1
|
Lung SCC, Tsou MCM, Cheng CHC, Setyawati W. Peaks, sources, and immediate health impacts of PM 2.5 and PM 1 exposure in Indonesia and Taiwan with microsensors. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:264-277. [PMID: 38806636 PMCID: PMC12009734 DOI: 10.1038/s41370-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Microsensors have been used for the high-resolution particulate matter (PM) monitoring. OBJECTIVES This study applies PM and health microsensors with the objective of assessing the peak exposure, sources, and immediate health impacts of PM2.5 and PM1 in two Asian countries. METHODS Exposure assessment and health evaluation were carried out for 50 subjects in 2018 and 2019 in Bandung, Indonesia and for 55 subjects in 2019 and 2020 in Kaohsiung, Taiwan. Calibrated AS-LUNG sets and medical-certified RootiRx® sensors were used to assess PM and heart-rate variability (HRV), respectively. RESULTS Overall, the 5-min mean exposure of PM2.5 and PM1 was 30.4 ± 20.0 and 27.0 ± 15.7 µg/m3 in Indonesia and 14.9 ± 11.2 and 13.9 ± 9.8 µg/m3 in Taiwan, respectively. The maximum 5-min peak PM2.5 and PM1 exposures were 473.6 and 154.0 µg/m3 in Indonesia and 467.4 and 217.7 µg/m3 in Taiwan, respectively. Community factories and mosquito coil burning are the two most important exposure sources, resulting in, on average, 4.73 and 5.82 µg/m3 higher PM2.5 exposure increments for Indonesian subjects and 10.1 and 9.82 µg/m3 higher PM2.5 exposure for Taiwanese subjects compared to non-exposure periods, respectively. Moreover, agricultural waste burning and incense burning were another two important exposure sources, but only in Taiwan. Furthermore, 5-min PM2.5 and PM1 exposure had statistically significantly immediate impacts on the HRV indices and heart rates of all subjects in Taiwan and the scooter subjects in Indonesia with generalized additive mixed models. The HRV change for a 10 µg/m3 increase in PM2.5 and PM1 ranged from -0.9% to -2.5% except for ratio of low-high frequency, with greater impacts associated with PM1 than PM2.5 in both countries. IMPACT STATEMENT This work highlights the ability of microsensors to capture high peaks of PM2.5 and PM1, to identify exposure sources through the integration of activity records, and to assess immediate changes in heart rate variability for a panel of approximately 50 subjects in Indonesia and Taiwan. This study stands out as one of the few to demonstrate the immediate health impacts of peak PM, complementing to the short-term (days or weeks) or long-term effects (months or longer) assessed in most epidemiological studies. The technology/methodology employed offer great potential for researchers in the resource-limited countries with high PM2.5 and PM1 levels.
Collapse
Affiliation(s)
- Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan, ROC.
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan, ROC.
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan, ROC.
| | | | | | - Wiwiek Setyawati
- Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN), Kota Bandung, Indonesia
| |
Collapse
|
2
|
Gabet S, Puy L. Current trend in air pollution exposure and stroke. Curr Opin Neurol 2025; 38:54-61. [PMID: 39508397 PMCID: PMC11706348 DOI: 10.1097/wco.0000000000001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
PURPOSE OF REVIEW Stroke is the second leading cause of death worldwide, and exposure to particulate air pollution is now recognized as one of the major modifiable risk factors. However, air pollution can vary in terms of physicochemical composition and exposition specificities. Therefore, its relationships with stroke outcomes remain under intense investigation. RECENT FINDINGS This review highlights, alongside particles, that short-term and long-term exposure to nitrogen dioxide (NO 2 ) and ozone is likely to be also linked to stroke-related morbidity and mortality. Moreover, air pollution may increase the risk of transitioning from a healthy status to incident stroke and morbimortality after stroke. Additionally, relationships may vary depending on the air pollution mixture (e.g., particle-related components, pollutant interactions), pollutant sources (e.g., traffic-related or not), stroke etiology (ischemic or hemorrhagic), or exposed individual's characteristics (e.g., age, sex, genetic predisposition, weight status). Nonlinear dose-response functions and short-term effect lags have been reported, but these features need further refinement. SUMMARY The relationship between stroke and air pollution is now well established. Nonetheless, future research should further consider the physicochemical properties of air pollutants, multiple exposures, and individual vulnerabilities. Moreover, advanced statistical methods should be more commonly used to better describe the relationship shapes.
Collapse
Affiliation(s)
- Stephan Gabet
- University Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l’Environnement Chimique sur la Santé (IMPECS)
| | - Laurent Puy
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
3
|
Jeong YW, Choi HM, Park Y, Lee Y, Jung JY, Kang DR. Association between exposure to particulate matter and heart rate variability in vulnerable and susceptible individuals. NPJ Digit Med 2025; 8:52. [PMID: 39856241 PMCID: PMC11760931 DOI: 10.1038/s41746-024-01373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM) exposure can reduce heart rate variability (HRV), a cardiovascular health marker. This study examines PM1.0 (aerodynamic diameters <1 μm), PM2.5 (≥1 μm and <2.5 μm), and PM10 (≥2.5 μm and <10 μm) effects on HRV in patients with environmental diseases as chronic disease groups and vulnerable populations as control groups. PM levels were measured indoors and outdoors for five days in 97 participants, with 24-h HRV monitoring via wearable devices. PM exposure was assessed by categorizing daily cumulative PM concentrations into higher and lower exposure days, while daily average PM concentrations were used for analysis. Results showed significant negative associations between exposure to single and mixtures of different PM metrics and HRV across all groups, particularly in chronic airway disease and higher air pollution exposed groups. These findings highlight that even lower PM levels may reduce HRV, suggesting a need for stricter standards to protect sensitive individuals.
Collapse
Affiliation(s)
- Yong Whi Jeong
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju, South Korea
| | - Hayon Michelle Choi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Youhyun Park
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju, South Korea
| | - Yongjin Lee
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Dae Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju, South Korea.
| |
Collapse
|
4
|
Candia-Rivera D, de Vico Fallani F, Chavez M. Robust and time-resolved estimation of cardiac sympathetic and parasympathetic indices. ROYAL SOCIETY OPEN SCIENCE 2025; 12:240750. [PMID: 39816735 PMCID: PMC11732425 DOI: 10.1098/rsos.240750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Accepted: 12/01/2024] [Indexed: 01/18/2025]
Abstract
The time-resolved analysis of heart rate (HR) and heart rate variability (HRV) is crucial for the evaluation of the dynamic changes of autonomic activity under different clinical and behavioural conditions. Standard HRV analysis is performed in the frequency domain because the sympathetic activations tend to increase low-frequency HRV oscillations, while the parasympathetic ones increase high-frequency HRV oscillations. However, a strict separation of HRV into frequency bands may cause biased estimations, especially in the low-frequency range. To overcome this limitation, we propose a robust estimator that combines HR and HRV dynamics, based on the correlation of the Poincaré plot descriptors of interbeat intervals from the electrocardiogram. To validate our method, we used electrocardiograms gathered from open databases where standardized paradigms were applied to elicit changes in autonomic activity. Our proposal outperforms the standard spectral approach for the estimation of low- and high-frequency fluctuations in HRV, and its performance is comparable with newer methods. Our method constitutes a valuable, robust, time-resolved and cost-effective tool for a better understanding of autonomic activity through HR and HRV in a healthy state and potentially for pathological conditions.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INRIA Paris, INSERM U1127, Hôpital de la Pitié Salpêtrière, AP-HP, Paris75013, France
| | - Fabrizio de Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INRIA Paris, INSERM U1127, Hôpital de la Pitié Salpêtrière, AP-HP, Paris75013, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INRIA Paris, INSERM U1127, Hôpital de la Pitié Salpêtrière, AP-HP, Paris75013, France
| |
Collapse
|
5
|
Shirangi A, Lin T, Yun G, Williamson GJ, Franklin P, Jian L, Reid CM, Xiao J. Impact of elevated fine particulate matter (PM 2.5 ) during landscape fire events on cardiorespiratory hospital admissions in Perth, Western Australia. J Epidemiol Community Health 2024; 78:705-712. [PMID: 39013602 DOI: 10.1136/jech-2024-222072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Australia has experienced extreme fire weather in recent years. Information on the impact of fine particulate matter (PM 2.5 ) from landscape fires (LFs) on cardiorespiratory hospital admissions is limited. METHODS We conducted a population-based time series study to assess associations between modelled daily elevated PM 2.5 at a 1.5×1.5 km resolution using a modified empirical PM 2.5 exposure model during LFs and hospital admissions for all-cause and cause-specific respiratory and cardiovascular diseases for the study period (2015-2017) in Perth, Western Australia. Multivariate Poisson regressions were used to estimate cumulative risk ratios (RR) with lag effects of 0-3 days, adjusted for sociodemographic factors, weather and time. RESULTS All-cause hospital admissions and overall cardiovascular admissions increased significantly across each elevated PM 2.5 concentration on most lag days, with the strongest associations of 3% and 7%, respectively, at the high level of ≥12.60 µg/m3 on lag 1 day. For asthma hospitalisation, there was an excess relative risk of up to 16% (RR 1.16, 95% CI 1.00 to 1.35) with same-day exposure for all people, up to 93% on a lag of 1 day in children and up to 52% on a lag of 3 days in low sociodemographic groups. We also observed an increase of up to 12% (RR 1.12, 95% CI 1.02 to 1.24) for arrhythmias on the same exposure day and with over 154% extra risks for angina and 12% for heart failure in disadvantaged groups. CONCLUSIONS Exposure to elevated PM 2.5 concentrations during LFs was associated with increased risks of all-cause hospital admissions, total cardiovascular conditions, asthma and arrhythmias.
Collapse
Affiliation(s)
- Adeleh Shirangi
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
- School of Humanities, Arts, and Social Sciences, Murdoch University, Murdoch, WA, Australia
| | - Ting Lin
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Grace Yun
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Grant J Williamson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter Franklin
- School of Population Health, University of Western Australia, Crawley, WA, Australia
| | - Le Jian
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| | - Christopher M Reid
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jianguo Xiao
- Epidemiology, Department of Health, Government of Western Australia, East Perth, WA, Australia
| |
Collapse
|
6
|
Hughes F, Parsons L, Levy JH, Shindell D, Alhanti B, Ohnuma T, Kasibhatla P, Montgomery H, Krishnamoorthy V. Impact of Wildfire Smoke on Acute Illness. Anesthesiology 2024; 141:779-789. [PMID: 39105660 DOI: 10.1097/aln.0000000000005115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Climate change increases wildfire smoke exposure. Inhaled smoke causes inflammation, oxidative stress, and coagulation, which exacerbate cardiovascular and respiratory disease while worsening obstetric and neonatal outcomes.
