1
|
Wang X, Wang Z, Liao Q, Yuan P, Mei J, Zhang Y, Wu C, Kang X, Zheng S, Yang C, Liu J, Shang Q, Li J, Wang B, Li L, Liu H, Hu W, Dong Z, Zhao J, Wang L, Liu T, Den Y, Wang C, Han L, Chen Q, Yang H, Xu X, He J, Yue Z, Sun N, Fang X, Ying J. Spatially resolved atlas of breast cancer uncovers intercellular machinery of venular niche governing lymphocyte extravasation. Nat Commun 2025; 16:3348. [PMID: 40199901 PMCID: PMC11978809 DOI: 10.1038/s41467-025-58511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancers present intricate microenvironments comprising heterotypic cellular interactions, yet a comprehensive spatial map remained to be established. Here, we employed the DNA nanoball-based genome-wide in situ sequencing (Stereo-seq) to visualize the geospatial architecture of 30 primary breast tumors and metastatic lymph nodes across different molecular subtypes. This unprecedented high-resolution atlas unveils the fine structure of the tumor vasculature, highlighting heterogeneity in phenotype, spatial distribution, and intercellular communication within both endothelial and perivascular cells. In particular, venular smooth muscle cells are identified as the primary source of CCL21/CCL19 within the microenvironment. In collaboration with ACKR1-positive endothelial cells, they create a chemokine-rich venular niche to synergistically promote lymphocyte extravasation into tumors. High venule density predicts increased immune infiltration and improved clinical outcomes. This study provides a detailed spatial landscape of human breast cancer, offering key insights into the venular regulation of tumor immune infiltration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Zhanyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qijun Liao
- BGI Research, Shenzhen, 518083, P. R. China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, 518083, P. R. China
| | - Pei Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Junpu Mei
- BGI Research, Sanya, 572025, P. R. China
| | - Yin Zhang
- BGI Research, Shenzhen, 518083, P. R. China
| | - Chao Wu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Xiyu Kang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Chenxuan Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jiangtao Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Bingning Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Liangyu Li
- BGI Research, Shenzhen, 518083, P. R. China
| | - Hui Liu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Weining Hu
- BGI Research, Shenzhen, 518083, P. R. China
| | | | - Jie Zhao
- BGI Research, Shenzhen, 518083, P. R. China
| | | | - Tao Liu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Yusheng Den
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Chengrui Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Lijuan Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Qianjun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Zhen Yue
- BGI Research, Sanya, 572025, P. R. China.
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| | | | - Jianming Ying
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| |
Collapse
|
2
|
Hirao H, Honda M, Tomita M, Li L, Adawy A, Xue W, Hibi T. Intravital Imaging of Immune Responses in the Cancer Microenvironment. Cancer Med 2025; 14:e70899. [PMID: 40257446 PMCID: PMC12010765 DOI: 10.1002/cam4.70899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND To date, many types of immune cells have been identified, but their precise role in cancer immunity remains unclear. Understanding the immune responses involved in cancer and the cancer microenvironment is becoming increasingly important for elucidating disease mechanisms. In recent years, the application of intravital imaging in cancer research has provided new insights into the mechanisms of cancer-specific immune events, including innate and adaptive immunity. RESULTS In this review, we focus on the emerging role of intravital imaging in cancer research and describe how cancer and immune cells can be observed using intravital imaging in vivo. We also discuss new insights gained by this state-of-the-art technique. CONCLUSIONS Intravital imaging is a relatively new field of research that offers significant advantages, including the ability to directly capture cell-cell interactions, pathophysiology, and immune cell dynamics in the cancer microenvironment in vivo.
