: PMC8125161 DOI: 10.3390/ijms22094649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer death worldwide, and remains one of our most recalcitrant and dismal diseases. In contrast to many other malignancies, there has not been a significant improvement in patient survival over the past decade. Despite advances in our understanding of the genetic alterations associated with this disease, an incomplete understanding of the underlying biology and lack of suitable animal models have hampered efforts to develop more effective therapies. LKB1 is a tumor suppressor that functions as a primary upstream kinase of adenine monophosphate-activated protein kinase (AMPK), which is an important mediator in the regulation of cell growth and epithelial polarity pathways. LKB1 is mutated in a significant number of Peutz–Jeghers syndrome (PJS) patients and in a small proportion of sporadic cancers, including PC; however, little is known about how LKB1 loss contributes to PC development. Here, we report that a reduction in Wnt/β-catenin activity is associated with LKB1 tumor-suppressive properties in PC. Remarkably, in vivo functional analyses of β-catenin in the Pdx-1-Cre LKB1L/L β-cateninL/L mouse model compared to LKB1 loss-driven cystadenoma demonstrate that the loss of β-catenin impairs cystadenoma development in the pancreas of Pdx-1Cre LKB1L/L mice and dramatically restores the normal development and functions of the pancreas. This study further determined the in vivo and in vitro therapeutic efficacy of the β-catenin inhibitor FH535 in suppressing LKB1 loss-driven cystadenoma and reducing PC progression that delineates the potential roles of Wnt/β-catenin signaling in PC harboring LKB1 deficiency.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- AMP-Activated Protein Kinases/metabolism
- Animals
- Cell Line, Tumor
- Cystadenoma, Mucinous/etiology
- Cystadenoma, Mucinous/metabolism
- Cystadenoma, Mucinous/prevention & control
- Female
- Humans
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreas/pathology
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/prevention & control
- Peutz-Jeghers Syndrome/genetics
- Peutz-Jeghers Syndrome/metabolism
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Sulfonamides/pharmacology
- Wnt Signaling Pathway/drug effects
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
Collapse
Affiliation(s)
- Mei-Jen Hsieh
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (M.-J.H.); (C.-C.W.); (Y.-C.L.); (C.-C.W.)
- Division of Neurology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Ching-Chieh Weng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (M.-J.H.); (C.-C.W.); (Y.-C.L.); (C.-C.W.)
| | - Yu-Chun Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (M.-J.H.); (C.-C.W.); (Y.-C.L.); (C.-C.W.)
| | - Chia-Chen Wu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (M.-J.H.); (C.-C.W.); (Y.-C.L.); (C.-C.W.)
| | - Li-Tzong Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (M.-J.H.); (C.-C.W.); (Y.-C.L.); (C.-C.W.)
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: (L.-T.C.); (K.-H.C.)
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; (M.-J.H.); (C.-C.W.); (Y.-C.L.); (C.-C.W.)
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (K.-H.C.)
