1
|
Ibrahim A, Mohamady Farouk Abdalsalam N, Liang Z, Kashaf Tariq H, Li R, O Afolabi L, Rabiu L, Chen X, Xu S, Xu Z, Wan X, Yan D. MDSC checkpoint blockade therapy: a new breakthrough point overcoming immunosuppression in cancer immunotherapy. Cancer Gene Ther 2025; 32:371-392. [PMID: 40140724 PMCID: PMC11976280 DOI: 10.1038/s41417-025-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Despite the success of cancer immunotherapy in treating hematologic malignancies, their efficacy in solid tumors remains limited due to the immunosuppressive tumor microenvironment (TME), which is mainly formed by myeloid-derived suppressor cells (MDSCs). MDSCs not only exert potent immunosuppressive effects that hinder the success of immune checkpoint inhibitors (ICIs) and adaptive cellular therapies, but they also promote tumor advancement through non-immunological pathways, including promoting angiogenesis, driving epithelial-mesenchymal transition (EMT), and contributing to the establishment of pre-metastatic environments. While targeting MDSCs alone or in combination with conventional therapies has shown limited success, emerging evidence suggests that MDSC checkpoint blockade in combination with other immunotherapies holds great promise in overcoming both immunological and non-immunological barriers. In this review, we discussed the dual roles of MDSCs, with a particular emphasis on their underexplored checkpoints blockade strategies. We discussed the rationale behind combination strategies, their potential advantages in overcoming MDSC-mediated immunosuppression, and the challenges associated with their development. Additionally, we highlight future research directions aimed at optimizing combination immunotherapies to enhance cancer therapeutic effectiveness, particularly in solid tumor therapies where MDSCs are highly prevalent.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, South Bend, IN, 46617, USA
| | - Lawan Rabiu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Xuechen Chen
- College of Pharmacy, Jinan University, 511436, Guangzhou, China.
| | - Shu Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China
| | - Zhiming Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| |
Collapse
|
2
|
Wu Y, Zhang K, Zheng Y, Jin H. A review of potential mechanisms and treatments of gastric intestinal metaplasia. Eur J Gastroenterol Hepatol 2025; 37:383-394. [PMID: 39975991 DOI: 10.1097/meg.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gastric intestinal metaplasia (GIM) is a pathological process where gastric mucosal epithelial cells are replaced by intestinal-type cells, serving as a precursor lesion for gastric cancer. This transformation involves various genetic and environmental factors, affecting key genes and signaling pathways. Recent research has revealed complex mechanisms, including changes in gene expression, abnormal signaling pathway activation, and altered cell behavior. This review summarizes the latest research on GIM, discussing its pathogenesis, current treatment strategies, and potential efficacy of emerging approaches like gene editing, microbiome interventions, and integrative medicine. By exploring these strategies, we aim to provide more effective treatments for GIM and reduce gastric cancer incidence. The review also highlights the importance of interdisciplinary studies in understanding GIM mechanisms and improving treatment strategies.
Collapse
Affiliation(s)
- Yueyao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | |
Collapse
|
3
|
Chen D, Huang J, Yang A, Xiong Z. Prognostic and immunological implications of protein kinases in gastric cancer: a focus on hub gene ABL2 and its impact on the polarization of M2 macrophages. Biol Direct 2025; 20:35. [PMID: 40128818 PMCID: PMC11934801 DOI: 10.1186/s13062-025-00636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/16/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Protein kinases are essential cellular signal modulators involved in tumorigenesis, metastasis, immune response, and drug resistance. However, the comprehensive features and clinical significance of protein kinases in gastric cancer (GC) remain inconclusive. METHODS We analyzed the transcriptional profiles of protein kinases in GC patients from the GEO and TCGA databases. Based on differentially expressed kinase genes (DE-KGs), a novel cluster was identified to assess its association with patient survival and the tumor microenvironment (TME) in GC. Subsequently, an optimal DE-KGs-based model (DE-KGsM) was determined using 101 machine-learning algorithm combinations. This model was evaluated using multi-omics data to investigate its associations with patient prognosis, clinical features, tumor microenvironment, tumor-infiltrating immune cells (TIICs), and immunotherapy response. Furthermore, scRNA-seq analysis and TIMER algorithm were applied to determine the correlation between the hub gene (ABL2) in the DE-KGsM and Macrophages. Finally, in vitro experiments were performed to explore the immune-related mechanisms of ABL2 in GC. RESULTS We identified two molecular subtypes of GC patients based on 64 DE-KGs expression. Significant differences were observed in overall survival and TIIC characteristics between Cluster 1 and Cluster 2. Among these 64 DE-KGs, we identified an optimal DE-KGsM that could be a prognostic indicator in GC. TIICs and TIDE analyses exhibited that GC patients in the high-DE-KGsM score group had a higher proportion of M2 macrophages and lower response rates to ICI treatment. scRNA-seq analysis indicated that ABL2 might play an indispensable role in tumor immunity. Furthermore, in vitro experiments demonstrated that ABL2 accelerated the proliferation, migration, and invasion of GC cells, as well as the polarization of M2 macrophages. CONCLUSIONS The DE-KGsM could be a powerful predictor of GC patients' survival and might facilitate the development of personalized therapy. Furthermore, as a hub gene in the DE-KGsM, ABL2 could be an immunological biomarker that modulates the polarization of M2 macrophages, thereby promoting GC progression. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ju Huang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| |
Collapse
|
4
|
Zhou X, Xu X, Wang Q, Lai Y, Zhang L, Lin Y, Ding X, Sun L. Targeted siRNA Delivery Against RUNX1 Via tFNA: Inhibiting Retinal Neovascularization and Restoring Vessels Through Dll4/Notch1 Signaling. Invest Ophthalmol Vis Sci 2025; 66:39. [PMID: 40105819 PMCID: PMC11932424 DOI: 10.1167/iovs.66.3.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose To assess the efficacy of tetrahedral framework nucleic acids (tFNAs) as a delivery system for small interfering RNA (siRNA) targeting RUNX1 (siRUNX1) in inhibiting retinal neovascularization (RNV) and restoring vascular integrity via the Dll4/Notch1 signaling pathway. Methods tFNAs and tFNAs-siRUNX1 were synthesized using annealing of single-stranded DNAs and characterized by PAGE and high-performance capillary electrophoresis. Human umbilical vein endothelial cells were treated under hypoxic conditions with tFNAs-siRUNX1, and cellular uptake was evaluated using fluorescence microscopy and flow cytometry. Angiogenesis was assessed through EdU proliferation, tube formation, and wound-healing assays. In vivo experiments used oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models in mice, with subsequent imaging by optical coherence tomography (OCT) and fundus fluorescence angiography. Gene and protein expression were analyzed by RT-PCR and Western blotting, focusing on the Dll4/Notch1 pathway and apoptosis markers. Results tFNAs-siRUNX1 effectively inhibited endothelial cell proliferation, migration, and tube formation in vitro. In OIR and CNV models, it reduced neovascularization, nonperfusion areas, and vascular leakage. The mechanism involved modulation of the Dll4/Notch1 pathway, with decreased Dll4, Notch1, and Hes1 and increased Nts expression. tFNAs-siRUNX1 also reduced endothelial cell apoptosis via the Bcl-2/Bax pathway. Conclusions tFNAs-siRUNX1 is a promising delivery system for targeting RNV, inhibiting neovascularization, and restoring retinal vascular integrity, providing a potential therapeutic alternative to anti-VEGF treatments.
Collapse
Affiliation(s)
- Xiaodi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanting Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Linyan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Department of Maxillofacial Surgery, West China Stomatological Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Xu Y, Chen F, Wen H. Global incidence and prevalence of gastritis and duodenitis from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. J Gastroenterol Hepatol 2024; 39:1563-1570. [PMID: 38622968 DOI: 10.1111/jgh.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND AND AIM Gastritis and duodenitis, prevalent diseases of the digestive system, impose a significant global burden. This study aimed to examine their incidence and prevalence patterns worldwide, including changes over the past 30 years. METHODS The age-standardized incidence rate (ASIR) and age-standardized prevalence rate (ASPR) of gastritis and duodenitis, stratified by age, sex, geographical region, and sociodemographic index (SDI), were obtained from the Global Burden of Disease 2019. The dynamic trends were captured by calculating the average annual percentage changes (AAPC). RESULTS In 2019, the global ASIR and ASPR of gastritis and duodenitis were 379.88/100 000 (95% uncertainty interval [UI]: 312.42/100 000-448.12/100 000) and 518.11/100 000 (95% UI: 420.62/100 000-631.66/100 000), respectively. The highest rates were observed among the 50-69 age group (ASIR: 856.48/100 000; ASPR: 1158.04/100 000) and in low SDI regions (ASIR: 443.33/100 000; ASPR: 631.22/100 000). From 1990 to 2019, there was a significant decrease in global ASIR (AAPC = -0.34%, 95% confidence interval [CI]: -0.36% to -0.31%) and ASPR (AAPC = -0.34%, 95% CI: -0.37% to -0.31%) of gastritis and duodenitis. However, ASIR (AAPC = 0.47%, 95% CI: 0.42%-0.52%) and ASPR (AAPC = 0.51%, 95% CI: 0.47%-0.52%) of gastritis and duodenitis experienced a significant increase in low SDI regions. CONCLUSIONS Despite a significant decrease in the global incidence and prevalence of gastritis and duodenitis, these conditions continue to impose a burden on individuals aged 50-69 years and low SDI regions. Targeted interventions for those specific populations and regions are necessary.