Collapse
Affiliation(s)
- Fintan Hughes
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Luke Parsons
- Global Science, Nature Conservancy and Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Jerrold H Levy
- Departments of Anesthesiology and Surgery (Cardiothoracic), Duke University School of Medicine, Durham, North Carolina
| | - Drew Shindell
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Brooke Alhanti
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Prasad Kasibhatla
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Hugh Montgomery
- Department of Intensive Care Medicine, University College London, London, United Kingdom
| | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
7
|
Li X, Liu S, Jiang N, Xu F, Liu H, Jia X. Causal effects of air pollutants on lung function and chronic respiratory diseases: a Mendelian randomization study. Front Public Health 2024; 12:1438974. [PMID: 39314792 PMCID: PMC11416934 DOI: 10.3389/fpubh.2024.1438974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives Our study aims to clarify the causality between air pollutants and lung function, chronic respiratory diseases, and the potential mediating effects of inflammatory proteins. Method We employed Mendelian Randomization (MR) analysis with comprehensive instrumental variables screening criteria to investigate the effects of air pollutants on lung function and chronic lung diseases. Our study incorporated genetic instruments for air pollutants, ensuring F-statistics above 20.86. A total of 18 MR analyses were conducted using the inverse-variance weighted approach, along with heterogeneity and pleiotropy tests to validate the results. Mediated MR analysis was utilized to evaluate the inflammatory proteins mediating the effects of air pollutants. Result MR analysis demonstrated significant causal interactions of particulate matter 2.5 (PM2.5), PM10, and Nitrogen dioxide (NO2) with lung function decline. Specifically, PM10 negatively affected forced expiratory volume in one second (FEV1) (OR: 0.934, 95% CI: 0.904-0.965, p = 4.27 × 10-5), forced vital capacity (FVC) (OR: 0.941, 95% CI: 0.910-0.972, p = 2.86 × 10-4), and FEV1/FVC (OR: 0.965, 95% CI: 0.934-0.998, p = 0.036). PM2.5 and NO2 were identified as potential risk factors for impairing FEV1 (OR: 0.936, 95% CI: 0.879-0.998, p = 0.042) and FEV1/FVC (OR: 0.943, 95% CI: 0.896-0.992, p = 0.024), respectively. For chronic respiratory diseases, PM2.5 and NO2 were associated with increased COPD incidence (OR: 1.273, 95% CI: 1.053-1.541, p = 0.013 for PM2.5; OR: 1.357, 95% CI: 1.165-1.581, p = 8.74 × 10-5 for NO2). Sensitivity analyses confirmed the robustness of these findings, with no significant heterogeneity or horizontal pleiotropy detected. Conclusion Our study ascertained the causal correlations of air pollutants with lung function and COPD, emphasizing the importance of reducing air pollution. Interleukin-17A mediates the reduction of FEV1 and FVC by PM10, revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Xuannian Li
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Suqi Liu
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Nan Jiang
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huaman Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinhua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Cosemans C, Madhloum N, Sleurs H, Alfano R, Verheyen L, Wang C, Vanbrabant K, Vanpoucke C, Lefebvre W, Nawrot TS, Plusquin M. Prenatal particulate matter exposure is linked with neurobehavioural development in early life. ENVIRONMENTAL RESEARCH 2024; 252:118879. [PMID: 38579996 DOI: 10.1016/j.envres.2024.118879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Early life exposure to ambient particulate matter (PM) may negatively affect neurobehavioral development in children, influencing their cognitive, emotional, and social functioning. Here, we report a study on prenatal PM2.5 exposure and neurobehavioral development focusing on different time points in the first years of life. METHODS This study was part of the ENVIRONAGE birth cohort that follows mother-child pairs longitudinally. First, the Neonatal Behavioral Assessment Scale (NBAS) was employed on 88 newborns aged one to two months to assess their autonomic/physiological regulation, motor organisation, state organisation/regulation, and attention/social interaction. Second, our study included 393 children between the ages of four and six years, for which the Strengths and Difficulties Questionnaire (SDQ) was used to assess the children's emotional problems, hyperactivity, conduct problems, peer relationship, and prosocial behaviour. Prenatal PM2.5 exposure was determined using a high-resolution spatial-temporal method based on the maternal address. Multiple linear and multinomial logistic regression models were used to analyse the relationship between prenatal PM2.5 exposure and neurobehavioral development in newborns and children, respectively. RESULTS A 5 μg/m³ increase in first-trimester PM2.5 concentration was associated with lower NBAS range of state cluster scores (-6.11%; 95%CI: -12.00 to -0.23%; p = 0.04) in one-to-two-month-old newborns. No other behavioural clusters nor the reflexes cluster were found to be associated with prenatal PM2.5 exposure. Furthermore, a 5 μg/m³ increment in first-trimester PM2.5 levels was linked with higher odds of a child experiencing peer problems (Odds Ratio (OR) = 3.89; 95%CI: 1.39 to 10.87; p = 0.01) at ages four to six. Additionally, a 5 μg/m³ increase in second-trimester PM2.5 concentration was linked to abnormal prosocial behaviour (OR = 0.49; 95%CI: 0.25 to 0.98; p = 0.04) at four to six years old. No associations were found between in utero PM2.5 exposure and hyperactivity or conduct problems. CONCLUSIONS Our findings suggest that prenatal exposure to PM may impact neurobehavioural development in newborns and preschool children. We identified sensitive time windows during early-to-mid pregnancy, possibly impacting stage changes in newborns and peer problems and prosocial behaviour in children.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Narjes Madhloum
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Lore Verheyen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Charlotte Vanpoucke
- Belgian Interregional Environment Agency, IRCEL-CELINE, Gaucheretstraat 92-94, 1030, Brussels, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research, VITO, Boeretang 200, 2400, Mol, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, Oude Markt 13, 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
9
|
Ilaghi M, Kafi F, Shafiei M, Zangiabadian M, Nasiri MJ. Dietary supplementations to mitigate the cardiopulmonary effects of air pollution toxicity: A systematic review of clinical trials. PLoS One 2024; 19:e0304402. [PMID: 38870164 PMCID: PMC11175466 DOI: 10.1371/journal.pone.0304402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND There is a consistent association between exposure to air pollution and elevated rates of cardiopulmonary illnesses. As public health activities emphasize the paramount need to reduce exposure, it is crucial to examine strategies like the antioxidant diet that could potentially protect individuals who are unavoidably exposed. METHODS A systematic search was performed in PubMed/Medline, EMBASE, CENTRAL, and ClinicalTrials.gov up to March 31, 2023, for clinical trials assessing dietary supplements against cardiovascular (blood pressure, heart rate, heart rate variability, brachial artery diameter, flow-mediated dilation, and lipid profile) or pulmonary outcomes (pulmonary function and airway inflammation) attributed to air pollution exposure. RESULTS After reviewing 4681 records, 18 studies were included. There were contradictory findings on the effects of fish oil and olive oil supplementations on cardiovascular outcomes. Although with limited evidence, fish oil offered protection against pulmonary dysfunction induced by pollutants. Most studies on vitamin C did not find protective cardiovascular effects; however, the combination of vitamin C and E offered protective effects against pulmonary dysfunction but showed conflicting results for cardiovascular outcomes. Other supplements like sulforaphane, L-arginine, n-acetylcysteine, and B vitamins showed potential beneficial effects but need further research due to the limited number of existing trials. CONCLUSIONS Although more research is needed to determine the efficacy and optimal dose of anti-inflammatory and antioxidant dietary supplements against air pollution toxicity, this low-cost preventative strategy has the potential to offer protection against outcomes of air pollution exposure.
Collapse
Affiliation(s)
- Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Kafi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Shafiei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Zangiabadian
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
11
|
Yang M, Yoo H, Kim SY, Kwon O, Nam MW, Pan KH, Kang MY. Occupational Risk Factors for Stroke: A Comprehensive Review. J Stroke 2023; 25:327-337. [PMID: 37813670 PMCID: PMC10574301 DOI: 10.5853/jos.2023.01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/11/2023] Open
Abstract
For primary prevention, it is important for public health and clinical medicine to identify and characterize modifiable risk factors of stroke. In existing literature, the impact of occupational variables on ischemic and hemorrhagic stroke has been extensively studied. This review summarizes the available data on the significance of occupational variables in stroke. The results of this review suggest that there is sufficient evidence for the relationship between increased risk of stroke and job stress, working in extreme temperatures, long working hours, and/or shift work. The association between long working hours and occupational exposure to noise and chemicals remains inconclusive although several studies have reported this finding. This review will act as a step toward future research and provide information that may serve as a baseline for developing targeted interventions to prevent stroke in the working population.
Collapse
Affiliation(s)
- Munyoung Yang
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoungseob Yoo
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seo-Young Kim
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ohwi Kwon
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min-Woo Nam
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Kwang Hyun Pan
- Department of Neurology, Anam Hospital, Korea University, Seoul, Korea
| | - Mo-Yeol Kang
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Xia X, Niu X, Chan K, Xu H, Shen Z, Cao JJ, Wu S, Qiu H, Ho KF. Effects of indoor air purification intervention on blood pressure, blood‑oxygen saturation, and heart rate variability: A double-blinded cross-over randomized controlled trial of healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162516. [PMID: 36868269 DOI: 10.1016/j.scitotenv.2023.162516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The use of indoor air purifier (IAP) has received growing attention as a mitigation strategy for reducing indoor air pollution, but the evidence on their cardiovascular benefits is unclear. This study aims to evaluate whether the use of IAP can reduce the adverse effects of indoor particulate matter (PM) on cardiovascular health among young healthy population. A randomized, double-blind, cross-over, IAP intervention of 38 college students was conducted. The participants were assigned into two groups to receive the true and sham IAPs for 36 h in random order. Systolic and diastolic blood pressure (SBP; DBP), blood oxygen saturation (SpO2), heart rate variability (HRV) and indoor size-fractioned particulate matter (PM) were real-time monitored throughout the intervention. We found that IAP could reduce indoor PM by 41.7-50.5 %. Using IAP was significantly associated with a reduction of 2.96 mmHg (95 % CI: -5.71, -0.20) in SBP. Increased PM was significantly associated with increased SBP (e.g., 2.17 mmHg [0.53, 3.81], 1.73 mmHg [0.32, 3.14] and 1.51 mmHg [0.28, 2.75] for an IQR increment of PM1 [16.7 μg/m3], PM2.5 [20.6 μg/m3] and PM10 [37.9 μg/m3] at lag 0-2 h, respectively) and decreased SpO2 (-0.44 % [-0.57, -0.29], -0.41 % [-0.53, -0.30] and - 0.40 % [-0.51, -0.30] for PM1, PM2.5 and PM10 at lag 0-1 h, respectively), which could last for about 2 h. Using IAPs could halve indoor PM levels, even in relatively low air pollution settings. The exposure-response relationships suggested that the benefits of IAPs on BP may only be observed when indoor PM exposure is reduced to a certain level.
Collapse
Affiliation(s)
- Xi Xia
- School of Public Health, Shaanxi University of Chinese Medicine, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, China.
| | - Kahung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - ZhenXing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - ShaoWei Wu
- School of Public Health, Xi'an Jiaotong University, China
| | - Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
13
|
Impact of air pollution on ischemic heart disease: Evidence, mechanisms, clinical perspectives. Atherosclerosis 2023; 366:22-31. [PMID: 36696748 DOI: 10.1016/j.atherosclerosis.2023.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ambient air pollution, and especially particulate matter (PM) air pollution <2.5 μm in diameter (PM2.5), has clearly emerged as an important yet often overlooked risk factor for atherosclerosis and ischemic heart disease (IHD). In this review, we examine the available evidence demonstrating how acute and chronic PM2.5 exposure clinically translates into a heightened coronary atherosclerotic burden and an increased risk of acute ischemic coronary events. Moreover, we provide insights into the pathophysiologic mechanisms underlying PM2.5-mediated atherosclerosis, focusing on the specific biological mechanism through which PM2.5 exerts its detrimental effects. Further, we discuss about the possible mechanisms that explain the recent findings reporting a strong association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, increased PM2.5 exposure, and morbidity and mortality from IHD. We also address the possible mitigation strategies that should be implemented to reduce the impact of PM2.5 on cardiovascular morbidity and mortality, and underscoring the strong need of clinical trials demonstrating the efficacy of specific interventions (including both PM2.5 reduction and/or specific drugs) in reducing the incidence of IHD. Finally, we introduce the emerging concept of the exposome, highlighting the close relationship between PM2.5 and other environmental exposures (i.e.: traffic noise and climate change) in terms of common underlying pathophysiologic mechanisms and possible mitigation strategies.
