1
|
Wu Y, Szestak T, Stins M, Craig AG. Amplification of P. falciparum Cytoadherence through induction of a pro-adhesive state in host endothelium. PLoS One 2011; 6:e24784. [PMID: 22043276 PMCID: PMC3197193 DOI: 10.1371/journal.pone.0024784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/17/2011] [Indexed: 01/03/2023] Open
Abstract
This study examined the ability of P.falciparum-infected erythrocytes (IE) to induce a pro-adhesive environment in the host endothelium during malaria infection, prior to the systemic cytokine activation seen in the later phase of disease. Previous work had shown increases in receptor levels but had not measured to actual impact on IE binding. Using a co-culture system with a range of endothelial cells (EC) and IE with different cytoadherent properties, we have characterised the specific expression of adhesion receptors and subsequent IE binding by FACS and adhesion assays. We have also examined the specific signalling pathways induced during co-culture that are potentially involved in the induction of receptor expression. The results confirmed that ICAM-1 is up-regulated, albeit at much lower levels than seen with TNF activation, in response to co-culture with infected erythrocytes in all three tissue endothelial cell types tested but that up-regulation of VCAM-1 is tissue-dependent. This small increase in the levels of EC receptors correlated with large changes in IE adhesion ability. Co-culture with either RBC or IE increased the potential of subsequent adhesion indicating priming/modulation effects on EC which make them more susceptible to adhesion and thereby the recruitment of IE. Trypsin surface digestion of IE and the use of a Pfsbp1-knockout (ko) parasite line abrogated the up-regulation of ICAM-1 and reduced IE binding to EC suggesting that PfEMP-1 and other molecules exported to the IE surface via the PfSBP1 pathway are major mediators of this phenotype. This was also supported by the higher induction of EC adhesion receptors by adherent IE compared to isogenic, non-adherent lines.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tadge Szestak
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Monique Stins
- RT Johnson Division of NeuroImmunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alister G. Craig
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Cserti-Gazdewich CM, Dzik WH, Erdman L, Ssewanyana I, Dhabangi A, Musoke C, Kain KC. Combined measurement of soluble and cellular ICAM-1 among children with Plasmodium falciparum malaria in Uganda. Malar J 2010; 9:233. [PMID: 20712868 PMCID: PMC2929237 DOI: 10.1186/1475-2875-9-233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/16/2010] [Indexed: 01/31/2023] Open
Abstract
Background Intercellular adhesion molecule-1 (ICAM-1) is a cytoadhesion molecule implicated in the pathogenesis of Plasmodium falciparum malaria. Elevated levels of soluble ICAM-1 (sICAM-1) have previously been reported with increased malaria disease severity. However, studies have not yet examined both sICAM-1 concentrations and monocyte ICAM-1 expression in the same cohort of patients. To better understand the relationship of soluble and cellular ICAM-1 measurements in malaria, both monocyte ICAM-1 expression and sICAM-1 concentration were measured in children with P. falciparum infection exhibiting a spectrum of clinical severity. Methods Samples were analysed from 160 children, aged 0.5 to 10.8 years, with documented P. falciparum malaria in Kampala, Uganda. The patients belonged to one of three pre-study defined groups: uncomplicated malaria (UM), severe non-fatal malaria (SM-s), and fatal malaria (SM-f). Subset analysis was done on those with cerebral malaria (CM) or severe malaria anaemia (SMA). Monocyte ICAM-1 was measured by flow cytometry. sICAM-1 was measured by enzyme immunoassay. Results Both sICAM-1 and monocyte cell-surface ICAM-1 followed a log-normal distribution. Median sICAM-1 concentrations increased with greater severity-of-illness: 279 ng/mL (UM), 462 ng/mL (SM-s), and 586 ng/mL (SM-f), p < 0.0001. sICAM-1 levels were not statistically different among children with CM compared to SMA. Monocyte ICAM-1 expression was significantly higher in cases of UM compared with SM-s or SM-f (p < 0.001) and was higher among the subset of patients with CM compared with SMA, p < 0.0014. The combination of sICAM-1 and cellular ICAM-1 identified distinct categories of patients (UM with low sICAM-1 and higher monocyte ICAM-1, CM with both sICAM-1 and monocyte ICAM-1 high, and SMA with sICAM-1 high but monocyte ICAM-1 low). Conclusion In this cohort of children with P. falciparum malaria, sICAM-1 levels were associated with severity-of-illness. Patients with UM had higher monocyte ICAM-1 expression consistent with a role for monocyte ICAM-1 in immune clearance during non-severe malaria. Among the subsets of patients with either SMA or CM, monocyte ICAM-1 levels were higher in CM, consistent with the role of ICAM-1 as a marker of cytoadhesion. Categories of disease in pediatric malaria may exhibit specific combinations of soluble and cellular ICAM-1 expression.