Collapse
Affiliation(s)
- Yinling Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feichi Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Heli Wen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Li Y, Chu H, Jiang Y, Li Z, Wang J, Liu F. Comparative transcriptomics analysis on Senecavirus A-infected and non-infected cells. Front Vet Sci 2024; 11:1431879. [PMID: 38983770 PMCID: PMC11231404 DOI: 10.3389/fvets.2024.1431879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Senecavirus A (SVA) is an emerging virus that causes the vesicular disease in pigs, clinically indistinguishable from other high consequence vesicular diseases. This virus belongs to the genus Senecavirus in the family Picornaviridae. Its genome is a positive-sense, single-stranded RNA, approximately 7,300 nt in length, with a 3' poly(A) tail but without 5'-end capped structure. SVA can efficiently propagate in different cells, including some non-pig-derived cell lines. A wild-type SVA was previously rescued from its cDNA clone using reverse genetics in our laboratory. In the present study, the BSR-T7/5 cell line was inoculated with the passage-5 SVA. At 12 h post-inoculation, SVA-infected and non-infected cells were independently collected for the analysis on comparative transcriptomics. The results totally showed 628 differentially expressed genes, including 565 upregulated and 63 downregulated ones, suggesting that SVA infection significantly stimulated the transcription initiation in cells. GO and KEGG enrichment analyses demonstrated that SVA exerted multiple effects on immunity-related pathways in cells. Furthermore, the RNA sequencing data were subjected to other in-depth analyses, such as the single-nucleotide polymorphism, transcription factors, and protein-protein interactions. The present study, along with our previous proteomics and metabolomics researches, provides a multi-omics insight into the interaction between SVA and its hosts.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Huanhuan Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yujia Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Zhongren-OLand Bioengineering Co., Ltd., Qingdao, China
| | - Ziwei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Perez RE, Eckerdt F, Platanias LC. Schlafens: Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:1805. [PMID: 38791884 PMCID: PMC11119473 DOI: 10.3390/cancers16101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The interferon (IFN) family of immunomodulatory cytokines has been a focus of cancer research for over 50 years with direct and indirect implications in cancer therapy due to their properties to inhibit malignant cell proliferation and modulate immune responses. Among the transcriptional targets of the IFNs is a family of genes referred to as Schlafens. The products of these genes, Schlafen proteins, exert important roles in modulating cellular proliferation, differentiation, immune responses, viral replication, and chemosensitivity of malignant cells. Studies have demonstrated that abnormal expression of various Schlafens contributes to the pathophysiology of various cancers. Schlafens are now emerging as promising biomarkers and potentially attractive targets for drug development in cancer research. Here, we highlight research suggesting the use of Schlafens as cancer biomarkers and the rationale for the development of specific drugs targeting Schlafen proteins.
Collapse
Affiliation(s)
- Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (R.E.P.); (F.E.)
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (R.E.P.); (F.E.)
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA; (R.E.P.); (F.E.)
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Afra F, Eftekhar SP, Farid AS, Ala M. Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:215-240. [PMID: 39461753 DOI: 10.1016/bs.pmbts.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
With the rapid advancement in immunotherapy, cancer immune resistance has become more evident, which demands new treatment approaches to achieve greater efficacy. Non-coding RNAs (ncRNAs) are a heterogeneous group of RNAs that are not translated to proteins but instead regulate different stages of gene expression. Recent studies have increasingly supported the critical role of ncRNAs in immune cell-cancer cell cross-talk, and numerous ncRNAs have been implicated in the immune evasion of cancer cells. Cancer cells take advantage of ncRNAs to modulate several signaling pathways and upregulate the expression of immune checkpoints and anti-inflammatory mediators, thereby dampening the anti-tumor response of M1 macrophages, dendritic cells, cytotoxic T cells, and natural killer cells or potentiating the immunosuppressive properties of M2 macrophages, regulatory T cells, and myeloid-derived suppressive cells. Upregulation of immunosuppressive ncRNAs or downregulation of immunogenic ncNRAs is a major driver of resistance to immune checkpoint inhibitors, cancer vaccines, and other means of cancer immunotherapy, making ncRNAs ideal targets for treatment. In addition, ncRNAs released by cancer cells have been demonstrated to possess prognostic values for patients who undergo cancer immunotherapy. Future clinical trials are urged to consider the potential of ncRNAs in cancer immunotherapy.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Zhou J, Zhang M, Wang H, Zhong X, Yang X. Role of Helicobacter pylori virulence factors and alteration of the Tumor Immune Microenvironment: challenges and opportunities for Cancer Immunotherapy. Arch Microbiol 2024; 206:167. [PMID: 38485861 DOI: 10.1007/s00203-024-03908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Various forms of malignancies have been linked to Helicobacter pylori. Despite advancements in chemotherapeutic and surgical approaches, the management of cancer, particularly at advanced stages, increasingly relies on the integration of immunotherapy. As a novel, safe therapeutic modality, immunotherapy harnesses the immune system of the patient to treat cancer, thereby broadening treatment options. However, there is evidence that H. pylori infection may influence the effectiveness of immunotherapy in various types of cancer. This association is related to H. pylori virulence factors and the tumor microenvironment. This review discusses the influence of H. pylori infection on immunotherapy in non-gastrointestinal and gastrointestinal tumors, the mechanisms underlying this relationship, and directions for the development of improved immunotherapy strategies.
Collapse
Affiliation(s)
- Junyi Zhou
- Department of Oncology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - HongGang Wang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaomin Zhong
- Department of Oncology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - XiaoZhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
11
|
Liu Y, Wu J, Chen L, Zou J, Yang Q, Tian H, Zheng D, Ji Z, Cai J, Li Z, Chen Y. ncRNAs-mediated overexpression of TET3 predicts unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer. Heliyon 2024; 10:e24855. [PMID: 38318018 PMCID: PMC10838756 DOI: 10.1016/j.heliyon.2024.e24855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Breast cancer is the most frequent form of cancer in women and the primary cause of cancer-related deaths globally. DNA methylation and demethylation are important processes in human tumorigenesis. Ten-eleven translocation 3 (TET3) is a DNA demethylase. Prior research has demonstrated that TET3 is highly expressed in various human malignant tumors. However, the exact function and mechanism of TET3 in breast cancer remain unclear. In this study, we investigated TET3 expression in breast cancer and its correlation with clinicopathological characteristics of breast cancer patients. The results presented that TET3 expression was significantly increased in breast cancer and associated with the PAM50 subtype. Subsequently, we performed receiver operating characteristic, survival, and Cox hazard regression analyses. These results suggest that TET3 expression is associated with a poor prognosis and may be an indirect independent prognostic indicator in breast cancer. We also established a protein-protein interaction (PPI) network of TET3 and executed enrichment analyses of TET3 co-expressed genes, revealing their primary association with the cell cycle. Moreover, we identified noncoding RNAs (ncRNAs) contributing to TET3 overexpression using expression, correlation, and survival analyses. We identified the LINC01521/hsa-miR-29a-3p axis as the primary TET3 upstream ncRNA-related pathway in breast cancer. Furthermore, TET3 expression was positively associated with immune cell infiltration, immune cell biomarkers, and eight immune checkpoint gene expressions in breast cancer. TET3 expression also correlated with patient responses to immunotherapy. Finally, we conducted subcellular localization and immunohistochemical staining analysis of TET3 in breast cancer. We found that TET3 localized to the nucleoplasm, vesicles, and cytosol in the MCF-7 cell line, and TET3 expression was significantly upregulated in breast cancer tissues compared to para-tumor tissues. Our findings indicate that ncRNA-mediated overexpression of TET3 predicts an unfavorable prognosis and correlates with immunotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Juan Zou
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qiuping Yang
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huiting Tian
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Daitian Zheng
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zeqi Ji
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiehui Cai
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
12
|
Kim H, Jang B, Zhang C, Caldwell B, Park DJ, Kong SH, Lee HJ, Yang HK, Goldenring JR, Choi E. Targeting Stem Cells and Dysplastic Features With Dual MEK/ERK and STAT3 Suppression in Gastric Carcinogenesis. Gastroenterology 2024; 166:117-131. [PMID: 37802423 PMCID: PMC10841458 DOI: 10.1053/j.gastro.2023.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS & AIMS Precancerous metaplasia progression to dysplasia can increase the risk of gastric cancers. However, effective strategies to specifically target these precancerous lesions are currently lacking. To address this, we aimed to identify key signaling pathways that are upregulated during metaplasia progression and critical for stem cell survival and function in dysplasia. METHODS To assess the response to chemotherapeutic drugs, we used metaplastic and dysplastic organoids derived from Mist1-Kras mice and 20 human precancerous organoid lines established from patients with gastric cancer. Phospho-antibody array analysis and single-cell RNA-sequencing were performed to identify target cell populations and signaling pathways affected by pyrvinium, a putative anticancer drug. Pyrvinium was administered to Mist1-Kras mice to evaluate drug effectiveness in vivo. RESULTS Although pyrvinium treatment resulted in growth arrest in metaplastic organoids, it induced cell death in dysplastic organoids. Pyrvinium treatment significantly downregulated phosphorylation of ERK and signal transducer and activator of transcription 3 (STAT3) as well as STAT3-target genes. Single-cell RNA-sequencing data analyses revealed that pyrvinium specifically targeted CD133+/CD166+ stem cell populations, as well as proliferating cells in dysplastic organoids. Pyrvinium inhibited metaplasia progression and facilitated the restoration of normal oxyntic glands in Mist1-Kras mice. Furthermore, pyrvinium exhibited suppressive effects on the growth and survival of human organoids with dysplastic features, through simultaneous blocking of the MEK/ERK and STAT3 signaling pathways. CONCLUSIONS Through its dual blockade of MEK/ERK and STAT3 signaling pathways, pyrvinium can effectively induce growth arrest in metaplasia and cell death in dysplasia. Therefore, our findings suggest that pyrvinium is a promising chemotherapeutic agent for reprogramming the precancerous milieu to prevent gastric cancer development.
