1
|
Toney NJ, Lynch MT, Lynce F, Mainor C, Isaacs C, Schlom J, Donahue RN. Serum analytes as predictors of disease recurrence and the duration of invasive disease-free survival in patients with triple negative breast cancer enrolled in the OXEL trial treated with immunotherapy, chemotherapy, or chemoimmunotherapy. J Immunother Cancer 2025; 13:e011379. [PMID: 40274284 PMCID: PMC12020768 DOI: 10.1136/jitc-2024-011379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The OXEL study (NCT03487666) was a phase II trial of patients with triple negative breast cancer (TNBC) with residual disease following neoadjuvant chemotherapy, randomized to receive immunotherapy (anti-programmed cell death protein 1, nivolumab), chemotherapy (capecitabine), or chemoimmunotherapy. We previously reported on the primary endpoint of the OXEL trial, demonstrating that a peripheral immunoscore based on circulating immune cells reflecting immune activation was increased in patients treated with immunotherapy. However, compared with cell-based immune assays, sera assays are more cost-effective, less labor-intensive, and samples easier to obtain. Here, we report on differences in serum analytes between treatment arms and associations with clinical response. METHODS Patients (n=38) were assayed for 97 serum analytes before and after 6 and 12 weeks of therapy. Serum analytes were assessed for changes with therapy, and as predictors of disease recurrence and the duration of invasive disease-free survival (iDFS) in both single analyte analyses and machine learning models. RESULTS Levels of specific analytes at baseline and changes in levels at early time points on treatment preceding recurrence were associated with eventual development of disease recurrence and/or the duration of iDFS. These associations varied based on the therapy patients received. Immunotherapy led to enrichment in pro-inflammatory analytes following treatment, whereas chemotherapy resulted in overall decreases. Changes seen in patients receiving chemoimmunotherapy more closely resembled those observed in patients receiving immunotherapy alone as opposed to chemotherapy alone. Furthermore, logistic regression and Cox proportional hazard models, developed using machine learning methods, demonstrated that combinations of serum analytes were more predictive of disease recurrence and iDFS duration than analyses of single serum analytes. Notably, the multivariable models that predicted patient outcomes were highly specific to the class of treatment patients received. CONCLUSIONS In patients with TNBC with residual disease after neoadjuvant chemotherapy, treatment with immunotherapy alone or chemoimmunotherapy resulted in enhanced immune activation compared with chemotherapy alone as measured by changes in serum analyte levels. Distinct serum analytes, both at baseline and as changes after therapy, predicted clinical outcomes for patients receiving immunotherapy alone, chemotherapy alone, or chemoimmunotherapy. TRIAL REGISTRATION NUMBER NCT03487666.
Collapse
Affiliation(s)
- Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan T Lynch
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Filipa Lynce
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Candace Mainor
- MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Claudine Isaacs
- Georgetown University, Washington, District of Columbia, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Philips S, Lu P, Fausel C, Wagner T, Jiang G, Shen F, Cantor E, Tran M, Roland LM, Schneider BP. Association of heightened host and tumor immunity with prolonged duration of response to checkpoint inhibition across solid tumors. Sci Rep 2025; 15:13195. [PMID: 40240402 PMCID: PMC12003766 DOI: 10.1038/s41598-025-96925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer immunotherapy is a beneficial therapy for many cancer types, but predictive pan-tumor biomarkers for clinical benefit are suboptimal. Our study, employing DNA and RNA based analysis, investigated the role of predicted neoantigens in the benefits of immunotherapy within a cohort of 88 patients of European descent with advanced solid tumors. Patients who had a prolonged (> 12 months) duration of immunotherapy exhibited heightened immune responses, characterized by increased levels of predicted neoantigens with strong HLA binding potential, elevated cytotoxic marker levels, and enhanced T cell activity. Furthermore, our analysis revealed associations between prolonged duration of therapy and rare variants, notably within the EPHA8 gene. These variants, exclusive to patients with a prolonged (> 12 months) duration of immunotherapy, suggest potential implications for immunotherapy response. In addition, the evolutionary conservation of these variants across vertebrate species underscores their functional importance in tumor biology and ultimately, treatment outcomes. Despite limitations in sample size and patient homogeneity, our findings emphasize the potential utility of understanding the molecular and immunological mechanisms underlying immunotherapy responses to further refine personalized treatment strategies.
Collapse
Affiliation(s)
- Santosh Philips
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Pei Lu
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Chris Fausel
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Thomas Wagner
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Guanglong Jiang
- Division of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Shen
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erica Cantor
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mya Tran
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Lauren M Roland
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Bryan P Schneider
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Division of Hematology/Oncology, Department of Medicine, Indiana University, 535 Barnhill Drive, RT 473, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Chang Z, Wang K, Fang Z, Tang Y, Gao X, Tang B. NanoTrackThera Platform for Real-Time, In Situ Monitoring of Tumor Immunotherapy and Photothermal Synergistic Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411705. [PMID: 39846357 DOI: 10.1002/smll.202411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Cancer is one of the leading causes of death worldwide, posing a significant threat to human health. Although immunotherapy has shown promise in cancer treatment, its efficacy is often compromised by tumor immune evasion, which hinders treatment outcomes. Therefore, combining immunotherapy with other therapeutic approaches to enhance its effectiveness has become an increasingly accepted strategy in clinical practice. In response to this need, a nanotechnology-based platform, NanoTrackThera (NTT), which enables both combination therapy and real-time efficacy diagnosis, is developed. Using nonsmall cell lung cancer (NSCLC) as a model, the NTT platform integrates immunotherapy and photothermal therapy (PTT) to enhance the activity of natural killer (NK) cells, employ immune checkpoint inhibitors, and leverage the heat generation from self-assembled nanoparticles under near-infrared (NIR) irradiation to directly kill cancer cells. Simultaneously, the nanoplatform incorporates dual detection capabilities through fluorescence imaging and photoacoustic imaging. With these multimodal imaging techniques, the platform can achieve real-time, in situ, tracking of tumor biomarker changes during treatment, providing precise feedback on the efficacy of the combined immunotherapy and photothermal therapy. The NTT platform significantly enhances therapeutic efficacy while enabling real-time monitoring of dynamic changes in key tumor biomarkers, providing a solution for personalized and adaptive precision therapy.
Collapse
Affiliation(s)
- Zixuan Chang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Keyi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zixian Fang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250014, P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
- Shandong Department, Laoshan Laboratory, 168Wenhai Middle Rd, Aoshanwei Jimo, Qingdao, 266237, P. R. China
| |
Collapse
|
4
|
Lo Tartaro D, Aramini B, Masciale V, Paschalidis N, Lofaro FD, Neroni A, Borella R, Santacroce E, Ciobanu AL, Samarelli AV, Boraldi F, Quaglino D, Dubini A, Gaudio M, Manzotti G, Reggiani F, Torricelli F, Ciarrocchi A, Neri A, Bertolini F, Dominici M, Filosso PL, Stella F, Gibellini L, De Biasi S, Cossarizza A. Metabolically activated and highly polyfunctional intratumoral VISTA + regulatory B cells are associated with tumor recurrence in early-stage NSCLC. Mol Cancer 2025; 24:16. [PMID: 39810191 PMCID: PMC11730485 DOI: 10.1186/s12943-024-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC. Our analysis revealed that TME contains diverse B cell clusters, including VISTA+ Bregs, with distinct metabolic and functional profiles. Target liquid chromatography-tandem mass spectrometry confirmed the expression of VISTA on B cells. VISTA+ Bregs displayed high metabolic demand and were able to produce different cytokines, including interleukin (IL)-10, transforming growth factor (TGF)-β, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Spatial analysis showed colocalization of B cells with CD4+/CD8+ T lymphocytes in TME. The computational analysis of intercellular communications that links ligands to target genes, performed by NicheNet, predicted B-T interactions via VISTA-PSGL-1 axis. Colocalization analyses revealed that PSGL-1 T cells and VISTA+ B cells are adjacent in the TME. Notably, tumor infiltrating CD8+ T cells expressing PSGL-1 exhibited enhanced metabolism and cytotoxicity. In NSCLC patients, prediction analysis performed by PENCIL revealed the presence of an association between PSGL-1+CD8+ T cells and VISTA+ Bregs with lung recurrence. Our findings suggest a potential interaction between Bregs and T cells through the VISTA-PSGL-1 axis, that could influence NSCLC recurrence.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/immunology
- Tumor Microenvironment/immunology
- B7 Antigens/metabolism
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Female
- Male
- Middle Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | | | | | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Bertolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pier Luigi Filosso
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
5
|
Zandhuis ND, Guislain A, Popalzij A, Engels S, Popović B, Turner M, Wolkers MC. Regulation of IFN-γ production by ZFP36L2 in T cells is time-dependent. Eur J Immunol 2024; 54:e2451018. [PMID: 38980256 DOI: 10.1002/eji.202451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
CD8+ T cells kill target cells by releasing cytotoxic molecules and proinflammatory cytokines, such as TNF and IFN-γ. The magnitude and duration of cytokine production are defined by posttranscriptional regulation, and critical regulator herein are RNA-binding proteins (RBPs). Although the functional importance of RBPs in regulating cytokine production is established, the kinetics and mode of action through which RBPs control cytokine production are not well understood. Previously, we showed that the RBP ZFP36L2 blocks the translation of preformed cytokine encoding mRNA in quiescent memory T cells. Here, we uncover that ZFP36L2 regulates cytokine production in a time-dependent manner. T cell-specific deletion of ZFP36L2 (CD4-cre) had no effect on T-cell development or cytokine production during early time points (2-6 h) of T-cell activation. In contrast, ZFP36L2 specifically dampened the production of IFN-γ during prolonged T-cell activation (20-48 h). ZFP36L2 deficiency also resulted in increased production of IFN-γ production in tumor-infiltrating T cells that are chronically exposed to antigens. Mechanistically, ZFP36L2 regulates IFN-γ production at late time points of activation by destabilizing Ifng mRNA in an AU-rich element-dependent manner. Together, our results reveal that ZFP36L2 employs different regulatory nodules in effector and memory T cells to regulate cytokine production.