Collapse
|
3
|
Yeo TW, Lampah DA, Tjitra E, Piera K, Gitawati R, Kenangalem E, Price RN, Anstey NM. Greater endothelial activation, Weibel-Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. J Infect Dis 2010; 202:109-12. [PMID: 20497057 DOI: 10.1086/653211] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogenic mechanisms underlying vivax malaria are poorly understood, with few studies comparing endothelial and inflammatory responses with falciparum malaria. In adults with uncomplicated vivax or falciparum malaria, we compared plasma measurements of endothelial Weibel-Palade body release (angiopoietin-2) and activation (ICAM-1, E-selectin), as well as selected cytokines. Despite a lower median parasite count, angiopoietin-2 concentrations were higher in patients with vivax malaria, compared with falciparum malaria. Per peripheral parasite, median plasma angiopoietin-2, ICAM-1, E-selectin, interleukin-6, and interleukin-10 concentrations were higher in patients with malaria due to Plasmodium vivax. P. vivax induces greater endothelial Weibel-Palade body release and activation and greater host inflammatory responses, compared with Plasmodium falciparum.
Collapse
Affiliation(s)
- Tsin W Yeo
- International Health Division, Menzies School of Health Research and Charles Darwin University, and Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Clark IA, Budd AC, Alleva LM, Cowden WB. Human malarial disease: a consequence of inflammatory cytokine release. Malar J 2006; 5:85. [PMID: 17029647 PMCID: PMC1629020 DOI: 10.1186/1475-2875-5-85] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/10/2006] [Indexed: 12/24/2022] Open
Abstract
Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficiency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Alison C Budd
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lisa M Alleva
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - William B Cowden
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
5
|
Clark IA, Yaman FA, Rockett KA. Enhanced production of reactive nitrogen intermediates in human and murine malaria: reply. ACTA ACUST UNITED AC 2005; 11:424-5. [PMID: 15275388 DOI: 10.1016/0169-4758(95)80024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Goldring JPD. Evaluation of immunotherapy to reverse sequestration in the treatment of severe Plasmodium falciparum malaria. Immunol Cell Biol 2005; 82:447-52. [PMID: 15283856 DOI: 10.1111/j.0818-9641.2004.01265.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequestration and the attachment of Plasmodium falciparum malaria-infected RBC to venous endothelial cells involves parasite-encoded ligands interacting with up to nine host receptors. Antisequestration immunotherapy as an adjunct to quinine did not alter the dynamics of parasite clearance or prove beneficial for the patient. Estimated concentrations of antibody likely to reverse adherence in patients were based on the concentrations of parasite ligands, host receptors and patient equivalents derived from in vitro observations. Calculations presented here indicate that concentrations in excess of a fivefold increase in antibody concentrations used in the immunotherapy trial and equivalent to doubling normal peripheral blood antibody concentrations are anticipated for the successful reversal of sequestration to occur. It is suggested that immunotherapy aimed at either parasite ligands or host receptors to reverse sequestration in the treatment of severe malaria infections is unlikely to be successful given the complexity and number of receptors and ligands and the calculated concentrations of antibodies required.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antibodies/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/therapeutic use
- Antimalarials/therapeutic use
- Endothelium, Vascular/metabolism
- Erythrocytes/parasitology
- Humans
- Ligands
- Malaria, Falciparum/diagnosis
- Malaria, Falciparum/immunology
- Malaria, Falciparum/therapy
- Models, Theoretical
- Receptors, Immunologic/metabolism
Collapse
Affiliation(s)
- J P Dean Goldring
- Biochemistry, School of Molecular and Cellular Biosciences, University of KwaZulu-Natal (PMB), Scottsville, South Africa.