Collapse
Affiliation(s)
- Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Do-Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - James R Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
13
|
Arima J, Taniguchi K, Sugito N, Heishima K, Tokumaru Y, Inomata Y, Komura K, Tanaka T, Shibata MA, Lee SW, Akao Y. Antitumor effects of chemically modified miR-143 lipoplexes in a mouse model of pelvic colorectal cancer via myristoylated alanine-rich C kinase substrate downregulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102079. [PMID: 38213952 PMCID: PMC10783569 DOI: 10.1016/j.omtn.2023.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024]
Abstract
Replenishing tumor-suppressor miRNAs (TS-miRNAs) is a potential next-generation nucleic acid-based therapeutic approach. Establishing an effective miRNA delivery system is essential to successful TS-miRNA therapy. To overcome vulnerability to RNA nucleases, we previously developed a chemically modified miRNA143-3p (CM-miR-143). In clinical practice, colorectal cancer (CRC) pelvic recurrence is an occasional challenge following curative resection, requiring a novel therapy because reoperative surgery poses a significant burden to the patient. Hence, we considered the use of CM-miR-143 as an alternative treatment. In this study, we used a mouse model bearing pelvic CRC adjacent to the rectum and investigated the anticancer effects of CM-miR-143 lipoplexes formulated from miRNA and a cationic liposome. Compared with commercial synthetic miR-143, CM-miR-143 lipoplexes accumulated heavily in regions of the pelvic CRC tumor where the blood flow was high. As a result, systemic administration of CM-miR-143 lipoplexes improved animal survival by significantly suppressing pelvic CRC tumors and relieving a lethal bowel obstruction caused by rectal compression. Detailed protein analysis revealed that the myristoylated alanine-rich C kinase is a novel target for CM-miR-143 lipoplexes. Our results suggest that CM-miR-143 is a potential next-generation drug candidate in the treatment of CRC pelvic recurrence.
Collapse
Affiliation(s)
- Jun Arima
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kazumasa Komura
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Tomohito Tanaka
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
14
|
Li X, Ahirwar DK, Wu XY. Editorial: Myeloid-derived suppressor cells in inflammation and its complications and cancers. Front Immunol 2023; 14:1240415. [PMID: 37533868 PMCID: PMC10392949 DOI: 10.3389/fimmu.2023.1240415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Xiang-Yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Ding L, Sheriff S, Sontz RA, Merchant JL. Schlafen4 +-MDSC in Helicobacter-induced gastric metaplasia reveals role for GTPases. Front Immunol 2023; 14:1139391. [PMID: 37334372 PMCID: PMC10272601 DOI: 10.3389/fimmu.2023.1139391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MDSCs express SCHLAFEN 4 (SLFN4) in Helicobacter-infected stomachs coincident with spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. We aimed to characterize SLFN4+ cell identity and the role of Slfn4 in these cells. Methods Single-cell RNA sequencing was performed on immune cells sorted from PBMCs and stomachs prepared from uninfected and 6-month H. felis-infected mice. Knockdown of Slfn4 by siRNA or PDE5/6 inhibition by sildenafil were performed in vitro. Intracellular ATP/GTP levels and GTPase activity of immunoprecipitated Slfn4 complexes were measured using the GTPase-Glo assay kit. The intracellular level of ROS was quantified by the DCF-DA fluorescent staining, and apoptosis was determined by cleaved Caspase-3 and Annexin V expression. Gli1CreERT2 x Slfn4 fl/fl mice were generated and infected with H. felis. Sildenafil was administered twice over 2 weeks by gavaging H. felis infected mice ~4 months after inoculation once SPEM had developed. Results Slfn4 was highly induced in both monocytic and granulocytic MDSCs from infected stomachs. Both Slfn4 +-MDSC populations exhibited strong transcriptional signatures for type-I interferon responsive GTPases and exhibited T cell suppressor function. SLFN4-containing protein complexes immunoprecipitated from myeloid cell cultures treated with IFNa exhibited GTPase activity. Knocking down Slfn4 or PDE5/6 inhibition with sildenafil blocked IFNa induction of GTP, SLFN4 and NOS2. Moreover, IFNa induction of Slfn +-MDSC function was inhibited by inducing their reactive oxygen species (ROS) production and apoptosis through protein kinase G activation. Accordingly, in vivo disruption of Slfn4 in Gli1CreERT2 x Slfn4 fl/fl mice or pharmacologic inhibition by sildenafil after Helicobacter infection also suppressed SLFN4 and NOS2, reversed T cell suppression and mitigated SPEM development. Conclusion Taken together, SLFN4 regulates the activity of the GTPase pathway in MDSCs and precludes these cells from succumbing to the massive ROS generation when they acquire MDSC function.
Collapse
Affiliation(s)
| | | | | | - Juanita L. Merchant
- Department of Medicine-Gastroenterology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Liu X, Ma Z, Deng Z, Yi Z, Tuo B, Li T, Liu X. Role of spasmolytic polypeptide-expressing metaplasia in gastric mucosal diseases. Am J Cancer Res 2023; 13:1667-1681. [PMID: 37293144 PMCID: PMC10244109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM) is a trefoil factor 2-expressing metaplasia in the fundic glands that resembles the fundic metaplasia of deep antral glandular cells and arises mainly from transdifferentiation of mature chief cells as well as mucous neck cells or isthmic stem cells. SPEM participates in the regulation of gastric mucosal injury, including focal and diffuse injury. This review focuses on the origin, models, and regulatory mechanisms of SPEM and on its role in the development of gastric mucosal injury. We hope to provide new prospects for the prevention and treatment of gastric mucosal diseases from the perspective of cell differentiation and transformation.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| |
Collapse
|
17
|
Zhao Z, Li C, Peng Y, Liu R, Li Q. Construction of an original anoikis-related prognostic model closely related to immune infiltration in gastric cancer. Front Genet 2023; 13:1087201. [PMID: 36685842 PMCID: PMC9845267 DOI: 10.3389/fgene.2022.1087201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Anoikis is considered as a particular type of programmed cell death, the weakness or resistance of which contributes greatly to the development and progression of most malignant solid tumors. However, the latent impact of anoikis-related genes (ARGs) on gastric cancer (GC) is still ambiguous. Based on these, this study established an anoikis-related prognostic model of GC to identify the prognosis of patients and provide more effective treatment in clinical practice. Methods: First, we extracted four public datasets containing the gene expression and clinicopathological information of GC, which were worked as the training and validating sets, separately. Then, an anoikis-related survival-predicted model of GC was developed via Lasso and COX regression analyses and verified by using the Kaplan-Meier (KM) curve and receiver operating characteristic (ROC) curve analyses. Next, we assigned GC patients to two groups characterized by the risk score calculated and analyzed somatic mutation, functional pathways, and immune infiltration between the different two groups. Finally, a unique nomogram was offered to clinicians to forecast the personal survival probability of GC patients. Results: Based on seven anoikis-related markers screened and identified, a carcinogenic model of risk score was produced. Patients placed in the high-score group suffered significantly worse overall survival (OS) in four cohorts. Additionally, the model revealed a high sensitivity and specificity to prognosticate the prognoses of GC patients [area under the ROC curve (AUC) at 5-year = 0.713; GSE84437, AUC at 5-year = 0.639; GSE15459, AUC at 5-year = 0.672; GSE62254, AUC at 5-year = 0.616]. Apart from the excellent predictive performance, the model was also identified as an independent prediction factor from other clinicopathological characteristics. Combining anoikis-related prognostic model with GC clinical features, we built a more comprehensive nomogram to foresee the likelihood of survival of GC patients in a given year, showing a well-accurate prediction performance. Conclusion: In summary, this study created a new anoikis-related signature for GC, which has potentially provided new critical insights into survival prediction and individualized therapy development.
