1
|
Liang Y, Xie M, Zang X, Zhang X, Xue X. Evaluation of ImmunoPET in the efficacy and prognosis of immunotherapy for lung cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189289. [PMID: 39999945 DOI: 10.1016/j.bbcan.2025.189289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Advances in immune oncology have established immunotherapy as the first-line standard treatment for lung cancer; however, its efficacy remains limited to a subset of patients. Developing predictive biomarkers within the tumor microenvironment (TME) to assess the efficacy and prognosis of immunotherapy can enhance drug development and treatment strategies. Immuno-positron emission tomography (ImmunoPET) non-invasively visualizes the biological distribution of key targets in the TME using highly specific, radiolabeled tracers. PET imaging of the TME can serve as a reliable biomarker for predicting and monitoring responses to immune therapy, complementing existing immunohistochemical techniques. This review will focus on the development of ImmunoPET biomarkers, as well as the application of corresponding tracers and radionuclides in lung cancer. We will focus on available clinical tracers and those under development, outlining each TME target and its clinical validation for tumor immunotherapy efficacy and prognosis, while discussing the latest advances that may enhance ImmunoPET in future.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xuefeng Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
2
|
Wang Y, He K, Zhang Y, Chen Y, Wang S, Zhao K, Liu Z, Hu M. Peptide-based immuno-PET/CT monitoring of dynamic PD-L1 expression during glioblastoma radiotherapy. J Pharm Anal 2025; 15:101082. [PMID: 40177067 PMCID: PMC11964630 DOI: 10.1016/j.jpha.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 04/05/2025] Open
Abstract
Real-time, noninvasive programmed death-ligand 1 (PD-L1) testing using molecular imaging has enhanced our understanding of the immune environments of neoplasms and has served as a guide for immunotherapy. However, the utilization of radiotracers in the imaging of human brain tumors using positron emission tomography/computed tomography (PET/CT) remains limited. This investigation involved the synthesis of [18F]AlF-NOTA-PCP2, which is a novel peptide-based radiolabeled tracer that targets PD-L1, and evaluated its imaging capabilities in orthotopic glioblastoma (GBM) models. Using this tracer, we could noninvasively monitor radiation-induced PD-L1 changes in GBM. [18F]AlF-NOTA-PCP2 exhibited high radiochemical purity (>95%) and stability up to 4 h after synthesis. It demonstrated specific, high-affinity binding to PD-L1 in vitro and in vivo, with a dissociation constant of 0.24 nM. PET/CT imaging, integrated with contrast-enhanced magnetic resonance imaging, revealed significant accumulation of [18F]AlF-NOTA-PCP2 in orthotopic tumors, correlating with blood-brain barrier disruption. After radiotherapy (15 Gy), [18F]AlF-NOTA-PCP2 uptake in tumors increased from 9.51% ± 0.73% to 12.04% ± 1.43%, indicating enhanced PD-L1 expression consistent with immunohistochemistry findings. Fractionated radiation (5 Gy × 3) further amplified PD-L1 upregulation (13.9% ± 1.54% ID/cc) compared with a single dose (11.48% ± 1.05% ID/cc). Taken together, [18F]AlF-NOTA-PCP2 may be a valuable tool for noninvasively monitoring PD-L1 expression in brain tumors after radiotherapy.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Kewen He
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yunhao Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Shijie Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Kunlong Zhao
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhiguo Liu
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
3
|
Xu LL, Singh SK, Nayback C, Metebi A, Agnew D, Buss T, Schnitzer J, Zinn KR. Clinical Scaleup of Humanized AnnA1 Antibody Yielded Unexpected High Reticuloendothelial (RES) Uptake in Mice. Antibodies (Basel) 2025; 14:14. [PMID: 39982229 PMCID: PMC11843838 DOI: 10.3390/antib14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND/OBJECTIVES A mouse antibody directed against truncated Annexin A1 showed high tumor retention in pre-clinical cancer models and was approved by the National Cancer Institute Experimental Therapeutics (NExT) program for humanization and large batch cGMP production for toxicology and clinical trials. In this process, a contractor for Leidos accidentally produced a mutated version of humanized AnnA1 (hAnnA1-mut) with a single nucleotide deletion in the terminal Fc coding region that increased the translated size by eight amino acids with random alterations in the final twenty-four amino acids. We investigated the tissue distribution of hAnnA1-mut, hAnnA1, mAnnA1, and isotope-matched human IgG1 under various injection and conjugation conditions with C57BL/6, FVB, and BALB/c nude mice strains. METHODS Biodistribution studies were performed 24 h after injection of Tc-99m-HYNIC radiolabeled antibodies (purity > 98%). Non-reducing gel electrophoresis studies were conducted with IR680 labeled antibodies incubated with various mouse sera. RESULTS Our results showed that Tc-99m-HYNIC-hAnnA1 had low spleen and liver retention not statistically different from Tc-99m-HYNIC-IgG1 and Tc-99m-HYNIC-mAnnA1, with corresponding higher blood levels; however, Tc-99m-HYNIC-hAnnA1-mut had high levels in the spleen and liver with differences identified among the mouse strains, radiolabeling conditions, and injection routes. Histopathology showed no morphological change in the liver or spleen from any conditions. Gel electrophoresis showed an upward shift of hAnnA1-mut, consistent with the binding of blood serum protein. CONCLUSIONS The changes in the Fc region of hAnnA1-mut led to higher liver and spleen uptake, suggesting the antibody's recognition by the innate immune system (likely complement protein binding) and subsequent clearance. Future clinical translation using hAnnA1 and other antibodies needs to limit protein modifications that could drastically reduce blood clearance.