Collapse
Affiliation(s)
- Nordin D Zandhuis
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Abeera Popalzij
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander Engels
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Branka Popović
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
6
|
Goswami M, Toney NJ, Pitts SC, Celades C, Schlom J, Donahue RN. Peripheral immune biomarkers for immune checkpoint inhibition of solid tumours. Clin Transl Med 2024; 14:e1814. [PMID: 39162097 PMCID: PMC11333946 DOI: 10.1002/ctm2.1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND With the rapid adoption of immunotherapy for the treatment of cancer comes the pressing need for readily accessible biomarkers to guide immunotherapeutic strategies and offer insights into outcomes with specific treatments. Regular sampling of solid tumour tissues outside of melanoma for immune monitoring is not often feasible; conversely, routine, frequent interrogation of circulating immune biomarkers is entirely possible. As immunotherapies and immune checkpoint inhibitors, in particular, are more widely used in first-line, neoadjuvant, and metastatic settings, the discovery and validation of peripheral immune biomarkers are urgently needed across solid tumour types for improved prediction and prognostication of clinical outcomes in response to immunotherapy, as well as elucidation of mechanistic underpinnings of the intervention. Careful experimental design, encompassing both retrospective and prospective studies, is required in such biomarker identification studies, and concerted efforts are essential for their advancement into clinical settings. CONCLUSION In this review, we summarize shared immune features between the tumour microenvironment and systemic circulation, evaluate exploratory peripheral immune biomarker studies, and discuss associations between candidate biomarkers with clinical outcomes. We also consider integration of multiple peripheral immune parameters for better prediction and prognostication and discuss considerations in study design to further evaluate the clinical utility of candidate peripheral immune biomarkers for immunotherapy of solid tumours. HIGHLIGHTS Peripheral immune biomarkers are critical for improved prediction and prognostication of clinical outcomes for patients with solid tumours treated with immune checkpoint inhibition. Candidate peripheral biomarkers, such as cytokines, soluble factors, and immune cells, have potential as biomarkers to guide immunotherapy of solid tumours. Multiple peripheral immune parameters may be integrated to improve prediction and prognostication. The potential of peripheral immune biomarkers to guide immunotherapy of solid tumours requires critical work in biomarker discovery, validation, and standardization.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Nicole J. Toney
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stephanie C. Pitts
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Carolina Celades
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jeffrey Schlom
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Renee N. Donahue
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
7
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Pandey A, Chopra S, Cleary SJ, López-Álvarez M, Quimby FM, Alanizi AAA, Sakhamuri S, Zhang N, Looney MR, Craik CS, Wilson DM, Evans MJ. Imaging the Granzyme Mediated Host Immune Response to Viral and Bacterial Pathogens In Vivo Using Positron Emission Tomography. ACS Infect Dis 2024; 10:2108-2117. [PMID: 38819300 DOI: 10.1021/acsinfecdis.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Understanding how the host immune system engages complex pathogens is essential to developing therapeutic strategies to overcome their virulence. While granzymes are well understood to trigger apoptosis in infected host cells or bacteria, less is known about how the immune system mobilizes individual granzyme species in vivo to combat diverse pathogens. Toward the goal of studying individual granzyme function directly in vivo, we previously developed a new class of radiopharmaceuticals termed "restricted interaction peptides (RIPs)" that detect biochemically active endoproteases using positron emission tomography (PET). In this study, we showed that secreted granzyme B proteolysis in response to diverse viral and bacterial pathogens could be imaged with [64Cu]Cu-GRIP B, a RIP that specifically targets granzyme B. Wild-type or germline granzyme B knockout mice were instilled intranasally with the A/PR/8/34 H1N1 influenza A strain to generate pneumonia, and granzyme B production within the lungs was measured using [64Cu]Cu-GRIP B PET/CT. Murine myositis models of acute bacterial (E. coli, P. aeruginosa, K. pneumoniae, and L. monocytogenes) infection were also developed and imaged using [64Cu]Cu-GRIP B. In all cases, the mice were studied in vivo using mPET/CT and ex vivo via tissue-harvesting, gamma counting, and immunohistochemistry. [64Cu]Cu-GRIP B uptake was significantly higher in the lungs of wild-type mice that received A/PR/8/34 H1N1 influenza A strain compared to mice that received sham or granzyme B knockout mice that received either treatment. In wild-type mice, [64Cu]Cu-GRIP B uptake was significantly higher in the infected triceps muscle versus normal muscle and the contralateral triceps inoculated with heat killed bacteria. In granzyme B knockout mice, [64Cu]Cu-GRIP B uptake above the background was not observed in the infected triceps muscle. Interestingly, live L. monocytogenes did not induce detectable granzyme B on PET, despite prior in vitro data, suggesting a role for granzyme B in suppressing their pathogenicity. In summary, these data show that the granzyme response elicited by diverse human pathogens can be imaged using PET. These results and data generated via additional RIPs specific for other granzyme proteases will allow for a deeper mechanistic study analysis of their complex in vivo biology.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Shalini Chopra
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Simon J Cleary
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Fiona M Quimby
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Aryn A A Alanizi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Sasank Sakhamuri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ningjing Zhang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Mark R Looney
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Darvishvand R, Rezaeifard S, Kiani R, Tahmasebi S, Faghih Z, Erfani N. Natural killer cell subsets and their functional molecules in peripheral blood of the patients with breast cancer. Immun Inflamm Dis 2024; 12:e1255. [PMID: 38652012 PMCID: PMC11037257 DOI: 10.1002/iid3.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells, CD3- lymphocytes, are critical players in cancer immune surveillance. This study aimed to assess two types of CD3- NK cell classifications (subsets), that is, convectional subsets (based on CD56 and CD16 expression) and new subsets (based on CD56, CD27, and CD11b expression), and their functional molecules in the peripheral blood of patients with breast cancer (BC) in comparison with healthy donors (HDs). METHODS Thirty untreated females with BC and 20 age-matched healthy women were enrolled. Peripheral blood samples were collected and directly incubated with fluorochrome-conjugated antibodies against CD3, CD56, CD16, CD27, CD11b, CD96, NKG2C, NKG2D, NKp44, CXCR3, perforin, and granzyme B. Red blood cells were then lysed using lysing solution, and the stained cells were acquired on four-color flow cytometer. RESULT Our results indicated 15% of lymphocytes in peripheral blood of patients with BC and HDs had NK cells phenotype. However, the frequency of total NK cells (CD3-CD56+), and NK subsets (based on conventional and new classifications) was not significantly different between patients and HDs. We observed mean fluorescent intensity (MFI) of CXCR3 in total NK cells (p = .02) and the conventional cytotoxic (CD3-CD56dim CD16+) NK cells (p = .03) were significantly elevated in the patients with BC compared to HDs. Despite this, the MFI of granzyme B expression in conventional regulatory (CD3-CD56brightCD16- /+) NK cells and CD3-CD56-CD16+ NK cells (p = .03 and p = .004, respectively) in the patients was lower than healthy subjects. CONCLUSION The higher expression of chemokine receptor CXCR3 on total NK cells in patients with BC may be associated with increased chemotaxis-related NK cell infiltration. However, lower expression of granzyme B in conventional regulatory NK cells and CD3-CD56-CD16+ NK cells in the patients compared to HDs suggests reduced cytotoxic activity of the NK cells in BC. These results might demonstrate accumulating NK subsets with a dysfunctional phenotype in the peripheral blood of patients with BC.
Collapse
Affiliation(s)
- Reza Darvishvand
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Somayeh Rezaeifard
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Razie Kiani
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Sedigheh Tahmasebi
- Breast Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | - Zahra Faghih
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| | - Nasrollah Erfani
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- School of Medicine, Shiraz Institute for Cancer ResearchShiraz University of Medical SciencesShirazIran
| |
Collapse
|
10
|
Tsai YT, Schlom J, Donahue RN. Blood-based biomarkers in patients with non-small cell lung cancer treated with immune checkpoint blockade. J Exp Clin Cancer Res 2024; 43:82. [PMID: 38493133 PMCID: PMC10944611 DOI: 10.1186/s13046-024-02969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 03/18/2024] Open
Abstract
The paradigm of non-small cell lung cancer (NSCLC) treatment has been profoundly influenced by the development of immune checkpoint inhibitors (ICI), but the range of clinical responses observed among patients poses significant challenges. To date, analyses of tumor biopsies are the only parameter used to guide prognosis to ICI therapy. Tumor biopsies, however, are often difficult to obtain and tissue-based biomarkers are limited by intratumoral heterogeneity and temporal variability. In response, there has been a growing emphasis on the development of "liquid biopsy"‒ derived biomarkers, which offer a minimally invasive means to dynamically monitor the immune status of NSCLC patients either before and/or during the course of treatment. Here we review studies in which multiple blood-based biomarkers encompassing circulating soluble analytes, immune cell subsets, circulating tumor DNA, blood-based tumor mutational burden, and circulating tumor cells have shown promising associations with the clinical response of NSCLC patients to ICI therapy. These investigations have unveiled compelling correlations between the peripheral immune status of patients both before and during ICI therapy and patient outcomes, which include response rates, progression-free survival, and overall survival. There is need for rigorous validation and standardization of these blood-based assays for broader clinical application. Integration of multiple blood-based biomarkers into comprehensive panels or algorithms also has the potential to enhance predictive accuracy. Further research aimed at longitudinal monitoring of circulating biomarkers is also crucial to comprehend immune dynamics and resistance mechanisms and should be used alongside tissue-based methods that interrogate the tumor microenvironment to guide treatment decisions and may inform on the development of novel therapeutic strategies. The data reviewed here reinforce the opportunity to refine patient stratification, optimize treatments, and improve outcomes not only in NSCLC but also in the wider spectrum of solid tumors undergoing immunotherapy.
Collapse
Affiliation(s)
- Yo-Ting Tsai
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Wang H, Mendez L, Morton G, Loblaw A, Chung HT, Cheung P, Mesci A, Escueta V, Petchiny TN, Huang X, White SD, Downes M, Vesprini D, Liu SK. Brachytherapy for high grade prostate cancer induces distinct changes in circulating CD4 and CD8 T cells - Implications for systemic control. Radiother Oncol 2024; 191:110077. [PMID: 38176656 DOI: 10.1016/j.radonc.2023.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
This exploratory study is a follow up to our previous investigation of immune response in the circulation of high-grade Gleason 9 prostate cancer patients treated with EBRT + BT compared to EBRT alone. Notably, EBRT + BT demonstrates the potential to elicit an effect on CD4/CD8 ratio which may have attributed to improved clinical response to therapy. Our findings show promise for leveraging circulating immune cells as predictive biomarkers for radiotherapy response.
Collapse
Affiliation(s)
- H Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - L Mendez
- Division of Radiation Oncology, London Regional Cancer Program, London, ON, Canada
| | - G Morton
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - A Loblaw
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, Toronto, ON, Canada
| | - H T Chung
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - P Cheung
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - A Mesci
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - V Escueta
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - T N Petchiny
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - X Huang
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - S D White
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - M Downes
- Division of Anatomic Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - D Vesprini
- Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - S K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Kim H, Lee E, Cho H, Kim E, Jang WI, Yang K, Lee YJ, Kim TJ, Kim MS. Five-Day Spacing of Two Fractionated Ablative Radiotherapies Enhances Antitumor Immunity. Int J Radiat Oncol Biol Phys 2024; 118:498-511. [PMID: 37717785 DOI: 10.1016/j.ijrobp.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE This study aimed to enhance tumor control and abscopal effects by applying diverse stereotactic ablative radiation therapy (SABR) schedules. METHODS AND MATERIALS FSaII, CT-26, and 4T1 cells were used for tumor growth delay and lung metastases analysis after 1- or 5-day intervals radiation therapy (RT) with 40, 20, and 20 Gy, respectively. Immunodeficient BALB/c-nude, immunocompetent C3H, and BALB/c mouse models were used. For immune monitoring, FSaII tumors were analyzed using flow cytometry, immunofluorescence staining, and real-time quantitative reverse transcription polymerase chain reaction. The spleens were used for the ELISpot assay and flow cytometry to determine effector CD8 T cells. For abscopal effect analysis in CT-26 tumors, the volume of the nonirradiated secondary tumors was measured after primary tumors were irradiated with 1-day or 5-day intervals. RESULTS Contrary to the high-dose 1-day interval RT, the 5-day interval RT significantly delayed tumor growth in immunocompetent mice, which was not observed in immunodeficient mice. In addition, the 5-day interval RT significantly reduced the number of lung metastases in FSaII and CT-26 tumors. Five-day spacing was more effective than 1-day interval in enhancing the antitumor immunity via increasing the secretion of tumor-specific IFN-γ, activating the CD8 T cells, and suppressing the monocytic myeloid-derived suppressor cells. The 5-day spacing inhibited nonirradiated secondary tumor growth more effectively than did the 1-day interval. CONCLUSIONS Compared with the 1-day interval RT, the 5-day interval RT scheme demonstrated enhanced antitumor immunity of CD8 T cells associated with inhibition of myeloid-derived suppressor cells. Enhancing antitumor immunity leads to significant improvements in both primary tumor control and the abscopal effect.