Collapse
|
18
|
Yuan H, Wei S, Ren Z, Li F, Liu B, Liu R, Zhang X. KLHL21/CYLD signaling confers aggressiveness in bladder cancer through inactivating NF-κB signaling. Int Immunopharmacol 2023; 114:109202. [PMID: 36538852 DOI: 10.1016/j.intimp.2022.109202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Bladder carcinoma (BC) is one of the most commonly diagnosed malignant cancers worldwide. Kelch-like protein 21 (KLHL21) has been shown to be involved in a number of human tumors. The study aimed to investigate the effects and mechanism of KLHL21 on BC progression. We found that KLHL21 expression was significantly decreased in human BC tissues and cell lines compared with the paired normal samples, and patients with lower KLHL21 expression exhibited poorer overall survival. In vitro studies then showed that KLHL21 over-expression significantly reduced the proliferation, migration and invasion in BC cells, while KLHL21 knockdown markedly accelerated the proliferative, migratory and invasive properties of BC cells. Animal studies confirmed that KLHL21 exhibited anti-tumor function in the xenograft mouse models, as indicated by the reduced tumor growth rates, and mice with KLHL21 knockdown showed the opposite tumor growth profile. Additionally, we found that KLHL21 negatively mediated the nuclear factor-κB (NF-κB) signaling activation, as well as its down-streaming molecules involved in the biological regulation of cell survival, death and migratory processes. Mechanistically, cylindromatosis (CYLD) expression levels were significantly up-regulated in BC cells over-expressing KLHL21, but were down-regulated upon KLHL21 knockdown. We further uncovered that KLHL21 directly interacted with CYLD in BC cells. Of note, we found that KLHL21 mainly in cytoplasm could restrain CYLD degradation by prohibiting its ubiquitination in BC cells. More importantly, our in vitro experiments displayed that KLHL21-inhibited progression and NF-κB/p65 activation in BC cells were completely abolished by CYLD deletion, revealing that CYLD expression was required for KLHL21 to perform its anti-tumor function in BC. Collectively, all these findings uncovered that KLHL21/CYLD axis may be a promising therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Hongyi Yuan
- Department of Urology Surgery, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province 054000, China
| | - Shufei Wei
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Zongtao Ren
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Feng Li
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Rui Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xiaoyu Zhang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China.
| |
Collapse
|
19
|
Ding L, Chakrabarti J, Sheriff S, Li Q, Thi Hong HN, Sontz RA, Mendoza ZE, Schreibeis A, Helmrath MA, Zavros Y, Merchant JL. Toll-like Receptor 9 Pathway Mediates Schlafen +-MDSC Polarization During Helicobacter-induced Gastric Metaplasias. Gastroenterology 2022; 163:411-425.e4. [PMID: 35487288 PMCID: PMC9329252 DOI: 10.1053/j.gastro.2022.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS A subset of myeloid-derived suppressor cells (MDSCs) that express murine Schlafen4 (SLFN4) or its human ortholog SLFN12L polarize in the Helicobacter-inflamed stomach coincident with intestinal or spasmolytic polypeptide-expressing metaplasia. We propose that individuals with a more robust response to damage-activated molecular patterns and increased Toll-like receptor 9 (TLR9) expression are predisposed to the neoplastic complications of Helicobacter infection. METHODS A mouse or human Transwell co-culture system composed of dendritic cells (DCs), 2-dimensional gastric epithelial monolayers, and Helicobacter were used to dissect the cellular source of interferon-α (IFNα) in the stomach by flow cytometry. Conditioned media from the co-cultures polarized primary myeloid cells. MDSC activity was determined by T-cell suppression assays. In human subjects with intestinal metaplasia or gastric cancer, the rs5743836 TLR9T>C variant was genotyped and linked to TLR9, IFNα, and SLFN12L expression by immunohistochemistry. Nuclear factor-κB binding to the TLR9 C allele was determined by electrophoretic mobility shift assays. RESULTS Helicobacter infection induced gastric epithelial and plasmacytoid DC expression of TLR9 and IFNα. Co-culturing primary mouse or human cells with DCs and Helicobacter induced TLR9, IFNα secretion, and SLFN+-MDSC polarization. Neutralizing IFNα in vivo mitigated Helicobacter-induced spasmolytic polypeptide-expressing metaplasia. The TLR9 minor C allele creates a nuclear factor-κB binding site associated with higher levels of TLR9, IFNα, and SLFN12L in Helicobacter-infected stomachs that correlated with a greater incidence of metaplasias and cancer. CONCLUSIONS TLR9 plays an essential role in the production of IFNα and polarization of SLFN+ MDSCs on Helicobacter infection. Subjects carrying the rs5743836 TLR9 minor C allele are predisposed to neoplastic complications if chronically infected.
Collapse
Affiliation(s)
- Lin Ding
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Jayati Chakrabarti
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Sulaiman Sheriff
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Qian Li
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hahn Nguyen Thi Hong
- Dinh Tien Hoang Institute of Medicine, Vietnam Union of Science and Technology Association, Institute of Biotechnology, Hanoi, Vietnam
| | - Ricky A Sontz
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Zoe E Mendoza
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona
| | - Amanda Schreibeis
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yana Zavros
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Juanita L Merchant
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona.
| |
Collapse
|
20
|
Deng R, Zheng H, Cai H, Li M, Shi Y, Ding S. Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol 2022; 13:923477. [PMID: 35967444 PMCID: PMC9371381 DOI: 10.3389/fimmu.2022.923477] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is closely associated with gastric cancer. During persistent infection, Helicobacter pylori can form a microenvironment in gastric mucosa which facilitates the survival and colony formation of Helicobacter pylori. Tumor stromal cells are involved in this process, including tumor-associated macrophages, mesenchymal stem cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells, and so on. The immune checkpoints are also regulated by Helicobacter pylori infection. Helicobacter pylori virulence factors can also act as immunogens or adjuvants to elicit or enhance immune responses, indicating their potential applications in vaccine development and tumor immunotherapy. This review highlights the effects of Helicobacter pylori on the immune microenvironment and its potential roles in tumor immunotherapy responses.
Collapse
Affiliation(s)
- Ruiyi Deng
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Huiling Zheng
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| | - Hongzhen Cai
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Man Li
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University Third Medical School, Beijing, China
| | - Yanyan Shi
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
| | - Shigang Ding
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| |
Collapse
|
21
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
22
|
Lange J, Zhou H, McTague A. Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities. Front Mol Neurosci 2022; 15:941528. [PMID: 35836547 PMCID: PMC9274522 DOI: 10.3389/fnmol.2022.941528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The advent of stem cell-derived cerebral organoids has already advanced our understanding of disease mechanisms in neurological diseases. Despite this, many remain without effective treatments, resulting in significant personal and societal health burden. Antisense oligonucleotides (ASOs) are one of the most widely used approaches for targeting RNA and modifying gene expression, with significant advancements in clinical trials for epilepsy, neuromuscular disorders and other neurological conditions. ASOs have further potential to address the unmet need in other neurological diseases for novel therapies which directly target the causative genes, allowing precision treatment. Induced pluripotent stem cell (iPSC) derived cerebral organoids represent an ideal platform in which to evaluate novel ASO therapies. In patient-derived organoids, disease-causing mutations can be studied in the native genetic milieu, opening the door to test personalized ASO therapies and n-of-1 approaches. In addition, CRISPR-Cas9 can be used to generate isogenic iPSCs to assess the effects of ASOs, by either creating disease-specific mutations or correcting available disease iPSC lines. Currently, ASO therapies face a number of challenges to wider translation, including insufficient uptake by distinct and preferential cell types in central nervous system and inability to cross the blood brain barrier necessitating intrathecal administration. Cerebral organoids provide a practical model to address and improve these limitations. In this review we will address the current use of organoids to test ASO therapies, opportunities for future applications and challenges including those inherent to cerebral organoids, issues with organoid transfection and choice of appropriate read-outs.