Collapse
|
14
|
Chaulin AM, Sergeev AK. Modern Concepts of the Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Clinical and Epidemiological Data, the Main Pathophysiological Mechanisms. Curr Cardiol Rev 2023; 19:e170822207573. [PMID: 35980071 PMCID: PMC10201893 DOI: 10.2174/1573403x18666220817103105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow improving the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage with the consideration of epidemiological and pathogenetic aspects. Materials and Methods: This narrative review is based on the analysis of publications in the Medline, PubMed, and Embase databases. The terms "fine particles" and "PM 2.5" in combination with "pathophysiological mechanisms," "cardiovascular diseases", "atherosclerosis", "cardiac troponins", "myocardial damage" and "myocardial injury" were used to search publications. Conclusion: According to the conducted narrative review, PM 2.5 should be regarded as the significant risk factor for the development of atherosclerotic CVDs. The pro-atherogenic effect of fine particulate matter is based on several fundamental and closely interrelated pathophysiological mechanisms: endothelial dysfunction, impaired lipid metabolism, increased oxidative stress and inflammatory reactions, impaired functioning of the vegetative nervous system and increased activity of the hemostatic system. In addition, PM 2.5 causes subclinical damage to cardiac muscle cells by several mechanisms: apoptosis, oxidative stress, decreased oxygen delivery due to coronary atherosclerosis and ischemic damage of cardiomyocytes. Highly sensitive cardiac troponins are promising markers for detecting subclinical myocardial damage in people living in polluted regions.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| | | |
Collapse
|
15
|
Chen EW, Ahmad K, Erqou S, Wu WC. Particulate matter 2.5, metropolitan status, and heart failure outcomes in US counties: A nationwide ecologic analysis. PLoS One 2022; 17:e0279777. [PMID: 36584210 PMCID: PMC9803275 DOI: 10.1371/journal.pone.0279777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
The relationship between particulate matter with a diameter of 2.5 micrometers or less (PM2.5) and heart failure (HF) hospitalizations and mortality in the US is unclear. Prior studies are limited to studying the effects of daily PM2.5 exposure on HF hospitalizations in specific geographic regions. Because PM2.5 can vary by geography, this study examines the effects of annual ambient PM2.5 exposure on HF hospitalizations and mortality at a county-level across the US. A cross-sectional analysis of county-level ambient PM2.5 concentration, HF hospitalizations, and HF mortality across 3135 US counties nationwide was performed, adjusting for county-level demographics, socioeconomic factors, comorbidities, and healthcare-associated behaviors. There was a moderate correlation between county PM2.5 and HF hospitalization among Medicare beneficiaries (r = 0.41) and a weak correlation between county PM2.5 and HF mortality (r = 0.08) (p-values < 0.01). After adjustment for various county level covariates, every 1 ug/m3 increase in annual PM2.5 concentration was associated with an increase of 0.51 HF Hospitalizations/1,000 Medicare Beneficiaries and 0.74 HF deaths/100,000 residents (p-values < 0.05). In addition, the relationship between PM2.5 and HF hospitalizations was similar when factoring in metropolitan status of the counties. In conclusion, increased ambient PM2.5 concentration level was associated with increased incidence of HF hospitalizations and mortality at the county level across the US. This calls for future studies exploring policies that reduce ambient particulate matter pollution and their downstream effects on potentially improving HF outcomes.
Collapse
Affiliation(s)
- Edward W. Chen
- The Providence Veterans Affairs Medical Center, Lifespan Hospitals and the Warren Alpert Medical School at Brown University, Providence, Rhode Island
| | - Khansa Ahmad
- The Providence Veterans Affairs Medical Center, Lifespan Hospitals and the Warren Alpert Medical School at Brown University, Providence, Rhode Island
| | - Sebhat Erqou
- The Providence Veterans Affairs Medical Center, Lifespan Hospitals and the Warren Alpert Medical School at Brown University, Providence, Rhode Island
| | - Wen-Chih Wu
- The Providence Veterans Affairs Medical Center, Lifespan Hospitals and the Warren Alpert Medical School at Brown University, Providence, Rhode Island
- * E-mail:
| |
Collapse
|
16
|
Zhang S, Breitner S, Pickford R, Lanki T, Okokon E, Morawska L, Samoli E, Rodopoulou S, Stafoggia M, Renzi M, Schikowski T, Zhao Q, Schneider A, Peters A. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120245. [PMID: 36162563 DOI: 10.1016/j.envpol.2022.120245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
An increasing number of epidemiological studies have examined the association between ultrafine particles (UFP) and imbalanced autonomic control of the heart, a potential mechanism linking particulate matter air pollution to cardiovascular disease. This study systematically reviews and meta-analyzes studies on short-term effects of UFP on autonomic function, as assessed by heart rate variability (HRV). We searched PubMed and Web of Science for articles published until June 30, 2022. We extracted quantitative measures of UFP effects on HRV with a maximum lag of 15 days from single-pollutant models. We assessed the risk of bias in the included studies regarding confounding, selection bias, exposure assessment, outcome measurement, missing data, and selective reporting. Random-effects models were applied to synthesize effect estimates on HRV of various time courses. Twelve studies with altogether 1,337 subjects were included in the meta-analysis. For an increase of 10,000 particles/cm3 in UFP assessed by central outdoor measurements, our meta-analysis showed immediate decreases in the standard deviation of the normal-to-normal intervals (SDNN) by 4.0% [95% confidence interval (CI): 7.1%, -0.9%] and root mean square of successive R-R interval differences (RMSSD) by 4.7% (95% CI: 9.1%, 0.0%) within 6 h after exposure. The immediate decreases in SDNN and RMSSD associated with UFP assessed by personal measurements were smaller and borderline significant. Elevated UFP were also associated with decreases in SDNN, low-frequency power, and the ratio of low-frequency to high-frequency power when pooling estimates of lags across hours to days. We did not find associations between HRV and concurrent-day UFP exposure (daily average of at least 18 h) or exposure at lags ≥ one day. Our study indicates that short-term exposure to ambient UFP is associated with decreased HRV, predominantly as an immediate response within hours. This finding highlights that UFP may contribute to the onset of cardiovascular events through autonomic dysregulation.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enembe Okokon
- Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Qi Zhao
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany; Partner-Site Munich, German Research Center for Cardiovascular Research (DZHK), Munich, Germany
| |
Collapse
|
17
|
Chaulin AM, Sergeev AK. The Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Emphasis on Clinical and Epidemiological Data, and Pathophysiological Mechanisms. Cardiol Res 2022; 13:268-282. [PMID: 36405225 PMCID: PMC9635774 DOI: 10.14740/cr1366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 09/26/2023] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow to improve the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia
| | | |
Collapse
|
18
|
Effect of particulate matter 2.5 on QT dispersion in patients with chronic respiratory disease. Sci Rep 2022; 12:14054. [PMID: 35982092 PMCID: PMC9388509 DOI: 10.1038/s41598-022-18355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
PM2.5 air pollutants increased risk of ventricular arrhythmias. The prolonged corrected QT interval (QTc) and QT dispersion (QTd) is common in patients with chronic airway disease and is associated with heightened risk of ventricular tachyarrhythmia. We sought to examine the effect of PM2.5 exposure on QTc and QTd in patients with chronic airway disease. We enrolled 73 patients with chronic airway disease into the study. The 12-lead ECGs were recorded during high-exposure and low-exposure periods of PM2.5. QTc and QTd were compared between 2 periods. Mean age was 70 ± 10 years. Mean FEV1/FVC was 63 ± 14%. There was no difference in QTc between PM2.5 high-exposure and low-exposure periods. However, QTd was significantly increased during PM2.5 high-exposure compared to low-exposure periods in male patients (43.5 ± 15.0 vs. 38.2 ± 12.1 ms, P = 0.044) but no difference was found in females. We found that patients who worked mostly indoor had less QTd than those working outdoor during PM2.5 low-exposure period. In addition, those who wore face mask tended to have less QTd during low-exposure period than those who did not. High PM2.5 exposure increased QTd in male patients with chronic airway disease. Working indoors and wearing face mask were associated with less QTd.
Collapse
|
19
|
Faridi S, Brook RD, Yousefian F, Hassanvand MS, Nodehi RN, Shamsipour M, Rajagopalan S, Naddafi K. Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119109. [PMID: 35271952 PMCID: PMC10411486 DOI: 10.1016/j.envpol.2022.119109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of -0.78 mmHg (95% confidence interval [CI]: -2.06, 0.50) and -0.49 mmHg (95%CI: -1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: -2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms2 (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15-0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04-0.15Hz))-to-high frequency ratio [-0.14 (95%CI: -0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Palmquist E, Claeson AS. Odor perception and symptoms during acrolein exposure in individuals with and without building-related symptoms. Sci Rep 2022; 12:8171. [PMID: 35581334 PMCID: PMC9114406 DOI: 10.1038/s41598-022-12370-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
Building-related symptoms (BRS) is a significant work-related and public health problem, characterized by non-specific symptoms occurring in a particular building. The cause of BRS is unknown, but certain reactive compounds are suggested risk factors. The aim of this controlled exposure study was to investigate whether BRS cases report more odor annoyance and symptoms and show altered autonomous nervous system (ANS) response during exposure to the reactive aldehyde, acrolein in comparison with referents. Individuals with BRS (n = 18) and referents (n = 14) took part in two exposure sessions (80 min). One session contained heptane alone, and the other heptane and acrolein. Perceived odor annoyance; eye, nose, and throat symptoms; and ANS response were measured continuously. BRS cases did not experience more odor annoyance; eye, nose, and throat symptoms; or altered ANS response in comparison with referents during the exposures. Supplementary analyses revealed that BRS cases that also reported chemical intolerance perceived more symptoms than referents during acrolein exposure. Acrolein exposure at a concentration below previously reported sensory irritation detection thresholds is perceived as more irritating by a subgroup of BRS individuals compared with referents. The results of this study indicate that a subset of individuals with building related symptoms (BRS) has a lowered sensory irritation threshold towards acrolein exposure. Future guidelines on chemical exposures to acrolein should take time and individual sensitivity into account.
Collapse
Affiliation(s)
- Eva Palmquist
- Department of Psychology, Umeå University, 901 87, Umeå, Sweden
- Department of Food, Nutrition and Culinary Science, Umeå University, 901 87, Umeå, Sweden
| | | |
Collapse
|
21
|
Marc-Derrien Y, Gren L, Dierschke K, Albin M, Gudmundsson A, Wierzbicka A, Sandberg F. Acute Cardiovascular Effects of Hydrotreated Vegetable Oil Exhaust. Front Physiol 2022; 13:828311. [PMID: 35350690 PMCID: PMC8957941 DOI: 10.3389/fphys.2022.828311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Ambient air pollution is recognized as a key risk factor for cardiovascular morbidity and mortality contributing to the global disease burden. The use of renewable diesel fuels, such as hydrotreated vegetable oil (HVO), have increased in recent years and its impact on human health are not completely known. The present study investigated changes in cardiovascular tone in response to exposure to diluted HVO exhaust. The study participants, 19 healthy volunteers, were exposed in a chamber on four separate occasions for 3 h and in a randomized order to: (1) HVO exhaust from a wheel loader without exhaust aftertreatment, (2) HVO exhaust from a wheel loader with an aftertreatment system, (3) clean air enriched with dry NaCl salt particles, and (4) clean air. Synchronized electrocardiogram (ECG) and photoplethysmogram (PPG) signals were recorded throughout the exposure sessions. Pulse decomposition analysis (PDA) was applied to characterize PPG pulse morphology, and heart rate variability (HRV) indexes as well as pulse transit time (PTT) indexes were computed. Relative changes of PDA features, HRV features and PTT features at 1, 2, and 3 h after onset of the exposure was obtained for each participant and exposure session. The PDA index A13, reflecting vascular compliance, increased significantly in both HVO exposure sessions but not in the clean air or NaCl exposure sessions. However, the individual variation was large and the differences between exposure sessions were not statistically significant.