| |
Collapse
|
7
|
Sugiyama T, Cuevas LE, Bailey W, Makunde R, Kawamura K, Kobayashi M, Masuda H, Hommel M. Expression of intercellular adhesion molecule 1 (ICAM-1) in Plasmodium falciparum-infected placenta. Placenta 2001; 22:573-9. [PMID: 11440546 DOI: 10.1053/plac.2001.0692] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the expression of intercellular adhesion molecule 1 (ICAM-1) in malarial placenta and related histological changes. Thirty-two malarial and 40 control term placentae were collected at Tanga, Tanzania and examined histologically and immunohistochemically. Malaria infected placentae were further divided into acute (15) and chronic (17) cases according to the presence of malarial pigment. The expression of ICAM-1 on monocyte, syncytio- and cytotrophoblasts, endothelial and stromal cells was assessed. Birthweight was lower and leukocyte counts higher in placentae with chronic infection. Many monocytes were present within the intervillous spaces, especially in placentae with chronic infection, and aggregated with parasitized erythrocytes. Some monocytes were adhesive to the surface of fibrinoid deposits. ICAM-1 expression on monocytes of malarial placentae was significantly conspicuous and correlated to the degree of intervillous leukocyte infiltration. Syncytiotrophoblasts often did not show ICAM-1, even though ICAM-1 was expressed by endothelium and weakly by cytotrophoblasts and stromal cells in both infected and control placentae. These results suggest that the expression of ICAM-1 on monocytes contributes to sequestration of infected erythrocytes within the intervillous spaces and their adhesion to fibrin masses and that ICAM-1 is unlikely to be associated with the direct adhesion of infected erythrocytes to the syncytiotrophoblasts.
Collapse
Affiliation(s)
- T Sugiyama
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Brown HC, Chau TT, Mai NT, Day NP, Sinh DX, White NJ, Hien TT, Farrar J, Turner GD. Blood-brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology 2000; 55:104-11. [PMID: 10891914 DOI: 10.1212/wnl.55.1.104] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The intraerythrocytic parasite Plasmodium falciparum induces the life-threatening neurologic syndrome of cerebral malaria (CM) from within cerebral blood vessels, without entering the brain parenchyma. OBJECTIVES 1) To assess the use of CSF as an indicator of specific pathologic processes occurring in the brain during CM; 2) to compare this with other neurologic and infectious diseases to understand the distinct pathogenic features of CM; 3) to test the hypothesis that CM involves a specific functional breakdown of the blood-brain barrier (BBB). METHODS 1) Radial immunodiffusion assays to detect albumin and IgG in matched plasma and CSF samples as indicators of BBB integrity and intrathecal IgG production; and 2) ELISA for soluble intracellular adhesion molecule-1 and sE-selectin, the cytokines tumor necrosis factor-alpha and transforming growth factor-beta1, and the matrix metalloproteinase MMP-9, to detect cellular activation and inflammatory responses within the brain. RESULTS Albumin and IgG indices implied only minimal degree of BBB breakdown in a few cases of CM, with most remaining within the normal range. In contrast, cryptococcal, tubercular, and acute bacterial meningitis produced detectable changes in the composition of the CSF and evidence of BBB breakdown. CONCLUSIONS CM appears to involve only subtle functional changes in BBB integrity with minimal intraparenchymal inflammatory responses compared with other neurologic infections. This focuses attention on local events within and around the cerebral microvasculature in CM, rather than indicating widespread parenchymal disease.