Collapse
Affiliation(s)
- Jenny Lange
- Department for Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Amy McTague
- Department for Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
- *Correspondence: Amy McTague,
| |
Collapse
|
23
|
Li Z, Zhang W, Bai J, Li J, Li H. Emerging Role of Helicobacter pylori in the Immune Evasion Mechanism of Gastric Cancer: An Insight Into Tumor Microenvironment-Pathogen Interaction. Front Oncol 2022; 12:862462. [PMID: 35795038 PMCID: PMC9252590 DOI: 10.3389/fonc.2022.862462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the strongest causative factor of gastric cancer. Growing evidence suggests that the complex crosstalk of H. pylori and the tumor microenvironment (TME) exerts a profound influence on gastric cancer progression. Hence, there is emerging interest to in-depth comprehension of the mechanisms of interplay between H. pylori and the TME. This review discusses the regulatory mechanisms underlying the crosstalk between H. pylori infection and immune and stromal cells, including tumor-associated macrophages (TAMs), neutrophils, dendritic cells, myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, B and T cells, cancer associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs), within the TME. Such knowledge will deepen the understanding about the roles of H. pylori in the immune evasion mechanism in gastric cancer and contribute to the development of more effective treatment regimens against H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Zhifang Li
- Shanxi Medical University, Taiyuan, China
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenqing Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinyang Bai
- Shanxi Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Jing Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Hong Li,
| |
Collapse
|
24
|
Liang L, Xu X, Li J, Yang C. Interaction Between microRNAs and Myeloid-Derived Suppressor Cells in Tumor Microenvironment. Front Immunol 2022; 13:883683. [PMID: 35634311 PMCID: PMC9130582 DOI: 10.3389/fimmu.2022.883683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells generated during a series of pathologic conditions including cancer. MicroRNA (miRNA) has been considered as a regulator in different tumor microenvironments. Recent studies have begun to unravel the crosstalk between miRNAs and MDSCs. The knowledge of the effect of both miRNAs and MDSCs in tumor may improve our understanding of the tumor immune escape and metastasis. The miRNAs target cellular signal pathways to promote or inhibit the function of MDSCs. On the other hand, MDSCs transfer bioinformation through exosomes containing miRNAs. In this review, we summarized and discussed the bidirectional regulation between miRNAs and MDSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xiaoqing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Fudan Zhangjiang Institute of Fudan University, Shanghai, China
| |
Collapse
|
25
|
Structural, molecular, and functional insights into Schlafen proteins. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:730-738. [PMID: 35768579 PMCID: PMC9256597 DOI: 10.1038/s12276-022-00794-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
Schlafen (SLFN) genes belong to a vertebrate gene family encoding proteins with high sequence homology. However, each SLFN is functionally divergent and differentially expressed in various tissues and species, showing a wide range of expression in cancer and normal cells. SLFNs are involved in various cellular and tissue-specific processes, including DNA replication, proliferation, immune and interferon responses, viral infections, and sensitivity to DNA-targeted anticancer agents. The fundamental molecular characteristics of SLFNs and their structures are beginning to be elucidated. Here, we review recent structural insights into the N-terminal, middle and C-terminal domains (N-, M-, and C-domains, respectively) of human SLFNs and discuss the current understanding of their biological roles. We review the distinct molecular activities of SLFN11, SLFN5, and SLFN12 and the relevance of SLFN11 as a predictive biomarker in oncology. The diverse roles that Schlafen family proteins play in cell proliferation, immune modulation, and other biological processes make them promising targets for treating and tracking diseases, especially cancer. Ukhyun Jo and Yves Pommier from the National Cancer Institute in Bethesda, USA, review the molecular characteristics and structural features of Schlafen proteins. These proteins take their name from the German word for “sleep”, as the first described Schlafen proteins caused cells to stop dividing, although later reports found that related members of the same protein family serve myriad cellular functions, including in the regulation of DNA replication. A better understanding of Schlafen proteins could open up new avenues in cancer management, for instance, diagnostics that monitor activity levels of one such protein, SLFN11, could help oncologists predict how well patients might respond to anti-cancer therapies.
Collapse
|
26
|
He J, Hu W, Ouyang Q, Zhang S, He L, Chen W, Li X, Hu C. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett 2022; 542:215764. [PMID: 35654291 DOI: 10.1016/j.canlet.2022.215764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. Its poor prognosis is attributed to unclear pathogenesis. Currently, the most widely accepted model for elucidating the mechanism of GC is the Correa cascade, which covers several histological lesions of the gastric mucosa. GC stem cells (CSCs) are crucial for oncogenesis in the Correa cascade and GC progression. As Helicobacter pylori (H. pylori) is the etiological factor in the Correa cascade, growing evidence suggests that enhancement of gastric stem cell-like properties and increase in CSCs correlate with H. pylori infection. In this paper, we review recent studies that present pathogenic mechanisms by which H. pylori induces gastric stem cell-like properties and CSCs, which may supplement the existing Correa model of GC. First, the dysfunction of developmental signaling pathways associated with H. pylori infection leads to the enhancement of gastric stemness. Second, H. pylori infection promotes alteration of the gastric mucosal microenvironment. In addition, epithelial-mesenchymal transition (EMT) may contribute to H. pylori-induced gastric stemness. Taken together, understanding these pathogeneses will provide potential therapeutic targets for the treatment of CSCs and malignant GC in H. pylori induced-Correa cascade of GC.
Collapse
Affiliation(s)
- JunJian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiChao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - ShengWei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - LiJiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiYan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - XinZhe Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - ChangJiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
27
|
Tang SY, Zhou PJ, Meng Y, Zeng FR, Deng GT. Gastric cancer: An epigenetic view. World J Gastrointest Oncol 2022; 14:90-109. [PMID: 35116105 PMCID: PMC8790429 DOI: 10.4251/wjgo.v14.i1.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) poses a serious threat worldwide with unfavorable prognosis mainly due to late diagnosis and limited therapies. Therefore, precise molecular classification and search for potential targets are required for diagnosis and treatment, as GC is complicated and heterogeneous in nature. Accumulating evidence indicates that epigenetics plays a vital role in gastric carcinogenesis and progression, including histone modifications, DNA methylation and non-coding RNAs. Epigenetic biomarkers and drugs are currently under intensive evaluations to ensure efficient clinical utility in GC. In this review, key epigenetic alterations and related functions and mechanisms are summarized in GC. We focus on integration of existing epigenetic findings in GC for the bench-to-bedside translation of some pivotal epigenetic alterations into clinical practice and also describe the vacant field waiting for investigation.
Collapse
Affiliation(s)
- Si-Yuan Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pei-Jun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, School of Basic Medicine Science, Central South University 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
28
|
Liu AR, Yan ZW, Jiang LY, Lv Z, Li YK, Wang BG. The role of non-coding RNA in the diagnosis and treatment of Helicobacter pylori-related gastric cancer, with a focus on inflammation and immune response. Front Med (Lausanne) 2022; 9:1009021. [PMID: 36314013 PMCID: PMC9606473 DOI: 10.3389/fmed.2022.1009021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the globally recognized causative factors of gastric cancer (GC). Currently, no definite therapy and drugs for H. pylori-related GC have been widely acknowledged although H. pylori infection could be eradicated in early stage. Inflammation and immune response are spontaneous essential stages during H. pylori infection. H pylori may mediate immune escape by affecting inflammation and immune response, leading to gastric carcinogenesis. As an important component of transcriptome, non-coding RNAs (ncRNAs) have been proven to play crucial roles in the genesis and development of H. pylori-induced GC. This review briefly described the effects of ncRNAs on H. pylori-related GC from the perspective of inflammation and immune response, as well as their association with inflammatory reaction and immune microenvironment. We aim to explore the potential of ncRNAs as markers for the early diagnosis, prognosis, and treatment of H. pylori-related GC. The ncRNAs involved in H. pylori-related GC may all hold promise as novel therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Ao-ran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Zi-wei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Li-yue Jiang
- Tangdu Hospital of the Fourth Military Medical University, Xi’an, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
- Zhi Lv,
| | - Yan-ke Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
- Yan-ke Li,
| | - Ben-gang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of Hepatobiliary Surgery, Institute of General Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Ben-gang Wang,
| |
Collapse
|
29
|
Liu X, Yang P, Han L, Zhou Q, Qu Q, Shi X. The ncRNA-Mediated Overexpression of Ferroptosis-Related Gene EMC2 Correlates With Poor Prognosis and Tumor Immune Infiltration in Breast Cancer. Front Oncol 2021; 11:777037. [PMID: 34956895 PMCID: PMC8692298 DOI: 10.3389/fonc.2021.777037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death process. Although ferroptosis inducers hold promising potential in the treatment of breast cancer, the specific role and mechanism of the ferroptosis-related gene EMC2 in breast cancer have not been entirely determined. The potential roles of EMC2 in different tumors were explored based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Tumor Immune Estimation Resource (TIMER), Shiny Methylation Analysis Resource Tool (SMART), starBase, and cBioPortal for cancer genomics (cBioPortal) datasets. The expression difference, mutation, survival, pathological stage, DNA methylation, non-coding RNAs (ncRNAs), and immune cell infiltration related to EMC2 were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify the differences in biological processes and functions among different related genes. The expression levels of core prognostic genes were then verified in breast invasive carcinoma samples using immunohistochemistry and breast invasive carcinoma cell lines using real-time polymerase chain reaction. High expression levels of EMC2 were observed in most cancer types. EMC2 expression in breast cancer tissue samples correlated with poor overall survival. EMC2 was mutated and methylated in a variety of tumors and affected survival. The LINC00665-miR-410-3p axis was identified as the most potential upstream ncRNA-related pathway of EMC2 in breast cancer. EMC2 levels were significantly positively correlated with tumor immune cell infiltration, immune cell biomarkers, and immune checkpoint expression. Our study offers a comprehensive understanding of the oncogenic roles of EMC2 across different tumors. The upregulation of EMC2 expression mediated by ncRNAs is related to poor prognosis and tumor immune infiltration in breast cancer.