Collapse
Affiliation(s)
| | - Louise Gren
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Frida Sandberg
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Melinski ADC, Catai AM, Moura SCGD, Milan-Mattos JC, Takito MY. Impact of Air Pollutant on Heart Rate Variability in Healthy Young Adults. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.36660/ijcs.20200380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Chen H, Zhang S, Shen W, Salazar C, Schneider A, Wyatt LH, Rappold AG, Diaz-Sanchez D, Devlin RB, Samet JM, Tong H. Omega-3 fatty acids attenuate cardiovascular effects of short-term exposure to ambient air pollution. Part Fibre Toxicol 2022; 19:12. [PMID: 35139860 PMCID: PMC8826673 DOI: 10.1186/s12989-022-00451-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Exposure to air pollution is associated with elevated cardiovascular risk. Evidence shows that omega-3 polyunsaturated fatty acids (omega-3 PUFA) may attenuate the adverse cardiovascular effects of exposure to fine particulate matter (PM2.5). However, it is unclear whether habitual dietary intake of omega-3 PUFA protects against the cardiovascular effects of short-term exposure to low-level ambient air pollution in healthy participants. In the present study, sixty-two adults with low or high dietary omega-3 PUFA intake were enrolled. Blood lipids, markers of vascular inflammation, coagulation and fibrinolysis, and heart rate variability (HRV) and repolarization were repeatedly assessed in 5 sessions separated by at least 7 days. This study was carried out in the Research Triangle area of North Carolina, USA between October 2016 and September 2019. Daily PM2.5 and maximum 8-h ozone (O3) concentrations were obtained from nearby air quality monitoring stations. Linear mixed-effects models were used to assess the associations between air pollutant concentrations and cardiovascular responses stratified by the omega-3 intake levels.
Results The average concentrations of ambient PM2.5 and O3 were well below the U.S. National Ambient Air Quality Standards during the study period. Significant associations between exposure to PM2.5 and changes in total cholesterol, von Willebrand factor (vWF), tissue plasminogen activator, D-dimer, and very-low frequency HRV were observed in the low omega-3 group, but not in the high group. Similarly, O3-associated adverse changes in cardiovascular biomarkers (total cholesterol, high-density lipoprotein, serum amyloid A, soluable intracellular adhesion molecule 1, and vWF) were mainly observed in the low omega-3 group. Lag-time-dependent biphasic changes were observed for some biomarkers. Conclusions This study demonstrates associations between short-term exposure to PM2.5 and O3, at concentrations below regulatory standard, and subclinical cardiovascular responses, and that dietary omega-3 PUFA consumption may provide protection against such cardiovascular effects in healthy adults. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00451-4.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science Education, Oak Ridge, TN, USA.
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wan Shen
- Oak Ridge Institute for Science Education, Oak Ridge, TN, USA.,Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH, USA
| | - Claudia Salazar
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | | | - Lauren H Wyatt
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
24
|
Pallikadavath S, Vali Z, Patel R, Mavilakandy A, Peckham N, Clegg M, Sandilands AJ, Ng GA. The Influence of Environmental Air Pollution on Ventricular Arrhythmias: A Scoping Review. Curr Cardiol Rev 2022; 18:e160422203685. [PMID: 35430968 PMCID: PMC9893149 DOI: 10.2174/1573403x18666220416203716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Exposure to air pollution is a recognised risk factor for cardiovascular disease and has been associated with supraventricular arrhythmias. The effect of air pollution on ventricular arrhythmias is less clear. This scoping review assessed the effects of particulate and gaseous air pollutants on the incidence of ventricular arrhythmias. METHODS MEDLINE and EMBASE databases were searched for studies assessing the effects of air pollutants on ventricular tachycardia and ventricular fibrillation. These pollutants were particulate matter (PM) 2.5, PM10, Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Sulphur Dioxide (SO2), and Ozone (O3). RESULTS This review identified 27 studies: nine in individuals with implantable cardioverter defibrillators, five in those with ischaemic heart disease, and 13 in the general population. Those with ischaemic heart disease appear to have the strongest association with ventricular arrhythmias in both gaseous and particulate pollution, with all three studies assessing the effects of PM2.5 demonstrating some association with ventricular arrythmia. Results in the general and ICD population were less consistent. CONCLUSION Individuals with ischaemic heart disease may be at an increased risk of ventricular arrhythmias following exposure to air pollution.
Collapse
Affiliation(s)
- Susil Pallikadavath
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Zakariyya Vali
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Roshan Patel
- Leicester Medical School, College of Life Sciences, University of Leicester, UK
| | - Akash Mavilakandy
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nicholas Peckham
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Matt Clegg
- Department of Geography, University of Birmingham, Birmingham, UK
| | - Alastair J. Sandilands
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - G. André Ng
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
25
|
Amoabeng Nti AA, Robins TG, Mensah JA, Dwomoh D, Kwarteng L, Takyi SA, Acquah A, Basu N, Batterman S, Fobil JN. Personal exposure to particulate matter and heart rate variability among informal electronic waste workers at Agbogbloshie: a longitudinal study. BMC Public Health 2021; 21:2161. [PMID: 34823492 PMCID: PMC8613947 DOI: 10.1186/s12889-021-12241-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Informal electronic waste recycling activities are major contributors to ambient air pollution, yet studies assessing the effects or relationship between direct/continuous exposure of informal e-waste workers to particulate matter and cardiovascular function are rare. METHODS Repeated measurements of fractions of PM2.5, PM10-2.5, and PM10 in personal air of informal e-waste workers, (n = 142) and a comparable group (n = 65) were taken over a period of 20 months (March 2017 to November, 2018). Concurrently, 5-min resting electrocardiogram was performed on each participant to assess resting heart rate variability indices. Linear mixed-effects models were used to assess the association between PM fractions and cardiac function. RESULTS SDNN, RMSSD, LF, HF and LH/HF ratio were all associated with PM. Significant associations were observed for PM2.5 and Mean NN (p = 0.039), PM10 and SDNN (p = 0.035) and PM 10-2.5 and LH/HF (p = 0.039). A 10 μg/m3 increase in the concentrations of PM 2.5, PM10-2.5, and PM10 in personal air was associated with reduced HRV indices and increased resting HR. A 10 μg/m3 per interquartile (IQR) increase in PM10-2.5 and PM10, decreased SDNN by 11% [(95% CI: - 0.002- 0.000); (p = 0.187)] and 34% [(95% CI: - 0.002-0.001); (p = 0.035)] respectively. However, PM2.5 increased SDNN by 34% (95% CI: - 1.32-0.64); (p = 0.493). Also, 10 μg/m3 increase in PM2.5, PM10-2.5 and PM10 decreased RMSSD by 27% [(- 1.34-0.79); (p = 0.620)], 11% [(- 1.73, 0.95); (p = 0.846)] and 0.57% [(- 1.56-0.46); (p = 0.255%)]. CONCLUSION Informal e-waste workers are at increased risk of developing cardiovascular disease from cardiac autonomic dysfunction as seen in reduced HRV and increased heart rate.
Collapse
Affiliation(s)
- Afua A. Amoabeng Nti
- grid.8652.90000 0004 1937 1485Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Thomas G. Robins
- grid.214458.e0000000086837370Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - John Arko Mensah
- grid.8652.90000 0004 1937 1485Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Duah Dwomoh
- grid.8652.90000 0004 1937 1485Department of Biostatistics, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Lawrencia Kwarteng
- grid.8652.90000 0004 1937 1485Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Sylvia A. Takyi
- grid.8652.90000 0004 1937 1485Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Augustine Acquah
- grid.8652.90000 0004 1937 1485Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Niladri Basu
- grid.14709.3b0000 0004 1936 8649Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9 Canada
| | - Stuart Batterman
- grid.214458.e0000000086837370Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Julius N. Fobil
- grid.8652.90000 0004 1937 1485Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| |
Collapse
|
26
|
Han C, Lim YH, Hong YC. Particulate respirator use and blood pressure: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117574. [PMID: 34438496 DOI: 10.1016/j.envpol.2021.117574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
People use a particulate respirator in order to reduce exposure to ambient fine particulate matter (PM2.5). Acute exposure to PM2.5 is known to increase blood pressure. However, systematic reviews or meta-analyses on blood pressure-related benefits of using a particulate respirator is lacking. Therefore, we reviewed randomized crossover intervention studies on blood pressure-related effects of particulate matter respirator use. We conducted a literature review of articles found on Embase, Medline, and Cochrane library on August 31, 2020. The study outcomes were systolic and diastolic blood pressure and mean arterial pressure. A random-effect model was used in the meta-analysis. Subgroup analyses, based on age (adult < 60 years, elderly ≥ 60 years), personal PM2.5 exposure levels (High: ≥ 25 μg/m3, Low: < 25 μg/m3), and types of monitoring methods (ambulatory and resting blood pressure) were conducted. We identified 297 references, and seven studies were included in our systematic review. None of the studies used a sham respirator as control and complete allocation concealment and blinding were impossible. The use of a particulate respirator was associated with a -1.23 mmHg (95% confidence interval (CI): -2.53, 0.07) change in systolic blood pressure and a -1.57 mmHg (95% CI: -3.85, 0.71) change in mean arterial pressure. There were significant heterogeneities and possibilities for publication bias. The subgroup analyses revealed that studies involving elderly individuals, those conducted in high PM2.5 personal exposure, and those in which resting blood pressure was monitored demonstrated a larger decrease in blood pressure resulting from respirator use. Further intervention studies with a large sample size and subjects with diverse characteristics and different personal PM2.5 levels may add the evidence to current literature.
Collapse
Affiliation(s)
- Changwoo Han
- Department of Preventive Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
28
|
Huang F, Zhao Y, Wang P, Wang Y, Zhang L, Luo Y. Short-term exposure to particulate matter on heart rate variability in humans: a systematic review of crossover and controlled studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35528-35536. [PMID: 34031827 DOI: 10.1007/s11356-021-14494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
As an indicator of cardiac autonomic function, heart rate variability (HRV) has been proven to decrease after short-term exposure to particulate matters (PM) based on controlled animal studies. In this study, we conducted a systematic review to investigate short-term effects of exposure with different particle sizes on HRV in humans. Both crossover and controlled studies of human which were published prior to February 2020 were searched on four electronic databases. The HRV parameters included standard deviation of normal-to-normal intervals (SDNN), root mean square of successive normal-to-normal intervals (RMSSD), percent of normal-to-normal intervals that differ by more than 50 milliseconds (PNN50), low frequency (LF), high frequency (HF), and LF/HF. This review included 14 studies with 300 participants. The short-term effects of PM exposure on HRV in humans are inconclusive. For time-domain parameters, one study showed higher SDNN values with 2-h exposure to PM, whereas another one showed lower SDNN values. One study found RMSSD increased after PM exposure. One study found PNN50 decreased after PM exposure. For frequency-domain parameters, two studies showed LF increased with 2-h exposure to PM, and two studies showed an increase of LF/HF after PM exposure. Four studies showed lower HF values after PM exposure, whereas two studies showed higher HF values. Five studies did not find statistically significant results for any HRV parameters. We could not conclude that short-term exposure to PM can influence autonomic nervous function. The inconsistent changes of HRV in response to PM exposure may have complex mechanisms, which remains to be elucidated.
