1
|
Choi YM, Jang J, Kim DH, Kim Z, Kim E, Choe WH, Kim BJ. PreS1 deletions in genotype C HBV leads to severe hepatic inflammation and hepatocarcinogenesis via the IRE1-JNK axis. JHEP Rep 2025; 7:101274. [PMID: 39980750 PMCID: PMC11840487 DOI: 10.1016/j.jhepr.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 02/22/2025] Open
Abstract
Background & Aims Deletion of 15-21 nucleotides covering the preS1 start codon frequently occurs in patients with chronic HBV (CHB) with HBV genotype C and has been reported to be related to progression to hepatocellular carcinoma (HCC). However, the underlying mechanism causing the distinct phenotype of this HBV variant remains largely unknown. We investigated the mechanism by which preS1Del is related to liver disease progression and enhanced HBV replication, focusing on endoplasmic reticulum (ER) stress. Methods The effects of HBV replicative capacity, ER stress signaling, inflammation, cell death, and tumorigenesis resulting from PreS1 deletions were investigated through in vitro and in vivo experiments. Inhibitors of the IRE1-JNK pathway and IL6 blockade were used to examine HCC tumor load induced by preS1 deletions. Results The PreS1Del variant selectively activates the IRE1 pathway, mainly via enhanced colocalization between the ER and HBsAg in infected hepatocytes. This leads to enhanced HBV replication and production of tumor-promoting inflammatory cytokines and IL6 and COX2 via the IRE1-JNK signaling pathway. Furthermore, in vivo data showed that the activation of IRE1-JNK signaling consequently leads to lipid accumulation and apoptosis within 21Del-HBV-infected hepatocytes, collectively driving severe tumorigenesis in the liver. Notably, several inhibitors of the IRE1-JNK pathway dramatically inhibited HBV replication and inflammation induced by 21Del-HBV but not by the wild-type HBV in infected hepatocytes. Furthermore, IL6 blockade significantly reduced HCC tumor load induced by 21Del-HBV. Conclusions PreS1Del leads to enhanced HBV replication and HCC development through IRE1-JNK-IL6/COX2-mediated hepatocyte proliferation and liver inflammation. Inhibitors interfering with the IRE1-JNK-IL6 pathway could selectively inhibit HBV replication and inflammation in preS1Dels, suggesting their potential for the treatment of patients with CHB with preS1-deleted HBV variants. Impact and implications Deletion of 15-21 nucleotides at the preS1 start codon is common in patients with CHB with HBV genotype C and is linked to HCC progression. However, the mechanisms underlying the distinct phenotype of this variant remain largely unknown. We found that the preS1Del variant selectively activates the IRE1 pathway, primarily through enhanced IRE1-JNK-IL6 signaling. Inhibition of either the IRE1-JNK pathway or IL6 reduced HBV replication and tumor load in in vivo HCC models. This study enhances our understanding of the mechanisms of liver disease progression caused by 5' preS1Del variants and provides new insights into treatment strategies for patients with these variants. We believe our findings will resonate with a diverse audience, including patients and their physicians, the medical community, academia, the life sciences sector, and the general public.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Ziyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Eunseo Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Won Hyeok Choe
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang J, Wang Q, Yuan W, Li J, Yuan Q, Zhang J, Xia N, Wang Y, Li J, Tong S. Both middle and large envelope proteins can mediate neutralization of hepatitis B virus infectivity by anti-preS2 antibodies: escape by naturally occurring preS2 deletions. J Virol 2024; 98:e0192923. [PMID: 39078152 PMCID: PMC11334434 DOI: 10.1128/jvi.01929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins containing preS1/preS2/S, preS2/S, and S domain alone, respectively. S and preS1 domains mediate sequential virion attachment to heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP), respectively, which can be blocked by anti-S and anti-preS1 antibodies. How anti-preS2 antibodies neutralize HBV infectivity remains enigmatic. The late stage of chronic HBV infection often selects for mutated preS2 translation initiation codon to prevent M protein expression, or in-frame preS2 deletions to shorten