1
|
Chaturvedi AK, Vogtmann E, Shi J, Yano Y, Blaser MJ, Bokulich NA, Caporaso JG, Gillison ML, Graubard BI, Hua X, Hullings AG, Kahle L, Knight R, Li S, McLean J, Purandare V, Wan Y, Freedman ND, Abnet CC. The mouth of America: the oral microbiome profile of the US population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24318415. [PMID: 39677463 PMCID: PMC11643230 DOI: 10.1101/2024.12.03.24318415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Importance The oral microbiome is increasingly recognized to play key roles in human health and disease; yet, population-representative characterizations are lacking. Objective Characterize the composition, diversity, and correlates of the oral microbiome among US adults. Design Cross-sectional population-representative survey. Setting The National Health and Nutrition Examination Survey (NHANES, 2009-2012), a stratified multistage probability sample of the US population. Participants NHANES participants aged 18-69 years (n=8,237, representing 202,314,000 individuals). Exposures Demographic, socioeconomic, behavioral, anthropometric, metabolic, and clinical characteristics. Main outcomes Oral microbiome, characterized through 16S rRNA sequencing. Microbiome metrics were alpha diversity (number of observed Amplicon Sequence Variants [ASV], Faith's Phylogenetic diversity, Shannon-Weiner Index, and Simpson Index); beta diversity (unweighted UniFrac, weighted UniFrac, and Bray-Curtis dissimilarity); and prevalence and relative abundance at taxonomic levels (phylum through genus). Analyses accounted for the NHANES complex sample design. Results Among US adults aged 18-69 years, the oral microbiome encompassed 37 bacterial phyla, 99 classes, 212 orders, 446 families, and 1,219 genera. Five phyla-Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria and six genera-Veillonella, Streptococcus, Prevotella7, Rothia, Actinomyces, and Gemella, were present in nearly all US adults (weighted-prevalence >99%). These genera also were the most abundant, accounting for 65.7% of abundance. Observed ASVs showed a quadratic pattern with age (peak at 30 years), was similar by sex, significantly lower among non-Hispanic White individuals, and increased with higher body mass index (BMI) categories, alcohol use, and periodontal disease severity. All covariates together accounted for a modest proportion of oral microbiome variability, as measured by beta diversity (unweighted UniFrac=8.7%, weighted UniFrac=7.2%, and Bray-Curtis=6.3%). By contrast, relative abundance of a few genera explained a high percentage of variability in beta diversity (weighted UniFrac: Aggregatibacter=22.4%, Lactococcus=21.6%, Haemophilus=18.4%). Prevalence and relative abundance of numerous genera were significantly associated (Bonferroni-corrected Wald-p<0.0002) with age, race and ethnicity, smoking, BMI categories, alcohol use, and periodontal disease severity. Conclusions We provide a contemporary reference standard for the oral microbiome of the US adult population. Our results indicate that a few genera were universally present in US adults and a different set of genera explained a high percentage of oral microbiome diversity across the population.
Collapse
Affiliation(s)
- Anil K. Chaturvedi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Yukiko Yano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers, Piscataway, NJ, USA
| | | | - J. Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Maura L. Gillison
- Department of Thoracic and Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Barry I. Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Autumn G. Hullings
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Kahle
- Information Management Services, Calverton, MD, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Shilan Li
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jody McLean
- National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD. USA
| | - Vaishnavi Purandare
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| | - Neal D. Freedman
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD., USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD., USA
| |
Collapse
|
2
|
Belibasakis GN, Seneviratne CJ, Jayasinghe RD, Vo PT, Bostanci N, Choi Y. Bacteriome and mycobiome dysbiosis in oral mucosal dysplasia and oral cancer. Periodontol 2000 2024; 96:95-111. [PMID: 38501658 PMCID: PMC11579824 DOI: 10.1111/prd.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
It has long been considered that the oral microbiome is tightly connected to oral health and that dysbiotic changes can be detrimental to the occurrence and progression of dysplastic oral mucosal lesions or oral cancer. Improved understanding of the concepts of microbial dysbiosis together with advances in high-throughput molecular sequencing of these pathologies have charted in greater microbiological detail the nature of their clinical state. This review discusses the bacteriome and mycobiome associated with oral mucosal lesions, oral candidiasis, and oral squamous cell carcinoma, aiming to delineate the information available to date in pursuit of advancing diagnostic and prognostic utilities for oral medicine.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | | | - Ruwan Duminda Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Phuc Thi‐Duy Vo
- Department of Immunology and Molecular Microbiology, School of DentistrySeoulKorea
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of DentistrySeoulKorea
| |
Collapse
|
3
|
Hu W, Chen S, Zou X, Chen Y, Luo J, Zhong P, Ma D. Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. J Adv Res 2024:S2090-1232(24)00362-X. [PMID: 39159722 DOI: 10.1016/j.jare.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Homeostasis is a state of self-regulation and dynamic equilibrium, maintaining the good physiological functions of each system in living organisms. In the oral cavity, the interaction between the host and the oral microbiome forms oral microbial homeostasis. Physiological bone remodeling and renewal can occur under the maintenance of oral microbial homeostasis. The imbalance of bone homeostasis is a key mechanism leading to the occurrence of systemic bone-related diseases. Considering the importance of oral microbial homeostasis in the maintenance of bone homeostasis, it still lacks a complete understanding of the relationship between oral microbiome, periodontal disease and systemic bone-related diseases. AIM OF REVIEW This review focuses on the homeostatic changes, pathogenic routes and potential mechanisms in the oral microbiome in periodontal disease and systemic bone-related diseases such as rheumatoid arthritis, osteoarthritis, osteoporosis and osteomyelitis. Additionally, this review discusses oral microbiome-based diagnostic approaches and explores probiotics, mesenchymal stem cells, and oral microbiome transplantation as promising treatment strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the association between oral microbial homeostasis imbalance and systemic bone-related diseases, and highlights the possibility of remodeling oral microbial homeostasis for the prevention and treatment of systemic bone-related diseases.