Collapse
Affiliation(s)
- Fangfang Huang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yuhan Zhao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
| | - Ping Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yingfang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Licheng Zhang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No.10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
29
|
Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacol Ther 2021; 223:107890. [PMID: 33992684 PMCID: PMC8216045 DOI: 10.1016/j.pharmthera.2021.107890] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Air pollution is consistently linked with elevations in cardiovascular disease (CVD) and CVD-related mortality. Particulate matter (PM) is a critical factor in air pollution-associated CVD. PM forms in the air during the combustion of fuels as solid particles and liquid droplets and the sources of airborne PM range from dust and dirt to soot and smoke. The health impacts of PM inhalation are well documented. In the US, where CVD is already the leading cause of death, it is estimated that PM2.5 (PM < 2.5 μm in size) is responsible for nearly 200,000 premature deaths annually. Despite the public health data, definitive mechanisms underlying PM-associated CVD are elusive. However, evidence to-date implicates mechanisms involving oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, contributing to vascular dysfunction and atherosclerosis, along with autonomic dysfunction and hypertension. For the benefit of susceptible individuals and individuals who live in areas where PM levels exceed the National Ambient Air Quality Standard, interventional strategies for mitigating PM-associated CVD are necessary. This review will highlight current state of knowledge with respect to mechanisms for PM-dependent CVD. Based upon these mechanisms, strategies for intervention will be outlined. Citing data from animal models and human subjects, these highlighted strategies include: 1) antioxidants, such as vitamins E and C, carnosine, sulforaphane and resveratrol, to reduce oxidative stress and systemic inflammation; 2) omega-3 fatty acids, to inhibit inflammation and autonomic dysfunction; 3) statins, to decrease cholesterol accumulation and inflammation; 4) melatonin, to regulate the immune-pineal axis and 5) metformin, to address PM-associated metabolic dysfunction. Each of these will be discussed with respect to its potential role in limiting PM-associated CVD.
Collapse
Affiliation(s)
- Ankit Aryal
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Ashlyn C Harmon
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Tammy R Dugas
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America.
| |
Collapse
|
30
|
Gondalia R, Baldassari A, Holliday KM, Justice AE, Stewart JD, Liao D, Yanosky JD, Engel SM, Sheps D, Jordahl KM, Bhatti P, Horvath S, Assimes TL, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA. Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study. ENVIRONMENTAL RESEARCH 2021; 198:111211. [PMID: 33895111 PMCID: PMC8179344 DOI: 10.1016/j.envres.2021.111211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease. MATERIALS AND METHODS We estimated associations between monthly mean concentrations of PM < 10 μm and 2.5-10 μm in diameter (PM10; PM2.5-10) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm. RESULTS We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm. CONCLUSIONS The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations.
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn M Holliday
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Geisinger Health System, Danville, PA, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - David Sheps
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Parveen Bhatti
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, USA
| | | | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Tsou MCM, Lung SCC, Shen YS, Liu CH, Hsieh YH, Chen N, Hwang JS. A community-based study on associations between PM 2.5 and PM 1 exposure and heart rate variability using wearable low-cost sensing devices. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116761. [PMID: 33640827 DOI: 10.1016/j.envpol.2021.116761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Few studies have investigated the effect of personal PM2.5 and PM1 exposures on heart rate variability (HRV) for a community-based population, especially in Asia. This study evaluates the effects of personal PM2.5 and PM1 exposure on HRV during two seasons for 35 healthy adults living in an urban community in Taiwan. The low-cost sensing (LCS) devices were used to monitor the PM levels and HRV, respectively, for two consecutive days. The mean PM2.5 and PM1 concentrations were 13.7 ± 11.4 and 12.7 ± 10.5 μg/m3 (mean ± standard deviation), respectively. Incense burning was the source that contributed most to the PM2.5 and PM1 concentrations, around 9.2 μg/m3, while environmental tobacco smoke exposure had the greatest impacts on HRV indices, being associated with the highest decrease of 20.2% for high-frequency power (HF). The results indicate that an increase in PM2.5 concentrations of one interquartile range (8.7 μg/m3) was associated with a change of -1.92% in HF and 1.60% in ratio of LF to HF power (LF/HF). Impacts on HRV for PM1 were similar to those for PM2.5. An increase in PM1 concentrations of one interquartile range (8.7 μg/m3) was associated with a change of -0.645% in SDNN, -1.82% in HF and 1.54% in LF/HF. Stronger immediate and lag effects of PM2.5 exposure on HRV were observed in overweight/obese subjects (body mass index (BMI) ≥24 kg/m2) compared to the normal-weight group (BMI <24 kg/m2). These results indicate that even low-level PM concentrations can still cause changes in HRV, especially for the overweight/obese population.
Collapse
Affiliation(s)
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Yu-Sheng Shen
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chun-Hu Liu
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Yu-Hui Hsieh
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Nathan Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
32
|
Liang B, He X, Du X, Liu X, Ma C. Effect of Air Quality on the Risk of Emergency Room Visits in Patients With Atrial Fibrillation. Front Cardiovasc Med 2021; 8:672745. [PMID: 34046441 PMCID: PMC8148017 DOI: 10.3389/fcvm.2021.672745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: We investigated the effect of particulate matter with aerodynamic diameter <2.5 μm (PM2.5) and meteorological conditions on the risk of emergency room visits in patients with atrial fibrillation (AF) in Beijing, which is considered as a monsoon climate region. Methods: In this case-crossover design study, medical records from patients with AF who visited the Critical Care Center in the Emergency Department of Anzhen Hospital from January 2011 through December 2014 and air quality and meteorological data of Beijing during the same period were collected and analyzed using Cox regression and time-series autocorrelation analyses. Results: A total of 8,241 patients were included. When the average PM2.5 concentration was >430 μg/m3, the risk of emergency room visits for patients with uncomplicated AF, AF combined with cardiac insufficiency, and AF combined with rheumatic heart disease increased by 12, 12, and 40%, respectively. When the average PM2.5 concentration was >420 μg/m3, patients with AF combined with diabetes mellitus had a 75% increased risk of emergency room visits, which was the largest increase in risk among all types of patients with AF. When the average PM2.5 concentration was >390 μg/m3, patients with AF combined with acute coronary syndrome had an approximately 30% increased risk of emergency room visits, which was the highest and fastest increase in risk among all types of patients with AF. The risk of emergency room visits for patients with AF was positively correlated with air quality as the time lag proceeded, with an autocorrelation coefficient of 0.223 between the risk of emergency room visits and air quality in patients with AF on day 6 of the time lag. Conclusion: Exposure to certain concentrations of PM2.5 in a monsoon climate region significantly increased the risk of emergency room visits in patients with AF.
Collapse
Affiliation(s)
- Bin Liang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaonan He
- Emergency Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Li L, Hu D, Zhang W, Cui L, Jia X, Yang D, Liu S, Deng F, Liu J, Guo X. Effect of short-term exposure to particulate air pollution on heart rate variability in normal-weight and obese adults. Environ Health 2021; 20:29. [PMID: 33726760 PMCID: PMC7968215 DOI: 10.1186/s12940-021-00707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The adverse effects of particulate air pollution on heart rate variability (HRV) have been reported. However, it remains unclear whether they differ by the weight status as well as between wake and sleep. METHODS A repeated-measure study was conducted in 97 young adults in Beijing, China, and they were classified by body mass index (BMI) as normal-weight (BMI, 18.5-24.0 kg/m2) and obese (BMI ≥ 28.0 kg/m2) groups. Personal exposures to fine particulate matter (PM2.5) and black carbon (BC) were measured with portable exposure monitors, and the ambient PM2.5/BC concentrations were obtained from the fixed monitoring sites near the subjects' residences. HRV and heart rate (HR) were monitored by 24-h Holter electrocardiography. The study period was divided into waking and sleeping hours according to time-activity diaries. Linear mixed-effects models were used to investigate the effects of PM2.5/BC on HRV and HR in both groups during wake and sleep. RESULTS The effects of short-term exposure to PM2.5/BC on HRV were more pronounced among obese participants. In the normal-weight group, the positive association between personal PM2.5/BC exposure and high-frequency power (HF) as well as the ratio of low-frequency power to high-frequency power (LF/HF) was observed during wakefulness. In the obese group, personal PM2.5/BC exposure was negatively associated with HF but positively associated with LF/HF during wakefulness, whereas it was negatively correlated to total power and standard deviation of all NN intervals (SDNN) during sleep. An interquartile range (IQR) increase in BC at 2-h moving average was associated with 37.64% (95% confidence interval [CI]: 25.03, 51.51%) increases in LF/HF during wakefulness and associated with 6.28% (95% CI: - 17.26, 6.15%) decreases in SDNN during sleep in obese individuals, and the interaction terms between BC and obesity in LF/HF and SDNN were both statistically significant (p < 0.05). The results also suggested that the effects of PM2.5/BC exposure on several HRV indices and HR differed in magnitude or direction between wake and sleep. CONCLUSIONS Short-term exposure to PM2.5/BC is associated with HRV and HR, especially in obese individuals. The circadian rhythm of HRV should be considered in future studies when HRV is applied.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
34
|
Hu J, Fan H, Li Y, Li H, Tang M, Wen J, Huang C, Wang C, Gao Y, Kan H, Lin J, Chen R. Fine particulate matter constituents and heart rate variability: A panel study in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141199. [PMID: 32771785 DOI: 10.1016/j.scitotenv.2020.141199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Short-term exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an established indicator of cardiac autonomic function, but it remains uncertain which specific constituents of PM2.5 had key impacts. OBJECTIVE To examine the short-term associations between various PM2.5 constituents and HRV measures. METHODS We conducted a retrospective panel study among 78 participants who received repeated 24-h electrocardiogram testing in Shanghai, China from 2015 to 2019. We obtained daily concentrations of 14 main chemical constituents of PM2.5 from a fixed-site monitor. During 3 or 4 rounds of follow-ups, we measured 6 HRV parameters, including 3 frequency-domain parameters (power in very low frequency, low frequency and high frequency) and 3 time-domain parameters (standard deviation of normal-to-normal intervals, root mean square successive difference and percent of adjacent normal R-R intervals with a difference ≥50 msec). We used linear mixed-effects models to analyze the data after controlling for time trends, environmental and individual risk factors. RESULTS The average daily PM2.5 exposure was 45.8 μg/m3 during the study period. The present-day exposure to PM2.5 had the strongest negative influences on various HRV indicators. These associations attenuated greatly on lag 1 d or lag 2 d. Elemental carbon, organic carbon, nitrate, sulfate, arsenic, cadmium, chromium and nickel were consistently associated with reduced HRV parameters in both single-constituent models and constituent-PM2.5 models. CONCLUSION Our study highlighted the key roles of traffic-related components of PM2.5 in inhibiting cardiac autonomic function.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Fan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yinliang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfen Wen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Huang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jingyu Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| |
Collapse
|
35
|
Base LH, Oliveira JRDCE, Maia LCP, Antão JYFDL, Ferreira Filho C, Ferreira C. Effect of air pollution on the autonomic modulation of heart rate in overweight adults. EINSTEIN-SAO PAULO 2020; 18:eAO5100. [PMID: 33295424 PMCID: PMC7690934 DOI: 10.31744/einstein_journal/2020ao5100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
Objective: To analyze the effect of air pollution on heart rate variability in overweight individuals. Methods: A total of 46 adult individuals, both sexes, aged between 18 and 49 years and with body mass index >25kg/m2 were analyzed. All volunteers were students from public schools of two cities in the state of São Paulo. The clinical, demographic and anthropometric data of each individual, as well as heart rate variability through time domain, geometric and frequency indices were collected. For the air quality analysis, the following variables were investigated: concentration of carbon dioxide, particulate matter, temperature and relative humidity. The analysis was carried out with descriptive and analytical statistics, adopting a level of significance of 5%. Results: There was a reduction in overall heart rate variability in overweight individuals by the following indices: mean standard deviation of all normal RR intervals, long-term standard deviation of continuous RR intervals, ratio of short-and long-term standard deviation of continuous RR intervals. In addition, the indices responsible for parasympathetic control showed a downward trend in their values, as well as the low frequency index, which represented sympathetic action, although not significant. Conclusion: Overweight individuals exposed to air pollution had lower heart rate variability than the Control Group.