both L and M proteins. When introduced to infectious clone of genotype C or D, both M-minus mutations and most 5' preS2 deletions sustained virion production. Such mutant progeny viral particles were infectious in NTCP-reconstituted HepG2 cells. Neutralization experiments were performed on the genotype D clone. Although remaining susceptible to anti-preS1 and anti-S neutralizing antibodies, M-minus mutants were only partially neutralized by two anti-preS2 antibodies tested while preS2 deletion mutants were resistant. By infection experiments using viral particles with lost versus increased M protein expression, or a neutralization escaping preS2 deletion only present on L or M protein, we found that both full-length L and M proteins contributed to virus neutralization by the two anti-preS2 antibodies. Thus, immune escape could be a driving force for the selection of M-minus mutations, and especially preS2 deletions. The fact that both L and M proteins could mediate neutralization by anti-preS2 antibodies may shed light on the underlying molecular mechanism.IMPORTANCEThe large (L), middle (M), and small (S) envelope proteins of hepatitis B virus (HBV) contain preS1/preS2/S, preS2/S, and S domain alone, respectively. The discovery of heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP) as the low- and high-affinity HBV receptors could explain neutralizing potential of anti-S and anti-preS1 antibodies, respectively, but how anti-preS2 neutralizing antibodies work remains enigmatic. In this study, we found two M-minus mutants in the context of genotype D partially escaped two anti-preS2 neutralizing antibodies in NTCP-reconstituted HepG2 cells, while several naturally occurring preS2 deletion mutants escaped both antibodies. By point mutations to eliminate or enhance M protein expression, and by introducing preS2 deletion selectively to L or M protein, we found binding of anti-preS2 antibodies to both L and M proteins contributed to neutralization of wild-type HBV infectivity. Our finding may shed light on the possible mechanism(s) whereby anti-preS2 antibodies neutralize HBV infectivity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenqing Yuan
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Jing Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yongxiang Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Shuping Tong
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Li J, Li J, Chen S, Xu W, Zhang J, Tong S. Clinical isolates of hepatitis B virus genotype C have higher in vitro transmission efficiency than genotype B isolates. J Med Virol 2023; 95:e28879. [PMID: 37314050 PMCID: PMC10404337 DOI: 10.1002/jmv.28879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Serum samples were collected from 54 hepatitis B e antigen (HBeAg)-positive Chinese patients infected with hepatitis B virus (HBV) subgenotype B2 or C2. They were compared for transmission efficiency using same volume of samples or infectivity using same genome copy number. Adding polyethylene glycol (PEG) during inoculation did not increase infectivity of fresh samples but markedly increased infectivity following prolonged sample storage. Differentiated HepaRG cells infected without PEG produced more hepatitis B surface antigen (HBsAg) and higher HBsAg/HBeAg ratio than sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 cells infected with PEG. They better supported replication of core promoter mutant in contrast to wild-type (WT) virus by HepG2/NTCP cells. Overall, subgenotype C2 samples had higher viral load than B2 samples, and in general produced more HBeAg, HBsAg, and replicative DNA following same-volume inoculation. Precore mutant was more prevalent in subgenotype B2 and had reduced transmission efficiency. When same genome copy number of viral particles was inoculated, viral signals were not necessarily higher for three WT C2 isolates than four WT B2 isolates. Using viral particles generated from cloned HBV genome, three WT C2 isolates showed slightly reduced infectivity than three B2 isolates. In conclusion, subgenotype C2 serum samples had higher transmission efficiency than B2 isolates in association with higher viral load and lower prevalence of precore mutant, but not necessarily higher infectivity. PEG-independent infection by HBV viremic serum samples is probably attributed to a labile host factor.