Collapse
Affiliation(s)
- Weiqi Hu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Yan Chen
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China.
| |
Collapse
|
4
|
Mohammed LI, Razali R, Zakaria ZZ, Benslimane FM, Cyprian F, Al-Asmakh M. Smoking induced salivary microbiome dysbiosis and is correlated with lipid biomarkers. BMC Oral Health 2024; 24:608. [PMID: 38796419 PMCID: PMC11127352 DOI: 10.1186/s12903-024-04340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The oral microbiome plays an essential role in maintaining oral homeostasis and health; smoking significantly affects it, leading to microbial dysbiosis. The study aims to investigate changes in the oral microbiome composition of smokers in the Qatari population and establish a correlation with lipid biomarkers. METHODS The oral microbiota was profiled from saliva samples of 200 smokers and 100 non-smokers in the Qatari population, and 16s rRNA V3-V4 region were sequenced using the Illumina MiSeq platform. The operational taxonomic units (OTUs) were clustered using QIIME and the statistical analysis was performed by R. RESULTS Non-smokers exhibited a more diverse microbiome, with significant alpha and beta diversity differences between the non-smoker and smoker groups. Smokers had a higher abundance of Firmicutes, Bacteroidota, Actinobacteriota, Patescibacteria, and Proteobacteria at the phylum level and of Streptococcus, Prevotella, Veillonella, TM7x, and Porphyromonas at the genus level. In contrast, non-smokers had more Bacteroidota, Firmicutes, Proteobacteria, Fusobacteriota, and Patescibacteria at the phylum level, and Prevotella, Streptococcus, Veillonella, Porphromonas, and Neisseria at the genus level. Notably, Streptococcus was significantly positively correlated with LDL and negatively correlated with HDL. Additionally, Streptococcus salivarius, within the genus Streptococcus, was substantially more abundant in smokers. CONCLUSION This study highlights the significant influence of smoking on the composition of the oral microbiome by enriching anaerobic microbes and depleting aerobic microbes. Moreover, the observed correlation between Streptococcus abundance and the lipid biomarkers suggests a potential link between smokers-induced salivary microbiome dysbiosis and lipid metabolism. Understanding the impact of smoking on altering the oral microbiome composition and its correlation with chemistry tests is essential for developing targeted interventions and strategies to improve oral health and reduce the risk of diseases.
Collapse
Affiliation(s)
- Layla I Mohammed
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Rozaimi Razali
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
- The KINDI Center for Computing Research, College of Engineering, Qatar University, Doha, Qatar
| | - Zain Zaki Zakaria
- Medical and Health Sciences Office, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | | | - Farhan Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Doha, 2713, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, PO Box 2713, Doha, Qatar.
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
5
|
Zeng X, Huang S, Ye X, Song S, He J, Hu L, Deng S, Liu F. Impact of HbA1c control and type 2 diabetes mellitus exposure on the oral microbiome profile in the elderly population. J Oral Microbiol 2024; 16:2345942. [PMID: 38756148 PMCID: PMC11097700 DOI: 10.1080/20002297.2024.2345942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Objective To investigate the associations of the oral microbiome status with diabetes characteristics in elderly patients with type 2 diabetes mellitus. Methods A questionnaire was used to assess age, sex, smoking status, drinking status, flossing frequency, T2DM duration and complications, and a blood test was used to determine the glycated haemoglobin (HbA1c) level. Sequencing of the V3-V4 region of the 16S rRNA gene from saliva samples was used to analyze the oral microbiome. Results Differential analysis revealed that Streptococcus and Weissella were significantly enriched in the late-stage group, and Capnocytophaga was significantly enriched in the early-stage group. Correlation analysis revealed that diabetes duration was positively correlated with the abundance of Streptococcus (r= 0.369, p= 0.007) and negatively correlated with the abundance of Cardiobacterium (r= -0.337, p= 0.014), and the level of HbA1c was not significantly correlated with the oral microbiome. Network analysis suggested that the poor control group had a more complex microbial network than the control group, a pattern that was similar for diabetes duration. In addition, Streptococcus has a low correlation with other microorganisms. Conclusion In elderly individuals, Streptococcus emerges as a potential biomarker linked to diabetes, exhibiting elevated abundance in diabetic patients influenced by disease exposure and limited bacterial interactions.
Collapse
Affiliation(s)
- Xin Zeng
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Shuqi Huang
- Nursing Department, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Ye
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Siping Song
- Post anesthesia Care Unit, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing He
- Department of Oral Mucosal Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Hu
- Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Deng
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Fan Liu
- Nursing Department, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Senaratne NLM, Yung on C, Shetty NY, Gopinath D. Effect of different forms of tobacco on the oral microbiome in healthy adults: a systematic review. FRONTIERS IN ORAL HEALTH 2024; 5:1310334. [PMID: 38445094 PMCID: PMC10912582 DOI: 10.3389/froh.2024.1310334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024] Open
Abstract
Objective The study aimed to evaluate the impact of tobacco use on the composition and functions of the oral microbiome in healthy adult humans. Methods We conducted a systematic search on PubMed, Web of Science, and Cinhal databases for literature published until 15 December 2023, to identify studies that have evaluated the oral microbiome with culture-independent next-generation techniques comparing the oral microbiome of tobacco users and non-users. The search followed the PECO format. The outcomes included changes in microbial diversity and abundance of microbial taxa. The quality assessment was performed using the Newcastle-Ottawa Scale (NOS) (PROSPERO ID CRD42022340151). Results Out of 2,435 articles screened, 36 articles satisfied the eligibility criteria and were selected for full-text review. Despite differences in design, quality, and population characteristics, most studies reported an increase in bacterial diversity and richness in tobacco users. The most notable bacterial taxa enriched in users were Fusobacteria and Actinobacteria at the phylum level and Streptococcus, Prevotella, and Veillonella at the genus level. At the functional level, more similarities could be noted; amino acid metabolism and xenobiotic biodegradation pathways were increased in tobacco users compared to non-users. Most of the studies were of good quality on the NOS scale. Conclusion Tobacco smoking influences oral microbial community harmony, and it shows a definitive shift towards a proinflammatory milieu. Heterogeneities were detected due to sampling and other methodological differences, emphasizing the need for greater quality research using standardized methods and reporting. Systematic Review Registration CRD42022340151.