Collapse
Affiliation(s)
| | | | | | | | | | - Celso Ferreira
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Tian M, Zhao J, Mi X, Wang K, Kong D, Mao H, Wang T. Progress in research on effect of PM
2.5
on occurrence and development of atherosclerosis. J Appl Toxicol 2020; 41:668-682. [DOI: 10.1002/jat.4110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mengya Tian
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| | - Jingbo Zhao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| | - Xingyan Mi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University Tianjin China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University Tianjin China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University Tianjin China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering Nankai University Tianjin China
| |
Collapse
|
37
|
Wang F, Liang Q, Sun M, Ma Y, Lin L, Li T, Duan J, Sun Z. The relationship between exposure to PM 2.5 and heart rate variability in older adults: A systematic review and meta-analysis. CHEMOSPHERE 2020; 261:127635. [PMID: 32768749 DOI: 10.1016/j.chemosphere.2020.127635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Ambient air pollution is recognized as a major threat to those with cardiovascular disease (CVD), especially among old adults within this high risk group. Heart rate variability (HRV) is a marker of cardiac autonomic system, which links air pollution and CVD. However, the relationship between PM and HRV has been inconsistently reported. To investigate the associations of PM2.5 and HRV in old adults whose average age was 55 years old or above, we conducted a meta-analysis of nineteen longitudinal studies including nine short-term and ten long-term studies. In the short-term exposure group, per 10 μg/m3 increase of PM2.5 was associated with decreases in the time-domain measurements, for SDNN -0.39% (95% CI: -0.72%, -0.06%) and for RMSSD -1.20% (95% CI: -2.17%, -0.23%) and in frequency-domain measurements, for LF -2.31% (95% CI: -3.85%, -0.77%) and for HF -1.87% (95% CI: -3.45%, -0.29%); In the long-term exposure group, per 10 μg/m3 increase of PM2.5 was associated with decreases in the time-domain measurements, for SDNN -0.92% (95% CI: -2.14%, 0.31%) and for RMSSD -1.96% (95% CI: -3.48%, -0.44%) and in frequency-domain measurements, for LF -2.78% (95% CI: -4.02%, -1.55%) and for HF -1.61% (95% CI: -4.02%, 0.80%). Exposure to PM2.5 is associated with decreased indicators of HRV in older adults suggesting an affected cardiac autonomic system upon exposure, which may explain the association between PM2.5 and risk of CVD in older adults. Long-term exposure to PM2.5 was more strongly associated with indicators of HRV than short-term exposure.
Collapse
Affiliation(s)
- Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
38
|
Niu Z, Liu F, Li B, Li N, Yu H, Wang Y, Tang H, Chen X, Lu Y, Cheng Z, Liu S, Chen G, Zhang Y, Xiang H. Acute effect of ambient fine particulate matter on heart rate variability: an updated systematic review and meta-analysis of panel studies. Environ Health Prev Med 2020; 25:77. [PMID: 33261557 PMCID: PMC7706193 DOI: 10.1186/s12199-020-00912-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Decreased heart rate variability (HRV) is a predictor of autonomic system dysfunction, and is considered as a potential mechanism of increased risk of cardiovascular disease (CVD) induced by exposure to particulate matter less than 2.5 μm in diameter (PM2.5). Previous studies have suggested that exposure to PM2.5 may lead to decreased HRV levels, but the results remain inconsistent. Methods An updated systematic review and meta-analysis of panel studies till November 1, 2019 was conducted to evaluate the acute effect of exposure to ambient PM2.5 on HRV. We searched electronic databases (PubMed, Web of Science, and Embase) to identify panel studies reporting the associations between exposure to PM2.5 and the four indicators of HRV (standard deviation of all normal-to-normal intervals (SDNN), root mean square of successive differences in adjacent normal-to-normal intervals (rMSSD), high frequency power (HF), and low frequency power (LF)). Random-effects model was used to calculate the pooled effect estimates. Results A total of 33 panel studies were included in our meta-analysis, with 16 studies conducted in North America, 12 studies in Asia, and 5 studies in Europe. The pooled results showed a 10 μg/m3 increase in PM2.5 exposure which was significantly associated with a − 0.92% change in SDNN (95% confidence intervals (95%CI) − 1.26%, − 0.59%), − 1.47% change in rMSSD (95%CI − 2.17%, − 0.77%), − 2.17% change in HF (95%CI − 3.24%, − 1.10%), and − 1.52% change in LF (95%CI − 2.50%, − 0.54%), respectively. Overall, subgroup analysis suggested that short-term exposure to PM2.5 was associated with lower HRV levels in Asians, healthy population, and those aged ≥ 40 years. Conclusion Short-term exposure to PM2.5 was associated with decreased HRV levels. Future studies are warranted to clarity the exact mechanism of exposure to PM2.5 on the cardiovascular system through disturbance of autonomic nervous function. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-020-00912-2.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Baojing Li
- Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18, Solna, SE-171 65, Stockholm, Sweden
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hongmei Yu
- School of Management, Chengdu University of Traditional Chinese Medicine, 37# Shierqiao Road, Chengdu, China
| | - Yongbo Wang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122# Luoshi Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China. .,Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
39
|
Lung SCC, Chen N, Hwang JS, Hu SC, Wang WCV, Wen TYJ, Liu CH. Panel study using novel sensing devices to assess associations of PM 2.5 with heart rate variability and exposure sources. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:937-948. [PMID: 32753593 DOI: 10.1038/s41370-020-0254-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/OBJECTIVE This work applied a newly developed low-cost sensing (LCS) device (AS-LUNG-P) and a certified medical LCS device (Rooti RX) to assessing PM2.5 impacts on heart rate variability (HRV) and determining important exposure sources, with less inconvenience to subjects. METHODS Observations using AS-LUNG-P were corrected by side-by-side comparison with GRIMM instruments. Thirty-six nonsmoking healthy subjects aged 20-65 years were wearing AS-LUNG-P and Rooti RX for 2-4 days in both Summer and Winter in Taiwan. RESULTS PM2.5 exposures were 12.6 ± 8.9 µg/m3. After adjusting for confounding factors using the general additive mixed model, the standard deviations of all normal to normal intervals reduced by 3.68% (95% confidence level (CI) = 3.06-4.29%) and the ratios of low-frequency power to high-frequency power increased by 3.86% (CI = 2.74-4.99%) for an IQR of 10.7 µg/m3 PM2.5, with impacts lasting for 4.5-5 h. The top three exposure sources were environmental tobacco smoke, incense burning, and cooking, contributing PM2.5 increase of 8.53, 5.85, and 3.52 µg/m3, respectively, during 30-min intervals. SIGNIFICANCE This is a pioneer in demonstrating application of novel LCS devices to assessing close-to-reality PM2.5 exposure and exposure-health relationships. Significant HRV changes were observed in healthy adults even at low PM2.5 levels.
Collapse
Affiliation(s)
- Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan.
- Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.
| | - Nathan Chen
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Chuan Hu
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | | | - Tzu-Yao Julia Wen
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chun-Hu Liu
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Tatschl JM, Hochfellner SM, Schwerdtfeger AR. Implementing Mobile HRV Biofeedback as Adjunctive Therapy During Inpatient Psychiatric Rehabilitation Facilitates Recovery of Depressive Symptoms and Enhances Autonomic Functioning Short-Term: A 1-Year Pre-Post-intervention Follow-Up Pilot Study. Front Neurosci 2020; 14:738. [PMID: 32792897 PMCID: PMC7386054 DOI: 10.3389/fnins.2020.00738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE New treatment options for depression are warranted, due to high recurrence rates. Recent research indicates benefits of heart rate variability biofeedback (HRVBF) on symptom recovery and autonomic functioning in depressed individuals. Slow-paced breathing-induced amplification of vagus nerve activity is the main element of HRVBF. Thus, the latter represents a safe and non-invasive complementary depression treatment. However, its efficacy in patients undergoing inpatient psychiatric rehabilitation receiving highly comprehensive treatments has not been evaluated. METHODS Ninety-two inpatients were randomly assigned to an intervention group (IG) or control group (CG). While the latter received the standard treatment only, adjunctive HRVBF was provided to the IG over 5 weeks. Depression severity and heart rate variability (HRV) were assessed before (pre) and after 5 weeks (post). Moreover, 1-year follow-up depression scores were available for 30 participants. RESULTS Although depression improved in both groups, the IG exhibited significantly larger improvements at post-assessment ( η p 2 = 0.065) and significant increases in resting LF-HRV (d = 0.45) and cardiorespiratory coherence (d = 0.61). No significant effects for RMSSD, SDNN, HF-HRV, or HR were found (ps > 0.05). Additionally, the IG showed a medium- to large-sized reduction in resting respiratory rate from 13.2 to 9.8 breaths per minute (p < 0.001, d = 0.86), with the CG exhibiting only a small decrease from 13.5 to 12.4 (p = 0.49; d = 0.35). While the IG exhibited significantly lower depression scores at post-assessment (p = 0.042, d = 0.79), this effect decreased during follow-up (p = 0.195, d = 0.48). CONCLUSION HRVBF as adjuvant therapy during inpatient psychiatric rehabilitation facilitated depression recovery. Additionally, amplified LF-HRV as well as cardiorespiratory coherence at rest and a decrease in resting breathing frequency was observed in the HRVBF group. These findings emphasize HRVBF's value as complementary therapy regardless of concurrent treatments. Moreover, these incremental benefits could serve as resource even after the actual training period. However, the additional antidepressant gains vanish during the long-term follow-up, indicating the need for more intense training or regular practice afterward, respectively. Thus, future studies are warranted to examine how the initial benefits of HRVBF during inpatient psychiatric rehabilitation can be preserved post discharge.
Collapse
Affiliation(s)
- Josef M. Tatschl
- Health Psychology Unit, Institute of Psychology, University of Graz, Graz, Austria
| | | | - Andreas R. Schwerdtfeger
- Health Psychology Unit, Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
41
|
de Brito JN, Pope ZC, Mitchell NR, Schneider IE, Larson JM, Horton TH, Pereira MA. The effect of green walking on heart rate variability: A pilot crossover study. ENVIRONMENTAL RESEARCH 2020; 185:109408. [PMID: 32220745 PMCID: PMC7877549 DOI: 10.1016/j.envres.2020.109408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 05/30/2023]
Abstract
We investigated the effects of regular walking in green and suburban environments on heart rate variability (HRV) and blood pressure (BP) in middle-aged adults. Twenty-three adults participated in a non-randomized crossover experiment comprised of once-weekly 50-min moderate-intensity walking sessions. Separated by a two-week washout period, participants walked for three weeks in each of two treatment conditions (green and suburban) in a local arboretum and suburban sidewalks of Chaska, MN. Eleven participants completed green walking first and 12 suburban walking first. Walks were split into 15-min intra-walk phases, with phases representing each walk's beginning, middle, and final 15-min. Repeated measures linear mixed models evaluated (1) HRV phase differences between treatments and HRV change within treatments, and (2) pre- and post-walk BP differences between treatments and pre-to post-walk BP changes. Intra-walk phase analyses revealed higher HRV during green walking vs. suburban walking during phase 2 (p < 0.0001) and phase 3 (p = 0.02). Less HRV reduction was seen between intra-walk phases 1 and 2 during green vs. suburban walking (p = 0.02). Pre-to post-walk changes revealed decreased mean systolic BP for both green (p = 0.0002) and suburban (p = 0.003) walking conditions, but not for diastolic BP. Post-walk BP results were similar after both green walking and suburban walking. In summary, walking sessions in a green environment elicited greater beneficial HRV responses compared to a suburban environment. Additionally, walking in either environment, green or suburban, promoted reductions in systolic BP.