Collapse
Affiliation(s)
- Lu Lucy Xu
- Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (L.L.X.); (S.K.S.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.N.); (A.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Satyendra Kumar Singh
- Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (L.L.X.); (S.K.S.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.N.); (A.M.)
| | - Chelsea Nayback
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.N.); (A.M.)
| | - Abdullah Metebi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.N.); (A.M.)
| | - Dalen Agnew
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolle, CA 92037, USA; (T.B.); (J.S.)
| | - Jan Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolle, CA 92037, USA; (T.B.); (J.S.)
| | - Kurt R. Zinn
- Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (L.L.X.); (S.K.S.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.N.); (A.M.)
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Zhao L, Ge J, Zhang R, Wang H, Liu X, Xu K, Liu Y, Zhao W, Zhang W, Ye L, Chen Z, Zeng J, He Y, Gao M. Noninvasive Immunotyping and Immunotherapy Monitoring of Lung Cancers via Nuclear Imaging of LAG-3 and PD-L1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404231. [PMID: 39513410 PMCID: PMC11714153 DOI: 10.1002/advs.202404231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/13/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy has significantly improved cancer patient survival, while its efficacy remains limited due to the reliance on a single marker like PD-L1 as well as its spatiotemporal heterogeneity. To address this issue, combining lymphocyte activation gene-3 (LAG-3) with PD-L1 is proposed for identifying immunotypes and monitoring immunotherapy through nuclear imaging. In short, 99mTc-HYNIC-αLAG-3 and 99mTc-HYNIC-αPD-L1 probes are synthesized using anti-human LAG-3 and PD-L1 antibodies, respectively. With high radiochemical purity and in vitro stability, these probes are confirmed to specifically bind to LAG-3 or PD-L1 in LAG3+ A549, LAG3- A549, and H1975 cells. SPECT/CT imaging of both probes showed specific in vivo tumor uptake in multiple lung cancer models, with significant linear correlation with ex vivo tumor uptake and immunohistochemical expression levels of LAG-3/PD-L1. Based on this, dual-index imaging was performed to simultaneously quantify LAG-3 and PD-L1. SPECT/CT imaging of 99mTc-HYNIC-αLAG-3 and 125I-αPD-L1 successfully distinguished four immunotypes. In addition, SPECT/CT imaging revealed LAG-3 upregulation in LLC-bearing LAG-3 humanized mice resistant to immunotherapy. In conclusion, this study demonstrates the feasibility of nuclear imaging of LAG-3 and PD-L1 for both noninvasive immunotyping and immunotherapy monitoring, thus offering novel perspectives on forecasting immunotherapy response, uncovering resistance mechanism, and optimizing combination treatment regimens.
Collapse
Affiliation(s)
- Lishu Zhao
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Hao Wang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Xinyue Liu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Kandi Xu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Yujin Liu
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Wencheng Zhao
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Wengang Zhang
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Li Ye
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Zhimin Chen
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Yayi He
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteSchool of MedicineTongji UniversityNo 507 Zhengmin RoadShanghai200433China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| |
Collapse
|
5
|
Badier L, Quelven I. Zirconium 89 and Copper 64 for ImmunoPET: From Antibody Bioconjugation and Radiolabeling to Molecular Imaging. Pharmaceutics 2024; 16:882. [PMID: 39065579 PMCID: PMC11279968 DOI: 10.3390/pharmaceutics16070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging offers an attractive way for this purpose. ImmunoPET provides specific imaging with positron emission tomography (PET) using monoclonal antibodies (mAb) or its fragments as vector. By combining the high targeting specificity of mAb and the sensitivity of PET technique, immunoPET could noninvasively and dynamically reveal tumor antigens expression and provide theranostic tools of several types of malignancies. Because of their slow kinetics, mAbs require radioelements defined by a consistent half-life. Zirconium 89 (89Zr) and Copper 64 (64Cu) are radiometals with half-lives suitable for mAb labeling. Radiolabeling with a radiometal requires the prior use of a bifunctional chelate agent (BFCA) to functionalize mAb for radiometal chelation, in a second step. There are a number of BFCA available and much research is focused on antibody functionalization techniques or on developing the optimum chelating agent depending the selected radiometal. In this manuscript, we present a critical account of radiochemical techniques with radionuclides 89Zr and 64Cu and their applications in preclinical and clinical immuno-PET imaging.