Collapse
Affiliation(s)
- Hiroki Hirao
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masaki Honda
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masahiro Tomita
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Lianbo Li
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Ahmad Adawy
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Weijie Xue
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Taizo Hibi
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| |
Collapse
|
3
|
Chen W, Zhang L, Gao M, Zhang N, Wang R, Liu Y, Niu Y, Jia L. Role of tertiary lymphoid structures and B cells in clinical immunotherapy of gastric cancer. Front Immunol 2025; 15:1519034. [PMID: 39840050 PMCID: PMC11747648 DOI: 10.3389/fimmu.2024.1519034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, and its treatment remains a significant challenge. In recent years, the role of various immune cells in the tumor microenvironment in cancer progression and treatment has gained increasing attention. Immunotherapy, primarily based on immune checkpoint inhibitors, has notably improved the prognosis of patients with gastric cancer; however, challenges regarding therapeutic efficacy persist. Histological features within the tumor microenvironment, such as tertiary lymphoid structures (TLSs), tumor-infiltrating lymphocytes, and the proportion of intratumoral stroma, are emerging as potentially effective prognostic factors. In gastric cancer, TLSs may serve as local immune hubs, enhancing the ability of immune cells to interact with and recognize tumor antigens, which is closely linked to the effectiveness of immunotherapy and improved survival rates in patients. However, the specific cell type driving TLS formation in tumors has not yet been elucidated. Mature TLSs are B-cell regions containing germinal centers. During germinal center formation, B cells undergo transformations to become mature cells with immune function, exerting anti-tumor effects. Therefore, targeting B cells within TLSs could provide new avenues for gastric cancer immunotherapy. This review, combined with current research on TLSs and B cells in gastric cancer, elaborates on the relationship between TLSs and B cells in the prognosis and immunotherapy of patients with gastric cancer, aiming to provide effective guidance for precise immunotherapy.
Collapse
Affiliation(s)
- Weiyi Chen
- Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lingli Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Man Gao
- Bayannur Clinical Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yan Niu
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Shu DH, Sidiropoulos DN. Maturation of Tertiary Lymphoid Structures. Methods Mol Biol 2025; 2864:43-55. [PMID: 39527216 DOI: 10.1007/978-1-0716-4184-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are organized collections of B and T lymphocytes that arise in nonlymphoid tissue in response to chronic, unresolved inflammation. TLS have structural and functional similarities to germinal centers found in lymph nodes and are believed to support the establishment of lymph node-like adaptive immune responses at local sites of inflammation. However, understanding of the underlying biology of these structures remains limited, particularly the different stages of TLS life cycle and the signals governing the initiation, maturation, and termination of TLS. Here, we review current understanding of the maturation of TLS and the signals and cell types involved in various stages of development with particular emphasis on recent studies of TLS in cancer, where evidence suggests that TLS may play an important role in supporting antitumor immune responses in solid tumors.
Collapse
Affiliation(s)
- Daniel H Shu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
- Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Matsueda S, Chen L, Li H, Yao H, Yu F. Recent clinical researches and technological development in TIL therapy. Cancer Immunol Immunother 2024; 73:232. [PMID: 39264449 PMCID: PMC11393248 DOI: 10.1007/s00262-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy represents a groundbreaking advancement in the solid cancer treatment, offering new hope to patients and their families with high response rates and long overall survival. TIL therapy involves extracting immune cells from a patient's tumor tissue, expanding them ex vivo, and infusing them back into the patient to target and eliminate cancer cells. This revolutionary approach harnesses the power of the immune system to combat cancers, ushering in a new era of T cell-based therapies along with CAR-T and TCR-therapies. In this comprehensive review, we aim to elucidate the remarkable potential of TIL therapy by delving into recent advancements in basic and clinical researches. We highlight on the evolving landscape of TIL therapy as a prominent immunotherapeutic strategy, its multifaceted applications, and the promising outcomes. Additionally, we explore the future horizons of TIL therapy, next-generation TILs, and combination therapy, to overcome the limitations and improve clinical efficacy of TIL therapy.
Collapse
Affiliation(s)
- Satoko Matsueda
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA.