Collapse
Affiliation(s)
- H C Brown
- University Department of Cellular Science, Oxford-Wellcome Center for Tropical and Infectious Diseases, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kern P, Dietrich M, Hemmer C, Wellinghausen N. Increased levels of soluble Fas ligand in serum in Plasmodium falciparum malaria. Infect Immun 2000; 68:3061-3. [PMID: 10769016 PMCID: PMC97531 DOI: 10.1128/iai.68.5.3061-3063.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of soluble Fas ligand (sFasL) in serum were elevated in patients with Plasmodium falciparum malaria and showed a significant decline during disease course. sFasL levels that were elevated before antimalarial treatment began correlated significantly with depressed total lymphocyte and T-cell counts. These data suggest that Fas-induced apoptosis might play a role in malaria-associated lymphopenia.
Collapse
Affiliation(s)
- P Kern
- Section of Infectious Diseases and Clinical Immunology, University of Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
10
|
Turner GD, Ly VC, Nguyen TH, Tran TH, Nguyen HP, Bethell D, Wyllie S, Louwrier K, Fox SB, Gatter KC, Day NP, Tran TH, White NJ, Berendt AR. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:1477-87. [PMID: 9626052 PMCID: PMC1858439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fatal Plasmodium falciparum malaria is accompanied by systemic endothelial activation. To study endothelial activation directly during malaria and sepsis in vivo, the expression of cell adhesion molecules on dermal microvascular endothelium was examined in skin biopsies and correlated with plasma levels of soluble (circulating) ICAM-1, E-selectin, and VCAM-1 and the cytokine tumor necrosis factor (TNF)-alpha. Skin biopsies were obtained from 61 cases of severe malaria, 42 cases of uncomplicated malaria, 10 cases of severe systemic sepsis, and 17 uninfected controls. Systemic endothelial activation, represented by the up-regulation of inducible cell adhesion molecules (CAMs) on endothelium and increased levels of soluble CAMs (sCAMs), were seen in both severe and uncomplicated malaria and sepsis when compared with uninfected controls. Plasma levels of sICAM-1, sVCAM-1, and sE-selectin correlated positively with the severity of malaria whereas TNF-alpha was raised nonspecifically in malaria and sepsis. Immunohistochemical evidence of endothelial activation in skin biopsies did not correlate with sCAM levels or disease severity. This indicates a background of systemic endothelial activation, which occurs in both mild and severe malaria and sepsis. The levels of sCAMs in malaria are thus not an accurate reflection of endothelial cell expression of CAMs in a particular vascular bed, and other factors must influence their levels during disease.
Collapse
Affiliation(s)
- G D Turner
- University Department of Cellular Science, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Taramelli D, Basilico N, De Palma AM, Saresella M, Ferrante P, Mussoni L, Olliaro P. The effect of synthetic malaria pigment (beta-haematin) on adhesion molecule expression and interleukin-6 production by human endothelial cells. Trans R Soc Trop Med Hyg 1998; 92:57-62. [PMID: 9692153 DOI: 10.1016/s0035-9203(98)90954-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of synthetic malaria pigment (beta-haematin, BH) on the expression of the intercellular adhesion molecule 1 (ICAM-1) and platelet endothelial cell adhesion molecule 1 (PECAM-1) and the production of interleukin-6 (IL-6) by human microvascular endothelial cells were measured using flow cytometry analysis and immunoenzymatic assay. BH alone did not affect basal levels of ICAM-1, PECAM-1 or IL-6. When added to cell cultures before or with, but not after, lipopolysaccharide or tumour necrosis factor alpha, BH at 1-100 micrograms/mL induced a dose-dependent inhibition of ICAM-1 and PECAM-1 expression and IL-6 production. Cell viability and human leucocyte antigen A,B,C expression remained unaffected. Similar, though more variable, results were obtained using human umbilical vein endothelial cells. These results suggested that accumulation of pigment within endothelial cells following repeated malaria infection reduces local inflammation and parasite sequestration through inhibition of either cytokine production or parasitized erythrocyte receptors on endothelial cells.