Collapse
Affiliation(s)
- Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Disruption of Her2-Induced PD-L1 Inhibits Tumor Cell Immune Evasion in Patient-Derived Gastric Cancer Organoids. Cancers (Basel) 2021; 13:cancers13246158. [PMID: 34944780 PMCID: PMC8699100 DOI: 10.3390/cancers13246158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary HER2 may contribute to immune evasion in gastric cancer that is associated with PD-L1 expression. Autologous organoid/immune cell co-cultures serve as an appropriate in vitro model to study the effects of anti-HER2 targeted therapy in combination with anti-PD1 immune checkpoint inhibition and may be used as an ex vivo tool for precision medicine. Abstract (1) Background: The expression of programmed death-ligand 1 (PD-L1), which interacts with programmed cell death protein 1 (PD-1) on cytotoxic T lymphocytes (CTLs), enables tumors to escape immunosurveillance. The PD-1/PD-L1 interaction results in the inhibition of CTL proliferation, and effector function, thus promoting tumor cell evasion from immunosurveillance and cancer persistence. Despite 40% of gastric cancer patients exhibiting PD-L1 expression, only a small subset of patients responds to immunotherapy. Human epidermal growth factor receptor2 (HER2) is one of the critical regulators of several solid tumors, including metastatic gastric cancer. Although half of PD-L1-positive gastric tumors co-express HER2, crosstalk between HER2 and PD-1/PD-L1 in gastric cancer remains undetermined. (2) Methods: Human gastric cancer organoids (huTGOs) were generated from biopsied or resected tissues and co-cultured with CTLs and myeloid-derived suppressor cells (MDSCs). Digital Spatial Profiling (DSP) was performed on FFPE tissue microarrays of numerous gastric cancer patients to examine the protein expression of immune markers. (3) Results: Knockdown of HER2 in PD-L1/HER2-positive huTGOs led to a concomitant decrease in PD-L1 expression. Similarly, in huTGOs/immune cell co-cultures, PD-L1 expression decreased in huTGOs and was correlated with an increase in CTL proliferation which enhanced huTGO death. Treatment with Nivolumab exhibited similar effects. However, a combinatorial treatment with Mubritinib and Nivolumab was unable to inhibit HER2 expression in co-cultures containing MDSCs. (4) Conclusions: Our study suggested that co-expression of HER2 and PD-L1 may contribute to tumor cell immune evasion. In addition, autologous organoid/immune cell co-cultures can be exploited to effectively screen responses to a combination of anti-HER2 and immunotherapy to tailor treatment for gastric cancer patients.
Collapse
|
31
|
Chen D, Ping S, Xu Y, Wang M, Jiang X, Xiong L, Zhang L, Yu H, Xiong Z. Non-Coding RNAs in Gastric Cancer: From Malignant Hallmarks to Clinical Applications. Front Cell Dev Biol 2021; 9:732036. [PMID: 34805143 PMCID: PMC8595133 DOI: 10.3389/fcell.2021.732036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. However, the molecular mechanisms underlying gastric carcinogenesis remain largely unknown. Over the past decades, advances in RNA-sequencing techniques have greatly facilitated the identification of various non-coding RNAs (ncRNAs) in cancer cells, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Accumulating evidence has revealed that ncRNAs are essential regulators in GC occurrence and development. However, ncRNAs represent an emerging field of cancer research, and their complex functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets in GC, further studies should focus on elucidating the intricate relationships between ncRNAs and GC, which can be translated into clinical practice. In this review, we summarize recent research progress on how ncRNAs modulate the malignant hallmarks of GC, especially in tumor immune escape, drug resistance, and stemness. We also discuss the promising applications of ncRNAs as diagnostic biomarkers and therapeutic targets in GC, aiming to validate their practical value for clinical treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuang Xu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglu Yu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Chen WQ, Tian FL, Zhang JW, Yang XJ, Li YP. Preventive and inhibitive effects of Yiwei Xiaoyu granules on the development and progression of spasmolytic polypeptide-expressing metaplasia lesions. World J Gastrointest Oncol 2021; 13:1741-1754. [PMID: 34853647 PMCID: PMC8603444 DOI: 10.4251/wjgo.v13.i11.1741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/10/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Spasmolytic polypeptide-expressing metaplasia (SPEM) is a potential preneoplastic lesion.
AIM To elucidate the microRNA (miR)-7-mediated preventive and inhibitive effects of Yiwei Xiaoyu granules (YWXY) in SPEM lesions.
METHODS Gastric mucosa biopsies were collected from chronic atrophic gastritis patients and healthy people with signed informed consent. YWXY was administered to the mice with induced SPEM by tamoxifen, and the gastric mucosa was harvested on the tenth day of the experiment. Then immunohistochemistry and immunofluorescence were performed to validate the SPEM, lesions and the potential mechanism was investigated. RNA transcripts were detected with reverse transcription-quantitative polymerase chain reaction.
RESULTS The expression of miR-7 was downregulated in the SPEM lesions, and expression of trefoil factor 2 (TFF2) and clusterin was high in the human gastric mucosa. In vivo experiments showed that YWXY could inhibit the cell proliferation in the tamoxifen-induced SPEM lesions by regulating Ki67. Simultaneously, YWXY could restore the expression of miR-7 by regulating TFF2 by detection with immunofluorescence but not with reverse transcription-quantitative polymerase chain reaction, indicating its potential mechanism of targeting miR-7 by mediating TFF2. The expression of vascular endothelial growth factor-β and gastric intrinsic factor was restored within 3 d of YWXY administration for the SPEM lesions, speculating that the possible mechanism of YWXY is to inhibit the development and progression of SPEM by regulating vascular endothelial growth factor-β and gastric intrinsic factor.
CONCLUSION miR-7 downregulation is an early event in SPEM through regulation of TFF2 in human gastric mucosa. YWXY is able to inhibit the cell proliferation and restore the expression of miR-7 by mediating TFF2 in the SPEM mouse model.
Collapse
Affiliation(s)
- Wan-Qun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Feng-Liang Tian
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Jin-Wei Zhang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Xiao-Jun Yang
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Yan-Ping Li
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| |
Collapse
|
33
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
34
|
Plasmacytoid dendritic cells-derived IFN-α is involved in Helicobacter pylori infection-induced differentiation of Schlafen 4-expressing myeloid-derived suppressor cells. Infect Immun 2021; 89:e0040721. [PMID: 34370509 DOI: 10.1128/iai.00407-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During chronic infection with Helicobacter pylori, Schlafen 4-expressing myeloid-derived suppressor cells (SLFN4+ MDSCs) create a microenvironment favoring intestinal metaplasia and neoplastic transformation. SLFN4 can be induced by IFN-α, which is mainly secreted from plasmacytoid dendritic cells (pDCs). This study tested the hypothesis that Helicobacter pylori infection promotes SLFN4+ MDSC differentiation by inducing pDCs to secrete IFN-α. C57BL/6 mice were gavaged with H. pylori and infection lasted 2, 4, or 6 months. The mouse pDCs were isolated from the bone marrow from wild type C57BL/6J mice. The results showed that H. pylori infection increased the number of SLFN4+ MDSCs by inducing IFN-α expression in mice. Further mechanistic experiments unraveled that IFN-α induced SLFN4 transcription by binding to the SLFN4 promoter. Furthermore, H. pylori infection stimulated pDCs to secrete IFN-α by activating the TLR9-MyD88-IRF7 pathway. Collectively, Helicobacter pylori infection promotes SLFN4+ MDSC differentiation by inducing secretion of IFN-α from pDCs.