Collapse
Affiliation(s)
- Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weicheng Xu
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
4
|
Liu Y, Park D, Cafiero TR, Bram Y, Chandar V, Tseng A, Gertje HP, Crossland NA, Su L, Schwartz RE, Ploss A. Molecular clones of genetically distinct hepatitis B virus genotypes reveal distinct host and drug treatment responses. JHEP Rep 2022; 4:100535. [PMID: 36035359 PMCID: PMC9403497 DOI: 10.1016/j.jhepr.2022.100535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background & Aims HBV exhibits wide genetic diversity with at least 9 genotypes (GTs), which differ in terms of prevalence, geographic distribution, natural history, disease progression, and treatment outcome. However, differences in HBV replicative capacity, gene expression, and infective capability across different GTs remain incompletely understood. Herein, we aimed to study these crucial aspects using newly constructed infectious clones covering the major HBV GTs. Methods The replicative capacity of infectious clones covering HBV GTs A-E was analyzed in cell lines, primary hepatocytes and humanized mice. Host responses and histopathology induced by the different HBV GTs were characterized in hydrodynamically injected mice. Differences in treatment responses to entecavir and various HBV capsid inhibitors were also quantified across the different genetically defined GTs. Results Patient-derived HBV infectious clones replicated robustly both in vitro and in vivo. GTs A and D induce more pronounced intrahepatic and proinflammatory cytokine responses which correlated with faster viral clearance. Notably, all 5 HBV clones robustly produced viral particles following transfection into HepG2 cells, and these particles were infectious in HepG2-NTCP cells, primary human hepatocytes and human chimeric mice. Notably, GT D virus exhibited higher infectivity than GTs A, B, C and E in vitro, although it was comparable to GT A and B in the human liver chimeric mice in vivo. HBV capsid inhibitors were more readily capable of suppressing HBV GTs A, B, D and E than C. Conclusions The infectious clones described here have broad utility as genetic tools that can mechanistically dissect intergenotypic differences in antiviral immunity and pathogenesis and aid in HBV drug development and screening. Lay summary The hepatitis B virus (HBV) is a major contributor to human morbidity and mortality. HBV can be categorized into a number of genotypes, based on their specific genetic make-up, of which 9 are well known. We isolated and cloned the genomes of 5 of these genotypes and used them to create valuable tools for future research on this clinically important virus.
Collapse
Key Words
- AAV, adeno-associated virus
- ALT, alanine aminotransferase
- BCP, basic core promoter
- CHB, chronic hepatitis B
- CpAM, core protein allosteric modulators
- DR, direct repeat
- ETV, entecavir
- En, enhancer
- GT(s), genotype(s)
- HBV, hepatitis B virus
- HBVcc, cell culture-derived HBV
- HCC, hepatocellular carcinoma
- HDI, hydrodynamic injection
- IFN, interferon
- IHC, immunohistochemistry
- IL, interleukin
- MOI, multiplicity of infection
- NA, nucleos(t)ide analogue
- NRG, NODRag1−/−IL2RγNULL
- PHH, primiary human hepatocyte
- SVR, sustained virologic response
- cccDNA, covalently closed circular DNA
- dpi, days post infection
- drug development
- genotypes
- hepatitis B
- hepatitis B virus
- host responses
- pgRNA, pre-genomic RNA
- reverse genetics
- viral hepatitis
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Debby Park
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Thomas R. Cafiero
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anna Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lishan Su
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
5
|
Liu T, Liu A, Liu Y, Cen S, Zhang Q. In vitro investigation of HBV clinical isolates from Chinese patients reveals that genotype C isolates possess higher infectivity than genotype B isolates. Virol Sin 2022; 37:398-407. [PMID: 35314401 PMCID: PMC9243618 DOI: 10.1016/j.virs.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/15/2022] [Indexed: 10/26/2022] Open
|
6
|
Jiang S, Wang X, Chen K, Yang P. Establishment of an inducible cell line for Hepatitis B virus genotype C2 and its pharmacological responses to interferons. Pharmacol Res 2022; 178:106142. [PMID: 35218895 DOI: 10.1016/j.phrs.2022.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis B virus (HBV) genotype C is closely associated with poor prognosis, contributing greatly to heavy chronic hepatitis B (CHB)-related liver disease burden in China and worldwide. However, the mechanistic studies on genotype C of HBV remain largely limited, partially because of a long-term lack of genotype C HBV-based stable cell tools. According to a bioinformatic analysis on the sub-genotype C2 HBV that is predominantly endemic in China, we selected 17.3 strain as a representative isolate. With a Tet-off gene expression system, an inducible viral replication and virion production of genotype C2 HBV were achieved in a cell line carrying persistent rcDNA-cccDNA recycling, termed HepG2-17.3, can be useful for virological studies on genotype C2 HBV. Additionally, this cell line has been formatted into cell-based assay that permits particular pharmacological screening of drug candidates, such as interferon regimens, for evaluations of the inhibitory effects on genotype C2 HBV replication.