Collapse
Affiliation(s)
- D Taramelli
- Institute of Medical Microbiology, University of Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Malaria infection of the Central Nervous System (CNS) can cause a severe neurological syndrome termed Cerebral Malaria (CM). The central neuropathological feature of CM is the preferential sequestration of parasitised red blood cells (PRBC) in the cerebral microvasculature. The level of sequestration is related to the incidence of cerebral symptoms in severe malaria. Other neuropathological features of CM include petechial hemorrhages in the brain parenchyma, ring hemorrhages and Dürck's granuloma's. Immunohisto-chemical and electron microscopy studies have shown widespread cerebral endothelial cell activation and morphological changes occur in CM, as well as focal endothelial cell damage and necrosis. The immune cell response to intravascular sequestration appears to be limited, although activation of pigment-phagocytosing monocytes is a late feature. The mechanisms by which PRBC cause coma in malaria remain unclear. In vitro parasitised erythrocytes bind to endothelial cells by specific, receptor mediated interactions with host adhesion molecules such as ICAM-1, whose expression on cerebral endothelial cells is increased during CM as part of a systemic endothelial activation. Induction of local neuro-active mediators such as nitric oxide and systemic cytokines like TNF alpha may be responsible for the rapidly reversible symptoms of the coma of CM. The recent cloning of the parasite ligand PfEMP-1, thought to mediate binding to host sequestration receptors, promises further insight into the relationship between patterns of sequestration and the incidence and pathogenesis of coma in cerebral malaria.
Collapse
Affiliation(s)
- G Turner
- Oxford Centre for Tropical Medicine.
| |
Collapse
|
13
|
McGuire W, Hill AV, Greenwood BM, Kwiatkowski D. Circulating ICAM-1 levels in falciparum malaria are high but unrelated to disease severity. Trans R Soc Trop Med Hyg 1996; 90:274-6. [PMID: 8758074 DOI: 10.1016/s0035-9203(96)90244-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) mediates the binding of Plasmodium falciparum to vascular endothelium. In a case-control study of falciparum malaria in Gambian children, we have looked for evidence that a generalized increase in expression of ICAM-1 is associated with cerebral malaria. Plasma levels of circulating ICAM-1 (cICAM-1) were significantly higher in 246 children with acute malaria than in 156 children with non-malarial illnesses. cICAM-1 levels correlated with levels of tumour necrosis factor (TNF), interleukin 1 alpha (IL-1 alpha) and interferon gamma, supporting the view that these cytokines are responsible for a general upregulation of ICAM-1 expression in malaria. However, while it has been previously shown that TNF and IL-1 alpha levels were related to disease severity, this was not the case for cICAM-1. It may be that differences in the distribution of ICAM-1, rather than its total level of expression, are critical in determining the clinical outcome in malaria.
Collapse
Affiliation(s)
- W McGuire
- Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|
14
|
Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, Gatter KC, Newbold CI, Pukritayakamee S, Nagachinta B. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. THE AMERICAN JOURNAL OF PATHOLOGY 1994; 145:1057-69. [PMID: 7526692 PMCID: PMC1887431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sequestration of parasitized erythrocytes in the microvasculature of vital organs is central to the pathogenesis of severe Plasmodium falciparum malaria. This process is mediated by specific interactions between parasite adherence ligands and host receptors on vascular endothelium such as intercellular adhesion molecule-1 (ICAM-1) and CD36. Using immunohistochemistry we have examined the distribution of putative sequestration receptors in different organs from fatal cases of P. falciparum malaria and noninfected controls. Receptor expression and parasite sequestration in the brain were quantified and correlated. Fatal malaria was associated with widespread induction of endothelial activation markers, with significantly higher levels of ICAM-1 and E-selectin expression on vessels in the brain. In contrast, cerebral endothelial CD36 and thrombospondin staining were sparse, with no evidence for increased expression in malaria. There was highly significant co-localization of sequestration with the expression of ICAM-1, CD36, and E-selectin in cerebral vessels but no cellular inflammatory response. These results suggest that these receptors have a role in sequestration in vivo and indicate that systemic endothelial activation is a feature of fatal malaria.
Collapse
Affiliation(s)
- G D Turner
- Molecular Parasitology Group, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|