| | - Lei Chen
- Department of Neurosurgery, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Hongmei Li
- Department of Oncology, Qingdao University Medical School, Qinddao, 266003, China
| | - Hui Yao
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA
| | - Fuli Yu
- Fresh Wind Biotechnologies USA Inc, 4502 Riverstone Blvd, STE1104, Missouri City, TX, 77459, USA
| |
Collapse
|
6
|
Zhang J, Huang Y, Tan X, Wang Z, Cheng R, Zhang S, Chen Y, Jiang F, Tan W, Deng X, Li F. Integrated analysis of multiple transcriptomic approaches and machine learning integration algorithms reveals high endothelial venules as a prognostic immune-related biomarker in bladder cancer. Int Immunopharmacol 2024; 136:112184. [PMID: 38824904 DOI: 10.1016/j.intimp.2024.112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Despite the availability of established surgical and chemotherapy options, the treatment of bladder cancer (BCa) patients remains challenging. While immunotherapy has emerged as a promising approach, its benefits are limited to a subset of patients. The exploration of additional targets to enhance the efficacy of immunotherapy is a valuable research direction. METHOD High endothelial venules (HEV) ssGSEA analysis was conducted using BEST. Through the utilization of R packages Limma, Seurat, SingleR, and Harmony, analyses were performed on spatial transcriptomics, bulk RNA-sequencing (bulk RNA-seq), and single-cell RNA sequencing (scRNA-seq) data, yielding HEV-related genes (HEV.RGs). Molecular subtyping analysis based on HEV.RGs was conducted using R package MOVICS, and various machine learning-integrated algorithm was employed to construct prognostic model. LDLRAD3 was validated through subcutaneous tumor formation in mice, HEV induction, Western blot, and qPCR. RESULTS A correlation between higher HEV levels and improved immune response and prognosis was revealed by HEV ssGSEA analysis in BCa patients receiving immunotherapy. HEV.RGs were identified in subsequent transcriptomic analyses. Based on these genes, BCa patients were stratified into two molecular clusters with distinct survival and immune infiltration patterns using various clustering-integrated algorithm. Prognostic model was developed using multiple machine learning-integrated algorithm. Low LDLRAD3 expression may promote HEV generation, leading to enhanced immunotherapy efficacy, as suggested by bulk RNA-seq, scRNA-seq analyses, and experimental validation of LDLRAD3. CONCLUSIONS HEV served as a predictive factor for immune response and prognosis in BCa patients receiving immunotherapy. LDLRAD3 represented a potential target for HEV induction and enhancing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jinge Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuan Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Xing Tan
- Department of Nanfang Hospital Administration Office, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zihuan Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ranyang Cheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shenlan Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuwen Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Feifan Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
7
|
Wang B, Han Y, Liu J, Zhang X, Deng Y, Jiang Y. Intratumoral high endothelial venules in solid tumors: a pooled study. Front Immunol 2024; 15:1401118. [PMID: 39040120 PMCID: PMC11260642 DOI: 10.3389/fimmu.2024.1401118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Objective We performed this pooled analysis for the first time to comprehensively explore the prognostic value of tumor-associated high endothelial venules (TA-HEVs) and determine their relationships with clinicopathological features in solid tumors. Methods Four online databases, including PubMed, Web of Science, Embase, and Cochrane Library, were comprehensively searched to identify studies assessing the effect of TA-HEVs on prognosis or clinicopathological features. Hazard ratios (HRs) with 95% confidence intervals (CIs) were applied to evaluate survival outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). The association between TA-HEV status and clinicopathological characteristics was assessed by odds ratios (ORs) combined with 95% CIs. Subgroup analysis was conducted to explore sources of heterogeneity. The sensitivity analysis was performed to evaluate the stability of our findings. Meanwhile, Funnel plots were employed to visually evaluate potential publication bias, and both Begg's and Egger's tests were adopted to quantitatively determine publication bias. Results A total of 13 retrospective cohort studies, involving 1,933 patients were finally included in this meta-analysis. Effect-size pooling analysis showed that the positivity of TA-HEVs was related to improved OS (pooled HR: 0.75, 95% CI: 0.62-0.93, P<0.01), and DFS (pooled HR = 0.54, 95% CI = 0.41-0.72, P< 0.01). However, TA-HEV positivity in solid tumors was not linked to PFS (pooled HR = 0.75, 95% CI 0.34-1.64, P = 0.47) or CSS (pooled HR: 0.58, 95% CI: 0.04-7.58, P= 0.68). Further subgroup analysis demonstrated that ethnicity and source of HR were the main factors contributing to heterogeneity. Moreover, TA-HEVs were inversely associated with lymph node metastasis and distant metastasis, but were positively related to worse tumor differentiation. However, TA-HEVs were not significantly correlated with sex, LVI, clinical stage, and depth of invasion. Sensitivity analysis suggested that the pooled results were stable and reliable, with no significant publication bias in all included articles. Conclusions This is the first comprehensive analysis of the prognostic value of TA-HEVs in solid tumors using existing literature. Overall, our study demonstrated a significant correlation between TA-HEVs and prognosis as well as clinicopathological features. TA-HEVs may serve as novel immune-related biomarkers for clinical assessments and prognosis prediction in solid tumors. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php, identifier CRD42023394998.