Collapse
Affiliation(s)
- Shaodong Jiang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaili Chen
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyuan Yang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
5' preS1 mutations to prevent large envelope protein expression from hepatitis B virus genotype A or genotype D markedly increase polymerase-envelope fusion protein. J Virol 2022; 96:e0172321. [PMID: 35019714 PMCID: PMC8906437 DOI: 10.1128/jvi.01723-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) large (L) envelope protein is translated from 2.4-kb RNA. It contains preS1, preS2, and S domains and is detected in Western blot as p39 and gp42. The 3.5-kb pregenomic RNA produces core and polymerase (P) proteins. We generated L-minus mutants of a genotype A clone and a genotype D clone from 1.1mer or 1.3mer construct, with the former overproducing pregenomic RNA. Surprisingly, mutating preS1 ATG codon(s) or introducing a nonsense mutation soon afterwards switched secreted p39/gp42 into p41/p44 doublet, with its amount further increased by a nonsense mutation in the core gene. A more downstream preS1 nonsense mutation prevented p41/p44 production. Tunicamycin treatment confirmed p44 as glycosylated form of p41. In this regard splicing of 3.5-kb RNA to generate nt2447-nt2902 junction for genotype D enables translation of p43, with N-terminal 47 residues of P protein fused to C-terminal 371 residues of L protein. Indeed p41/p44 were detectable by an antibody against N-terminus of P protein, and eliminated by a nonsense mutation at 5' P gene or a point mutation to prevent that splicing. Therefore, lost L (and core) protein expression from 1.1mer or 1.3mer construct markedly increased p41/p44 (p43), the P-L fusion protein. Co-transfection with an expression construct for L/M proteins reversed high extracellular p41/p44 associated with L-minus mutants, suggesting that L protein retains p43 in wild-type HBV to promote its intracellular degradation. Considering that p43 lacks N-terminal preS1 sequence critical for receptor binding, its physiological significance during natural infection and therapeutic potential warrant further investigation. IMPORTANCE The large (L) envelope protein of hepatitis B virus (HBV) is translated from 2.4-kb RNA and detected in Western blot as p39 and gp42. Polymerase (P) protein is expressed at a low level from 3.5-kb RNA. The major spliced form of 3.5-kb RNA will produce a fusion protein between the first 47 residues of P protein and a short irrelevant sequence, although also at a low level. Another spliced form has the same P protein sequence fused to L protein missing its first 18 residues. We found that some point mutations to eliminate L and core protein expression from overlength HBV DNA constructs converted p39/gp42 into p41/gp44, which turned out to be that P-L fusion protein. Thus, the P-L fusion protein can be expressed at extremely high level when L protein expression is prevented. The underlying mechanism and functional significance of this variant form of L protein warrant further investigation.
Collapse
|
8
|
Ou G, He L, Wang L, Song J, Lai X, Tian X, Wang L, Zhang K, Zhang X, Deng J, Zhuang H, Xiang K, Li T. The Genotype (A to H) Dependent N-terminal Sequence of HBV Large Surface Protein Affects Viral Replication, Secretion and Infectivity. Front Microbiol 2021; 12:687785. [PMID: 34305848 PMCID: PMC8299529 DOI: 10.3389/fmicb.2021.687785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Genetic variability has significant impacts on biological characteristics and pathogenicity of hepatitis B virus (HBV), in which the N-terminal sequence of the presurface 1 (preS1) region of HBV large surface protein (LHBs) displays genotype (GT) dependent genetic heterogeneity. However, the influence of this heterogeneity on its biological roles is largely unknown. By analyzing 6560 full-length genome sequences of GTA-GTH downloaded from HBVdb database, the preS1 N-terminal sequences were divided into four representative types, namely C-type (representative of GTA, GTB, and GTC), H-type (GTF and GTH), E-type (GTE and GTG), and D-type (GTD), respectively. We artificially substituted the preS1 N-termini of GTC and GTD plasmids or viral strains with each sequence of the four representative types. The roles of preS1 N-terminus on HBV replication, secretion and infectivity were investigated using HepG2 or HepG2-NTCP cells. In the transfection experiments, the results showed that the extracellular HBsAg levels and HBsAg secretion coefficients in D- and E-type strains were significantly higher than those in C- and H-type strains. D-type strain produced more extracellular HBV DNA than C-type strain. We further observed that D-, H-, and E-type strains increased the levels of intracellular replicative HBV DNAs, comparing with C-type strain. In the infection experiments, the levels of extracellular HBeAg, intracellular HBV total RNA and pgRNA/preC mRNA in D- and E-type strains were markedly higher than C and H-type ones. Our data suggest that the preS1 N-termini affect HBV replication, secretion and infectivity in a genotype dependent manner. The C- and H-type strains prefer to attenuate HBsAg secretion, while the strains of D- and E-type promoted infectivity. The existence and function of the intergenotypic shift of preS1 in naturally occurring recombination requires further investigation, as the data we acquired are mostly related to recombinant preS1 region between N-terminus of preS1 from genotypes A-H and the remaining preS1 portion of GTC or GTD.