Collapse
Affiliation(s)
| | - Isabelle Quelven
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
| |
Collapse
|
6
|
Ibrahim D, Simó C, Brown EL, Shmuel S, Panikar SS, Benton A, DeWeerd R, Dehdashti F, Park H, Pereira PMR. PD-L1 has a heterogeneous and dynamic expression in gastric cancer with implications for immunoPET. Front Immunol 2024; 15:1405485. [PMID: 38915392 PMCID: PMC11194338 DOI: 10.3389/fimmu.2024.1405485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This study aimed to investigate the dynamics of programmed death-ligand 1 (PD-L1) expression, spatial heterogeneity, and binding affinity of FDA-approved anti-PD-L1 antibodies (avelumab and atezolizumab) in gastric cancer. Additionally, we determined how PD-L1 glycosylation impacts antibody accumulation in gastric cancer cells. Methods Dynamic PD-L1 expression was examined in NCIN87 gastric cancer cells. Comparative binding studies of avelumab and atezolizumab were conducted in gastric cancer models, both in vitro and in vivo. Antibody uptake in tumors was visualized through positron emission tomography (PET) imaging. PD-L1 glycosylation status was determined via Western blot analyses before and after PNGase F treatment. Results Consistent findings revealed time-dependent PD-L1 induction in NCIN87 gastric cancer cells and spatial heterogeneity in tumors, as shown by PET imaging and immunofluorescence. Avelumab displayed superior binding affinity to NCIN87 cells compared to atezolizumab, confirmed by in vivo PET imaging and ex vivo biodistribution analyses. Notably, PD-L1 glycosylation at approximately 50 kDa was observed, with PNGase F treatment inducing a shift to 35 kDa in molecular weight. Tissue samples from patient-derived xenografts (PDXs) validated the presence of both glycosylated and deglycosylated PD-L1 (degPD-L1) forms in gastric cancer. Immunofluorescence microscopy and binding assays demonstrated enhanced avelumab binding post-deglycosylation. Discussion This study provides an understanding of dynamic and spatially heterogeneous PD-L1 expression in gastric cancer. Anti-PD-L1 immunoPET was able to visualize gastric tumors, and PD-L1 glycosylation has significant implications for antibody recognition. These insights contribute to demonstrating the complexities of PD-L1 in gastric cancer, holding relevance for refining PD-L1 imaging-based approaches.
Collapse
Affiliation(s)
- Dina Ibrahim
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cristina Simó
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep Surendra Panikar
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Alex Benton
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel DeWeerd
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Farrokh Dehdashti
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Haeseong Park
- Gastrointestinal Cancer Center, Center for Cancer Therapeutic Innovation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Patrícia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med (Lausanne) 2024; 11:1401515. [PMID: 38915766 PMCID: PMC11195831 DOI: 10.3389/fmed.2024.1401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Immunotherapy targeted to immune checkpoint inhibitors, such as the program cell death receptor (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, it is now well-known that PD-1/PD-L1 immunotherapy response is inconsistent among patients. The current challenge is to customize treatment regimens per patient, which could be possible if the PD-1/PD-L1 expression and dynamic landscape are known. With positron emission tomography (PET) imaging, it is possible to image these immune targets non-invasively and system-wide during therapy. A successful PET imaging tracer should meet specific criteria concerning target affinity, specificity, clearance rate and target-specific uptake, to name a few. The structural profile of such a tracer will define its properties and can be used to optimize tracers in development and design new ones. Currently, a range of PD-1/PD-L1-targeting PET tracers are available from different molecular categories that have shown impressive preclinical and clinical results, each with its own advantages and disadvantages. This review will provide an overview of current PET tracers targeting the PD-1/PD-L1 axis. Antibody, peptide, and antibody fragment tracers will be discussed with respect to their molecular characteristics and binding properties and ways to optimize them.