Collapse
Affiliation(s)
- Bin Wang
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jie Liu
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyao Zhang
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaotiao Deng
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Tian M, Yao Z, Zhou Y, Gan Q, Wang L, Lu H, Wang S, Zhou P, Dai Z, Zhang S, Sun Y, Tang Z, Yu J, Wang X. DeepRisk network: an AI-based tool for digital pathology signature and treatment responsiveness of gastric cancer using whole-slide images. J Transl Med 2024; 22:182. [PMID: 38373959 PMCID: PMC10877826 DOI: 10.1186/s12967-023-04838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Digital histopathology provides valuable information for clinical decision-making. We hypothesized that a deep risk network (DeepRisk) based on digital pathology signature (DPS) derived from whole-slide images could improve the prognostic value of the tumor, node, and metastasis (TNM) staging system and offer chemotherapeutic benefits for gastric cancer (GC). METHODS DeepRisk is a multi-scale, attention-based learning model developed on 1120 GCs in the Zhongshan dataset and validated with two external datasets. Then, we assessed its association with prognosis and treatment response. The multi-omics analysis and multiplex Immunohistochemistry were conducted to evaluate the potential pathogenesis and spatial immune contexture underlying DPS. RESULTS Multivariate analysis indicated that the DPS was an independent prognosticator with a better C-index (0.84 for overall survival and 0.71 for disease-free survival). Patients with low-DPS after neoadjuvant chemotherapy responded favorably to treatment. Spatial analysis indicated that exhausted immune clusters and increased infiltration of CD11b+CD11c+ immune cells were present at the invasive margin of high-DPS group. Multi-omics data from the Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD) hint at the relevance of DPS to myeloid derived suppressor cells infiltration and immune suppression. CONCLUSION DeepRisk network is a reliable tool that enhances prognostic value of TNM staging and aid in precise treatment, providing insights into the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Mengxin Tian
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao Yao
- Biomedical Engineering Center, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Yufu Zhou
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qiangjun Gan
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leihao Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongwei Lu
- Biomedical Engineering Center, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Siyuan Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Dai
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Sijia Zhang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihong Sun
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqing Tang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
| | - Jinhua Yu
- Biomedical Engineering Center, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
| | - Xuefei Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
| |
Collapse
|
9
|
Go EJ, Yang H, Lee SJ, Yang HG, Shin JA, Lee WS, Lim HS, Chon HJ, Kim C. PB101, a VEGF- and PlGF-targeting decoy protein, enhances antitumor immunity and suppresses tumor progression and metastasis. Oncoimmunology 2023; 12:2259212. [PMID: 37744990 PMCID: PMC10515676 DOI: 10.1080/2162402x.2023.2259212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Antiangiogenic therapy is a recognized method for countering the immunosuppressive tumor microenvironment (TME) and improving anti-tumor immunity. PB101 is a glycosylated decoy receptor that binds to VEGF-A and PlGF with high affinity, based on the VEGFR1 backbone. Here, we elucidated PB101-induced remodeling of tumor angiogenesis and immunity, which enhances anti-PD-L1 immune checkpoint blockade. PB101 inhibited tumor growth by suppressing angiogenesis and enhancing CD8+ T cell infiltration into the tumors. PB101 induced robust reprogramming of antitumor immunity and activates intratumoral CD8+ T cells. Anti-tumor efficacy of PB101 is mostly dependent on CD8+ T cells and IFN-γ. PB101 reprograms tumor immunity in a manner distinct from that of the conventional VEGF decoy receptor, VEGF-trap. With its potent immune-modulating capability, PB101 synergizes with an anti-PD-L1, triggering strengthened antitumor immunity. Combining PB101 and anti-PD-L1 could establish durable protective immunity against tumor recurrence and metastasis. The findings of this study offer scientific rationales for further clinical development of PB101, particularly when used in combination with immune checkpoint inhibitors, as a potential treatment for advanced cancers.