Collapse
Affiliation(s)
| | - Eunju Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Haeun Cho
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea
| | - Eunji Kim
- Departments of Radiation Oncology and
| | | | | | - Yoon-Jin Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae-Jin Kim
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| | - Mi-Sook Kim
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
13
|
de Joode K, Heersche N, Basak EA, Bins S, van der Veldt AAM, van Schaik RHN, Mathijssen RHJ. Review - The impact of pharmacogenetics on the outcome of immune checkpoint inhibitors. Cancer Treat Rev 2024; 122:102662. [PMID: 38043396 DOI: 10.1016/j.ctrv.2023.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The development of immune checkpoint inhibitors (ICIs) has a tremendous effect on the treatment options for multiple types of cancer. Nonetheless, there is a large interpatient variability in response, survival, and the development of immune-related adverse events (irAEs). Pharmacogenetics is the general term for germline genetic variations, which may cause the observed interindividual differences in response or toxicity to treatment. These genetic variations can either be single-nucleotide polymorphisms (SNPs) or structural variants, such as gene deletions, amplifications or rearrangements. For ICIs, pharmacogenetic variation in the human leukocyte antigen molecules has also been studied with regard to treatment outcome. This review presents a summary of the literature regarding the pharmacogenetics of ICI treatment, discusses the most important known genetic variations and offers recommendations on the application of pharmacogenetics for ICI treatment.
Collapse
Affiliation(s)
- Karlijn de Joode
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Niels Heersche
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Clinical Chemistry, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Edwin A Basak
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, Erasmus University Hospital, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Li R, Zhan Y, Ding X, Cui J, Han Y, Zhang J, Zhang J, Li W, Wang L, Jiang J. Cancer Differentiation Inducer Chlorogenic Acid Suppresses PD-L1 Expression and Boosts Antitumor Immunity of PD-1 Antibody. Int J Biol Sci 2024; 20:61-77. [PMID: 38164171 PMCID: PMC10750284 DOI: 10.7150/ijbs.83599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/29/2023] [Indexed: 01/03/2024] Open
Abstract
As immune checkpoint inhibitors have shown good clinical efficacy, immune checkpoint blockade has become a vital strategy in cancer therapy. However, approximately only 12.5% patients experience benefits from immunotherapy. Herein, we identified the cancer differentiation inducer chlorogenic acid (CGA, now in the phase II clinical trial in China for glioma treatment) to be a small-molecular immune checkpoint inhibitor that boosted the antitumor effects of the anti-PD-1 antibody. CGA suppressed the expression of PD-L1 induced by interferon-γ in tumor cell culture through inhibition of the p-STAT1-IRF1 pathway and enhanced activity of activated T-cells. In two murine tumor xenografts, combination therapy of CGA with anti-PD-1 antibody decreased the expression of PD-L1 and IRF1 and increased the inhibitory effect of the anti-PD-1 antibody on tumor growth. Particularly, the activity of tumor infiltrated T cells was enhanced by CGA. CGA improved the gene expression of granzymes in tumor-infiltrated immune cells. In conclusion, through induction of differentiation, CGA appeared to suppress the expression of PD-L1 on cancer cells, effectively promoting infiltrated T cells in the tumor and boosting the antitumor effect of the anti-PD-1 antibody. Thus, CGA might serve as a promising agent to enhance anticancer immunotherapy if combined with anti-PD-1 antibodies.
Collapse
Affiliation(s)
- Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yun Zhan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao Ding
- State Key Latoratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Zhang
- Jiuzhang Biochemical Engineering Science and Technology Development Co., Ltd, Chengdu, Sichuan, 610041, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Ma C. A Novel Gene Signature based on Immune Cell Infiltration Landscape Predicts Prognosis in Lung Adenocarcinoma Patients. Curr Med Chem 2024; 31:6319-6335. [PMID: 38529604 DOI: 10.2174/0109298673293174240320053546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) is created by the tumor and dominated by tumor-induced interactions. Long-term survival of lung adenocarcinoma (LUAD) patients is strongly influenced by immune cell infiltration in TME. The current article intends to construct a gene signature from LUAD ICI for predicting patient outcomes. METHODS For the initial phase of the study, the TCGA-LUAD dataset was chosen as the training group for dataset selection. We found two datasets named GSE72094 and GSE68465 in the Gene Expression Omnibus (GEO) database for model validation. Unsupervised clustering was performed on the training cohort patients using the ICI profiles. We employed Kaplan-Meier estimators and univariate Cox proportional-hazard models to identify prognostic differentially expressed genes in immune cell infiltration (ICI) clusters. These prognostic genes are then used to develop a LASSO Cox model that generates a prognostic gene signature. Validation was performed using Kaplan-Meier estimation, Cox, and ROC analysis. Our signature and vital immune-relevant signatures were analyzed. Finally, we performed gene set enrichment analysis (GSEA) and immune infiltration analysis on our finding gene signature to further examine the functional mechanisms and immune cellular interactions. RESULTS Our study found a sixteen-gene signature (EREG, HPGDS, TSPAN32, ACSM5, SFTPD, SCN7A, CCR2, S100P, KLK12, MS4A1, INHA, HOXB9, CYP4B1, SPOCK1, STAP1, and ACAP1) to be prognostic based on data from the training cohort. This prognostic signature was certified by Kaplan-Meier, Cox proportional-hazards, and ROC curves. 11/15 immune-relevant signatures were related to our signature. The GSEA results indicated our gene signature strongly correlates with immune-related pathways. Based on the immune infiltration analysis findings, it can be deduced that a significant portion of the prognostic significance of the signature can be attributed to resting mast cells. CONCLUSION We used bioinformatics to determine a new, robust sixteen-gene signature. We also found that this signature's prognostic ability was closely related to the resting mast cell infiltration of LUAD patients.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Li X, Chen G, Wu K, Zheng H, Tian Z, Xu Z, Zhao W, Weng J, Min Y. Imaging and monitoring of granzyme B in the immune response. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1928. [PMID: 37715320 DOI: 10.1002/wnan.1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Significant progress has been made in tumor immunotherapy that uses the human immune response to kill and remove tumor cells. However, overreactive immune response could lead to various autoimmune diseases and acute rejection. Accurate and specific monitoring of immune responses in these processes could help select appropriate therapies and regimens for the patient and could reduce the risk of side effects. Granzyme B (GzmB) is an ideal biomarker for immune response, and its peptide substrate could be coupled with fluorescent dyes or contrast agents for the synthesis of imaging probes activated by GzmB. These small molecules and nanoprobes based on PET, bioluminescence imaging, or fluorescence imaging have proved to be highly GzmB specific and accuracy. This review summarizes the design of different GzmB-responsive imaging probes and their applications in monitoring of tumor immunotherapy and overreactive immune response. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiangxia Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Kecheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Haocheng Zheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Zuotong Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weidong Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
17
|
Rui M, Zhang W, Mi K, Ni H, Ji W, Yu X, Qin J, Feng C. Design and evaluation of α-helix-based peptide inhibitors for blocking PD-1/PD-L1 interaction. Int J Biol Macromol 2023; 253:126811. [PMID: 37690647 DOI: 10.1016/j.ijbiomac.2023.126811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The current research in tumor immunotherapy indicates that blocking the protein-protein interaction (PPI) between PD-1 and its ligand, PD-L1, may be one of the most effective treatments for cancer patients. The α-helix is a common elements of protein secondary structure and is often involved in protein interaction. Thus, α-helix-based peptides could mimic proteins involved in such interactions and are also capable of modulating PPI in vivo. In this study, starting from a potential α-helix-rich protein, we designed a series of α-helix-based peptide candidates to block PD-1/PD-L1 interaction. These candidates were first screened using molecular docking and molecular dynamics simulations, and then their capacities to inhibit PD-1/PD-L1 interactions and to restore antitumor immune activities were investigated using the HTRF assay, SPR assay, cellular co-culture experiments and animal model experiments. Two peptides exhibited the best anti-tumor effects and the strong ability to restore the immunity of tumor-infiltrating T-cells. Further D-amino acid substitution was employed to improve the serum stability of peptide candidate, making the intravenous administration easier while maintaining the therapeutic efficacy. The resultant peptides showed promise as checkpoint inhibitors for application in tumor immunotherapy. These findings suggested that our strategy for developing peptides starting from an α-helical structure could be used in the design of bioactive inhibitors to potential block protein-protein interactions.
Collapse
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Ke Mi
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Hairong Ni
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Xuefei Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, PR China
| | - Jiangjiang Qin
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China
| | - Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, PR China.
| |
Collapse
|
18
|
Kinoshita F, Takada K, Wakasu S, Saito S, Hashinokuchi A, Matsudo K, Nagano T, Akamine T, Kohno M, Takenaka T, Shimokawa M, Oda Y, Yoshizumi T. Granzyme B (GZMB)-Positive Tumor-Infiltrating Lymphocytes in Lung Adenocarcinoma: Significance as a Prognostic Factor and Association with Immunosuppressive Proteins. Ann Surg Oncol 2023; 30:7579-7589. [PMID: 37587364 DOI: 10.1245/s10434-023-14085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Granzyme B (GZMB) is a serine protease produced by cytotoxic lymphocytes that reflects the activity of anti-tumor immune responses in tumor-infiltrating lymphocytes (TILs); however, the prognostic significance of GZMB+ TILs in lung adenocarcinoma is poorly understood. METHODS We analyzed 273 patients with pathological stage (pStage) I-IIIA lung adenocarcinoma who underwent surgery at Kyushu University from 2003 to 2012. We evaluated GZMB+ TIL counts by immunohistochemistry. We set the cut-off values at 12 cells/0.04 mm2 for GZMB+ TILs and divided the patients into GZMB-High (n = 171) and GZMB-Low (n = 102) groups. Then, we compared the clinicopathological characteristics of the two groups and clinical outcomes. Programmed cell death ligand-1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1) expression in tumor cells was also evaluated, and combined prognostic analyses of GZMB+ TILs with PD-L1 or IDO1 were performed. RESULTS GZMB-Low was significantly associated with pStage II-III, PD-L1 positivity, and IDO1 positivity. Disease-free survival (DFS) and overall survival (OS) in the GZMB-Low group were significantly worse than in the GZMB-High group. In multivariable analysis, GZMB-Low was an independent prognostic factor for both DFS and OS. Furthermore, combined prognostic analyses of GZMB+ TILs with PD-L1 or IDO1 showed that GZMB-Low with high expression of these immunosuppressive proteins had the worst prognosis. CONCLUSIONS We analyzed GZMB+ TIL counts in lung adenocarcinoma and elucidated its prognostic significance and association with PD-L1 and IDO1. GZMB+ TIL counts might reflect the patient's immunity against cancer cells and could be a useful prognostic marker of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Sho Wakasu
- Department of Thoracic Surgery, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shunichi Saito
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoto Matsudo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Scheffschick A, Nenonen J, Xiang M, Winther AH, Ehrström M, Wahren-Herlenius M, Eidsmo L, Brauner H. Skin infiltrating NK cells in cutaneous T-cell lymphoma are increased in number and display phenotypic alterations partially driven by the tumor. Front Immunol 2023; 14:1168684. [PMID: 37691935 PMCID: PMC10485839 DOI: 10.3389/fimmu.2023.1168684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are characterized by focal infiltration of malignant T cell clones in solitary skin lesions. Many CTCL patients experience an indolent disease, but some progress to advanced disease with high fatality. We hypothesized that natural killer (NK) cells participate in local control of tumor growth in CTCL skin. Immunohistochemistry and flow cytometry analysis of the density, localization, phenotype and function of NK cells in twenty-nine fresh or formalin-fixed skin biopsies from twenty-four CTCL patients and twenty-three biopsies from twenty healthy controls highlighted higher numbers of CD56+CD3- NK cells in CTCL skin. A reduced fraction of CTCL skin NK cells expressed the maturation marker CD57, the cytotoxic protein granzyme B and the activation marker CD69, indicating reduced tumor-killing abilities of the NK cells. Retained expression of immune checkpoint proteins or inhibitory proteins including PD1, TIM3, LAG3, CD73 and NKG2A and the activating receptors CD16 and NKp46 indicated maintained effector functions. Indeed, the capacity of NK cells to produce anti-tumor acting IFNγ upon PMA+ionomycin stimulation was similar in cells from CTCL and healthy skin. Co-cultures of primary human NK cells or the NK cell line NKL with CTCL cells resulted in reduced levels of granzyme B and CD69, indicating that close cellular interactions with CTCL cells induced the impaired functional NK cell phenotype. In conclusion, increased numbers of NK cells in CTCL skin exhibit a partially impaired phenotype in terms of activity. Enhancing NK cell activity with NK cell activating cytokines such as IL-15 or immune checkpoint blockade therefore represents a potential immunotherapeutic approach in CTCL.