Collapse
Affiliation(s)
- Melinda Badenhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Albert D. Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
8
|
Sun P, Mo C, Bai L, Wang M, Chen Z, Zhang M, Han Y, Liang H, Tang G. Synthesis and preclinical evaluation of a novel molecular probe [ 18F]AlF-NOTA-PEG 2-Asp 2-PDL1P for PET imaging of PD-L1 positive tumor. Bioorg Chem 2024; 145:107193. [PMID: 38442611 DOI: 10.1016/j.bioorg.2024.107193] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Immunotherapy has brought great benefits to cancer patients, but only some patients benefit from it. Noninvasive, real-time and dynamic monitoring of the effectiveness of immunotherapy through PET imaging may provide assistance for the treatment plan of immunotherapy. In this study, we designed and synthesized a new targeted PD-L1 peptide NOTA-PEG2-Asp2-PDL1P, which was labeled with nuclide 18F to obtain a new imaging agent [18F]AlF-NOTA-PEG2-Asp2-PDL1P. The total radiochemical yield of [18F]AlF-NOTA-PEG2-Asp2-PDL1P was 13.7 % (Uncorrected radiochemical yield, n > 5). [18F]AlF-NOTA-PEG2-Asp2-PDL1P achieved high radiochemical purity (>95 %) with a molar activity more than 51.2 GBq/μmol. [18F]AlF-NOTA-PEG2-Asp2-PDL1P exhibited good hydrophilicity and had good stability both in vivo and in vitro, it can specifically targets B16F10 tumor with PD-L1 expression, and had a relatively high retention in tumor, a relatively fast clearance in vivo and a higher tumor-to-non-target ratio, all of which could make [18F]AlF-NOTA-PEG2-Asp2-PDL1P a potential tracer for PD-L1 prediction before clinical immunotherapy.
Collapse
Affiliation(s)
- Penghui Sun
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Chunwei Mo
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Lu Bai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Meng Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Zihao Chen
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Meilian Zhang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Yanjiang Han
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Haoran Liang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Ganghua Tang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China; Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
9
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Krutzek F, Donat CK, Ullrich M, Stadlbauer S. Design, Synthesis, and Biological Evaluation of Small-Molecule-Based Radioligands with Improved Pharmacokinetic Properties for Imaging of Programmed Death Ligand 1. J Med Chem 2023; 66:15894-15915. [PMID: 38038981 PMCID: PMC10726354 DOI: 10.1021/acs.jmedchem.3c01355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Small molecules offer some advantages for developing positron emission tomography (PET) tracers and are therefore a promising approach for imaging and therapy monitoring of programmed death ligand 1 (PD-L1) positive tumors. Here, we report six biphenyl PD-L1 radioligands using the NODA-GA-chelator for efficient copper-64 complexation. These radioligands contain varying numbers of sulfonic and/or phosphonic acid groups, serving as hydrophilizing units to lower the log D7.4 value down to -4.28. The binding affinities of compounds were evaluated using saturation binding and a real-time binding assay, with a highest binding affinity of 21 nM. Small-animal PET imaging revealed vastly different pharmacokinetic profiles depending on the quantity and type of hydrophilizing units. Of the investigated radioligands, [64Cu]Cu-3 showed the most favorable kinetics in vitro. This was also found in vivo, with a predominantly renal clearance and a specific uptake in the PD-L1-overexpressing tumor. With further modifications, this compound could be a promising candidate for the imaging of PD-L1 in the clinical setting.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Cornelius K. Donat
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
11
|
Tsai SC, Farn SS, Lo WL, Ou Yang FY, Kang YC, Chen LC, Chen KT, Liao JW, Kung JY, Chen JT, Huang FYJ. Evaluation of Chelator-to-Antibody Ratio on Development of 89Zr-iPET Tracer for Imaging of PD-L1 Expression on Tumor. Int J Mol Sci 2023; 24:17132. [PMID: 38138961 PMCID: PMC10743313 DOI: 10.3390/ijms242417132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 μCi/μg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.
Collapse
Affiliation(s)
- Shih-Chuan Tsai
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-C.T.); (J.-Y.K.)
| | - Shiou-Shiow Farn
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Wei-Lin Lo
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Fang-Yu Ou Yang
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Yong-Ching Kang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
| | - Liang-Cheng Chen
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Kuo-Ting Chen
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung-Hsing University, Taichung 402202, Taiwan;
| | - Jui-Yin Kung
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-C.T.); (J.-Y.K.)