Collapse
Affiliation(s)
- Nikitha Lalindri Mareena Senaratne
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Cheng Yung on
- Sungai Rengit Dental Clinic, Johor Health Department, Ministry of Health Malaysia, Kota Tinggi, Malaysia
| | - Naresh Yedthare Shetty
- Clinical Sciences Department, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Divya Gopinath
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Basic Medical and Dental Sciences Department, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
7
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Huang Q, Wu X, Zhou X, Sun Z, Shen J, Kong M, Chen N, Qiu JG, Jiang BH, Yuan C, Zheng Y. Association of cigarette smoking with oral bacterial microbiota and cardiometabolic health in Chinese adults. BMC Microbiol 2023; 23:346. [PMID: 37978427 PMCID: PMC10655299 DOI: 10.1186/s12866-023-03061-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
The interplay among cigarette smoking status, oral microbiota, and cardiometabolic health is poorly understood. We aimed to examine the association of cigarette smoking status with oral microbiota and to assess the association of the identified microbial features with cardiometabolic risk factors in a Chinese population. This study included 587 participants within the Central China Cohort, including 111 smokers and 476 non-smokers, and their oral microbiota was profiled by 16S rRNA sequencing. Both oral microbial alpha- and beta-diversity were distinct between smokers and non-smokers (p < 0.05). With adjustment for sociodemographics, alcohol and tea drinking, tooth brushing frequency, and body mass index, the relative abundance of nine genera and 26 pathways, including the genus Megasphaera and two pathways involved in inositol degradation which have potentially adverse effects on cardiometabolic health, was significantly different between two groups (FDR q < 0.20). Multiple microbial features related to cigarette smoking were found to partly mediate the associations of cigarette smoking with serum triglycerides and C-reactive protein levels (p-mediation < 0.05). In conclusion, cigarette smoking status may have impacts on the oral microbial features, which may partially mediate the associations of cigarette smoking and cardiometabolic health.
Collapse
Affiliation(s)
- Qiumin Huang
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xuemei Wu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaofeng Zhou
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhonghan Sun
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jie Shen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengmeng Kong
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Nannan Chen
- School of Medicine, Nantong University, Jiangsu, 226019, China
| | - Jian-Ge Qiu
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Bing-Hua Jiang
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yan Zheng
- School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Wu S, Cheng L, Pennhag AAL, Seifert M, Guðnadóttir U, Engstrand L, Mints M, Andersson S, Du J. The salivary microbiota is altered in cervical dysplasia patients and influenced by conization. IMETA 2023; 2:e108. [PMID: 38867925 PMCID: PMC10989756 DOI: 10.1002/imt2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 06/14/2024]
Abstract
This study supports the correlation between the salivary microbiota and cervical dysplasia and suggests that smoking influences the salivary microbiota.
Collapse
Affiliation(s)
- Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Alexandra A. L. Pennhag
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Unnur Guðnadóttir
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- Science for Life LaboratoryKarolinska InstituteStockholmSweden
| | - Miriam Mints
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Sonia Andersson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| |
Collapse
|
10
|
Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24032955. [PMID: 36769278 PMCID: PMC9918109 DOI: 10.3390/ijms24032955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
11
|
Velsko IM, Semerau L, Inskip SA, García-Collado MI, Ziesemer K, Ruber MS, Benítez de Lugo Enrich L, Molero García JM, Valle DG, Peña Ruiz AC, Salazar-García DC, Hoogland MLP, Warinner C. Ancient dental calculus preserves signatures of biofilm succession and interindividual variation independent of dental pathology. PNAS NEXUS 2022; 1:pgac148. [PMID: 36714834 PMCID: PMC9802386 DOI: 10.1093/pnasnexus/pgac148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Dental calculus preserves oral microbes, enabling comparative studies of the oral microbiome and health through time. However, small sample sizes and limited dental health metadata have hindered health-focused investigations to date. Here, we investigate the relationship between tobacco pipe smoking and dental calculus microbiomes. Dental calculus from 75 individuals from the 19th century Middenbeemster skeletal collection (Netherlands) were analyzed by metagenomics. Demographic and dental health parameters were systematically recorded, including the presence/number of pipe notches. Comparative data sets from European populations before and after the introduction of tobacco were also analyzed. Calculus species profiles were compared with oral pathology to examine associations between microbiome community, smoking behavior, and oral health status. The Middenbeemster individuals exhibited relatively poor oral health, with a high prevalence of periodontal disease, caries, heavy calculus deposits, and antemortem tooth loss. No associations between pipe notches and dental pathologies, or microbial species composition, were found. Calculus samples before and after the introduction of tobacco showed highly similar species profiles. Observed interindividual microbiome differences were consistent with previously described variation in human populations from the Upper Paleolithic to the present. Dental calculus may not preserve microbial indicators of health and disease status as distinctly as dental plaque.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Maite I García-Collado
- GIPYPAC, Department of Geography, Prehistory and Archaeology, University of the Basque Country, Leioa 48940, Spain
- BioArCh, Department of Archaeology, University of York, York YO10 5NG, UK
| | - Kirsten Ziesemer
- University Library, Vrije Universiteit, Einsteinweg 2, Amsterdam 1081 HV, The Netherlands
| | - Maria Serrano Ruber
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Luis Benítez de Lugo Enrich
- Departmento de Prehistoria, Historia Antigua y Arqueología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | - David Gallego Valle
- Facultad de Letras, Universidad de Castilla-La Mancha, Ciudad Real 13004, Spain
| | | | - Domingo C Salazar-García
- Departament de Prehistòria, Historia i Arqueología, Universitat de València, València 46010, Spain
- Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Menno L P Hoogland
- Faculty of Archaeology, Leiden University, Einsteinweg, Leiden 2333 CC, The Netherlands
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07743, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Wang J, Cheng X, Zhang J, Liu Z, Cheng F, Yan J, Zhang G. Estimating the time since deposition (TsD) in saliva stains using temporal changes in microbial markers. Forensic Sci Int Genet 2022; 60:102747. [PMID: 35870433 DOI: 10.1016/j.fsigen.2022.102747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 06/07/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Determining the time since deposition (TsD) of traces could be helpful in the investigation of criminal offenses. However, there are no reliable markers and models available for the inference of short-term TsD. The goal of this study was to investigate the potential of the succession pattern of human salivary microbial communities to serve as an efficiency TsD prediction tool in the resolution of the forensic cases. Saliva stains exposed to indoor conditions up to 20 days were collected and analyzed by 16S rRNA profiling using high-throughput sequencing technique. Noticeable differences in microbial composition were observed between different time points, and the indoor exposure time of saliva stains were inversely correlated with alpha diversity estimates across the measured time period. The sequencing results were used to identify TsD-dependent bacterial indicators to regress a generalized random forest model, resulting in a mean absolute deviation (MAD) of 1.41 days. Furthermore, a simplified TsD predictive model was also developed utilizing Enhydrobacter, Paenisporosarcina, and Janthinobacterium by quantitative PCR (qPCR) with a MAD of 1.32 days, and then forensic practice assessment were also performed by using mock samples with a MAD of 3.53 days. In conclusion, this study revealed significant changes in salivary microbial abundance as the prolongation of TsD. It demonstrated that the microbial biomarkers could be invoked as a "clock" for TsD estimation in human dried saliva stains.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiaojuan Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Feng Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