Collapse
Affiliation(s)
- Andrea Scheffschick
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Nenonen
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mengmeng Xiang
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H. Winther
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- The Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hanna Brauner
- Division of Rheumatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Leung ELH, Li RZ, Fan XX, Wang LY, Wang Y, Jiang Z, Huang J, Pan HD, Fan Y, Xu H, Wang F, Rui H, Wong P, Sumatoh H, Fehlings M, Nardin A, Gavine P, Zhou L, Cao Y, Liu L. Longitudinal high-dimensional analysis identifies immune features associating with response to anti-PD-1 immunotherapy. Nat Commun 2023; 14:5115. [PMID: 37607911 PMCID: PMC10444872 DOI: 10.1038/s41467-023-40631-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1β, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China.
| | - Run-Ze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa Macau (SAR), China
| | | | - Yan Wang
- Merck Sharp & Dohme, Shanghai, China
| | - Zebo Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa Macau (SAR), China
| | - Jumin Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute of Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa Macau (SAR), China
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, China
| | - Yue Fan
- Janssen Research & Development, Shanghai, China
| | - Hongmei Xu
- Janssen Research & Development, Shanghai, China
| | - Feng Wang
- Janssen Research & Development, Shanghai, China
| | - Haopeng Rui
- Janssen Research & Development, Shanghai, China
| | - Piu Wong
- HiFiBio Therapeutics, Hongkong, China
| | | | | | | | - Paul Gavine
- Janssen Research & Development, Shanghai, China
| | - Longen Zhou
- Janssen Research & Development, Shanghai, China
| | | | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong, China.
| |
Collapse
|
21
|
Ma C, Li F, Gu Z, Yang Y, Qi Y. A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma. Front Pharmacol 2023; 14:1146840. [PMID: 37670938 PMCID: PMC10475834 DOI: 10.3389/fphar.2023.1146840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor immunity formation and patient-tailored treatment optimization of lung adenocarcinoma (LUAD) is still unclear. Methods: RNA sequencing and survival data of LUAD patients were downloaded from The Cancer Genome Atlas (TCGA) database for model training. The patients with LUAD in GSE29013, GSE30219, GSE31210, GSE37745, and GSE50081 were used for validation. The proofed cuproptosis-related genes were extracted from the previous studies. The Pearson correlation was applied to select cuproptosis-related lncRNAs. We chose differentially expressed cuproptosis-related lncRNAs in the tumor and normal tissues and allowed them to go to a Cox regression and a LASSO regression for a lncRNA signature that predicts the LUAD prognosis. Kaplan-Meier estimator, Cox model, ROC, tAUC, PCA, nomogram predictor, decision curve analysis, and real-time PCR were further deployed to confirm the model's accuracy. We examined this model's link to other regulated cell death forms. Applying TMB, immune-related signatures, and TIDE demonstrated the immunotherapeutic capabilities of signatures. We evaluated the relationship of our signature to anticancer drug sensitivity. GSEA, immune infiltration analysis, and function experiments further investigated the functional mechanisms of the signature and the role of immune cells in the prognostic power of the signature. Results: An eight-lncRNA signature (TSPOAP1-AS1, AC107464.3, AC006449.7, LINC00324, COLCA1, HAGLR, MIR4435-2HG, and NKILA) was built and demonstrated owning prognostic power by applied to the validation cohort. Each signature gene was confirmed differentially expressed in the real world by real-time PCR. The eight-lncRNA signature correlated with 2321/3681 (63.05%) apoptosis-related genes, 11/20 (55.00%) necroptosis-related genes, 34/50 (68.00%) pyroptosis-related genes, and 222/380 (58.42%) ferroptosis-related genes. Immunotherapy analysis suggested that our signature may have utility in predicting immunotherapy efficacy in patients with LUAD. Mast cells were identified as key players that support the predicting capacity of the eight-lncRNA signature through the immune infiltrating analysis. Conclusion: In this study, an eight-lncRNA signature linked to cuproptosis was identified, which may improve LUAD management strategies. This signature may possess the ability to predict the effect of LUAD immunotherapy. In addition, infiltrating mast cells may affect the signature's prognostic power.
Collapse
Affiliation(s)
| | | | | | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Flies DB, Langermann S, Jensen C, Karsdal MA, Willumsen N. Regulation of tumor immunity and immunotherapy by the tumor collagen extracellular matrix. Front Immunol 2023; 14:1199513. [PMID: 37662958 PMCID: PMC10470046 DOI: 10.3389/fimmu.2023.1199513] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
It has been known for decades that the tumor extracellular matrix (ECM) is dysfunctional leading to loss of tissue architecture and promotion of tumor growth. The altered ECM and tumor fibrogenesis leads to tissue stiffness that act as a physical barrier to immune cell infiltration into the tumor microenvironment (TME). It is becoming increasingly clear that the ECM plays important roles in tumor immune responses. A growing body of data now indicates that ECM components also play a more active role in immune regulation when dysregulated ECM components act as ligands to interact with receptors on immune cells to inhibit immune cell subpopulations in the TME. In addition, immunotherapies such as checkpoint inhibitors that are approved to treat cancer are often hindered by ECM changes. In this review we highlight the ways by which ECM alterations affect and regulate immunity in cancer. More specifically, how collagens and major ECM components, suppress immunity in the complex TME. Finally, we will review how our increased understanding of immune and immunotherapy regulation by the ECM is leading towards novel disruptive strategies to overcome immune suppression.
Collapse
|
23
|
Hallisey M, Dennis J, Gabriel EP, Masciarelli A, Chen J, Abrecht C, Brainard M, Marcotte WM, Dong H, Hathaway E, Tarannum M, Vergara JA, Schork AN, Tyan K, Tarantino G, Liu D, Romee R, Rahma OE, Severgnini M, Hodi FS, Baginska J. Profiling of Natural Killer Interactions With Cancer Cells Using Mass Cytometry. J Transl Med 2023; 103:100174. [PMID: 37169083 DOI: 10.1016/j.labinv.2023.100174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
We developed a comprehensive method for functional assessment of the changes in immune populations and killing activity of peripheral blood mononuclear cells after cocultures with cancer cells using mass cytometry. In this study, a 43-marker mass cytometry panel was applied to a coculture of immune cells from healthy donors' peripheral blood mononuclear cells with diverse cancer cell lines. DNA content combined with classical CD45 surface staining was used as gating parameters for cocultures of immune cells (CD45high/DNAlow) with hematological (CD45low/DNAhigh) and solid cancer cell lines (CD45neg/DNAhigh). This strategy allows for universal discrimination of cancer cells from immune populations without the need for a specific cancer cell marker and simultaneous assessment of phenotypical changes in both populations. The use of mass cytometry allows for simultaneous detection of changes in natural killer, natural killer T cell, and T cell phenotypes and degranulation of immune populations upon target recognition, analysis of target cells for cytotoxic protein granzyme B content, and cancer cell death. These findings have broad applicability in research and clinical settings with the aim to phenotype and assess functional changes following not only NK-cancer cell interactions but also the effect of those interactions on other immune populations.
Collapse
Affiliation(s)
- Margaret Hallisey
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jenna Dennis
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth P Gabriel
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alyssa Masciarelli
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jiajia Chen
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Charlotte Abrecht
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Martha Brainard
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William M Marcotte
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emma Hathaway
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mubin Tarannum
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Juliana A Vergara
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Abigail N Schork
- Longwood Medical Area CyTOF Core, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin Tyan
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Tarantino
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David Liu
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Rizwan Romee
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Osama E Rahma
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Mariano Severgnini
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joanna Baginska
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
24
|
Wang X, Yang X, Wang J, Dong C, Ding J, Wu M, Wang Y, Ding H, Zhang H, Sang X, Zhao H, Huo L. Metabolic Tumor Volume Measured by 18F-FDG PET/CT is Associated with the Survival of Unresectable Hepatocellular Carcinoma Treated with PD-1/PD-L1 Inhibitors Plus Molecular Targeted Agents. J Hepatocell Carcinoma 2023; 10:587-598. [PMID: 37063093 PMCID: PMC10094465 DOI: 10.2147/jhc.s401647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Purpose The combination of PD-1/PD-L1 inhibitors and molecular targeted agents showed promising efficacy for unresectable hepatocellular carcinoma (uHCC). This study aimed to investigate the prognostic value of metabolic parameters from 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) in patients with uHCC underwent the combined therapies. Patients and Methods Patients with uHCC treated with a combination of immunotherapy and targeted therapy who underwent baseline 18F-FDG PET/CT between July 2018 and December 2021 were recruited retrospectively. The metabolic tumor volume (MTV), total lesion glycolysis (TLG), maximum standardized uptake values (SUVmax), and clinical and biological parameters were recorded. A multivariate prediction model was developed for overall survival (OS) using these parameters together with clinical prognostic factors. Results Seventy-seven patients were finally included. The median OS was 16.8 months. We found that a high MTV (≥39.65 cm3 as the median value) was significantly associated with OS (P<0.05). In multivariate analyses for OS, a high MTV, high Eastern Cooperative Oncology Group performance status (ECOG-PS, ≥1), Child-Pugh (B-C) grade, and the presence of bone metastasis were significantly associated with poor OS (HR 1.371, HR 3.73, HR 15.384, and HR 2.994, all P<0.05, respectively). A multivariate prognostic model including MTV and prognostic factors, such as ECOG-PS, Child-Pugh grade, and bone metastasis, further improved the identification of different OS subgroups. Conclusion High MTV is an adverse prognostic factor in patients with uHCC treated with a combination of immunotherapy and molecular targeted agents. Integrating PET/CT parameters with clinical prognostic factors could help to personalize immunotherapy.
Collapse
Affiliation(s)
- Xuezhu Wang
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jingnan Wang
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chengyan Dong
- GE Healthcare China, Beijing, People’s Republic of China
| | - Jie Ding
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Meiqi Wu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haiyan Ding
- Department of Biomedical Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Hui Zhang
- Department of Biomedical Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Li Huo; Haitao Zhao, #1 Shuaifuyuan, Dongcheng District, Beijing, People’s Republic of China, Tel +86 13910801986; +86 13901246374, Email ;
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Li Huo; Haitao Zhao, #1 Shuaifuyuan, Dongcheng District, Beijing, People’s Republic of China, Tel +86 13910801986; +86 13901246374, Email ;
| |
Collapse
|
25
|
Brunell AE, Lahesmaa R, Autio A, Thotakura AK. Exhausted T cells hijacking the cancer-immunity cycle: Assets and liabilities. Front Immunol 2023; 14:1151632. [PMID: 37122741 PMCID: PMC10140554 DOI: 10.3389/fimmu.2023.1151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
T cell exhaustion is an alternative differentiation path of T cells, sometimes described as a dysfunction. During the last decade, insights of T cell exhaustion acting as a bottle neck in the field of cancer immunotherapy have undoubtedly provoked attention. One of the main drivers of T cell exhaustion is prolonged antigen presentation, a prerequisite in the cancer-immunity cycle. The umbrella term "T cell exhaustion" comprises various stages of T cell functionalities, describing the dynamic, one-way exhaustion process. Together these qualities of T cells at the exhaustion continuum can enable tumor clearance, but if the exhaustion acquired timeframe is exceeded, tumor cells have increased possibilities of escaping immune system surveillance. This could be considered a tipping point where exhausted T cells switch from an asset to a liability. In this review, the contrary role of exhausted T cells is discussed.