| | - Jenn-Tzong Chen
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Feng-Yun J. Huang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
| |
Collapse
|
12
|
Zhu D, Xu X, Zou P, Liu Y, Wang H, Han G, Lu C, Xie M. Synthesis and preliminary biological evaluation of a novel 99mTc-labeled small molecule for PD-L1 imaging. Bioorg Med Chem Lett 2023; 96:129496. [PMID: 37797805 DOI: 10.1016/j.bmcl.2023.129496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
In recent years, PD-1/PD-L1 checkpoint blockade immunotherapy with remarkable efficacy has set off a heat wave. The expression level of PD-L1, which plays a predictive role in anti-PD-1/PD-L1 therapy, could be quantified by noninvasive imaging with radiotracers. Herein, we introduced the synthesis and preliminary biological evaluation of a novel 99mTc-labeled small molecule radiotracer [99mTc]G3C-CBM for PD-L1 imaging. [99mTc]G3C-CBM was achieved with high radiochemical purity (>96 %) and remained good stability in PBS and FBS. In competitive combination experiment, [99mTc]G3C-CBM was displaced by increasing concentrations of unlabeled G3C-CBM, resulting in an IC50 value of 41.25±2.23 nM for G3C-CBM. The uptake of [99mTc]G3C-CBM in A375-hPD-L1 cells (17.51±2.08 %) was approximately 6.47 folds of that in A375 cells (2.71±0.36 %) after co-incubation for 2 h. The biodistribution results showed that the radioactivity uptake in A375-hPD-L1 tumor reached the maximum (0.35±0.01 %ID/g) at 2 h post injection, and the optimum tumor/muscle ratio of 2.94±0.29 occurred at the same time. In addition, [99mTc]G3C-CBM was quickly cleared from the blood with a clearance half-life of just 119.25 min. These results indicate that [99mTc]G3C-CBM is a potential SPECT PD-L1 imaging agent and is worthy of further study.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiang Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Guoqing Han
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunxiong Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Minhao Xie
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
13
|
Chen Y, Guo Y, Liu Z, Hu X, Hu M. An overview of current advances of PD-L1 targeting immuno-imaging in cancers. J Cancer Res Ther 2023; 19:866-875. [PMID: 37675710 DOI: 10.4103/jcrt.jcrt_88_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The programmed death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a significant role in immune evasion. PD-1 or PD-L1 immune checkpoint inhibitors (ICIs) have become a standard treatment for multiple types of cancer. To date, PD-L1 has served as a biomarker for predicting the efficacy of ICIs in several cancers. The need to establish an effective detection method that could visualize PD-L1 expression and predict the efficacy of PD-1/PD-L1 ICIs has promoted a search for new imaging strategies. PD-L1-targeting immuno-imaging could provide a noninvasive, real-time, repeatable, dynamic, and quantitative assessment of the characteristics of all tumor lesions in individual patients. This study analyzed the existing evidence in the literature on PD-L1-based immuno-imaging (2015-2022). Original English-language articles were searched using PubMed and Google Scholar. Keywords, such as "PD-L1," "PET," "SPECT," "PET/CT," and "SPECT/CT," were used in various combinations. A total of nearly 50 preclinical and clinical studies of PD-L1-targeting immuno-imaging were selected, reviewed, and included in this study. Therefore, in this review, we conducted a study of the advances in PD-L1-targeting immuno-imaging for detecting the expression of PD-L1 and the efficacy of ICIs. We focused on the different types of PD-L1-targeting agents, including antibodies and small PD-L1-binding agents, and illustrated the strength and weakness of these probes. Furthermore, we summarized the trends in the development of PD-L1-targeting immuno-imaging, as well as the current challenges and future directions for clinical workflow.
Collapse
Affiliation(s)
- Yunhao Chen
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yujiao Guo
- Department of Oncology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhiguo Liu
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaokun Hu
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Man Hu
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
14
|
Ren SQ, Ma Y, Fu LL, Hu KZ, Liang HR, Yu B, Tang GH. A comparative 18F-FDG and an anti-PD-L1 probe PET/CT imaging of implant-associated Staphylococcus aureus osteomyelitis. Front Cell Infect Microbiol 2023; 13:1182480. [PMID: 37293208 PMCID: PMC10244720 DOI: 10.3389/fcimb.2023.1182480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Background Early and accurate diagnosis of infection-induced osteomyelitis, which often involves increased PD-L1 expression, is crucial for better treatment outcomes. Radiolabeled anti-PD-L1 nuclear imaging allows for sensitive and non-invasive whole-body assessments of PD-L1 expression. This study aimed to compare the efficacy of 18F-FDG and an 18F-labeled PD-L1-binding peptide probe (18F-PD-L1P) in PET imaging of implant-associated Staphylococcus aureus osteomyelitis (IAOM). Methods In this study, we synthesized an anti-PD-L1 probe and compared its efficacy with 18F-FDG and 18F-PD-L1P in PET imaging of implant-associated Staphylococcus aureus osteomyelitis (IAOM). The %ID/g ratios (i.e., radioactivity ratios between the infected and non-infected sides) of both probes were evaluated for sensitivity and accuracy in post-infected 7-day tibias and post-infected 21 days, and the intensity of 18F-PD-L1P uptake was compared with pathological changes measured by PD-L1 immunohistochemistry (IHC). Results Compared with 18F-FDG, 18F-PDL1P demonstrated higher %ID/g ratios for both post-infected 7-day tibias (P=0.001) and post-infected 21 days (P=0.028). The intensity of 18F-PD-L1P uptake reflected the pathological changes of osteomyelitic bones. In comparison to 18F-FDG, 18F-PDL1P provides earlier and more sensitive detection of osteomyelitis caused by S. aureus. Conclusion Our findings suggest that the 18F-PDL1P probe is a promising tool for the early and accurate detection of osteomyelitis caused by S. aureus.