13
|
The regulatory effect of fermented black barley on the gut microbiota and metabolic dysbiosis in mice exposed to cigarette smoke. Food Res Int 2022; 157:111465. [DOI: 10.1016/j.foodres.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
14
|
Yoon HS, Shu XO, Gao YT, Yang G, Cai H, Shi J, Yang JJ, Rothman N, Lan Q, Zheng W, Cai Q. Tooth Loss and Risk of Lung Cancer among Urban Chinese Adults: A Cohort Study with Meta-Analysis. Cancers (Basel) 2022; 14:2428. [PMID: 35626036 PMCID: PMC9140069 DOI: 10.3390/cancers14102428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Epidemiological evidence on tooth loss and lung cancer risk remains limited, especially for smoking-specific associations. To investigate the association between tooth loss and lung cancer risk by smoking status, we first analyzed data from the Shanghai Men’s Health Study (n = 49,868) and the Shanghai Women’s Health Study (n = 44,309). Cox regression models were applied to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for lung cancer risk in relation to tooth loss. We also conducted a meta-analysis to summarize epidemiologic findings to date, incorporating results from the current study and six previously published studies. For 7.3 median follow-up years, 973 incident lung cancer cases (613 men and 360 women) were ascertained. After adjustment for major covariates, tooth loss was associated with an increased risk of lung cancer among men (HR [95% CI] for >10 teeth vs. none = 1.59 [1.21−2.11]) but not among women (0.86 [0.50−1.46]). The positive association was stronger among male current smokers (1.75 [1.26−2.45], p-interaction by smoking status = 0.04). In a meta-analysis incorporating 4052 lung cancer cases and 248,126 non-cases, tooth loss was associated with a 1.64-fold increased risk of developing lung cancer (relative risk [RR, 95% CI] for the uppermost with the lowest category = 1.64 [1.44−1.86]). The positive association was more evident among current smokers (1.86 [1.41−2.46]), but no significant associations were found among never or former smokers. Our findings suggest that tooth loss may be associated with an increased risk of lung cancer, and the association could be modified by smoking status.
Collapse
Affiliation(s)
- Hyung-Suk Yoon
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201112, China;
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| | - Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892, USA; (N.R.); (Q.L.)
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892, USA; (N.R.); (Q.L.)
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (H.-S.Y.); (X.-O.S.); (G.Y.); (H.C.); (J.S.); (J.J.Y.); (W.Z.)
| |
Collapse
|
15
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
16
|
Halboub E, Jafer MA, Khormi HI, Kariri AA, Atiah SA, Lughbi SJ, Ba-Hattab R, Al-Maweri SA. Attitudes and practices of tobacco cessation counseling among Saudi dental professionals: A nationwide cross-sectional survey. Niger J Clin Pract 2022; 25:502-508. [PMID: 35439911 DOI: 10.4103/njcp.njcp_1784_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Dental professionals can play a pivotal role in educating the public about the harmful effects of smoking and encouraging them to quit the habit. Aim This study assesses the attitudes and practices of tobacco cessation counseling (TCC) among dental professionals in Saudi Arabia. Patients and Methods This questionnaire-based cross-sectional study targeted dentists and dental interns working in government and private sectors in Saudi Arabia. We conducted a descriptive analysis by using SPSS Statistics, version 25.0. Results A total of 895 respondents (314 interns and 581 dentists) participated in this survey. Although the majority of respondents (93%) reported that they always ask patients about tobacco habits, only 59% reported recording tobacco habits in patients' files, and only 55% of the respondents reported explaining to patients the harmful effects of tobacco. Around 91% of the participants believe that a dental clinic is an appropriate place for TCC, and 22% believe that TCC has a negative impact on dental practice. Smoking status, work setting, and the number of years since graduation were found to be significantly associated with the respondents' attitudes and practices. Lack of training, time limitations, and lack of confidence were barriers for TCC. Conclusions Dental professionals in Saudi Arabia demonstrated relatively positive attitudes but weak practices of TCC. Continuous education and motivation are needed to improve dentists' confidence, attitudes, and willingness for TCC. Integration of tobacco control education in undergraduate curricula is recommended.
Collapse
Affiliation(s)
- E Halboub
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia; Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a University, Sana'a, Yemen
| | - M A Jafer
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia; Honor Researcher, Maastricht University, The Netherlands
| | - H I Khormi
- College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - A A Kariri
- College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - S A Atiah
- College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - S J Lughbi
- College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - R Ba-Hattab
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - S A Al-Maweri
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Smoking has disruptive effects on the small bowel luminal microbiome. Sci Rep 2022; 12:6231. [PMID: 35422064 PMCID: PMC9010470 DOI: 10.1038/s41598-022-10132-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Tobacco use is the leading preventable cause of cancer, and affects the respiratory, oral, fecal, and duodenal mucosa-associated microbiota. However, the effects of smoking on the duodenal luminal microbiome have not been studied directly. We aimed to compare the duodenal luminal microbiome in never-smokers, current smokers, and ex-smokers who quit ≥ 10 years ago. In a cross-sectional study, current smokers (CS, n = 24) were identified and matched to never-smokers (NS, n = 27) and ex-smokers (XS, n = 27) by age (± 5 years), body mass index (BMI, ± 3 kg/m2), and sex. Current antibiotic users were excluded. The duodenal luminal microbiome was analysed in 1 aspirate sample per subject by 16S rRNA gene sequencing. Relative abundances (RA) of families associated with increased duodenal microbial diversity, Prevotellaceae, Neisseriaceae, and Porphyromonadaceae, were significantly lower in CS vs. NS. This was driven by lower RA of unknown Prevotella and Porphyromonas species, and Neisseria subflava and N. cinerea, in CS. In contrast, RA of Enterobacteriaceae and Lactobacillaceae (associated with decreased diversity), were significantly higher in CS, due to higher RA of Escherichia-Shigella, Klebsiella and Lactobacillus species. Many of these changes were absent or less pronounced in XS, who exhibited a duodenal luminal microbiome more similar to NS. RA of taxa previously found to be increased in the oral and respiratory microbiota of smokers were also higher in the duodenal luminal microbiome, including Bulledia extructa and an unknown Filifactor species. In conclusion, smoking is associated with an altered duodenal luminal microbiome. However, ex-smokers have a duodenal luminal microbiome that is similar to never-smokers.