Collapse
Affiliation(s)
- Anna E. Brunell
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anu Autio
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Anil K. Thotakura
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
- *Correspondence: Anil K. Thotakura,
| |
Collapse
|
26
|
Blanck G. Time to consider sequencing anti-inflammatory treatments with chemotherapy and immuno-stimulation? Front Immunol 2022; 13:1082142. [PMID: 36618422 PMCID: PMC9817152 DOI: 10.3389/fimmu.2022.1082142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States,*Correspondence: George Blanck,
| |
Collapse
|
27
|
A Novel Defined Pyroptosis-Related Gene Signature for Predicting the Prognosis of Endometrial Cancer. DISEASE MARKERS 2022; 2022:7570494. [PMID: 36601599 PMCID: PMC9806687 DOI: 10.1155/2022/7570494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/15/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Endometrial carcinoma (EC) is the second major female genital malignancy. Genetic signatures may be an improved choice to predict the prognosis of EC patients. The relationship between pyroptosis and tumours has attracted much attention in recent years. Here, we constructed a new pyroptosis-related gene (PRG) signature for predicting the prognosis of EC. In this study, gene data and clinical information of EC patients were obtained from The Cancer Genome Atlas (TCGA). Following the identification of PRGs correlated with EC prognosis, we further investigate the bioinformatics functions of these PRGs by univariate Cox regression analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we used the least absolute contraction and selection operator (LASSO) regression and multiple Cox regression analysis to construct a new PRG signature that contains seven PRGs (NFKB1, EEF2K, CTSV, MDM2, GZMB, PANX1, and PTEN) and performed the Kaplan-Meier (K-M) analysis, receiver operating characteristic curve (ROC) analysis, and principal component analysis (PCA) to evaluate the prognostic value of our novel PRG signature. Finally, we assessed the correlations between pyroptosis and immune cells/checkpoints through the CIBERSORT tool and single-sample gene set enrichment analysis (ssGSEA). The result suggested that our signature was powerful in predicting EC prognosis and may play a part in assessing response to immunotherapy in EC patients. In conclusion, our study established a novel PRG signature for EC, which can be used as an effective prognostic marker in clinical practice in the future.
Collapse
|
28
|
Incidence, risk factors and prognosis of acute kidney injury in patients treated with immune checkpoint inhibitors: a retrospective study. Sci Rep 2022; 12:18752. [PMID: 36335144 PMCID: PMC9637155 DOI: 10.1038/s41598-022-21912-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) change the prognosis of many cancer patients. With the increasing use of ICIs, immune-related adverse events are occurring, including acute kidney injury (AKI). This study aimed to assess the incidence of AKI during ICI treatment and its risk factors and impact on mortality. Patients treated with ICIs at the First Medical Center of the Chinese PLA General Hospital from January 1, 2014, to December 30, 2019, were consecutively enrolled, and risk factors affecting AKI development in patients treated with ICIs were analyzed using univariate and multivariate logistic regression. Medical record surveys and telephone inquiry were used for follow-up, and Kaplan-Meier survival analysis and Cox regression were used to analyze independent risk factors for death. Among 1615 patients, 114 (7.1%) had AKI. Multivariate logistic regression analysis showed that anemia, Alb < 30 g/L, antibiotic use, diuretic use, NSAID use and proton pump inhibitor use were independent risk factors for AKI development in patients treated with ICIs. Stage 2 or 3 AKI was an independent risk factor for nonrecovery of renal function after AKI onset. Multivariate Cox regression analysis showed that anemia, Alb < 30 g/L, AKI occurrence, and diuretic use were independent risk factors for death in patients treated with ICIs, while high baseline BMI, other tumor types, ACEI/ARB use, and chemotherapy use were protective factors for patient death. AKI occurs in 7.1% of patients treated with ICIs. Anemia, Alb < 30 g/L, and combined medication use are independent risk factors for AKI in patients treated with ICIs. Anemia, Alb < 30 g/L, AKI occurrence, and diuretic use were independent risk factors for death in patients treated with ICIs.
Collapse
|
29
|
Heterogeneity and Differentiation Trajectories of Infiltrating CD8+ T Cells in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14215183. [PMID: 36358600 PMCID: PMC9658355 DOI: 10.3390/cancers14215183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) play a crucial role in establishing anti-tumor immunotherapy. The number of CD8+ T cells affects the treatment response, but their functional status plays a more critical role, and this global landscape is still unclear. We divided CD8+ T cells into ten subsets by analyzing a LUAD single-cell dataset. The dynamic process of cell differentiation and functional exhaustion of CD8+ T cells was further discussed, and potential biomarkers in this process were screened. This study deepens the understanding of the heterogeneity of infiltrating CD8+ T cells in LUAD, and the prognostic marker provides a new target for targeted therapy and immunotherapy in LUAD patients. Abstract CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) are critical for establishing antitumor immunity. Nevertheless, the global landscape of their numbers, functional status, and differentiation trajectories remains unclear. In the single-cell RNA-sequencing (scRNA-seq) dataset GSE131907 of LUAD, the CD8+T cells were selected for TSNE clustering, and the results showed that they could be divided into ten subsets. The cell differentiation trajectory showed the presence of abundant transition-state CD8+ T cells during the differentiation of naive-like CD8+ T cells into cytotoxic CD8+ T cells and exhausted CD8+ T cells. The differentially expressed marker genes among subsets were used to construct the gene signature matrix, and the proportion of each subset was identified and calculated in The Cancer Genome Atlas (TCGA) samples. Survival analysis showed that the higher the proportion of the exhausted CD8+ T lymphocyte (ETL) subset, the shorter the overall survival (OS) time of LUAD patients (p = 0.0098). A total of 61 genes were obtained by intersecting the differentially expressed genes (DEGs) of the ETL subset, and the DEGs of the TCGA samples were divided into a high and a low group according to the proportion of the ETL subset. Through protein interaction network analysis and survival analysis, four hub genes that can significantly affect the prognosis of LUAD patients were finally screened, and RT-qPCR and Western blot verified the differential expression of the above four genes. Our study further deepens the understanding of the heterogeneity and functional exhaustion of infiltrating CD8+ T cells in LUAD. The screened prognostic marker genes provide potential targets for targeted therapy and immunotherapy in LUAD patients.
Collapse
|
30
|
Ma C, Li F, He Z, Zhao S. A more novel and powerful prognostic gene signature of lung adenocarcinoma determined from the immune cell infiltration landscape. Front Surg 2022; 9:1015263. [PMID: 36311939 PMCID: PMC9606711 DOI: 10.3389/fsurg.2022.1015263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the leading histological subtype of lung cancer worldwide, causing high mortality each year. The tumor immune cell infiltration (ICI) is closely associated with clinical outcome with LUAD patients. The present study was designed to construct a gene signature based on the ICI of LUAD to predict prognosis. Methods Downloaded the raw data of three cohorts of the TCGA-LUAD, GSE72094, and GSE68465 and treat them as training cohort, validation cohort one, and validation cohort two for this research. Unsupervised clustering detailed grouped LUAD cases of the training cohort based on the ICI profile. The univariate Cox regression and Kaplan-Meier was adopted to identify potential prognostic genes from the differentially expressed genes recognized from the ICI clusters. A risk score-based prognostic signature was subsequently developed using LASSO-penalized Cox regression analysis. The Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS were constructed to assess the ability to predict the prognosis and effects of clinical variables in another two independent validation cohorts. More innovatively, we searched similar papers in the most recent year and made comprehensive comparisons with ours. GSEA was used to discover the related signaling pathway. The immune relevant signature correlation identification and immune infiltrating analysis were used to evaluate the potential role of the signature for immunotherapy and recognize the critical immune cell that can influence the signature's prognosis capability. Results A signature composed of thirteen gene including ABCC2, CCR2, CERS4, CMAHP, DENND1C, ECT2, FKBP4, GJB3, GNG7, KRT6A, PCDH7, PLK1, and VEGFC, was identified as significantly associated with the prognosis in LUAD patients. The thirteen-gene signature exhibited independence in evaluating the prognosis of LUAD patients in our training and validation cohorts. Compared to our predecessors, our model has an advantage in predictive power. Nine well know immunotherapy targets, including TBX2, TNF, CTLA4, HAVCR2, GZMB, CD8A, PRF1, GZMA, and PDCD1 were recognized correlating with our signature. The mast cells were found to play vital parts in backing on the thirteen-gene signature's outcome predictive capacity. Conclusions Collectively, the current study indicated a robust thirteen-gene signature that can accurately predict LUAD prognosis, which is superior to our predecessors in predictive ability. The immune relevant signatures, TBX2, TNF, CTLA4, HAVCR2, GZMB, CD8A, PRF1, GZMA, PDCD1, and mast cells infiltrating were found closely correlate with the thirteen-gene signature's power.
Collapse
|
31
|
Perdigoto AL, Deng S, Du KC, Kuchroo M, Burkhardt DB, Tong A, Israel G, Robert ME, Weisberg SP, Kirkiles-Smith N, Stamatouli AM, Kluger HM, Quandt Z, Young A, Yang ML, Mamula MJ, Pober JS, Anderson MS, Krishnaswamy S, Herold KC. Immune cells and their inflammatory mediators modify β cells and cause checkpoint inhibitor-induced diabetes. JCI Insight 2022; 7:e156330. [PMID: 35925682 PMCID: PMC9536276 DOI: 10.1172/jci.insight.156330] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Checkpoint inhibitors (CPIs) targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) have revolutionized cancer treatment but can trigger autoimmune complications, including CPI-induced diabetes mellitus (CPI-DM), which occurs preferentially with PD-1 blockade. We found evidence of pancreatic inflammation in patients with CPI-DM with shrinkage of pancreases, increased pancreatic enzymes, and in a case from a patient who died with CPI-DM, peri-islet lymphocytic infiltration. In the NOD mouse model, anti-PD-L1 but not anti-CTLA-4 induced diabetes rapidly. RNA sequencing revealed that cytolytic IFN-γ+CD8+ T cells infiltrated islets with anti-PD-L1. Changes in β cells were predominantly driven by IFN-γ and TNF-α and included induction of a potentially novel β cell population with transcriptional changes suggesting dedifferentiation. IFN-γ increased checkpoint ligand expression and activated apoptosis pathways in human β cells in vitro. Treatment with anti-IFN-γ and anti-TNF-α prevented CPI-DM in anti-PD-L1-treated NOD mice. CPIs targeting the PD-1/PD-L1 pathway resulted in transcriptional changes in β cells and immune infiltrates that may lead to the development of diabetes. Inhibition of inflammatory cytokines can prevent CPI-DM, suggesting a strategy for clinical application to prevent this complication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gary Israel
- Department of Radiology and Biomedical Imaging, and
| | - Marie E. Robert
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Stuart P. Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Angeliki M. Stamatouli
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | - Zoe Quandt
- Department of Medicine and
- Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| | - Arabella Young
- Diabetes Center, University of California, San Francisco, San Francisco, California, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | - Mark S. Anderson
- Department of Medicine and
- Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
32
|
Zhang X, Liang H, Tang Q, Chen H, Guo F. Pyroptosis-Related Gene to Construct Prognostic Signature and Explore Immune Microenvironment and Immunotherapy Biomarkers in Bladder Cancer. Front Genet 2022; 13:801665. [PMID: 35846123 PMCID: PMC9283834 DOI: 10.3389/fgene.2022.801665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Bladder cancer is known to be the most common malignant tumor in the urinary system and has a poor prognosis; thus, new targets for drug treatment are urgently needed. Pyroptosis is defined as programmed cell death in the inflammatory form mediated by the gasdermin protein. It has therapeutic potential due to the synergistic effect of radiotherapy and chemotherapy, can reverse chemotherapy resistance, is able to regulate the body environment to alter tumor metabolism, and may enhance the response rate of the immune checkpoint inhibitor. Accordingly, this study attempted to explore the role of pyroptosis in bladder cancer. A prognostic model based on five pyroptosis-related genes was constructed by conducting univariate Cox survival and LASSO regression analyses using The Cancer Genome Atlas (TCGA) cohort. Patients were divided into high- and low-risk groups according to the median risk score, with all five PRGs having downregulated expression in the high-risk group. The high-risk group was shown to have a worse prognosis than the low-risk group, and survival differences between the two groups were then validated in the Gene Expression Omnibus (GEO) cohort. Moreover, the ROC curves demonstrated the model’s moderate predictive ability. The univariate and multivariate Cox regression analyses indicated that risk scores were found to serve as an independent prognosis factor for OS in bladder cancer patients. In addition, the high-risk group was observed to be associated with advanced N and TNM stages. A nomogram combining risk scores and clinical features was then established, with the ROC curve indicating that the AUC of TCGA training cohort in 3 and 5 years was 0.789 and 0.775, respectively. The calibration curve exhibited a high consistency between the actual survival rate and the predicted rate. Furthermore, the GO and KEGG analyses found that antigen processing and presentation of exogenous antigen, exogenous peptide antigen, and peptide antigen were enriched in the low-risk group. A higher abundance of tumor-infiltrating immune cells and additional active immune pathways were also noted in the low-risk group. In addition, immunotherapy biomarkers, including TMB, PD1, PD-L1, CTLA4, and LAG3, were shown to have higher levels in the low-risk group. Therefore, patients in the low-risk group may be potential responders to immune checkpoint inhibitors.