| |
Collapse
|
23
|
Cobo I, Iglesias M, Flández M, Verbeke C, Del Pozo N, Llorente M, Lawlor R, Luchini C, Rusev B, Scarpa A, Real FX. Epithelial Nr5a2 heterozygosity cooperates with mutant Kras in the development of pancreatic cystic lesions. J Pathol 2021; 253:174-185. [PMID: 33079429 DOI: 10.1002/path.5570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Cystic neoplasms of the pancreas are an increasingly important public health problem. The majority of these lesions are benign but some progress to invasive pancreatic ductal adenocarcinoma (PDAC). There is a dearth of mouse models of these conditions. The orphan nuclear receptor NR5A2 regulates development, differentiation, and inflammation. Germline Nr5a2 heterozygosity sensitizes mice to the oncogenic effects of mutant Kras in the pancreas. Here, we show that - unlike constitutive Nr5a2+/- mice - conditional Nr5a2 heterozygosity in pancreatic epithelial cells, combined with mutant Kras (KPN+/- ), leads to a dramatic replacement of the pancreatic parenchyma with cystic structures and an accelerated development of high-grade PanINs and PDAC. Timed histopathological analyses indicated that in KPN+/- mice PanINs precede the formation of cystic lesions and the latter precede PDAC. A single episode of acute caerulein pancreatitis is sufficient to accelerate the development of cystic lesions in KPN+/- mice. Epithelial cells of cystic lesions of KPN+/- mice express MUC1, MUC5AC, and MUC6, but lack expression of MUC2, CDX2, and acinar markers, indicative of a pancreato-biliary/gastric phenotype. In accordance with this, in human samples we found a non-significantly decreased expression of NR5A2 in mucinous tumours, compared with conventional PDAC. These results highlight that the effects of loss of one Nr5a2 allele are time- and cell context-dependent. KPN+/- mice represent a new model to study the formation of cystic pancreatic lesions and their relationship with PanINs and classical PDAC. Our findings suggest that pancreatitis could also contribute to acceleration of cystic tumour progression in patients. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Isidoro Cobo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre - CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Mar Iglesias
- CIBERONC, Madrid, Spain
- Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Flández
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre - CNIO, Madrid, Spain
| | - Caroline Verbeke
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre - CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Miriam Llorente
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre - CNIO, Madrid, Spain
| | - Rita Lawlor
- ARC - Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- ARC - Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- ARC - Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC - Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre - CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
24
|
Chung WC, Challagundla L, Zhou Y, Li M, Atfi A, Xu K. Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci Alliance 2020; 4:4/2/e201900503. [PMID: 33268505 PMCID: PMC7756968 DOI: 10.26508/lsa.201900503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Notch signaling exerts both oncogenic and tumor-suppressive functions in the pancreas. In this study, deletion of Jag1 in conjunction with oncogenic Kras G12D expression in the mouse pancreas induced rapid development of acinar-to-ductal metaplasia and early stage pancreatic intraepithelial neoplasm; however, culminating in cystic neoplasms rather than ductal adenocarcinoma. Most cystic lesions in these mice were reminiscent of serous cystic neoplasm, and the rest resembled intraductal papillary mucinous neoplasm. Jag1 expression was lost or decreased in cystic lesions but retained in adenocarcinoma in these mice, so was the expression of Sox9. In pancreatic cancer patients, JAG1 expression is higher in cancerous tissue, and high JAG1 is associated with poor overall survival. Expression of SOX9 is correlated with JAG1, and high SOX9 is also associated with poor survival. Mechanistically, Jag1 regulates expression of Lkb1, a tumor suppressor involved in the development of pancreatic cystic neoplasm. Collectively, Jag1 can act as a tumor suppressor in the pancreas by delaying precursor lesions, whereas loss of Jag1 promoted a phenotypic switch from malignant carcinoma to benign cystic lesions.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lavanya Challagundla
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yunyun Zhou
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Min Li
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Keli Xu
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA .,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
25
|