Collapse
|
18
|
The Impact of Mouthwash on the Oropharyngeal Microbiota of Men Who Have Sex with Men: a Substudy of the OMEGA Trial. Microbiol Spectr 2022; 10:e0175721. [PMID: 35019769 PMCID: PMC8754113 DOI: 10.1128/spectrum.01757-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouthwash is a commonly used product and has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effects of mouthwash on the oral microbiota are largely unknown. We investigated the impact of 12 weeks of daily mouthwash use on the oropharyngeal microbiota in a subset of men who have sex with men who participated in a randomized trial comparing the efficacy of two alcohol-free mouthwashes for the prevention of gonorrhea. We characterized the oropharyngeal microbiota using 16S rRNA gene sequencing of tonsillar fossae samples collected before and after 12 weeks of daily use of Listerine mouthwash or Biotène dry mouth oral rinse. Permutational multivariate analysis of variance (PERMANOVA) was used to assess differences in oropharyngeal microbiota composition following mouthwash use. Differential abundance testing was performed using ALDEx2, with false-discovery rate correction. A total of 306 samples from 153 men were analyzed (Listerine, n = 78 and Biotène, n = 75). There was no difference in the overall structure of the oropharyngeal microbiota following Listerine or Biotène use (PERMANOVA P = 0.413 and P = 0.331, respectively). Although no bacterial taxa were significantly differentially abundant following Listerine use, we observed a small but significant decrease in the abundance of both Streptococcus and Leptotrichia following Biotène use. Overall, our findings suggest that daily use of antiseptic mouthwash has minimal long-term effects on the composition of the oropharyngeal microbiota. IMPORTANCE Given the role of the oral microbiota in human health, it is important to understand if and how external factors influence its composition. Mouthwash use is common in some populations, and the use of antiseptic mouthwash has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effect of mouthwash use on the oral microbiota composition is largely unknown. We found that daily use of two different commercially available mouthwashes had limited long-term effects on the composition of the oropharyngeal microbiota over a 12-week period. The results from our study and prior studies highlight that different mouthwashes may differentially affect the oral microbiome composition and that further studies are needed to determine if mouthwash use induces short-term changes to the oral microbiota that may have detrimental effects.
Collapse
|
19
|
Gurov AV, Yushkina MA, Muzhichkova AV. [Microbiocenosis-regulating therapy of inflammatory pathology of the oropharynx]. Vestn Otorinolaringol 2021; 86:51-56. [PMID: 34964330 DOI: 10.17116/otorino20218606151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inflammatory pathology of the oropharynx, which does not lose its relevance, is a problem that is of interest to doctors of various specialties. As one of the main causes of inflammatory diseases of the pharynx, the influence of microorganisms, primarily viruses, on the mucous membrane of the upper respiratory tract is indicated. The authors of the article emphasize the importance of preserving the indigenous microbiota, which provides a barrier function and prevents the adhesion and colonization of pathogenic microorganisms. In this regard, the most effective and safe is local microbiocenosis-regulatory therapy using lysozyme, a natural peptide that has antiseptic, anti-inflammatory and immunoregulatory effects. As such a drug, the authors recommend the combined drug Lorolizin, which can be used in the treatment of acute pharyngitis, acute tonsillitis, and adenoiditis.
Collapse
Affiliation(s)
- A V Gurov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - M A Yushkina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - A V Muzhichkova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
20
|
Wang X, Luo N, Mi Q, Kong W, Zhang W, Li X, Gao Q. Influence of cigarette smoking on oral microbiota in patients with recurrent aphthous stomatitis. J Investig Med 2021; 70:805-813. [PMID: 34824153 DOI: 10.1136/jim-2021-002119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/11/2023]
Abstract
Recurrent aphthous stomatitis (RAS) is a common recurrent ulcerative disease of the oral mucosa which is closely related to oral microbial composition. However, the specific effect and the mechanism of smoking in RAS are unclear. In this study, 16S rRNA sequencing technology was used to compare the differences in saliva microbial community between 28 non-smoking healthy controls (NSctrl), 31 non-smoking RAS patients (NSras), and 19 smoking RAS patients (Sras). The results showed that the bacterial community diversity in patients with RAS (NSras and Sras) was lower than that of NSctrl. The microbial community in smoking-associated RAS is less diverse and distinct from that of non-smokers. The RAS groups have higher abundance of Veillonella, Rothia, and Sneathia and lower abundance of Bacteroidales, Bacteroides, Wolinella, Moryella, Pyramidobacter, and Christensenellaceae at the genera level. A significantly different abundance of Anaerovorax, Candidatus Endomicrobium, Lactococcus, Sneathia, Veillonella, and Cloacibacterium was observed between the Sras and the NSras group. Notably, there was a significant difference in many species from the genus Prevotella and Treponema between the NSras and the Sras group. Further, the relative abundance of several taxa is correlated with smoking age or frequency, including Megasphaera, Haemophilus, Leptotrichia, and Rothia at the genera level, and Prevotella melaninogenica, Prevotella salivae, Megasphaera micronuciformis, Haemophilus parainfluenzae, Alloprevotella tannerae, Actinomyces naeslundii, Lautropia mirabilis, and Capnocytophaga sputigena at the species level. Among patients with RAS, smoking aggravated the pathways of respiration and human pathogens. Our results suggest that smoking is closely related to changes in the oral microbiota, which may contribute an opposite effect to the pathogenesis of RAS. This study provides new insight and theoretical basis for the cause and pathogenesis of RAS and better prevention and treatment.