Collapse
|
33
|
Pham NB, Abraham N, Velankar KY, Schueller NR, Philip EJ, Jaber Y, Gawalt ES, Fan Y, Pal SK, Meng WS. Localized PD-1 Blockade in a Mouse Model of Renal Cell Carcinoma. FRONTIERS IN DRUG DELIVERY 2022; 2. [PMID: 36132332 PMCID: PMC9486680 DOI: 10.3389/fddev.2022.838458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Herein we report the impact of localized delivery of an anti-mouse PD-1-specific monoclonal antibody (aPD1) on Renca tumors in the resulting T cell responses and changes in broader immune gene expression profiles. Renca is a BALB/c mice syngeneic tumor that has been used to model human renal cell carcinoma In this study, T cell subsets were examined in tumors and draining lymph nodes of mice treated with localized PD-1 with and without the addition of adenosine deaminase (ADA), an enzyme that catabolizes adenosine (ADO), identified as an immune checkpoint in several types of human cancers. The biologics, aPD1, or aPD1 with adenosine deaminase (aPD1/ADA), were formulated with the self-assembling peptides Z15_EAK to enhance retention near the tumor inoculation site. We found that both aPD1 and aPD1/ADA skewed the local immune milieu towards an immune stimulatory phenotype by reducing Tregs, increasing CD8 T cell infiltration, and upregulating IFNɣ. Analysis of tumor specimens using bulk RNA-Seq confirmed the impact of the localized aPD1 treatment and revealed differential gene expressions elicited by the loco-regional treatment. The effects of ADA and Z15_EAK were limited to tumor growth delay and lymph node enlargement. These results support the notion of expanding the use of locoregional PD-1 blockade in solid tumors.
Collapse
Affiliation(s)
- Ngoc B. Pham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ketki Y. Velankar
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Nathan R. Schueller
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Errol J. Philip
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Yasmeen Jaber
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ellen S. Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sumanta K. Pal
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Wilson S. Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Correspondence: Wilson S. Meng,
| |
Collapse
|
34
|
Leslie J, Mackey JBG, Jamieson T, Ramon-Gil E, Drake TM, Fercoq F, Clark W, Gilroy K, Hedley A, Nixon C, Luli S, Laszczewska M, Pinyol R, Esteban-Fabró R, Willoughby CE, Haber PK, Andreu-Oller C, Rahbari M, Fan C, Pfister D, Raman S, Wilson N, Müller M, Collins A, Geh D, Fuller A, McDonald D, Hulme G, Filby A, Cortes-Lavaud X, Mohamed NE, Ford CA, Raffo Iraolagoitia XL, McFarlane AJ, McCain MV, Ridgway RA, Roberts EW, Barry ST, Graham GJ, Heikenwälder M, Reeves HL, Llovet JM, Carlin LM, Bird TG, Sansom OJ, Mann DA. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022; 71:gutjnl-2021-326259. [PMID: 35477863 PMCID: PMC9484388 DOI: 10.1136/gutjnl-2021-326259] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Erik Ramon-Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas M Drake
- Cancer Research UK Beatson Institute, Glasgow, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Preclinical In Vivo Imaging Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Maja Laszczewska
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Roser Pinyol
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Roger Esteban-Fabró
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catherine E Willoughby
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Philipp K Haber
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen Andreu-Oller
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Chaofan Fan
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Shreya Raman
- Department of Pathology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Niall Wilson
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | | | - Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Fuller
- Flow Cytometry Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David McDonald
- Flow Cytometry Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Gillian Hulme
- Flow Cytometry Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew Filby
- Flow Cytometry Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Innovation, Methodology and Innovation (IMA) theme, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | - Misti V McCain
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Macclesfield, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Centre, Heidelberg, Germany
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Helen L Reeves
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Josep M Llovet
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Beatson Institute for Cancer Research, Glasgow, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
- Fibrofind Ltd, William Leech Building, Medical School, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
35
|
Tsai YT, Strauss J, Toney NJ, Jochems C, Venzon DJ, Gulley JL, Schlom J, Donahue RN. Immune correlates of clinical parameters in patients with HPV-associated malignancies treated with bintrafusp alfa. J Immunother Cancer 2022; 10:jitc-2022-004601. [PMID: 35418484 PMCID: PMC9014099 DOI: 10.1136/jitc-2022-004601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Bintrafusp alfa is a bifunctional agent consisting of an anti-human PD-L1 antibody linked to two TGFβRII. It is designed to act both as a checkpoint inhibitor and to ‘trap’ TGFβ in the tumor microenvironment. Phase I and II clinical studies demonstrated clinical activity in patients with a range of human papillomavirus (HPV)-associated cancers. The purpose of the studies reported here was the interrogation of various aspects of the peripheral immunome in patients with HPV-associated cancers, both prior to and early in the treatment regimen of bintrafusp alfa to better understand the mode of action of the agent and to help define which patients are more likely to benefit from bintrafusp alfa treatment. Patients and methods The peripheral immunome of patients (n=65) with HPV+ malignancies was analyzed both prior to treatment with bintrafusp alfa and day 14 post-treatment for levels and changes in (1) 158 different immune cell subsets, (2) multiple plasma soluble factors including analytes reflecting immune stimulatory and inhibitory status, (3) complete blood counts, and in a subset of patients (4) TCR diversity and (5) HPV-specific T-cell responses. Results Interrogation of the peripheral immunome prior to bintrafusp alfa treatment revealed several factors that associated with clinical response, including (1) higher levels of sCD27:sCD40L ratios, (2) lower levels of TGFβ1 and 12 additional factors associated with tumor mesenchymalization, and (3) higher CD8+ T cell:MDSC ratios. Analysis at 2 weeks post bintrafusp alfa revealed that eventual clinical responders had fewer increases in IL-8 levels and the neutrophil to lymphocyte ratio, and higher levels of HPV-16 specific CD8+ T cells. This study also provided information concerning differences in the peripheral immunome for patients who were naïve versus refractory to prior checkpoint inhibition therapy. While preliminary, two multivariate models developed predicted clinical benefit with 76%–91% accuracy. Conclusions These studies add insight into the mechanism of action of bintrafusp alfa and provide evidence that the interrogation of both cellular and soluble components of the peripheral immunome of patients with HPV-associated malignancies, either prior to or early in the therapeutic regimen, can provide information as to which patients are more likely to benefit with bintrafusp alfa therapy.
Collapse
Affiliation(s)
- Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Mu T, Li H, Li X. Prognostic Implication of Energy Metabolism-Related Gene Signatures in Lung Adenocarcinoma. Front Oncol 2022; 12:867470. [PMID: 35494074 PMCID: PMC9047773 DOI: 10.3389/fonc.2022.867470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the major non-small-cell lung cancer pathological subtype with poor prognosis worldwide. Herein, we aimed to build an energy metabolism-associated prognostic gene signature to predict patient survival. Methods The gene expression profiles of patients with LUAD were downloaded from the TCGA and GEO databases, and energy metabolism (EM)-related genes were downloaded from the GeneCards database. Univariate Cox and LASSO analyses were performed to identify the prognostic EM-associated gene signatures. Kaplan–Meier and receiver operating characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signatures. A CIBERSORT analysis was used to evaluate the correlation between the risk model and immune cells. A nomogram was used to predict the survival probability of LUAD based on a risk model. Results We constructed a prognostic signature comprising 13 EM-related genes (AGER, AHSG, ALDH2, CIDEC, CYP17A1, FBP1, GNB3, GZMB, IGFBP1, SORD, SOX2, TRH and TYMS). The Kaplan–Meier curves validated the good predictive ability of the prognostic signature in TCGA AND two GEO datasets (p<0.0001, p=0.00021, and p=0.0034, respectively). The area under the curve (AUC) of the ROC curves also validated the predictive accuracy of the risk model. We built a nomogram to predict the survival probability of LUAD, and the calibration curves showed good predictive ability. Finally, a functional analysis also unveiled the different immune statuses between the two different risk groups. Conclusion Our study constructed and verified a novel EM-related prognostic gene signature that could improve the individualized prediction of survival probability in LUAD.
Collapse
Affiliation(s)
- Teng Mu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoran Li
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiangnan Li,
| |
Collapse
|
37
|
Lu C, Yang D, Klement JD, Colson YL, Oberlies NH, Pearce CJ, Colby AH, Grinstaff MW, Ding HF, Shi H, Liu K. G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. J Immunother Cancer 2022; 10:jitc-2021-003543. [PMID: 35017152 PMCID: PMC8753452 DOI: 10.1136/jitc-2021-003543] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background Granzyme B is a key effector of cytotoxic T lymphocytes (CTLs), and its expression level positively correlates with the response of patients with mesothelioma to immune checkpoint inhibitor immunotherapy. Whether metabolic pathways regulate Gzmb expression in CTLs is incompletely understood. Methods A tumor-specific CTL and tumor coculture model and a tumor-bearing mouse model were used to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in CTL function and tumor immune evasion. A link between granzyme B expression and patient survival was analyzed in human patients with epithelioid mesothelioma. Results Mesothelioma cells alone are sufficient to activate tumor-specific CTLs and to enhance aerobic glycolysis to induce a PD-1hi Gzmblo CTL phenotype. However, inhibition of lactate dehydrogenase A, the key enzyme of the aerobic glycolysis pathway, has no significant effect on tumor-induced CTL activation. Tumor cells induce H3K9me3 deposition at the promoter of G6pd, the gene that encodes the rate-limiting enzyme G6PD in the pentose phosphate pathway, to downregulate G6pd expression in tumor-specific CTLs. G6PD activation increases acetyl-coenzyme A (CoA) production to increase H3K9ac deposition at the Gzmb promoter and to increase Gzmb expression in tumor-specific CTLs converting them from a Gzmblo to a Gzmbhi phenotype, thus increasing CTL tumor lytic activity. Activation of G6PD increases Gzmb+ tumor-specific CTLs and suppresses tumor growth in tumor-bearing mice. Consistent with these findings, GZMB expression level was found to correlate with increased survival in patients with epithelioid mesothelioma. Conclusion G6PD is a metabolic checkpoint in tumor-activated CTLs. The H3K9me3/G6PD/acetyl-CoA/H3K9ac/Gzmb pathway is particularly important in CTL activation and immune evasion in epithelioid mesothelioma.