Collapse
|
35
|
Koh V, Chakrabarti J, Torvund M, Steele N, Hawkins JA, Ito Y, Wang J, Helmrath MA, Merchant JL, Ahmed SA, Shabbir A, Yan So JB, Yong WP, Zavros Y. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids. Cancer Lett 2021; 518:59-71. [PMID: 34126195 DOI: 10.1016/j.canlet.2021.06.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/15/2023]
Abstract
Tumors evade immune surveillance by expressing Programmed Death-Ligand 1 (PD-L1), subsequently inhibiting CD8+ cytotoxic T lymphocyte function. Response of gastric cancer to immunotherapy is relatively low. Our laboratory has reported that Helicobacter pylori-induced PD-L1 expression within the gastric epithelium is mediated by the Hedgehog (Hh) signaling pathway. The PI3K/AKT/mTOR pathway is activated in gastric cancer and may have immunomodulatory potential. We hypothesize that Hh signaling mediates mTOR-induced PD-L1 expression. Patient-derived organoids (PDOs) were generated from gastric biopsies and resected tumor tissues. Autologous organoid/immune cell co-cultures were used to study the immunosuppressive function of MDSCs. NanoString Digital Spatial Profiling (DSP) of immune-related protein markers using FFPE slide-mounted tissues from gastric cancer patients was performed. DSP analysis showed infiltration of immunosuppressive MDSCs expressing Arg1, CD66b, VISTA and IDO1 within cancer tissues. Orthotopic transplantation of patient derived organoids (PDOs) resulted in the engraftment of organoids and the development of histology similar to that observed in the patient's tumor tissue. PDO/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of PMN-MDSCs within these co-cultures sensitized the organoids to anti-PD-1/PD-L1-induced cancer cell death. Rapamycin decreased phosphorylated S6K, Gli2 and PD-L1 expression in PDO/immune cell co-cultures. Transcriptional regulation of PD-L1 by GLI1 and GLI2 was blocked by rapamycin. In conclusion, the PDO/immune cell co-cultures may be used to study immunosuppressive MDSC function within the gastric tumor microenvironment. The mTOR signaling pathway mediates GLI-induced PD-L1 expression in gastric cancer.
Collapse
Affiliation(s)
- Vivien Koh
- National University Cancer Institute Singapore, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Nina Steele
- Department of Cell and Developmental Biology and Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Hawkins
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael A Helmrath
- Department of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Syed A Ahmed
- Department of Surgery, University of Cincinnati Cancer Institute, Cincinnati, OH, USA
| | - Asim Shabbir
- Department of Surgery, National University Hospital, Singapore
| | - Jimmy Bok Yan So
- National University Cancer Institute Singapore, National University Health System, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- National University Cancer Institute Singapore, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
36
|
Abstract
Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of how GC develops is vague, and therapies are inefficient. The function of microRNAs (miRNAs) in tumorigenesis has attracted the attention from many scientists. During the development of GC, miRNAs function in the regulation of different phenotypes, such as proliferation, apoptosis, invasion and metastasis, drug sensitivity and resistance, and stem-cell-like properties. MiRNAs were evaluated for use in diagnostic and prognostic predictions and exhibited considerable accuracy. Although many problems exist for the application of therapy, current studies showed the antitumor effects of miRNAs. This paper reviews recent advances in miRNA mechanisms in the development of GC and the potential use of miRNAs in the diagnosis and treatment of GC.
Collapse
|
37
|
Cui C, Lan P, Fu L. The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond) 2021; 41:442-471. [PMID: 33773092 PMCID: PMC8211353 DOI: 10.1002/cac2.12156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancer encompasses a range of malignancies that originate in the digestive system, which together represent the most common form of cancer diagnosed worldwide. However, despite numerous advances in both diagnostics and treatment, the incidence and mortality rate of GI cancer are on the rise. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that increase in number under certain pathological conditions, such as infection and inflammation, and this expansion is of particular relevance to cancer. MDSCs are heavily involved in the regulation of the immune system and act to dampen its response to tumors, favoring the escape of tumor cells from immunosurveillance and increasing both metastasis and recurrence. Several recent studies have supported the use of MDSCs as a prognostic and predictive biomarker in patients with cancer, and potentially as a novel treatment target. In the present review, the mechanisms underlying the immunosuppressive functions of MDSCs are described, and recent researches concerning the involvement of MDSCs in the progression, prognosis, and therapies of GI cancer are reviewed. The aim of this work was to present the development of novel treatments targeting MDSCs in GI cancer in the hope of improving outcomes for patients with this condition.
Collapse
Affiliation(s)
- Cheng Cui
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Penglin Lan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
38
|
Spatz LB, Jin RU, Mills JC. Cellular plasticity at the nexus of development and disease. Development 2021; 148:148/3/dev197392. [PMID: 33547203 DOI: 10.1242/dev.197392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
In October 2020, the Keystone Symposia Global Health Series hosted a Keystone eSymposia entitled 'Tissue Plasticity: Preservation and Alteration of Cellular Identity'. The event synthesized groundbreaking research from unusually diverse fields of study, presented in various formats, including live and virtual talks, panel discussions and interactive e-poster sessions. The meeting focused on cell identity changes and plasticity in multiple tissues, species and developmental contexts, both in homeostasis and during injury. Here, we review the key themes of the meeting: (1) cell-extrinsic drivers of plasticity; (2) epigenomic regulation of cell plasticity; and (3) conserved mechanisms governing plasticity. A salient take-home conclusion was that there may be conserved mechanisms used by cells to execute plasticity, with autodegradative activity (autophagy and lysosomes) playing a crucial initial step in diverse organs and organisms.
Collapse
Affiliation(s)
- Lillian B Spatz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ramon U Jin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA .,Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
39
|
Farshidpour M, Ahmed M, Junna S, Merchant JL. Myeloid-derived suppressor cells in gastrointestinal cancers: A systemic review. World J Gastrointest Oncol 2021; 13:1-11. [PMID: 33510845 PMCID: PMC7805271 DOI: 10.4251/wjgo.v13.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are one of the most common malignancies worldwide, with high rates of morbidity and mortality. Myeloid-derived suppressor cells (MDSCs) are major components of the tumor microenvironment (TME). MDSCs facilitate the transformation of premalignant cells and play roles in tumor growth and metastasis. Moreover, in patients with GI malignancies, MDSCs can lead to the suppression of T cells and natural killer cells. Accordingly, a better understanding of the role and mechanism of action of MDSCs in the TME will aid in the development of novel immune-targeted therapies.
Collapse
Affiliation(s)
- Maham Farshidpour
- Inpatient Medicine, Banner University of Medical Center, Tucson, AZ 85724, United States
| | - Monjur Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Shilpa Junna
- Division of Gastroenterology and Hepatology, Banner University of Medical Center, Tucson, AZ 85724, United States
| | - Juanita L Merchant
- Division of Gastroenterology and Hepatology, Banner University of Medical Center, Tucson, AZ 85724, United States
| |
Collapse
|
40
|
Xing S, Tian Z, Zheng W, Yang W, Du N, Gu Y, Yin J, Liu H, Jia X, Huang D, Liu W, Deng M. Hypoxia downregulated miR-4521 suppresses gastric carcinoma progression through regulation of IGF2 and FOXM1. Mol Cancer 2021; 20:9. [PMID: 33407516 PMCID: PMC7786912 DOI: 10.1186/s12943-020-01295-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) show considerable promise as therapeutic agents to improve tumor treatment, as they have been revealed as crucial modulators in tumor progression. However, our understanding of their roles in gastric carcinoma (GC) metastasis is limited. Here, we aimed to identify novel miRNAs involved in GC metastasis and explored their regulatory mechanisms and therapeutic significance in GC. METHODS The microRNA expression profiles of GC tumors at different stages and at different metastasis statuses were compared respectively using the stomach adenocarcinoma (STAD) miRNASeq dataset in TCGA. Using the above method, miR-4521 was picked out for further study. miR-4521 expression in GC tissues was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). Highly and lowly invasive cell sublines were established using a repetitive transwell assay. Gain-of-function and loss-of-function analyses were performed to investigate the functions of miR-4521 and its upstream and downstream regulatory mechanisms in vitro and in vivo. Moreover, we investigated the therapeutic role of miR-4521 in a mouse xenograft model. RESULTS In this study, we found that miR-4521 expression was downregulated in GC tissues compared with adjacent normal tissues and that its downregulation was positively correlated with advanced clinical stage, metastasis status and poor patient prognosis. Functional experiments revealed that miR-4521 inhibited GC cell invasion and metastasis in vitro and in vivo. Further studies showed that hypoxia repressed miR-4521 expression via inducing ETS1 and miR-4521 mitigated hypoxia-mediated metastasis, while miR-4521 inactivated the AKT/GSK3β/Snai1 pathway by targeting IGF2 and FOXM1, thereby inhibiting the epithelial-mesenchymal transition (EMT) process and metastasis. In addition, we demonstrated that therapeutic delivery of synthetic miR-4521 suppressed gastric carcinoma progression in vivo. CONCLUSIONS Our results suggest an important role for miR-4521 in regulating GC metastasis and hypoxic response of tumor cells as well as the therapeutic significance of this miRNA in GC.