Collapse
Affiliation(s)
- Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lingyuan He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luwei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ji Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyuan Lai
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xing Tian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kai Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuechao Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Juan Deng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Lost Small Envelope Protein Expression from Naturally Occurring PreS1 Deletion Mutants of Hepatitis B Virus Is Often Accompanied by Increased HBx and Core Protein Expression as Well as Genome Replication. J Virol 2021; 95:e0066021. [PMID: 33910956 PMCID: PMC8223946 DOI: 10.1128/jvi.00660-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) transcribes coterminal mRNAs of 0.7 to 3.5 kb from the 3.2-kb covalently closed circular DNA, with the 2.1-kb RNA being most abundant. The 0.7-kb RNA produces HBx protein, a transcriptional transactivator, while the 3.5-kb pregenomic RNA (pgRNA) drives core and P protein translation as well as genome replication. The large (L) and small (S) envelope proteins are translated from the 2.4-kb and 2.1-kb RNAs, respectively, with the majority of the S protein being secreted as noninfectious subviral particles and detected as hepatitis B surface antigen (HBsAg). pgRNA transcription could inhibit transcription of subgenomic RNAs. The present study characterized naturally occurring in-frame deletions in the 3' preS1 region, which not only codes for L protein but also serves as the promoter for 2.1-kb RNA. The human hepatoma cell line Huh7 was transiently transfected with subgenomic expression constructs for envelope (and HBx) proteins, dimeric constructs, or constructs mimicking covalently closed circular DNA. The results confirmed lost 2.1-kb RNA transcription and HBsAg production from many deletion mutants, accompanied by increases in other (especially 2.4-kb) RNAs, intracellular HBx and core proteins, and replicative DNA but impaired virion and L protein secretion. The highest intracellular L protein levels were achieved by mutants that had residual S protein expression or retained the matrix domain in L protein. Site-directed mutagenesis of a high replicating deletion mutant suggested that increased HBx protein expression and blocked virion secretion both contributed to the high replication phenotype. Our findings could help explain why such deletions are selected at a late stage of chronic HBV infection and how they contribute to viral pathogenesis. IMPORTANCE Expression of hepatitis B e antigen (HBeAg) and overproduction of HBsAg by wild-type HBV are implicated in the induction of immune tolerance to achieve chronic infection. How HBV survives the subsequent immune clearance phase remains incompletely understood. Our previous characterization of core promoter mutations to reduce HBeAg production revealed the ability of the 3.5-kb pgRNA to diminish transcription of coterminal RNAs of 2.4 kb, 2.1 kb, and 0.7 kb. The later stage of chronic HBV infection often selects for in-frame deletions in the preS region. Here, we found that many 3' preS1 deletions prevented transcription of the 2.1-kb RNA for HBsAg production, which was often accompanied by increases in intracellular 3.5-, 0.7-, and especially 2.4-kb RNAs, HBx and core proteins, and replicative DNA but lost virion secretion. These findings established the biological consequences of preS1 deletions, thus shedding light on why they are selected and how they contribute to hepatocarcinogenesis.