Collapse
Affiliation(s)
- Shu-Qi Ren
- GuangDong Medical Products Administration (GDMPA) Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Ma
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Lan Fu
- GuangDong Medical Products Administration (GDMPA) Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kong-Zhen Hu
- GuangDong Medical Products Administration (GDMPA) Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao-Ran Liang
- GuangDong Medical Products Administration (GDMPA) Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gang-Hua Tang
- GuangDong Medical Products Administration (GDMPA) Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
16
|
Massicano AVF, Song PN, Mansur A, White SL, Sorace AG, Lapi SE. [ 89Zr]-Atezolizumab-PET Imaging Reveals Longitudinal Alterations in PDL1 during Therapy in TNBC Preclinical Models. Cancers (Basel) 2023; 15:2708. [PMID: 37345044 PMCID: PMC10216761 DOI: 10.3390/cancers15102708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) currently have limited treatment options; however, PD-L1 is an indicator of susceptibility to immunotherapy. Currently, assessment of PD-L1 is limited to biopsy samples. These limitations may be overcome with molecular imaging. In this work, we describe chemistry development and optimization, in vitro, in vivo, and dosimetry of [89Zr]-Atezolizumab for PD-L1 imaging. Atezolizumab was conjugated to DFO and radiolabeled with 89Zr. Tumor uptake and heterogeneity in TNBC xenograft and patient-derived xenograft (PDX) mouse models were quantified following [89Zr]-Atezolizumab-PET imaging. PD-L1 expression in TNBC PDX models undergoing therapy and immunohistochemistry (IHC) was used to validate imaging. SUV from PET imaging was quantified and used to identify heterogeneity. PET/CT imaging using [89Zr]-Atezolizumab identified a significant increase in tumor:muscle SUVmean 1 and 4 days after niraparib therapy and revealed an increased trend in PD-L1 expression following other cytotoxic therapies. A preliminary dosimetry study indicated the organs that will receive a higher dose are the spleen, adrenals, kidneys, and liver. [89Zr]-Atezolizumab PET/CT imaging reveals potential for the noninvasive detection of PD-L1-positive TNBC tumors and allows for quantitative and longitudinal assessment. This has potential significance for understanding tumor heterogeneity and monitoring early expression changes in PD-L1 induced by therapy.
Collapse
Affiliation(s)
| | - Patrick N. Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ameer Mansur
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sharon L. White
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suzanne E. Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
17
|
Brown EL, DeWeerd RA, Zidel A, Pereira PMR. Preclinical antibody-PET imaging of PD-L1. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:953202. [PMID: 39354977 PMCID: PMC11440863 DOI: 10.3389/fnume.2022.953202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 10/03/2024]
Abstract
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) blockade, including antibody therapeutics, has transformed cancer treatment. However, a major challenge in the field relates to selecting patients who are likely to respond to immune checkpoint inhibitors. Indeed, biopsy-based diagnostic tests to determine immune checkpoint protein levels do not accurately capture the inherent spatial and temporal heterogeneity of PD-L1 tumor expression. As a result, not all PD-L1-positive tumors respond to immunotherapies, and some patients with PD-L1-negative tumors have shown clinical benefits. In 2018, a first-in-human study of the clinically-approved anti-PD-L1 antibody Atezolizumab labeled with the positron emitter zirconium-89 validated the ability of positron emission tomography (PET) to visualize PD-L1 expression in vivo and predict tumor response to immunotherapy. These studies have triggered the expansion of PD-L1-targeted immunoPET to assess PD-L1 protein levels and PD-L1 expression heterogeneity in real time and across the whole tumor. First, this mini-review introduces new PD-L1 PET imaging studies of the last 4 years, focusing on the expansion of preclinical tumor models and anti-PD-L1 antibodies/antibody fragments in development. Then, the review discusses how these preclinical models and targeting agents can be utilized to study spatial and temporal heterogeneity of PD-L1 expression.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel A. DeWeerd
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Abbey Zidel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Liu WL, Zhang YQ, Li LT, Zhu YY, Ming ZH, Chen WL, Yang RQ, Li RH, Chen M, Zhang GJ. Application of molecular imaging in immune checkpoints therapy: From response assessment to prognosis prediction. Crit Rev Oncol Hematol 2022; 176:103746. [PMID: 35752425 DOI: 10.1016/j.critrevonc.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, immune checkpoint therapy (ICT) represented by programmed cell death1 (PD-1) and its major ligands, programmed death ligand 1 (PD-L1), has achieved significant success. Detection of PD-L1 by immunohistochemistry (IHC) is a classic method to guide the treatment of ICT patients. However, PD-L1 expression in the tumor microenvironment is highly complex. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Intriguingly, numerous studies have revealed that molecular imaging technologies could potentially meet this need. Therefore, the purpose of this narrative review is to summarize the preclinical and clinical application of ICT guided by molecular imaging technology, and to explore the future opportunities and practical difficulties of these innovations.