Collapse
Affiliation(s)
- Junia N de Brito
- Division of Epidemiology & Community Health, University of Minnesota, 1300 S 2nd St, Suite 300, Minneapolis, MN, 55455, USA.
| | - Zachary C Pope
- Division of Epidemiology & Community Health, University of Minnesota, 1300 S 2nd St, Suite 300, Minneapolis, MN, 55455, USA.
| | - Nathan R Mitchell
- Division of Epidemiology & Community Health, University of Minnesota, 1300 S 2nd St, Suite 300, Minneapolis, MN, 55455, USA.
| | - Ingrid E Schneider
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave North, Suite 301b, St. Paul, MN, 55108, USA.
| | - Jean M Larson
- Minnesota Landscape Arboretum, Bakken Center for Spirituality & Healing, University of Minnesota, 3675 Arboretum Drive, Chaska, MN, 55318, USA.
| | - Teresa H Horton
- Department of Anthropology, Northwestern University, 1819 Hinman Avenue, Evanston, IL, 60208, USA.
| | - Mark A Pereira
- Division of Epidemiology & Community Health, University of Minnesota, 1300 S 2nd St, Suite 300, Minneapolis, MN, 55455, USA.
| |
Collapse
|
42
|
Kim JB, Prunicki M, Haddad F, Dant C, Sampath V, Patel R, Smith E, Akdis C, Balmes J, Snyder MP, Wu JC, Nadeau KC. Cumulative Lifetime Burden of Cardiovascular Disease From Early Exposure to Air Pollution. J Am Heart Assoc 2020; 9:e014944. [PMID: 32174249 PMCID: PMC7335506 DOI: 10.1161/jaha.119.014944] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The disease burden associated with air pollution continues to grow. The World Health Organization (WHO) estimates ≈7 million people worldwide die yearly from exposure to polluted air, half of which-3.3 million-are attributable to cardiovascular disease (CVD), greater than from major modifiable CVD risks including smoking, hypertension, hyperlipidemia, and diabetes mellitus. This serious and growing health threat is attributed to increasing urbanization of the world's populations with consequent exposure to polluted air. Especially vulnerable are the elderly, patients with pre-existing CVD, and children. The cumulative lifetime burden in children is particularly of concern because their rapidly developing cardiopulmonary systems are more susceptible to damage and they spend more time outdoors and therefore inhale more pollutants. World Health Organization estimates that 93% of the world's children aged <15 years-1.8 billion children-breathe air that puts their health and development at risk. Here, we present growing scientific evidence, including from our own group, that chronic exposure to air pollution early in life is directly linked to development of major CVD risks, including obesity, hypertension, and metabolic disorders. In this review, we surveyed the literature for current knowledge of how pollution exposure early in life adversely impacts cardiovascular phenotypes, and lay the foundation for early intervention and other strategies that can help prevent this damage. We also discuss the need for better guidelines and additional research to validate exposure metrics and interventions that will ultimately help healthcare providers reduce the growing burden of CVD from pollution.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Division of Cardiovascular MedicineDepartment of MedicineStanford UniversityStanfordCA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Francois Haddad
- Division of Cardiovascular MedicineDepartment of MedicineStanford UniversityStanfordCA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCA
| | - Christopher Dant
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Rushali Patel
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Eric Smith
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| | - Cezmi Akdis
- Swiss Institute for Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - John Balmes
- Department of MedicineUniversity of California San Francisco and Division of Environmental Health SciencesSchool of Public HealthUniversity of California BerkeleyCA
| | - Michael P. Snyder
- Department of Genetics and Center for Genomics and Personalized MedicineStanford UniversityStanfordCA
| | - Joseph C. Wu
- Stanford Cardiovascular InstituteStanford UniversityStanfordCA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCA
| |
Collapse
|
43
|
Cowell WJ, Brunst KJ, Malin AJ, Coull BA, Gennings C, Kloog I, Lipton L, Wright RO, Enlow MB, Wright RJ. Prenatal Exposure to PM2.5 and Cardiac Vagal Tone during Infancy: Findings from a Multiethnic Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107007. [PMID: 31663780 PMCID: PMC6867319 DOI: 10.1289/ehp4434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The autonomic nervous system plays a key role in maintaining homeostasis and responding to external stimuli. In adults, exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an indicator of cardiac autonomic control. OBJECTIVES Our goal was to investigate the associations of exposure to fine particulate matter (PM2.5) with HRV as an indicator of cardiac autonomic control during early development. METHODS We studied 237 maternal-infant pairs in a Boston-based birth cohort. We estimated daily residential PM2.5 using satellite data in combination with land-use regression predictors. In infants at 6 months of age, we measured parasympathetic nervous system (PNS) activity using continuous electrocardiogram monitoring during the Repeated Still-Face Paradigm, an experimental protocol designed to elicit autonomic reactivity in response to maternal interaction and disengagement. We used multivariable linear regression to examine average PM2.5 exposure across pregnancy in relation to PNS withdrawal and activation, indexed by changes in respiration-corrected respiratory sinus arrhythmia (RSAc)-an established metric of HRV that reflects cardiac vagal tone. We examined interactions with infant sex using cross-product terms. RESULTS In adjusted models we found that a 1-unit increase in PM2.5 (in micrograms per cubic meter) was associated with a 3.53% decrease in baseline RSAc (95% CI: -6.96, 0.02). In models examining RSAc change between episodes, higher PM2.5 was generally associated with reduced PNS withdrawal during stress and reduced PNS activation during recovery; however, these associations were not statistically significant. We did not observe a significant interaction between PM2.5 and sex. DISCUSSION Prenatal exposure to PM2.5 may disrupt cardiac vagal tone during infancy. Future research is needed to replicate these preliminary findings. https://doi.org/10.1289/EHP4434.
Collapse
Affiliation(s)
- Whitney J. Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kelly J. Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley J. Malin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lianna Lipton
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
44
|
Shin S, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, Brook JR, Goldberg MS, Tu K, Copes R, Martin RV, Liu Y, Kopp A, Chen H. Ambient Air Pollution and the Risk of Atrial Fibrillation and Stroke: A Population-Based Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87009. [PMID: 31449466 PMCID: PMC6792368 DOI: 10.1289/ehp4883] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Although growing evidence links air pollution to stroke incidence, less is known about the effect of air pollution on atrial fibrillation (AF), an important risk factor for stroke. OBJECTIVES We assessed the associations between air pollution and incidence of AF and stroke. We also sought to characterize the shape of pollutant-disease relationships. METHODS The population-based cohort comprised 5,071,956 Ontario residents, age 35–85 y and without the diagnoses of both outcomes on 1 April 2001 and was followed up until 31 March 2015. AF and stroke cases were ascertained using health administrative databases with validated algorithms. Based on annual residential postal codes, we assigned 5-y running average concentrations of fine particulate matter ([Formula: see text]), nitrogen dioxide ([Formula: see text]), and ozone ([Formula: see text]) from satellite-derived data, a land-use regression model, and a fusion-based method, respectively, as well as redox-weighted averages of [Formula: see text] and [Formula: see text] ([Formula: see text]) for each year. Using Cox proportional hazards models, we estimated the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of AF and stroke with each of these pollutants, adjusting for individual- and neighborhood-level variables. We used newly developed nonlinear risk models to characterize the shape of pollutant–disease relationships. RESULTS Between 2001 and 2015, we identified 313,157 incident cases of AF and 122,545 cases of stroke. Interquartile range increments of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] were associated with increases in the incidence of AF [HRs (95% CIs): 1.03 (1.01, 1.04), 1.02 (1.01, 1.03), 1.01 (1.00, 1.02), and 1.01 (1.01, 1.02), respectively] and the incidence of stroke [HRs (95% CIs): 1.05 (1.03, 1.07), 1.04 (1.01, 1.06), 1.05 (1.03, 1.06), and 1.05 (1.04, 1.06), respectively]. Associations of similar magnitude were found in various sensitivity analyses. Furthermore, we found a near-linear association for stroke with [Formula: see text], whereas [Formula: see text], [Formula: see text]-, and [Formula: see text] relationships exhibited sublinear shapes. CONCLUSIONS Air pollution was associated with stroke and AF onset, even at very low concentrations. https://doi.org/10.1289/EHP4883.
Collapse
Affiliation(s)
- Saeha Shin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
| | - Richard T. Burnett
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jeffrey C. Kwong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Perry Hystad
- College of Public Health and Human Studies, Oregon State University, Corvallis, Oregon, USA
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey R. Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Karen Tu
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ray Copes
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
| | - Randall V. Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Hong Chen
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Leng J, Peruluswami P, Bari S, Gaur S, Radparvar F, Parvez F, Chen Y, Flores C, Gany F. South Asian Health: Inflammation, Infection, Exposure, and the Human Microbiome. J Immigr Minor Health 2019; 21:26-36. [PMID: 28952002 PMCID: PMC5871532 DOI: 10.1007/s10903-017-0652-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents the results of the literature review conducted for the working group topic on inflammation, infection, exposure, and the human microbiome. Infection and chronic inflammation can elevate risk for cardiovascular disease and cancer. Environmental exposures common among South Asian (SA) subgroups, such as arsenic exposure among Bangladeshis and particulate matter air pollution among taxi drivers, also pose risks. This review explores the effects of exposure to arsenic and particulate matter, as well as other infections common among SAs, including human papillomavirus (HPV) and hepatitis B/C infection. Emerging research on the human microbiome, and the effect of microbiome changes on obesity and diabetes risk among SAs are also explored.
Collapse
Affiliation(s)
- Jennifer Leng
- Department of Psychiatry and Behavioral Sciences, Immigrant Health and Cancer Disparities Service, Memorial Sloan Kettering Cancer Center, 485 Lexington Avenue, 2nd Floor, New York, NY, 10017, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
- Department of Healthcare Policy and Research, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Ponni Peruluswami
- Department of Medicine, Icahn School of Medicine at the Mount Sinai Medical Center, 1468 Madison Avenue, New York, NY, USA
| | - Sehrish Bari
- The Earth Institute, Columbia University, 2910 Broadway, New York, NY, USA
| | - Sunanda Gaur
- Robert Wood Johnson Medical School, South Asian Total Health Initiative, Rutgers School of Public Health, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, USA
| | - Farshid Radparvar
- Cardiology Department, Queens Hospital Center, 82-68 164th Street, Jamaica, New York, NY, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University, 722 W 168th Street, New York, NY, USA
| | - Yu Chen
- Department of Population Health, Department of Environmental Medicine, New York University School of Medicine, 550 1st Avenue, New York, NY, USA
| | - Cristina Flores
- The Warren Alpert Medical School, The Brown Human Rights Asylum Clinic (BHRAC), Brown University, 222 Richmond Street, Providence, RI, USA
| | - Francesca Gany
- Department of Psychiatry and Behavioral Sciences, Immigrant Health and Cancer Disparities Service, Memorial Sloan Kettering Cancer Center, 485 Lexington Avenue, 2nd Floor, New York, NY, 10017, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA.