Collapse
Affiliation(s)
- Eun-Jin Go
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seung Joon Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hyun Gul Yang
- Panolos Bioscience, Inc, Hwaseong-si, Republic of Korea
| | - Jin A. Shin
- Panolos Bioscience, Inc, Hwaseong-si, Republic of Korea
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hye Seong Lim
- Panolos Bioscience, Inc, Hwaseong-si, Republic of Korea
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
11
|
Yang H, Kang B, Ha Y, Lee SH, Kim I, Kim H, Lee WS, Kim G, Jung S, Rha SY, Gaillard VE, Cheon J, Kim C, Chon HJ. High serum IL-6 correlates with reduced clinical benefit of atezolizumab and bevacizumab in unresectable hepatocellular carcinoma. JHEP Rep 2023; 5:100672. [PMID: 36866388 PMCID: PMC9972403 DOI: 10.1016/j.jhepr.2023.100672] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/18/2023] Open
Abstract
Background & Aims We elucidated the clinical and immunologic implications of serum IL-6 levels in patients with unresectable hepatocellular carcinoma (HCC) treated with atezolizumab and bevacizumab (Ate/Bev). Methods We prospectively enrolled 165 patients with unresectable HCC (discovery cohort: 84 patients from three centres; validation cohort: 81 patients from one centre). Baseline blood samples were analysed using a flow cytometric bead array. The tumour immune microenvironment was analysed using RNA sequencing. Results In the discovery cohort, clinical benefit 6 months (CB6m) was defined as complete or partial response, or stable disease for ≥6 months. Among various blood-based biomarkers, serum IL-6 levels were significantly higher in participants without CB6m than in those with CB6m (mean 11.56 vs. 5.05 pg/ml, p = 0.02). Using maximally selected rank statistics, the optimal cut-off value for high IL-6 was determined as 18.49 pg/ml, and 15.2% of participants were found to have high IL-6 levels at baseline. In both the discovery and validation cohorts, participants with high baseline IL-6 levels had a reduced response rate and worse progression-free and overall survival after Ate/Bev treatment compared with those with low baseline IL-6 levels. In multivariable Cox regression analysis, the clinical implications of high IL-6 levels persisted, even after adjusting for various confounding factors. Participants with high IL-6 levels showed reduced interferon-γ and tumour necrosis factor-α secretion from CD8+ T cells. Moreover, excess IL-6 suppressed cytokine production and proliferation of CD8+ T cells. Finally, participants with high IL-6 levels exhibited a non-T-cell-inflamed immunosuppressive tumour microenvironment. Conclusions High baseline IL-6 levels can be associated with poor clinical outcomes and impaired T-cell function in patients with unresectable HCC after Ate/Bev treatment. Impact and implications Although patients with hepatocellular carcinoma who respond to treatment with atezolizumab and bevacizumab exhibit favourable clinical outcomes, a fraction of these still experience primary resistance. We found that high baseline serum levels of IL-6 correlate with poor clinical outcomes and impaired T-cell response in patients with hepatocellular carcinoma treated with atezolizumab and bevacizumab.
Collapse
Key Words
- AFP, alpha-foetoprotein
- Ate/Bev, atezolizumab and bevacizumab
- Atezolizumab
- BCLC, Barcelona Clinic Liver Cancer
- Bevacizumab
- CB6m, clinical benefit 6 months
- CONSORT, Consolidated Standards of Reporting Trials
- CR, complete response
- CRAFITY, C-reactive protein and AFP in immunotherapy
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- DC, dendritic cell
- ECOG, Eastern Cooperative Oncology Group
- FFPE, formalin-fixed paraffin-embedded
- HCC, hepatocellular carcinoma
- HR, hazard ratio
- Hepatocellular carcinoma
- IFN-γ, interferon-γ
- IL-6
- Immunotherapy
- MDSC, myeloid-derived suppressor cell
- MSI, microsatellite instability
- MVI, macrovascular invasion
- ORR, objective response rate
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PD, progressive disease
- PD-1, programmed-death-1
- PD-L1, programmed-death ligand-1
- PFS, progression-free survival
- PR, partial response
- RECIST, Response Evaluation Criteria in Solid Tumours
- SD, stable disease
- TME, tumour microenvironment
- TNF-α, tumour necrosis factor-α
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Hannah Yang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Beodeul Kang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
- Yonsei Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeonjung Ha
- Department of Gastroenterology, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Sung Hwan Lee
- Department of Surgery, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Ilhwan Kim
- Division of Oncology, Department of Internal Medicine, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Hyeyeong Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Won Suk Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Sanghoon Jung
- Department of Radiology, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Sun Young Rha
- Yonsei Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Jaekyung Cheon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Chan Kim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hong Jae Chon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