Collapse
Affiliation(s)
- Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Liang-Tao Li
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yuan-Yuan Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Zi-He Ming
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rui-Qin Yang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rong-Hui Li
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China.
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China; Cancer Research Center, School of Medicine, Xiamen University, 4221 South Xiang'an Road, Xiamen, China.
| |
Collapse
|
19
|
Zhou H, Bao G, Wang Z, Zhang B, Li D, Chen L, Deng X, Yu B, Zhao J, Zhu X. PET imaging of an optimized anti-PD-L1 probe 68Ga-NODAGA-BMS986192 in immunocompetent mice and non-human primates. EJNMMI Res 2022; 12:35. [PMID: 35695985 PMCID: PMC9192916 DOI: 10.1186/s13550-022-00906-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Adnectin is a protein family derived from the 10th type III domain of human fibronectin (10Fn3) with high-affinity targeting capabilities. Positron emission tomography (PET) probes derived from anti-programmed death ligand-1 (PD-L1) Adnectins, including 18F- and 68Ga-labeled BMS-986192, are recently developed for the prediction of patient response to immune checkpoint blockade. The 68Ga-labeled BMS-986192, in particular, is an attractive probe for under-developed regions due to the broader availability of 68Ga. However, the pharmacokinetics and biocompatibility of 68Ga-labeled BMS-986192 are still unknown, especially in non-human primates, impeding its further clinical translation. Methods We developed a variant of 68Ga-labeled BMS-986192 using 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) as the radionuclide–chelator. The resultant probe, 68Ga-NODAGA-BMS986192, was evaluated in terms of targeting specificity using a bilateral mouse tumor model inoculated with wild-type B16F10 and B16F10 transduced with human PD-L1 (hPD-L1-B16F10). The dynamic biodistribution and radiation dosimetry of this probe were also investigated in non-human primate cynomolgus. Results 68Ga-NODAGA-BMS986192 was prepared with a radiochemical purity above 99%. PET imaging with 68Ga-NODAGA-BMS986192 efficiently delineated the hPD-L1-B16F10 tumor at 1 h post-injection. The PD-L1-targeting capability of this probe was further confirmed using in vivo blocking assay and ex vivo biodistribution studies. PET dynamic imaging in both mouse and cynomolgus models revealed a rapid clearance of the probe via the renal route, which corresponded to the low background signals of the PET images. The probe also exhibited a favorable radiation dosimetry profile with a total-body effective dose of 6.34E-03 mSv/MBq in male cynomolgus. Conclusions 68Ga-NODAGA-BMS986192 was a feasible and safe tool for the visualization of human PD-L1. Our study also provided valuable information on the potential of targeted PET imaging using Adnectin-based probes. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00906-x.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Buchuan Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dan Li
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lixing Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
20
|
Wen X, Zeng X, Cheng X, Zeng X, Liu J, Zhang Y, Li Y, Chen H, Huang J, Guo Z, Chen X, Zhang X. PD-L1-Targeted Radionuclide Therapy Combined with αPD-L1 Antibody Immunotherapy Synergistically Improves the Antitumor Effect. Mol Pharm 2022; 19:3612-3622. [PMID: 35652897 DOI: 10.1021/acs.molpharmaceut.2c00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockers (ICBs) targeting programmed death receptor 1 (PD-1) ligand 1 (PD-L1) for immunotherapy have radically reformed oncology. It is of great significance to enhance the response rate of ICB in cancer patients. Here, a radioiodinated anti-PD-L1 antibody (131I-αPD-L1) was developed for PD-L1-targeted single-photon emission computed tomography (SPECT) imaging and αPD-L1 immunotherapy. Flow cytometry and immunofluorescence staining were performed to identify PD-L1 upregulation in a time- and dose-dependent manner after being induced by 131I-αPD-L1. ImmunoSPECT imaging and biodistributions of 131I-αPD-L1 in CT26, MC38, 4T1, and B16F10 tumor models were conducted to visualize the high tumor uptake and low background signal. Compared to monotherapy alone, concurrent administration of αPD-L1 mAb and 131I-αPD-L1 revealed improved tumor control in murine tumor models. The combination of 11.1 MBq of 131I-αPD-L1 and 200 μg of αPD-L1 mAb resulted in significant tumor growth delay and prolonged survival. This radioligand synergized immunotherapy strategy holds great potential for cancer management.