- Department of Healthcare Policy and Research, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA.
| |
Collapse
|
46
|
Jhun I, Kim J, Cho B, Gold DR, Schwartz J, Coull BA, Zanobetti A, Rice MB, Mittleman MA, Garshick E, Vokonas P, Bind MA, Wilker EH, Dominici F, Suh H, Koutrakis P. Synthesis of Harvard Environmental Protection Agency (EPA) Center studies on traffic-related particulate pollution and cardiovascular outcomes in the Greater Boston Area. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:900-917. [PMID: 30888266 PMCID: PMC6650311 DOI: 10.1080/10962247.2019.1596994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/11/2019] [Indexed: 05/24/2023]
Abstract
The association between particulate pollution and cardiovascular morbidity and mortality is well established. While the cardiovascular effects of nationally regulated criteria pollutants (e.g., fine particulate matter [PM2.5] and nitrogen dioxide) have been well documented, there are fewer studies on particulate pollutants that are more specific for traffic, such as black carbon (BC) and particle number (PN). In this paper, we synthesized studies conducted in the Greater Boston Area on cardiovascular health effects of traffic exposure, specifically defined by BC or PN exposure or proximity to major roadways. Large cohort studies demonstrate that exposure to traffic-related particles adversely affect cardiac autonomic function, increase systemic cytokine-mediated inflammation and pro-thrombotic activity, and elevate the risk of hypertension and ischemic stroke. Key patterns emerged when directly comparing studies with overlapping exposure metrics and population cohorts. Most notably, cardiovascular risk estimates of PN and BC exposures were larger in magnitude or more often statistically significant compared to those of PM2.5 exposures. Across multiple exposure metrics (e.g., short-term vs. long-term; observed vs. modeled) and different population cohorts (e.g., elderly, individuals with co-morbidities, young healthy individuals), there is compelling evidence that BC and PN represent traffic-related particles that are especially harmful to cardiovascular health. Further research is needed to validate these findings in other geographic locations, characterize exposure errors associated with using monitored and modeled traffic pollutant levels, and elucidate pathophysiological mechanisms underlying the cardiovascular effects of traffic-related particulate pollutants. Implications: Traffic emissions are an important source of particles harmful to cardiovascular health. Traffic-related particles, specifically BC and PN, adversely affect cardiac autonomic function, increase systemic inflammation and thrombotic activity, elevate BP, and increase the risk of ischemic stroke. There is evidence that BC and PN are associated with greater cardiovascular risk compared to PM2.5. Further research is needed to elucidate other health effects of traffic-related particles and assess the feasibility of regulating BC and PN or their regional and local sources.
Collapse
Affiliation(s)
- Iny Jhun
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jina Kim
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | | | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Mary B. Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Murray A. Mittleman
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, Boston, MA
| | - Eric Garshick
- Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Pulmonary, Allergy, Sleep and Critical Care Medicine, Veterans Affairs Boston Healthcare System, Boston, MA
| | - Pantel Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, MA
- Department of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA
| | - Marie-Abele Bind
- Faculty of Arts and Sciences, Science Center, Harvard University, Cambridge, MA
| | - Elissa H. Wilker
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, Boston, MA
- Sanofi Genzyme, Cambridge, MA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Helen Suh
- Tufts University, Department of Civil and Environmental Engineering, Medford, MA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
47
|
Long-term Effects of Cumulative Average PM2.5 Exposure on the Risk of Hemorrhagic Stroke. Epidemiology 2019; 30 Suppl 1:S90-S98. [DOI: 10.1097/ede.0000000000001001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Karey E, Pan S, Morris AN, Bruun DA, Lein PJ, Chen CY. The Use of Percent Change in RR Interval for Data Exclusion in Analyzing 24-h Time Domain Heart Rate Variability in Rodents. Front Physiol 2019; 10:693. [PMID: 31244671 PMCID: PMC6562196 DOI: 10.3389/fphys.2019.00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 11/13/2022] Open
Abstract
While epidemiological data support the link between reduced heart rate variability (HRV) and a multitude of pathologies, the mechanisms underlying changes in HRV and disease progression are poorly understood. Even though we have numerous rodent models of disease for mechanistic studies, not being able to reliably measure HRV in conscious, freely moving rodents has hindered our ability to extrapolate the role of HRV in the progression from normal physiology to pathology. The sheer number of heart beats per day (>800,000 in mice) makes data exclusion both time consuming and daunting. We sought to evaluate an RR interval exclusion method based on percent (%) change of adjacent RR intervals. Two approaches were evaluated: % change from “either” and “both” adjacent RR intervals. The data exclusion method based on standard deviation (SD) was also evaluated for comparison. Receiver operating characteristic (ROC) curves were generated to determine the performance of each method. Results showed that exclusion based on % change from “either” adjacent RR intervals was the most accurate method in identifying normal and abnormal RR intervals, with an overall accuracy of 0.92–0.99. As the exclusion value increased (% change or SD), the sensitivity (correctly including normal RR intervals) increased exponentially while the specificity (correctly rejecting abnormal RR intervals) decreased linearly. Compared to the SD method, the “either” approach had a steeper rise in sensitivity and a more gradual decrease in specificity. The intersection of sensitivity and specificity where the exclusion criterion had the same accuracy in identifying normal and abnormal RR intervals was 10–20% change for the “either” approach and ∼ 1 SD for the SD-based exclusion method. Graphically (tachogram and Lorenz plot), 20% change from either adjacent RR interval resembled the data after manual exclusion. Finally, overall (SDNN) and short-term (rMSSD) indices of HRV generated using 20% change from “either” adjacent RR intervals as the exclusion criterion were closer to the manual exclusion method with lower subject-to-subject variability than those generated using the 2 SD exclusion criterion. Thus, 20% change from “either” adjacent RR intervals is a good criterion for data exclusion for reliable 24-h time domain HRV analysis in rodents.
Collapse
Affiliation(s)
- Emma Karey
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Shiyue Pan
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Amber N Morris
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Chao-Yin Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
49
|
Graber M, Mohr S, Baptiste L, Duloquin G, Blanc-Labarre C, Mariet AS, Giroud M, Béjot Y. Air pollution and stroke. A new modifiable risk factor is in the air. Rev Neurol (Paris) 2019; 175:619-624. [PMID: 31153597 DOI: 10.1016/j.neurol.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
Evidence from epidemiological studies has demonstrated that outdoor air pollution is now a well-known major problem of public health, mainly in low and middle income countries. Contrasting with myocardial infarction, there are few data on the association of air pollution and stroke. METHODS We propose a narrative literature review of the effects and the underlying biological mechanisms of short- and long-term exposure to air pollutants on stroke risk and mortality, using the following key-words: stroke, cerebrovascular events, ischemic and haemorrhage stroke, transient ischaemic attack, mortality, air pollution and air pollutants. RESULTS Twenty-one papers were selected. Air pollution, of which whose small particulate matter are the most toxic, contributes to about one-third of the global burden of stroke. We can identify vulnerable patients with classical neuro-vascular risk factors or a prior history of stroke or transient ischemic attack or persons living in low-income countries. Biological mechanisms of this new morbid association are discussed. CONCLUSION Air pollution should be recognized as a silent killer inducing stroke whose mortality rates remain elevated by its role as a new modifiable neurovascular risk factor, needing public health policies.
Collapse
Affiliation(s)
- M Graber
- Dijon Stroke Registry (Inserm, Santé Publique France), EA7460, university hospital of Dijon, university of Burgundy and Franche-Comté, Dijon, France
| | - S Mohr
- Dijon Stroke Registry (Inserm, Santé Publique France), EA7460, university hospital of Dijon, university of Burgundy and Franche-Comté, Dijon, France
| | - L Baptiste
- Dijon Stroke Registry (Inserm, Santé Publique France), EA7460, university hospital of Dijon, university of Burgundy and Franche-Comté, Dijon, France
| | - G Duloquin
- Dijon Stroke Registry (Inserm, Santé Publique France), EA7460, university hospital of Dijon, university of Burgundy and Franche-Comté, Dijon, France
| | - C Blanc-Labarre
- Dijon Stroke Registry (Inserm, Santé Publique France), EA7460, university hospital of Dijon, university of Burgundy and Franche-Comté, Dijon, France
| | - A S Mariet
- Clinical investigation center of Dijon (Inserm CIC 1432), university of Burgundy and Franche Comté, Inserm, biostatistique, biomathématique, pharmacoepidemiologie et maladies infectieuses (B2 PHI), UMR 1181, university Hospital of Dijon, Dijon, France
| | - M Giroud
- Dijon Stroke Registry (Inserm, Santé Publique France), EA7460, university hospital of Dijon, university of Burgundy and Franche-Comté, Dijon, France.
| | - Y Béjot
- Dijon Stroke Registry (Inserm, Santé Publique France), EA7460, university hospital of Dijon, university of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
50
|
Meier-Girard D, Delgado-Eckert E, Schaffner E, Schindler C, Künzli N, Adam M, Pichot V, Kronenberg F, Imboden M, Frey U, Probst-Hensch N. Association of long-term exposure to traffic-related PM 10 with heart rate variability and heart rate dynamics in healthy subjects. ENVIRONMENT INTERNATIONAL 2019; 125:107-116. [PMID: 30716571 DOI: 10.1016/j.envint.2019.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epidemiological evidence on the influence of long-term exposure to traffic-related particulate matter (TPM10) on heart rate variability (HRV) is weak. OBJECTIVE To evaluate the association of long-term exposure (10 years) with TPM10 on the regulation of the autonomic cardiovascular system and heart rate dynamics (HRD) in an aging general population, as well as potential modifying effects by the a priori selected factors sex, smoking status, obesity, and gene variation in selected glutathione S-transferases (GSTs). METHODS We analyzed data from 1593 SAPALDIA cohort participants aged ≥ 50 years. For each participant, various HRV and HRD parameters were derived from 24-hour electrocardiogram recordings. Each parameter obtained was then used as the outcome variable in multivariable mixed linear regression models in order to evaluate the association with TPM10. Potential modifying effects were assessed using interaction terms. RESULTS No association between long-term exposure to TPM10 and HRV/HRD was observed in the entire study population. However, HRD changes were found in subjects without cardiovascular morbidity and both HRD and HRV changes in non-obese subjects without cardiovascular morbidity. Subjects without cardiovascular morbidity with homozygous GSTM1 gene deletion appeared to be more susceptible to the effects of TPM10. CONCLUSION This study suggests that long-term exposure to TPM10 triggers adverse changes in the regulation of the cardiovascular system. These adverse effects were more visible in the subjects without cardiovascular disease, in whom the overall relationship between TPM10 and HRV/HRD could not be masked by underlying morbidities and the potential counteracting effects of related drug treatments.
Collapse
Affiliation(s)
- Delphine Meier-Girard
- University Children's Hospital (UKBB), Basel, Switzerland; University of Basel, Switzerland.
| | - Edgar Delgado-Eckert
- University Children's Hospital (UKBB), Basel, Switzerland; University of Basel, Switzerland
| | - Emmanuel Schaffner
- University of Basel, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Christian Schindler
- University of Basel, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Nino Künzli
- University of Basel, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Martin Adam
- Stiftung Krebsregister Aargau, Aarau, Switzerland
| | - Vincent Pichot
- Laboratory SNA-EPIS EA4607, Department of Physiology, University Hospital of Saint-Etienne, PRES Lyon, France
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Medical University of Innsbruck, Austria
| | - Medea Imboden
- University of Basel, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), Basel, Switzerland; University of Basel, Switzerland
| | - Nicole Probst-Hensch
- University of Basel, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|