Li TT, Zhu HB. LKB1 and cancer: The dual role of metabolic regulation. Biomed Pharmacother 2020; 132:110872. [PMID: 33068936 DOI: 10.1016/j.biopha.2020.110872] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver kinase B1 (LKB1) is an essential serine/threonine kinase frequently associated with Peutz-Jeghers syndrome (PJS). In this review, we provide an overview of the role of LKB1 in conferring protection to cancer cells against metabolic stress and promoting cancer cell survival and invasion. This carcinogenic effect contradicts the previous conclusion that LKB1 is a tumor suppressor gene. Here we try to explain the contradictory effect of LKB1 on cancer from a metabolic perspective. Upon deletion of LKB1, cancer cells experience increased energy as well as oxidative stress, thereby causing genomic instability. Meanwhile, mutated LKB1 cooperates with other metabolic regulatory genes to promote metabolic reprogramming that subsequently facilitates adaptation to strong metabolic stress, resulting in development of a more aggressive malignant phenotype. We aim to specifically discuss the contradictory role of LKB1 in cancer by reviewing the mechanism of LKB1 with an emphasis on metabolic stress and metabolic reprogramming.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hai-Bin Zhu
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
26
|
Xu R, Yang J, Ren B, Wang H, Yang G, Chen Y, You L, Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front Oncol 2020; 10:572722. [PMID: 33117704 PMCID: PMC7550743 DOI: 10.3389/fonc.2020.572722] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies with an extremely poor prognosis. Energy metabolism reprogramming, an emerging hallmark of cancer, has been implicated in the tumorigenesis and development of pancreatic cancer. In addition to well-elaborated enhanced glycolysis, investigating the role of reprogramming of amino acid metabolism has sparked great interests in recent years. The rewiring amino acid metabolism orchestrated by genetic alterations contributes to pancreatic cancer malignant characteristics including cell proliferation, invasion, metastasis, angiogenesis and redox balance. In the unique hypoperfused and nutrient-deficient tumor microenvironment (TME), the interactions between cancer cells and stromal components and salvaging processes including autophagy and macropinocytosis play critical roles in fulfilling the metabolic requirements and supporting growth of PDAC. In this review, we elucidate the recent advances in the amino acid metabolism reprogramming in pancreatic cancer and the mechanisms of amino acid metabolism regulating PDAC progression, which will provide opportunities to develop promising therapeutic strategies.
Collapse
Affiliation(s)
- Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Intraductal Pancreatic Mucinous Neoplasms: A Tumor-Biology Based Approach for Risk Stratification. Int J Mol Sci 2020; 21:ijms21176386. [PMID: 32887490 PMCID: PMC7504137 DOI: 10.3390/ijms21176386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal human cancers. Its precursor lesions include pancreatic intra-epithelial neoplasia, mucinous cystic neoplasm, and intraductal papillary mucinous neoplasm (IPMN). IPMNs usually present as an incidental finding at imaging in 2.6% of the population and, according to the degree of dysplasia, they are classified as low- or high-grade lesions. Since the risk of malignant transformation is not accurately predictable, the management of these lesions is based on morphological and clinical parameters, such as presence of mural nodule, main pancreatic duct dilation, presence of symptoms, or high-grade dysplasia. Although the main genetic alterations associated to IPMNs have been elucidated, they are still not helpful for disease risk stratification. The growing body of genomic and epigenomic studies along with the more recent development of organotypic cultures provide the opportunity to improve our understanding of the malignant transformation process, which will likely deliver biomarkers to help discriminate between low- and high-risk lesions. Recent insights on the topic are herein summarized.
Collapse
|
28
|
Storz P, Crawford HC. Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology 2020; 158:2072-2081. [PMID: 32199881 PMCID: PMC7282937 DOI: 10.1053/j.gastro.2020.02.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Although the estimated time for development of pancreatic ductal adenocarcinoma (PDA) is more than 20 years, PDAs are usually detected at late, metastatic stages. PDAs develop from duct-like cells through a multistep carcinogenesis process, from low-grade dysplastic lesions to carcinoma in situ and eventually to metastatic disease. This process involves gradual acquisition of mutations in oncogenes and tumor suppressor genes, as well as changes in the pancreatic environment from a pro-inflammatory microenvironment that favors the development of early lesions, to a desmoplastic tumor microenvironment that is highly fibrotic and immune suppressive. This review discusses our current understanding of how PDA originates.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida.
| | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA, To whom correspondence should be addressed: Peter Storz, Mayo Clinic, Griffin Room 306, 4500 San Pablo Road, Jacksonville, FL 32224. Phone: (904) 953-6909, ; or Howard Crawford, University of Michigan, 4304 Rogel Cancer Center, 1500 E. Medical Center Drive Ann Arbor, MI 48109. Phone: (734) 764-3815,
| |
Collapse
|
29
|
Jacob HKC, Banerjee S. Intraductal Papillary Mucinous Neoplasms: Attack of the Clones. Gastroenterology 2019; 157:929-932. [PMID: 31400367 DOI: 10.1053/j.gastro.2019.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Harrys K C Jacob
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Sulagna Banerjee
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|