Collapse
Affiliation(s)
- Shan Xing
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi Tian
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Wenying Zheng
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Wenjuan Yang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Nan Du
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yixue Gu
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Jiang Yin
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Hao Liu
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Xiaoting Jia
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Donglan Huang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China.
| | - Wanli Liu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Min Deng
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China.
| |
Collapse
|
41
|
Holokai L, Chakrabarti J, Lundy J, Croagh D, Adhikary P, Richards SS, Woodson C, Steele N, Kuester R, Scott A, Khreiss M, Frankel T, Merchant J, Jenkins BJ, Wang J, Shroff RT, Ahmad SA, Zavros Y. Murine- and Human-Derived Autologous Organoid/Immune Cell Co-Cultures as Pre-Clinical Models of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E3816. [PMID: 33348809 PMCID: PMC7766822 DOI: 10.3390/cancers12123816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose: Pancreatic ductal adenocarcinoma (PDAC) has the lowest five-year survival rate of all cancers in the United States. Programmed death 1 receptor (PD-1)-programmed death ligand 1 (PD-L1) immune checkpoint inhibition has been unsuccessful in clinical trials. Myeloid-derived suppressor cells (MDSCs) are known to block anti-tumor CD8+ T cell immune responses in various cancers including pancreas. This has led us to our objective that was to develop a clinically relevant in vitro organoid model to specifically target mechanisms that deplete MDSCs as a therapeutic strategy for PDAC. Method: Murine and human pancreatic ductal adenocarcinoma (PDAC) autologous organoid/immune cell co-cultures were used to test whether PDAC can be effectively treated with combinatorial therapy involving PD-1 inhibition and MDSC depletion. Results: Murine in vivo orthotopic and in vitro organoid/immune cell co-culture models demonstrated that polymorphonuclear (PMN)-MDSCs promoted tumor growth and suppressed cytotoxic T lymphocyte (CTL) proliferation, leading to diminished efficacy of checkpoint inhibition. Mouse- and human-derived organoid/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of arginase 1-expressing PMN-MDSCs within these co-cultures rendered the organoids susceptible to anti-PD-1/PD-L1-induced cancer cell death. Conclusions: Here we use mouse- and human-derived autologous pancreatic cancer organoid/immune cell co-cultures to demonstrate that elevated infiltration of polymorphonuclear (PMN)-MDSCs within the PDAC tumor microenvironment inhibit T cell effector function, regardless of PD-1/PD-L1 inhibition. We present a pre-clinical model that may predict the efficacy of targeted therapies to improve the outcome of patients with this aggressive and otherwise unpredictable malignancy.
Collapse
Affiliation(s)
- Loryn Holokai
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45220, USA; (L.H.); (C.W.)
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| | - Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.L.); (B.J.J.)
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Daniel Croagh
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia;
| | - Pritha Adhikary
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| | - Scott S. Richards
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Chantal Woodson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45220, USA; (L.H.); (C.W.)
| | - Nina Steele
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (T.F.)
| | - Robert Kuester
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Aaron Scott
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Mohammad Khreiss
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Timothy Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (T.F.)
| | - Juanita Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.L.); (B.J.J.)
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Rachna T. Shroff
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Syed A. Ahmad
- Department of Surgery, Division of Surgical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| |
Collapse
|
42
|
Sun R, Zheng Z, Wang L, Cheng S, Shi Q, Qu B, Fu D, Leboeuf C, Zhao Y, Ye J, Janin A, Zhao WL. A novel prognostic model based on four circulating miRNA in diffuse large B-cell lymphoma: implications for the roles of MDSC and Th17 cells in lymphoma progression. Mol Oncol 2020; 15:246-261. [PMID: 33107145 PMCID: PMC7782091 DOI: 10.1002/1878-0261.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) have been emerged as prognostic biomarkers in diffuse large B-cell lymphoma (DLBCL). To understand the potential underlying mechanisms and translate these findings into clinical prediction on lymphoma progression, large patient cohorts should be evaluated. Here, using miRNA PCR array, we analyzed the miRNA expression profiles in serum samples of 20 DLBCL patients at diagnosis, remission and relapse. Four candidate miRNA were identified and subsequently evaluated for their ability to predict relapse and survival. A prognostic model based on four circulating miRNA (miR21, miR130b, miR155 and miR28) was established and tested in a training cohort of 279 patients and in a validation cohort of 225 patients (NCT01852435). The prognostic value of the 4-circulating miRNA model was assessed by univariate and multivariate analyses. The novel 4-circulating miRNA prognostic model significantly predicted clinical outcome of DLBCL, independent of International Prognostic Index in the training cohort [hazard ratio (HR) = 2.83, 95% CI 2.14-3.51, P < 0.001] and in the validation cohort (HR = 2.71, 95% CI 1.91-3.50, P < 0.001). Moreover, DNA- and RNA-sequencing was performed on tumor samples to detect genetic mutations and signaling pathway dysregulation. DNA-sequencing data showed no significant difference of tumor mutation burden between the low-risk and the high-risk groups of the 4-circulating miRNA model. RNA-sequencing revealed a correlation between the 4-circulating miRNA model and aberrant Ras protein signaling transduction. The impact of the miRNA signature on oncogenic signaling and tumor microenvironment was analyzed in vitro and in vivo. In B-lymphoma cells, modulation of the miRNA regulated IGF1 and JUN expression, thereby altering MDSC and Th17 cells. In DLBCL patients, the high-risk group presented Ras signaling activation, increased MDSC and Th17 cells, and immunosuppressive status compared with the low-risk group. In conclusion, the easy-to-use 4-circulating miRNA prognostic model effectively predicted relapse and survival in DLBCL. Moreover, the tumor microenvironment contributes to the role of the 4-circulating miRNA model in DLBCL progression.
Collapse
Affiliation(s)
- Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | | | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jing Ye
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Anne Janin
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| |
Collapse
|
43
|
Abstract
Understanding the mechanisms involved in induction and regulation of the immune and inflammatory response to Helicobacter pylori is extremely important in determining disease outcomes. H pylori expresses a plethora of factors that influence the host response. Vaccines against H pylori are desperately needed for the prevention of gastric carcinogenesis, especially with the increasing trends in antimicrobial resistance. This review summarizes some important findings, published between 1 April 2019 and 31 March 2020, in the areas of H pylori-mediated inflammation, immunity and vaccines.
Collapse
Affiliation(s)
- Karen Robinson
- School of Medicine, Nottingham Digestive Diseases Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Philippe Lehours
- UMR1053 Bordeaux Research In Translational Oncology, INSERM, Univ. Bordeaux, BaRITOn, Bordeaux, France.,French National Reference Centre for Campylobacters & Helicobacters, Hôpital Pellegrin, Bordeaux, France
| |
Collapse
|
44
|
Abstract
This review covers the most important, accessible, and relevant literature published between April 2019 and April 2020 in the field of non-Helicobacter pylori Helicobacter species (NHPH). The initial part of the review covers new insights regarding the presence of gastric and enterohepatic NHPH in humans and animals, while the subsequent section focuses on the progress in our understanding of animal models, the pathogenicity and omics of these species. Over the last year, the clinical relevance of gastric NHPH infections in humans was highlighted. With regard to NHPH in animals, the ancestral source of Helicobacter suis was further established showing that Cynomolgus macaques are the common ancestor of the pig-associated H. suis population, and 3 novel Helicobacter species isolated from the gastric mucosa of red foxes were described. "Helicobacter burdigaliensis" sp nov. and "Helicobacter labetoulli" sp nov. were proposed as novel enterohepatic Helicobacter species associated with human digestive diseases. An analysis of Helicobacter cinaedi recurrent infections in humans proposed long-term antibiotic therapies. Several studies using rodent models further elucidated the mechanisms underlying the development of NHPH-related disease, as well as intestinal immunity in inflammatory bowel disease models. Omics approaches supported Helicobacteraceae taxonomy and unraveled the transcriptomic signatures of H. suis and Helicobacter heilmannii upon adherence to the human gastric epithelium. With regard to virulence, data showed that the nuclear remodeling promoted by cytolethal distending toxin of Helicobacters involves the MAFB oncoprotein and is associated with nucleoplasmic reticulum formation in surviving cells.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Armelle Menard
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, UMR1053, Bordeaux, France.,CHU de Bordeaux, Laboratoire de Bactériologie, Centre National de Référence des Campylobacters et des Hélicobacters, Bordeaux, France
| |
Collapse
|
45
|
Human Gastrointestinal Organoid Models for Studying Microbial Disease and Cancer. Curr Top Microbiol Immunol 2020; 430:55-75. [PMID: 32889597 DOI: 10.1007/82_2020_223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the major discoveries in stem cell research in the past decade embraces the development of "organs in a dish," also known as "organoids." Organoids are three-dimensional cellular structures derived from primary stem cells of different organ-specific cell types which are capable of self-renewal and maintenance of the parental lineages. Researchers have developed in vitro organoid models to mimic in vivo host-microbial interactions and disease. In this review, we focus on the use of gastrointestinal organoids as models of microbial disease and cancer.
Collapse
|