Collapse
Affiliation(s)
- Xue Wang
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China.,School of Pharmacy and Yunnan Key Laboratory of Natural Medicine Pharmacology, Kunming Medical University, Kunming, China
| | - Na Luo
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China.,School of Pharmacy and Yunnan Key Laboratory of Natural Medicine Pharmacology, Kunming Medical University, Kunming, China
| | - Qili Mi
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Weisong Kong
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Xuemei Li
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Qian Gao
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| |
Collapse
|
21
|
Suzuki N, Nakano Y, Yoneda M, Hirofuji T, Hanioka T. The effects of cigarette smoking on the salivary and tongue microbiome. Clin Exp Dent Res 2021; 8:449-456. [PMID: 34505401 PMCID: PMC8874080 DOI: 10.1002/cre2.489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives It has been suggested that smoking affects the oral microbiome, but its effects on sites other than the subgingival microbiome remain unclear. This study investigated the composition of the salivary and tongue bacterial communities of smokers and nonsmokers in periodontally healthy adults. Methods The study population included 50 healthy adults. The bacterial composition of resting saliva and the tongue coating was identified through barcoded pyrosequencing analysis of the 16S rRNA gene. The Brinkman index (BI) was used to calculate lifetime exposure to smoking. The richness and diversity of the microbiome were evaluated using the t‐test. Differences in the proportions of bacterial genera between smokers and nonsmokers were evaluated using the Mann–Whitney U test. The quantitative relationship between the proportions of genera and the BI was evaluated using Pearson's correlation analysis. Results The richness and diversity of the oral microbiome differed significantly between saliva and the tongue but not between smokers and nonsmokers. The saliva samples from smokers were enriched with the genera Treponema and Selenomonas. The tongue samples from smokers were enriched with the genera Dialister and Atopobium. The genus Cardiobacterium in saliva, and the genus Granulicatella on the tongue, were negatively correlated with BI values. On the other hand, the genera Treponema, Oribacterium, Dialister, Filifactor, Veillonella, and Selenomonas in saliva and Dialister, Bifidobacterium, Megasphaera, Mitsuokella, and Cryptobacterium on the tongue were positively correlated with BI values. Conclusions The saliva and tongue microbial profiles of smokers and nonsmokers differed in periodontally healthy adults. The genera associated with periodontitis and oral malodor accounted for high proportions in saliva and on the tongue of smokers without periodontitis and were positively correlated with lifetime exposure to smoking. The tongue might be a reservoir of pathogens associated with oral disease in smokers.
Collapse
Affiliation(s)
- Nao Suzuki
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Yoshio Nakano
- Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiro Yoneda
- Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Takao Hirofuji
- Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Takashi Hanioka
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
22
|
Association of oral microbiota with lung cancer risk in a low-income population in the Southeastern USA. Cancer Causes Control 2021; 32:1423-1432. [PMID: 34432217 PMCID: PMC8541916 DOI: 10.1007/s10552-021-01490-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Oral microbiome plays an important role in oral health and systemic diseases, including cancer. We aimed to prospectively investigate the association of oral microbiome with lung cancer risk. METHODS We analyzed 156 incident lung cancer cases (73 European Americans and 83 African Americans) and 156 individually matched controls nested within the Southern Community Cohort Study. Oral microbiota were assessed using 16S rRNA gene sequencing in pre-diagnostic mouth rinse samples. Paired t test and the permutational multivariate analysis of variance test were used to evaluate lung cancer risk association with alpha diversity or beta diversity, respectively. Conditional logistic regression models were used to evaluate the association of individual bacterial abundance or prevalence with lung cancer risk. RESULTS No significant differences were observed for alpha or beta diversity between lung cancer cases and controls. Abundance of families Lachnospiraceae_[XIV], Peptostreptococcaceae_[XI], and Erysipelotrichaceae and species Parvimonas micra was associated with decreased lung cancer risk, with odds ratios (ORs) and 95% confidence intervals (CIs) of 0.76 (0.59-0.98), 0.80 (0.66-0.97), 0.81 (0.67-0.99), and 0.83 (0.71-0.98), respectively (all p < 0.05). Prevalence of five pre-defined oral pathogens were not significantly associated with overall lung cancer risk. Prevalence of genus Bacteroidetes_[G-5] and species Alloprevotella sp._oral_taxon_912, Capnocytophaga sputigena, Lactococcus lactis, Peptoniphilaceae_[G-1] sp._oral_taxon_113, Leptotrichia sp._oral_taxon_225, and Fretibacterium fastidiosum was associated with decreased lung cancer risk, with ORs and 95% CIs of 0.55 (0.30-1.00), 0.36 (0.17-0.73), 0.53 (0.31-0.92), 0.43 (0.21-0.88), 0.43 (0.19-0.94), 0.57 (0.34-0.99), and 0.54 (0.31-0.94), respectively (all p < 0.05). Species L. sp._oral_taxon_225 was significantly associated with decreased lung cancer risk in African Americans (OR [95% CIs] 0.28 [0.12-0.66]; p = 0.00012). CONCLUSION Results from this study suggest that oral microbiota may play a role in the development of lung cancer.