Collapse
Affiliation(s)
- Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xueyuan Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xingxing Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yiren Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Haojun Chen
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jinxiong Huang
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
21
|
Sharma SK, Suzuki M, Xu H, Korsen JA, Samuels Z, Guo H, Nemieboka B, Piersigilli A, Edwards KJ, Cheung NKV, Lewis JS. Influence of Fc Modifications and IgG Subclass on Biodistribution of Humanized Antibodies Targeting L1CAM. J Nucl Med 2022; 63:629-636. [PMID: 34353869 PMCID: PMC8973293 DOI: 10.2967/jnumed.121.262383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Immuno-PET is a powerful tool to noninvasively characterize the in vivo biodistribution of engineered antibodies. Methods: L1 cell adhesion molecule-targeting humanized (HuE71) IgG1 and IgG4 antibodies bearing identical variable heavy- and light-chain sequences but different fragment crystallizable (Fc) portions were radiolabeled with 89Zr, and the in vivo biodistribution was studied in SKOV3 ovarian cancer xenografted nude mice. Results: In addition to showing uptake in L1 cell adhesion molecule-expressing SKOV3 tumors, as does its parental counterpart HuE71 IgG1, the afucosylated variant having enhanced Fc-receptor affinity showed high nonspecific uptake in lymph nodes. On the other hand, aglycosylated HuE71 IgG1 with abrogated Fc-receptor binding did not show lymphoid uptake. The use of the IgG4 subclass showed high nonspecific uptake in the kidneys, which was prevented by mutating serine at position 228 to proline in the hinge region of the IgG4 antibody to mitigate in vivo fragment antigen-binding arm exchange. Conclusion: Our findings highlight the influence of Fc modifications and the choice of IgG subclass on the in vivo biodistribution of antibodies and the potential outcomes thereof.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maya Suzuki
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Zachary Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon Nemieboka
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alessandra Piersigilli
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and Rockefeller University, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York; and
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
22
|
Wu AM, Pandit-Taskar N. ImmunoPET: harnessing antibodies for imaging immune cells. Mol Imaging Biol 2022; 24:181-197. [PMID: 34550529 DOI: 10.1007/s11307-021-01652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/22/2023]
Abstract
Dramatic, but uneven, progress in the development of immunotherapies for cancer has created a need for better diagnostic technologies including innovative non-invasive imaging approaches. This review discusses challenges and opportunities for molecular imaging in immuno-oncology and focuses on the unique role that antibodies can fill. ImmunoPET has been implemented for detection of immune cell subsets, activation and inhibitory biomarkers, tracking adoptively transferred cellular therapeutics, and many additional applications in preclinical models. Parallel progress in radionuclide availability and infrastructure supporting biopharmaceutical manufacturing has accelerated clinical translation. ImmunoPET is poised to provide key information on prognosis, patient selection, and monitoring immune responses to therapy in cancer and beyond.
Collapse
Affiliation(s)
- Anna M Wu
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Center for Theranostics Studies, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
- Department of Radiation Oncology, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Neeta Pandit-Taskar
- Molecular Imaging &Therapy Svc, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
- Center for Targeted Radioimmunotherapy and Theranostics, Ludwig Center for Cancer Immunotherapy, MSK, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
23
|
Liao X, Liu M, Wang R, Zhang J. Potentials of Non-Invasive 18F-FDG PET/CT in Immunotherapy Prediction for Non-Small Cell Lung Cancer. Front Genet 2022; 12:810011. [PMID: 35186013 PMCID: PMC8855498 DOI: 10.3389/fgene.2021.810011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
The immune checkpoint inhibitors (ICIs), by targeting cytotoxic-T-lymphocyte-associated protein 4, programmed cell death 1 (PD-1), or PD-ligand 1, have dramatically changed the natural history of several cancers, including non-small cell lung cancer (NSCLC). There are unusual response manifestations (such as pseudo-progression, hyper-progression, and immune-related adverse events) observed in patients with ICIs because of the unique mechanisms of these agents. These specific situations challenge response and prognostic assessment to ICIs challenging. This review demonstrates how 18F-FDG PET/CT can help identify these unusual response patterns in a non-invasive and effective way. Then, a series of semi-quantitative parameters derived from 18F-FDG PET/CT are introduced. These indexes have been recognized as the non-invasive biomarkers to predicting the efficacy of ICIs and survival of NSCLC patients according to the latest clinical studies. Moreover, the current situation regarding the functional criteria based on 18F-FDG PET/CT for immunotherapeutic response assessment is presented and analyzed. Although the criteria based on 18F-FDG PET/CT proposed some resolutions to overcome limitations of morphologic criteria in the assessment of tumor response to ICIs, further researches should be performed to validate and improve these assessing systems. Then, the last part in this review displays the present status and a perspective of novel specific PET probes targeting key molecules relevant to immunotherapy in prediction and response assessment.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|