Collapse
|
10
|
Inoue J, Sato K, Ninomiya M, Masamune A. Envelope Proteins of Hepatitis B Virus: Molecular Biology and Involvement in Carcinogenesis. Viruses 2021; 13:1124. [PMID: 34208172 PMCID: PMC8230773 DOI: 10.3390/v13061124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The envelope of hepatitis B virus (HBV), which is required for the entry to hepatocytes, consists of a lipid bilayer derived from hepatocyte and HBV envelope proteins, large/middle/small hepatitis B surface antigen (L/M/SHBs). The mechanisms and host factors for the envelope formation in the hepatocytes are being revealed. HBV-infected hepatocytes release a large amount of subviral particles (SVPs) containing L/M/SHBs that facilitate escape from the immune system. Recently, novel drugs inhibiting the functions of the viral envelope and those inhibiting the release of SVPs have been reported. LHBs that accumulate in ER is considered to promote carcinogenesis and, especially, deletion mutants in the preS1/S2 domain have been reported to be associated with the development of hepatocellular carcinoma (HCC). In this review, we summarize recent reports on the findings regarding the biological characteristics of HBV envelope proteins, their involvement in HCC development and new agents targeting the envelope.
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (K.S.); (M.N.); (A.M.)
| | | | | | | |
Collapse
|
11
|
Zhang J, Wang Y, Fu S, Yuan Q, Wang Q, Xia N, Wen Y, Li J, Tong S. Role of Small Envelope Protein in Sustaining the Intracellular and Extracellular Levels of Hepatitis B Virus Large and Middle Envelope Proteins. Viruses 2021; 13:613. [PMID: 33918367 PMCID: PMC8065445 DOI: 10.3390/v13040613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins. S protein drives virion and subviral particle secretion, whereas L protein inhibits subviral particle secretion but coordinates virion morphogenesis. We previously found that preventing S protein expression from a subgenomic construct eliminated M protein. The present study further examined impact of S protein on L and M proteins. Mutations were introduced to subgenomic construct of genotype A or 1.1 mer replication construct of genotype A or D, and viral proteins were analyzed from transfected Huh7 cells. Mutating S gene ATG to prevent expression of full-length S protein eliminated M protein, reduced intracellular level of L protein despite its blocked secretion, and generated a truncated S protein through translation initiation from a downstream ATG. Truncated S protein was secretion deficient and could inhibit secretion of L, M, S proteins from wild-type constructs. Providing full-length S protein in trans rescued L protein secretion and increased its intracellular level from mutants of lost S gene ATG. Lost core protein expression reduced all the three envelope proteins. In conclusion, full-length S protein could sustain intracellular and extracellular L and M proteins, while truncated S protein could block subviral particle secretion.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Shuwen Fu
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Y.); (N.X.)
| | - Qianru Wang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Y.); (N.X.)
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| |
Collapse
|
12
|
Fujiwara K. Novel Genetic Rearrangements in Hepatitis B Virus: Complex Structural Variations and Structural Variation Polymorphisms. Viruses 2021; 13:473. [PMID: 33809245 PMCID: PMC8000817 DOI: 10.3390/v13030473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) causes serious clinical problems, such as liver cirrhosis and hepatocellular carcinoma. Current antiviral treatments suppress HBV; however, the clinical cure rate remains low. Basic research on HBV is indispensable to eradicate and cure HBV. Genetic alterations are defined by nucleotide substitutions and canonical forms of structural variations (SVs), such as insertion, deletion and duplication. Additionally, genetic changes inconsistent with the canonical forms have been reported, and these have been termed complex SVs. Detailed analyses of HBV using bioinformatical applications have detected complex SVs in HBV genomes. Sequence gaps and low sequence similarity have been observed in the region containing complex SVs. Additionally, insertional motif sequences have been observed in HBV strains with complex SVs. Following the analyses of complex SVs in the HBV genome, the role of SVs in the genetic diversity of orthohepadnavirus has been investigated. SV polymorphisms have been detected in comparisons of several species of orthohepadnaviruses. As mentioned, complex SVs are composed of multiple SVs. On the contrary, SV polymorphisms are observed as insertions of different SVs. Up to a certain point, nucleotide substitutions cause genetic differences. However, at some point, the nucleotide sequences are split into several particular patterns. These SVs have been observed as polymorphic changes. Different species of orthohepadnaviruses possess SVs which are unique and specific to a certain host of the virus. Studies have shown that SVs play an important role in the HBV genome. Further studies are required to elucidate their virologic and clinical roles.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