Collapse
|
23
|
Melchiorre D, Ceccherini MT, Romano E, Cometi L, El-Aoufy K, Bellando-Randone S, Roccotelli A, Bruni C, Moggi-Pignone A, Carboni D, Guiducci S, Lepri G, Tofani L, Pietramellara G, Matucci-Cerinic M. Oral Lactobacillus Species in Systemic Sclerosis. Microorganisms 2021; 9:1298. [PMID: 34203626 PMCID: PMC8232208 DOI: 10.3390/microorganisms9061298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
In systemic sclerosis (SSc), the gastrointestinal tract (GIT) plays a central role in the patient's quality of life. The microbiome populates the GIT, where a relationship between the Lactobacillus and gastrointestinal motility has been suggested. In this study, the analysis of oral Lactobacillus species in SSc patients and healthy subjects using culture-independent molecular techniques, together with a review of the literature on microbiota and lactobacilli in SSc, has been carried out. Twenty-nine SSc female patients (mean age 62) and twenty-three female healthy subjects (HS, mean age 57.6) were enrolled and underwent tongue and gum swab sampling. Quantitative PCR was conducted in triplicate using Lactobacillus specific primers rpoB1, rpoB1o and rpoB2 for the RNA-polymerase β subunit gene. Our data show significantly (p = 0.0211) lower LactobacillusspprpoB sequences on the tongue of patients with SSc compared to HS. The mean value of the amount of Lactobacillus ssprpoB gene on the gumsofSSc patients was minor compared to HS. A significant difference between tongue and gums (p = 0.0421) was found in HS but not in SSc patients. In conclusion, our results show a lower presence of Lactobacillus in the oral cavity of SSc patients. This strengthens the hypothesis that Lactobacillus may have both a protective and therapeutic role in SSc patients.
Collapse
Affiliation(s)
- Daniela Melchiorre
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Maria Teresa Ceccherini
- Department of Agriculture, Food, Environment and Forestry (DAGRI)-University ofFirenze, 50144 Firenze, Italy; (M.T.C.); (A.R.); (G.P.)
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Laura Cometi
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Khadija El-Aoufy
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Angela Roccotelli
- Department of Agriculture, Food, Environment and Forestry (DAGRI)-University ofFirenze, 50144 Firenze, Italy; (M.T.C.); (A.R.); (G.P.)
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Alberto Moggi-Pignone
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Davide Carboni
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Lorenzo Tofani
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry (DAGRI)-University ofFirenze, 50144 Firenze, Italy; (M.T.C.); (A.R.); (G.P.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Department of Geriatric Medicine, Division of Rheumatology, University of Firenze, 50124 Firenze, Italy; (E.R.); (L.C.); (K.E.-A.); (S.B.-R.); (C.B.); (A.M.-P.); (D.C.); (S.G.); (G.L.); (L.T.); (M.M.-C.)
| |
Collapse
|
24
|
Rowińska I, Szyperska-Ślaska A, Zariczny P, Pasławski R, Kramkowski K, Kowalczyk P. The Influence of Diet on Oxidative Stress and Inflammation Induced by Bacterial Biofilms in the Human Oral Cavity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1444. [PMID: 33809616 PMCID: PMC8001659 DOI: 10.3390/ma14061444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The article is a concise compendium of knowledge on the etiology of pathogenic microorganisms of all complexes causing oral diseases. The influence of particular components of the diet and the role of oxidative stress in periodontal diseases were described. The study investigated the bacteriostatic effect of the diet of adults in in vivo and in vitro tests on the formation of bacterial biofilms living in the subgingival plaque, causing diseases called periodontitis. If left untreated, periodontitis can damage the gums and alveolar bones. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are bacteria of all complexes, including the red complex. The obtained results suggest the possibility of using a specific diet in the prevention and treatment of periodontal diseases-already treated as a disease of civilization. The quoted article is an innovative compilation of knowledge on this subject and it can be a valuable source of knowledge for professional hygienists, dentists, peridontologists, dentistry students and anyone who cares about proper oral hygiene. The obtained results suggest the possibility of using this type of diet in the prophylaxis of the oral cavity in order to avoid periodontitis.
Collapse
Affiliation(s)
- Ilona Rowińska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Adrianna Szyperska-Ślaska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Piotr Zariczny
- Toruń City Hall, Business Support Center in Toruń, ul. Marii Konopnickiej 13, 87-100 Toruń, Poland;
| | - Robert Pasławski
- Veterinary Insitute, Nicolaus Copernicus University in Toruń, str. Gagarina 7, 87-100 Toruń, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1str, 15-089 Bialystok, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
25
|
Jia YJ, Liao Y, He YQ, Zheng MQ, Tong XT, Xue WQ, Zhang JB, Yuan LL, Zhang WL, Jia WH. Association Between Oral Microbiota and Cigarette Smoking in the Chinese Population. Front Cell Infect Microbiol 2021; 11:658203. [PMID: 34123872 PMCID: PMC8195269 DOI: 10.3389/fcimb.2021.658203] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
The oral microbiota has been observed to be influenced by cigarette smoking and linked to several human diseases. However, research on the effect of cigarette smoking on the oral microbiota has not been systematically conducted in the Chinese population. We profiled the oral microbiota of 316 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The alpha diversity of oral microbiota was different between never smokers and smokers (P = 0.002). Several bacterial taxa were first reported to be associated with cigarette smoking by LEfSe analysis, including Moryella (q = 1.56E-04), Bulleidia (q = 1.65E-06), and Moraxella (q = 3.52E-02) at the genus level and Rothia dentocariosa (q = 1.55E-02), Prevotella melaninogenica (q = 8.48E-08), Prevotella pallens (q = 4.13E-03), Bulleidia moorei (q = 1.79E-06), Rothia aeria (q = 3.83E-06), Actinobacillus parahaemolyticus (q = 2.28E-04), and Haemophilus parainfluenzae (q = 4.82E-02) at the species level. Two nitrite-producing bacteria that can increase the acidity of the oral cavity, Actinomyces and Veillonella, were also enriched in smokers with FDR-adjusted q-values of 3.62E-06 and 1.10E-06, respectively. Notably, we observed that two acid production-related pathways, amino acid-related enzymes (q = 6.19E-05) and amino sugar and nucleotide sugar metabolism (q = 2.63E-06), were increased in smokers by PICRUSt analysis. Finally, the co-occurrence analysis demonstrated that smoker-enriched bacteria were significantly positively associated with each other and were negatively correlated with the bacteria decreased in smokers. Our results suggested that cigarette smoking may affect oral health by creating a different environment by altering bacterial abundance, connections among oral microbiota, and the microbiota and their metabolic function.