Collapse
Affiliation(s)
- Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, China .,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W Grinstaff
- Ionic Pharmaceuticals, Brookline, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA .,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
38
|
Sparger EE, Chang H, Chin N, Rebhun RB, Withers SS, Kieu H, Canter RJ, Monjazeb AM, Kent MS. T Cell Immune Profiles of Blood and Tumor in Dogs Diagnosed With Malignant Melanoma. Front Vet Sci 2021; 8:772932. [PMID: 34926643 PMCID: PMC8674490 DOI: 10.3389/fvets.2021.772932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Investigation of canine T cell immunophenotypes in canine melanomas as prognostic biomarkers for disease progression or predictive biomarkers for targeted immunotherapeutics remains in preliminary stages. We aimed to examine T cell phenotypes and function in peripheral blood mononuclear cells (PBMC) and baseline tumor samples by flow cytometry, and to compare patient (n = 11-20) T cell phenotypes with healthy controls dogs (n = 10-20). CD3, CD4, CD8, CD25, FoxP3, Ki67, granzyme B, and interferon-γ (IFN-γ) were used to classify T cell subsets in resting and mitogen stimulated PBMCs. In a separate patient cohort (n = 11), T cells were classified using CD3, CD4, CD8, FoxP3, and granzyme B in paired PBMC and single cell suspensions of tumor samples. Analysis of flow cytometric data of individual T cell phenotypes in PBMC revealed specific T cell phenotypes including FoxP3+ and CD25+FoxP3- populations that distinguished patients from healthy controls. Frequencies of IFN-γ+ cells after ConA stimulation identified two different patient phenotypic responses, including a normal/exaggerated IFN-γ response and a lower response suggesting dysfunction. Principle component analysis of selected T cell immunophenotypes also distinguished patients and controls for T cell phenotype and revealed a clustering of patients based on metastasis detected at diagnosis. Findings supported the overall hypothesis that canine melanoma patients display a T cell immunophenotype profile that is unique from healthy pet dogs and will guide future studies designed with larger patient cohorts necessary to further characterize prognostic T cell immunophenotypes.
Collapse
Affiliation(s)
- Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ning Chin
- California National Primate Research Center, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Robert B. Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sita S. Withers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Hung Kieu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J. Canter
- Surgical Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Michael S. Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
39
|
Munhoz J, Thomé R, Rostami A, Ishikawa LLW, Verinaud L, Rapôso C. The SNX-482 peptide from Hysterocrates gigas spider acts as an immunomodulatory molecule activating macrophages. Peptides 2021; 146:170648. [PMID: 34537257 DOI: 10.1016/j.peptides.2021.170648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Peptides are molecules that have emerged as crucial candidates for the development of anticancer drugs. Spider venoms are a rich source of peptides (venom peptides - VPs) with biological effects. VPs have been tested as adjuvants in the activation of cells of the immune system with the aim of improving immunotherapies for the treatment of neoplasms. In the present study, the effects of SNX-482, a peptide from the African tarantula Hysterocrates gigas, on macrophages were described. The results showed that the peptide activated M0-macrophages, increasing costimulatory molecules (CD40, CD68, CD80, CD83, CD86) involved in antigen presentation, and also augmenting the checkpoint molecules PD-L1, CTLA-4 and FAS-L; these effects were not concentration-dependent. SNX-482 also increased the release of IL-23 and upregulated the expression of ccr4, ifn-g, gzmb and pdcd1, genes important for the anticancer response. The pretreatment of macrophages with the peptide did not interfere in the modulation of T cells, and macrophages previously polarized to M1 and M2 profile did not respond to SNX-482. These findings represent the expansion of knowledge about the use of VPs in drug discovery, pointing to a potential new candidate for anticancer immunotherapy. Considering that most immunotherapies target the adaptive system, the modulation of macrophages (an innate immune cell) by SNX-482 is especially relevant.
Collapse
Affiliation(s)
- Jaqueline Munhoz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rodolfo Thomé
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Brazil
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, Brazil.
| |
Collapse
|
40
|
Jensen C, Nissen NI, Von Arenstorff CS, Karsdal MA, Willumsen N. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:326. [PMID: 34656158 PMCID: PMC8520279 DOI: 10.1186/s13046-021-02133-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Despite the overall clinical success of immune checkpoint inhibitors (ICIs) for treating patients with solid tumors, a large number of patients do not benefit from this approach. Consequently, there is a need for predictive biomarkers. The most prevalent biomarkers such as PD-L1 expression and tumor mutational burden (TMB) do not reliably predict response to ICIs across different solid tumor types suggesting that a broader view of regulating factors in the tumor microenvironment is needed. Emerging evidence indicates that one central common denominator of resistance to ICIs may be fibrotic activity characterized by extracellular matrix (ECM) and collagen production by cancer-associated fibroblasts (CAFs). A fibroblast-and collagen-rich stroma attenuates immunotherapy response by contributing to inhibition and exclusion of T cells. Here we review opportunities and limitations in the utilization of the most prevalent biomarkers for ICIs and elaborate on the unique opportunities with biomarkers originating from the activated fibroblasts producing an impermeable ECM. We propose that ECM and collagen biomarkers measured non-invasively may be a novel and practical approach to optimize treatment strategies and improve patient selection for ICI therapy.
Collapse
Affiliation(s)
- Christina Jensen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark.
| | - Neel I Nissen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
41
|
Zhuang M, Jiang S, Gu A, Chen X, E M. Radiosensitizing effect of gold nanoparticle loaded with small interfering RNA-SP1 on lung cancer: AuNPs-si-SP1 regulates GZMB for radiosensitivity. Transl Oncol 2021; 14:101210. [PMID: 34517158 PMCID: PMC8435925 DOI: 10.1016/j.tranon.2021.101210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
siRNA-SP1-loaded AuNPs (AuNPs-si-SP1) inhibits SP1 expression in lung cancer cells. GZMB expression is elevated by silencing SP1 in lung cancer cells. AuNPs-si-SP1 combined with radiotherapy inhibits lung cancer growth effectively. AuNPs-si-SP1 enhances radiosensitivity of lung cancer via SP1/GZMB axis. AuNPs-si-SP1 provides a novel target for radiotherapy of lung cancer.
Radioresistance is a major challenge that largely limits the efficacy of radiotherapy in lung cancer. Gold nanoparticles (AuNPs) are emerging as novel radiosensitizers for cancer patients. Therefore, this study was designed to explore the radiosensitizing effect and mechanism of AuNPs loaded with small interfering RNA (siRNA)-SP1 (AuNPs-si-SP1) on lung cancer. AuNPs-si-SP1 was prepared by the noncovalent binding between AuNPs and siRNA-SP1. The adsorption capacity of AuNPs to siRNA-SP1 was analyzed by gel electrophoresis. The cell uptake of AuNPs-si-SP1 was observed under a laser confocal microscopy. Silencing efficacy of AuNPs-si-SP1 was validated by RT-qPCR and Western blot analysis. Cell viability was determined by CCK-8 assay, radiosensitization by plate colony formation assay, cell apoptosis and cell cycle by flow cytometry, and DNA double strand breaks by immunofluorescence in the presence or absence of AuNPs-si-SP1 or GZMB. The downstream mechanism of SP1 was predicted by bioinformatics analysis, followed by verification by Western blot analysis. Subcutaneous tumorigenesis in nude mice was established to verify the radiosensitization of AuNPs-si-SP1 and GZMB in vivo. AuNPs-si-SP1 effectively absorbed SP1 siRNA and was highly internalized by A549 cells to reduce SP1 protein expression. AuNPs-si-SP1 or GZMB overexpression promoted cells to G2/M phase, DNA double strand breaks, and enhanced radiosensitivity. SP1 could repress GZMB expression in lung cancer cells. In vivo experiments manifested that AuNPs-si-SP1 could inhibit the growth of solid tumor in nude mice to achieve radiosensitization by inhibiting SP1 to upregulate GZMB. AuNPs-si-SP1 might increase the radiosensitivity of lung cancer by inhibiting SP1 to upregulate GZMB.
Collapse
Affiliation(s)
- Ming Zhuang
- Department of Radiation Oncology, Harbin Medical University Tumor Hospital, No. 150, Haping Road, Nangang District, Harbin 150001, Heilongjiang Province, China
| | - Shan Jiang
- Department of Ultrasound, Harbin Medical University Tumor Hospital, Harbin 150001, China
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Tumor Hospital, No. 150, Haping Road, Nangang District, Harbin 150001, Heilongjiang Province, China
| | - Xuesong Chen
- Department of Medical Oncology, Harbin Medical University Tumor Hospital, No. 150, Haping Road, Nangang District, Harbin 150001, Heilongjiang Province, China.
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Tumor Hospital, No. 150, Haping Road, Nangang District, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
42
|
Honrubia-Peris B, Garde-Noguera J, García-Sánchez J, Piera-Molons N, Llombart-Cussac A, Fernández-Murga ML. Soluble Biomarkers with Prognostic and Predictive Value in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. Cancers (Basel) 2021; 13:4280. [PMID: 34503087 PMCID: PMC8428366 DOI: 10.3390/cancers13174280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
Numerous targeted therapies have been evaluated for the treatment of non-small cell lung cancer (NSCLC). To date, however, only a few agents have shown promising results. Recent advances in cancer immunotherapy, most notably immune checkpoint inhibitors (ICI), have transformed the treatment scenario for these patients. Although some patients respond well to ICIs, many patients do not benefit from ICIs, leading to disease progression and/or immune-related adverse events. New biomarkers capable of reliably predicting response to ICIs are urgently needed to improve patient selection. Currently available biomarkers-including programmed death protein 1 (PD-1) and its ligand (PD-L1), and tumor mutational burden (TMB)-have major limitations. At present, no well-validated, reliable biomarkers are available. Ideally, these biomarkers would be obtained through less invasive methods such as plasma determination or liquid biopsy. In the present review, we describe recent advances in the development of novel soluble biomarkers (e.g., circulating immune cells, TMB, circulating tumor cells, circulating tumor DNA, soluble factor PD-L1, tumor necrosis factor, etc.) for patients with NSCLC treated with ICIs. We also describe the potential use of these biomarkers as prognostic indicators of treatment response and toxicity.
Collapse
Affiliation(s)
| | - Javier Garde-Noguera
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria i Biomédica de la Comunidad Valenciana (FISABIO), 46020 Valencia, Spain; (B.H.-P.); (J.G.-S.); (N.P.-M.); (A.L.-C.)
| | | | | | | | | |
Collapse
|
43
|
Cao J, Gong J, Li X, Hu Z, Xu Y, Shi H, Li D, Liu G, Jie Y, Hu B, Chong Y. Unsupervised Hierarchical Clustering Identifies Immune Gene Subtypes in Gastric Cancer. Front Pharmacol 2021; 12:692454. [PMID: 34248641 PMCID: PMC8264374 DOI: 10.3389/fphar.2021.692454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: The pathogenesis of heterogeneity in gastric cancer (GC) is not clear and presents as a significant obstacle in providing effective drug treatment. We aimed to identify subtypes of GC and explore the underlying pathogenesis. Methods: We collected two microarray datasets from GEO (GSE84433 and GSE84426), performed an unsupervised cluster analysis based on gene expression patterns, and identified related immune and stromal cells. Then, we explored the possible molecular mechanisms of each subtype by functional enrichment analysis and identified related hub genes. Results: First, we identified three clusters of GC by unsupervised hierarchical clustering, with average silhouette width of 0.96, and also identified their related representative genes and immune cells. We validated our findings using dataset GSE84426. Subtypes associated with the highest mortality (subtype 2 in the training group and subtype C in the validation group) showed high expression of SPARC, COL3A1, and CCN. Both subtypes also showed high infiltration of fibroblasts, endothelial cells, hematopoietic stem cells, and a high stromal score. Furthermore, subtypes with the best prognosis (subtype 3 in the training group and subtype A in the validation group) showed high expression of FGL2, DLGAP1-AS5, and so on. Both subtypes also showed high infiltration of CD4+ T cells, CD8+ T cells, NK cells, pDC, macrophages, and CD4+ T effector memory cells. Conclusion: We found that GC can be classified into three subtypes based on gene expression patterns and cell composition. Findings of this study help us better understand the tumor microenvironment and immune milieu associated with heterogeneity in GC and provide practical information to guide personalized treatment.