13
|
Jiang B, Wen X, Wu Q, Bender D, Carra G, Basic M, Kubesch A, Peiffer KH, Boller K, Hildt E. The N-Terminus Makes the Difference: Impact of Genotype-Specific Disparities in the N-Terminal Part of The Hepatitis B Virus Large Surface Protein on Morphogenesis of Viral and Subviral Particles. Cells 2020; 9:cells9081898. [PMID: 32823751 PMCID: PMC7463600 DOI: 10.3390/cells9081898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The N-terminus of the hepatitis B virus (HBV) large surface protein (LHB) differs with respect to genotypes. Compared to the amino terminus of genotype (Gt)D, in GtA, GtB and GtC, an additional identical 11 amino acids (aa) are found, while GtE and GtG share another similar 10 aa. Variants of GtB and GtC affecting this N-terminal part are associated with hepatoma formation. Deletion of these amino-terminal 11 aa in GtA reduces the amount of LHBs and changes subcellular accumulation (GtA-like pattern) to a dispersed distribution (GtD-like pattern). Vice versa, the fusion of the GtA-derived N-terminal 11 aa to GtD causes a GtA-like phenotype. However, insertion of the corresponding GtE-derived 10 aa to GtD has no effect. Deletion of these 11aa decreases filament size while neither the number of released viral genomes nor virion size and infectivity are affected. A negative regulatory element (aa 2–8) and a dominant positive regulatory element (aa 9–11) affecting the amount of LHBs were identified. The fusion of this motif to eGFP revealed that the effect on protein amount and subcellular distribution is not restricted to LHBs. These data identify a novel region in the N-terminus of LHBs affecting the amount and subcellular distribution of LHBs and identify release-promoting and -inhibiting aa residues within this motive.
Collapse
Affiliation(s)
- Bingfu Jiang
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
| | - Xingjian Wen
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
| | - Qingyan Wu
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
| | - Daniela Bender
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
| | - Gert Carra
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
| | - Michael Basic
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
- Department of Gastroenterology and Hepatology, J. W. Goethe University, D-60590 Frankfurt, Germany
| | - Alica Kubesch
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
- Department of Gastroenterology and Hepatology, J. W. Goethe University, D-60590 Frankfurt, Germany
| | - Kai-Henrik Peiffer
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
- Department of Gastroenterology and Hepatology, J. W. Goethe University, D-60590 Frankfurt, Germany
| | - Klaus Boller
- Department of Immunology, Paul-Ehrlich-Institut, D-63225 Langen, Germany;
| | - Eberhard Hildt
- Division of Virology, Paul-Ehrlich-Institut, D-63225 Langen, Germany; (B.J.); (X.W.); (Q.W.); (D.B.); (G.C.); (M.B.); (A.K.); (K.-H.P.)
- TTU Hepatitis, German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: ; Tel.: +496103772140
| |
Collapse
|
14
|
Wettengel JM, Burwitz BJ. Innovative HBV Animal Models Based on the Entry Receptor NTCP. Viruses 2020; 12:E828. [PMID: 32751581 PMCID: PMC7472226 DOI: 10.3390/v12080828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B is a major global health problem, with an estimated 257 million chronically infected patients and almost 1 million deaths per year. The causative agent is hepatitis B virus (HBV), a small, enveloped, partially double-stranded DNA virus. HBV has a strict species specificity, naturally infecting only humans and chimpanzees. Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter expressed on hepatocytes, has been shown to be one of the key factors in HBV infection, playing a crucial role in the HBV entry process in vitro and in vivo. Variations in the amino acid sequence of NTCP can inhibit HBV infection and, therefore, contributes, in part, to the species barrier. This discovery has revolutionized the search for novel animal models of HBV. Indeed, it was recently shown that variations in the amino acid sequence of NTCP represent the sole species barrier for HBV infection in macaques. Here, we review what is known about HBV entry through the NTCP receptor and highlight how this knowledge has been harnessed to build new animal models for the study of HBV pathogenesis and curative therapies.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany;
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| |
Collapse
|