Collapse
Affiliation(s)
- Yi-Jing Jia
- School of Public Health, Sun Yat‐sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Mei-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Xia-Ting Tong
- School of Public Health, Sun Yat‐sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Lei-Lei Yuan
- School of Public Health, Sun Yat‐sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat‐sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat‐sen University Cancer Center, Guangzhou, China
- *Correspondence: Wei-Hua Jia,
| |
Collapse
|
26
|
Al Bataineh MT, Dash NR, Elkhazendar M, Alnusairat DMH, Darwish IMI, Al-Hajjaj MS, Hamid Q. Revealing oral microbiota composition and functionality associated with heavy cigarette smoking. J Transl Med 2020; 18:421. [PMID: 33167991 PMCID: PMC7653996 DOI: 10.1186/s12967-020-02579-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Heavy tobacco smoking, a hallmark feature of lung cancer, is drastically predominant in Middle Eastern populations. The precise links between nicotine dependence and the functional contribution of the oral microbiota remain unknown in these populations. METHODS We evaluated the composition and functional capabilities of oral microbiota with relation to cigarette smoking in 105 adults through shotgun metagenomics using buccal swabs. RESULTS The oral microbiota composition in our study subjects was dominated by the phyla Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes, in addition to the genera Prevotella and Veillonella, similar to previously described westernized cohorts. Furthermore, the smoker's oral microbiota represented a significant abundance of Veillonella dispar, Leptotrichia spp. and Prevotella pleuritidis when compared to non-smokers. Within the smoking groups, differential relative abundance testing unveiled relative abundance of Streptobacillus hongkongensis, Fusobacterium massiliense, Prevotella bivia in high nicotine dependent compared to low nicotine dependent profiles based on Fagerström Test for Nicotine Dependence. Functional profiling showed marked differences between smokers and non-smokers. Smokers exhibited an enrichment of Tricarballylate utilization and Lactate racemization when compared to the non-smokers. According to their nicotine dependence, enrichment of Xanthosine utilization, p-Aminobenzoyl-Glutamate utilization, and multidrug efflux pump in Campylobacter jejuni biosynthesis modules were detected in the high nicotine dependent group. CONCLUSIONS These compositional and functional differences may provide critical insight on how variations in the oral microbiota could predispose to respiratory illnesses and smoke cessation relapse in cigarette smokers. In particular, the observed enrichment of Fusobacterium and Prevotella in the oral microbiota possibly suggests an intriguing linkage to gut and lung cancers.
Collapse
Affiliation(s)
- Mohammad Tahseen Al Bataineh
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates. .,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Nihar Ranjan Dash
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohammed Elkhazendar
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | | | | | - Mohamed Saleh Al-Hajjaj
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.,University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Irfan M, Delgado RZR, Frias-Lopez J. The Oral Microbiome and Cancer. Front Immunol 2020; 11:591088. [PMID: 33193429 PMCID: PMC7645040 DOI: 10.3389/fimmu.2020.591088] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
D’Angiolella G, Tozzo P, Gino S, Caenazzo L. Trick or Treating in Forensics-The Challenge of the Saliva Microbiome: A Narrative Review. Microorganisms 2020; 8:E1501. [PMID: 33003446 PMCID: PMC7599466 DOI: 10.3390/microorganisms8101501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
The oral microbiome harbours microbial community signatures that differ among individuals, highlighting that it could be highly individualizing and potentially unique to each individual. Therefore, the oral microbial traces collected in crime scenes could produce investigative leads. This narrative review will describe the current state-of-the-art of how the salivary microbiome could be exploited as a genetic signature to make inferences in the forensic field. This review has been performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines. Even if further studies are needed to relate the variation in the oral microbiome to specific factors, in order to understand how the salivary microbiome is influenced by an individual's lifestyle, by reviewing the studies published so far, it is clear that the oral microbial analysis could become a useful forensic tool. Even if promising, caution is required in interpreting the results and an effort to direct research towards studies that fill the current knowledge gaps is certainly useful.
Collapse
Affiliation(s)
- Gabriella D’Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy;
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| | - Sarah Gino
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy;
| |
Collapse
|
29
|
Halboub E, Al-Ak'hali MS, Alamir AH, Homeida HE, Baraniya D, Chen T, Al-Hebshi NN. Tongue microbiome of smokeless tobacco users. BMC Microbiol 2020; 20:201. [PMID: 32640977 PMCID: PMC7346439 DOI: 10.1186/s12866-020-01883-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/26/2020] [Indexed: 01/13/2023] Open
Abstract
Background The possibility that smokeless tobacco may contribute to oral carcinogenesis by influencing the oral microbiome has not been explored. This preliminary cross-sectional study sought to assess the effect of using shammah, a form of smokeless tobacco prevalent in Arabia, on the tongue microbiome. Tongue scarping samples were obtained from 29 shammah users (SU; 27.34 ± 6.9 years) and 23 shammah non-users (SNU; 27.7 ± 7.19 years) and analyzed with 16S rRNA gene sequencing (V1-V3). Species-level taxonomy assignment of the high-quality, merged reads was obtained using a previously described BLASTn-based algorithm. Downstream analyses were performed with QIIME, LEfSe, and R. Results A total of 178 species, belonging to 62 genera and 8 phyla were identified. Genera Streptococcus, Leptotrichia, Actinomyces, Veillonella, Haemophilus, Prevotella and Neisseria accounted for more than 60% of the average microbiome. There were no differences between the two groups in species richness and alpha-diversity, but PCoA showed significant separation (P = 0.015, ANOSIM). LEfSe analysis identified 22 species to be differentially abundant between the SU and SNU. However, only 7 species maintained a false discovery rate of ≤0.2 and could cluster the two groups separately: Rothia mucilaginosa, Streptococcus sp. oral taxon 66, Actinomyces meyeri, Streptococcus vestibularis Streptococcus sanguinis and a potentially novel Veillonella species in association with SU, and Oribacterium asaccharolyticum with SNU. Conclusion These preliminary results indicate that shammah use induces tongue microbiome changes including enrichment of several species with high acetaldehyde production potential, which warrants further investigation.
Collapse
Affiliation(s)
- Esam Halboub
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia. .,Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a university, Sana'a, Yemen.
| | - Mohammed S Al-Ak'hali
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia.,Department of Periodontology, Faculty of Dentistry, Sana'a University, Sana'a, Yemen
| | - Abdulwahab H Alamir
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Husham E Homeida
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, MA, USA
| | - Nezar Noor Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|