Collapse
Affiliation(s)
- Jing Cao
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinhua Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhaoxia Hu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingjun Xu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Shi
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Danyang Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guangjian Liu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yusheng Jie
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Hsu FT, Liu YC, Tsai CL, Yueh PF, Chang CH, Lan KL. Preclinical Evaluation of Recombinant Human IL15 Protein Fused with Albumin Binding Domain on Anti-PD-L1 Immunotherapy Efficiency and Anti-Tumor Immunity in Colon Cancer and Melanoma. Cancers (Basel) 2021; 13:cancers13081789. [PMID: 33918641 PMCID: PMC8070266 DOI: 10.3390/cancers13081789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this manuscript, we reported that a newly developed recombinant human IL15 fused with albumin binding domain (hIL15-ABD) showed superior biological half-life, pharmacokinetic and anti-tumor immunity than wild-type (WT) hIL15. Our hIL-15-ABD can effectively enhance anti-tumor efficacy of anti-PD-L1 on colon cancer and melanoma animal models. The anti-tumor potential of hIL-15-ABD was associated with tumor microenvironment (TME) regulation, including the activation of NK cells and CD8+ T cells, the reduction of immunosuppressive cells (MDSCs and Tregs) and the suppression of immunosuppressive factors (IDO, FOXP3 and VEGF). In conclusion, our new hIL15-ABD combined with anti-PD-L1 antibody increased the activity of anti-tumor effector cells involved in both innate and adaptive immunities, decreased the TME’s immunosuppressive cells, and showed greater anti-tumor effect than that of either monotherapy. We suggested hIL15-ABD as the potential complementary agent may effectively augment the therapeutic efficacy of anti-PD-L1 antibody in colon cancer and melanoma model. Abstract Anti-PD-L1 antibody monotherapy shows limited efficacy in a significant proportion of the patients. A common explanation for the inefficacy is a lack of anti-tumor effector cells in the tumor microenvironment (TME). Recombinant human interleukin-15 (hIL15), a potent immune stimulant, has been investigated in clinical trial with encouraging results. However, hIL15 is constrained by the short half-life of hIL15 and a relatively unfavorable pharmacokinetics profile. We developed a recombinant fusion IL15 protein composed of human IL15 (hIL15) and albumin binding domain (hIL15-ABD) and explored the therapeutic efficacy and immune regulation of hIL-15, hIL15-ABD and/or combination with anti-PD-L1 on CT26 murine colon cancer (CC) and B16-F10 murine melanoma models. We demonstrated that hIL15-ABD has significant inhibitory effect on the CT26 and B16-F10 tumor growths as compared to hIL-15. hIL-15-ABD not only showed superior half-life and pharmacokinetics data than hIL-15, but also enhance anti-tumor efficacy of antibody against PD-L1 via suppressive effect on accumulation of Tregs and MDSCs and activation of NK and CD8+T cells. Immune suppressive factors including VEGF and IDO were also decreased by combination treatment. hIL15-ABD combined with anti-PD-L1 antibody increased the activity of anti-tumor effector cells involved in both innate and adaptive immunities, decreased the TME’s immunosuppressive cells, and showed greater anti-tumor effect than that of either monotherapy.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan; (F.-T.H.); (P.-F.Y.)
| | - Yu-Chang Liu
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan;
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Chang-Liang Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-L.T.); (C.-H.C.)
| | - Po-Fu Yueh
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan; (F.-T.H.); (P.-F.Y.)
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-L.T.); (C.-H.C.)
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan 325, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: or ; Tel.: +886-2-2826-7000 (ext. 7121)
| |
Collapse
|
45
|
Ma Y, Chen X, Wang A, Zhao H, Lin Q, Bao H, Zhang Y, Hong S, Tang W, Huang Y, Yang Y, Wu X, Shao Y, Fang W, Zhang L. Copy number loss in granzyme genes confers resistance to immune checkpoint inhibitor in nasopharyngeal carcinoma. J Immunother Cancer 2021; 9:jitc-2020-002014. [PMID: 33737344 PMCID: PMC7978327 DOI: 10.1136/jitc-2020-002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/21/2022] Open
Abstract
Background Anti-programmed death (PD)-1 therapy has recently been used in recurrent or metastatic (R/M) nasopharyngeal carcinoma (NPC). The long-term survival and its biomarkers responding to anti-PD-1 treatment in patients with R/M NPC remain unclear. Methods Patients with R/M NPC were enrolled between March 2016 and January 2018 from two phase I clinical trials. The median follow-up period was 24.7 months. Eligible patients progressed on standard chemotherapy had measurable disease by Response Evaluation Criteria in Solid Tumor V.1.1. Non-obligatory contemporaneous tumor samples were collected for whole-exome sequencing. The primary outcome was objective response rate (ORR). Duration of response (DOR), progression-free survival (PFS), and overall survival (OS) were secondary outcomes assessed in all patients. Results Among 124 evaluable patients, anti-PD-1 therapy achieved an ORR of 29.8% and a durable clinical benefit rate of 60.5%. The median OS (mOS) was 17.1 months (95% CI 14.2 to 24.7), median PFS (mPFS) was 3.8 months (95% CI 3.4 to 6.0), and median DOR was 9.5 months. Significant OS benefit from treatment was observed in patients without liver metastasis (23.8 vs 13.3 months, p=0.006). Copy number deletion in genes encoding granzyme B or granzyme H (GZMB/H) was associated with poor treatment outcome (mPFS altered vs wildtype: 1.7 vs 3.6 months, p=0.03; mOS altered vs wildtype: 10.1 vs 18 months, p=0.012). Conclusions Anti-PD-1 treatment provided promising clinical benefit in pretreated patients with R/M NPC. Copy number loss in either GZMB or GZMH genes was associated with reduced survival.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xi Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ao Wang
- Medical Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qingguang Lin
- Department of Ultrasonography, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hua Bao
- Medical Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Yang Zhang
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wanxiangfu Tang
- Medical Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xue Wu
- Medical Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China .,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
46
|
de With M, Hurkmans DP, Oomen-de Hoop E, Lalouti A, Bins S, El Bouazzaoui S, van Brakel M, Debets R, Aerts JGJV, van Schaik RHN, Mathijssen RHJ, van der Veldt AAM. Germline Variation in PDCD1 Is Associated with Overall Survival in Patients with Metastatic Melanoma Treated with Anti-PD-1 Monotherapy. Cancers (Basel) 2021; 13:cancers13061370. [PMID: 33803602 PMCID: PMC8002987 DOI: 10.3390/cancers13061370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
A substantial number of melanoma patients do not benefit from therapy with anti-PD-1. Therefore, we investigated the predictive value of single nucleotide polymorphisms (SNPs) in genes related to the PD-1 axis in patients with metastatic melanoma. From 119 consecutive melanoma patients who were treated with pembrolizumab or nivolumab monotherapy, blood samples were genotyped for 11 SNPs in nine genes. Associations between SNPs and OS were tested using Cox regression analysis and internally validated by bootstrapping. For SNPs with a statistical significance, an expression quantitative trait loci (eQTL) analysis was performed. In a subset of patients, immunophenotyping was performed. Patients with a SNP in PDCD1 (804C > T; rs2227981) had a significantly poorer OS with a 3-year OS rate of 51.8%, as compared to 71% in wild type patients (hazard ratio [HR] 2.37; 95% CI: 1.11-5.04; p = 0.026). eQTL analysis showed that this SNP was associated with decreased gene expression. In addition, PDCD1 804C > T carriers had a reduced fraction of peripheral PD-1+CD4+ T cells. No other associations between SNPs and OS were found. PDCD1 804C > T is associated with poorer OS after anti-PD-1 monotherapy in patients with metastatic melanoma. This SNP may affect clinical benefit from ICIs by decreasing transcription initiation and expression of PD-1 in T cells.
Collapse
Affiliation(s)
- Mirjam de With
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
- Department of Clinical Chemistry, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (R.H.N.v.S.)
| | - Daan P. Hurkmans
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
- Department of Pulmonology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-10-704-11-12
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Ayoub Lalouti
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Samira El Bouazzaoui
- Department of Clinical Chemistry, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (R.H.N.v.S.)
| | - Mandy van Brakel
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Joachim G. J. V. Aerts
- Department of Pulmonology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (S.E.B.); (R.H.N.v.S.)
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
| | - Astrid A. M. van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (M.d.W.); (E.O.-d.H.); (A.L.); (S.B.); (M.v.B.); (R.D.); (R.H.J.M.); (A.A.M.v.d.V.)
- Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
47
|
Hurkmans DP, Jensen C, Koolen SLW, Aerts J, Karsdal MA, Mathijssen RHJ, Willumsen N. Blood-based extracellular matrix biomarkers are correlated with clinical outcome after PD-1 inhibition in patients with metastatic melanoma. J Immunother Cancer 2020; 8:jitc-2020-001193. [PMID: 33093157 PMCID: PMC7583811 DOI: 10.1136/jitc-2020-001193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background Immune checkpoint inhibitors that target the programmed cell death protein 1 (PD-1) receptor induce a response in only a subgroup of patients with metastatic melanoma. Previous research suggests that transforming growth factor beta signaling and a collagen-rich peritumoral stroma (tumor fibrosis), may negatively interfere with the interaction between T cells and tumor cells and thereby contribute to resistance mechanisms by immune-exclusion, while increased tumor infiltration of M1-like macrophages enhances T cell activity. Hence, the current study aimed to assess the relationship between blood-based markers of collagen or vimentin turnover (reflecting M1 macrophage activity) and clinical outcome in patients with metastatic melanoma after PD-1 inhibition. Methods Patients with metastatic melanoma who were treated with anti-PD-1 monotherapy between May 2016 and March 2019 were included in a prospective observational study. N-terminal pro-peptide of type III collagen (PRO-C3) cross-linked N-terminal pro-peptides of type III collagen (PC3X), matrix metalloprotease (MMP)-degraded type III (C3M) and type IV collagen (C4M), granzyme B-degraded type IV collagen and citrullinated and MMP-degraded vimentin (VICM) were measured with immunoassays in serum before (n=107), and 6 weeks after the first administration of immunotherapy (n=94). The association between biomarker levels and overall survival (OS) or progression-free survival (PFS) was assessed. Results Multivariate Cox regression analysis identified high baseline PRO-C3 (Q4) and PC3X (Q4) as independent variables of worse PFS (PRO-C3: HR=1.81, 95% CI=1.06 to 3.10, p=0.030 and PC3X: HR=1.86, 95% CI=1.09 to 3.18, p=0.023). High baseline PRO-C3 was also independently related to worse OS (HR=2.08, 95% CI=1.06 to 4.09, p=0.035), whereas a high C3M/PRO-C3 ratio was related to improved OS (HR=0.42, 95% CI=0.20 to 0.90, p=0.025). An increase in VICM (p<0.0001; in 56% of the patients) was observed after 6 weeks of treatment, and an increase in VICM was independently associated with improved OS (HR=0.28, 95% CI=0.10 to 0.77, p=0.014). Conclusions Blood-based biomarkers reflecting excessive type III collagen turnover were associated with worse OS and PFS after PD-1 inhibition in metastatic melanoma. Moreover, an increase in VICM levels after 6 weeks of treatment was associated with improved OS. These findings suggest that type III collagen and vimentin turnover contribute to resistance/response mechanisms of PD-1 inhibitors and hold promise of assessing extracellular matrix-derived and stroma-derived components to predict immunotherapy response.
Collapse
Affiliation(s)
- Daan P Hurkmans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands .,Department of Pulmonology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joachim Aerts
- Department of Pulmonology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|