12
|
Vella G, Hua Y, Bergers G. High endothelial venules in cancer: Regulation, function, and therapeutic implication. Cancer Cell 2023; 41:527-545. [PMID: 36827979 DOI: 10.1016/j.ccell.2023.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The lack of sufficient intratumoral CD8+ T lymphocytes is a significant obstacle to effective immunotherapy in cancer. High endothelial venules (HEVs) are organ-specific and specialized postcapillary venules uniquely poised to facilitate the transmigration of lymphocytes to lymph nodes (LNs) and other secondary lymphoid organs (SLOs). HEVs can also form in human and murine cancer (tumor HEVs [TU-HEVs]) and contribute to the generation of diffuse T cell-enriched aggregates or tertiary lymphoid structures (TLSs), which are commonly associated with a good prognosis. Thus, therapeutic induction of TU-HEVs may provide attractive avenues to induce and sustain the efficacy of immunotherapies by overcoming the major restriction of T cell exclusion from the tumor microenvironment. In this review, we provide current insight into the commonalities and discrepancies of HEV formation and regulation in LNs and tumors and discuss the specific function and significance of TU-HEVs in eliciting, predicting, and aiding anti-tumoral immunity.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Dai X, Zhu K. Cold atmospheric plasma: Novel opportunities for tumor microenvironment targeting. Cancer Med 2023; 12:7189-7206. [PMID: 36762766 PMCID: PMC10067048 DOI: 10.1002/cam4.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 02/11/2023] Open
Abstract
With mounting preclinical and clinical evidences on the prominent roles of the tumor microenvironment (TME) played during carcinogenesis, the TME has been recognized and used as an important onco-therapeutic target during the past decade. Delineating our current knowledge on TME components and their functionalities can help us recognize novel onco-therapeutic opportunities and establish treatment modalities towards desirable anti-cancer outcome. By identifying and focusing on primary cellular components in the TME, that is, tumor-infiltrating lymphocytes, tumor-associated macrophages, cancer-associated fibroblasts and mesenchymal stem cells, we decomposed their primary functionalities during carcinogenesis, categorized current therapeutic approaches utilizing traits of these components, and forecasted possible benefits that cold atmospheric plasma, a redox modulating tool with selectivity against cancer cells, may convey by targeting the TME. Our insights may open a novel therapeutic avenue for cancer control taking advantages of redox homeostasis and immunostasis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kaiyuan Zhu
- Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Cai D, Yu H, Wang X, Mao Y, Liang M, Lu X, Shen X, Guan W. Turning Tertiary Lymphoid Structures (TLS) into Hot Spots: Values of TLS in Gastrointestinal Tumors. Cancers (Basel) 2023; 15:cancers15020367. [PMID: 36672316 PMCID: PMC9856964 DOI: 10.3390/cancers15020367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregation structures found in the tumor microenvironment (TME). Emerging evidence shows that TLSs are significantly correlated with the progression of gastrointestinal tumors, patients' prognosis, and the efficacy of adjuvant therapy. Besides, there are still some immunosuppressive factors in the TLSs that may affect the anti-tumor responses of TLSs, including negative regulators of anti-tumor immune responses, the immune checkpoint molecules, and inappropriate tumor metabolism. Therefore, a more comprehensive understanding of TLSs' responses in gastrointestinal tumors is essential to fully understand how TLSs can fully exert their anti-tumor responses. In addition, targeting TLSs with immune checkpoint inhibitors and vaccines to establish mature TLSs is currently being developed to reprogram the TME, further benefiting cancer immunotherapies. This review summarizes recent findings on the formation of TLSs, the mechanisms of their anti-tumor immune responses, and the association between therapeutic strategies and TLSs, providing a novel perspective on tumor-associated TLSs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Daming Cai
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Heng Yu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yonghuan Mao
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| |
Collapse
|
15
|
Michaelides S, Obeck H, Kechur D, Endres S, Kobold S. Migratory Engineering of T Cells for Cancer Therapy. Vaccines (Basel) 2022; 10:1845. [PMID: 36366354 PMCID: PMC9692862 DOI: 10.3390/vaccines10111845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 10/10/2023] Open
Abstract
Adoptive cell therapy (ACT) and chimeric antigen receptor (CAR) T cell therapy in particular represents an adaptive, yet versatile strategy for cancer treatment. Convincing results in the treatment of hematological malignancies have led to FDA approval for several CAR T cell therapies in defined refractory diseases. In contrast, the treatment of solid tumors with adoptively transferred T cells has not demonstrated convincing efficacy in clinical trials. One of the main reasons for ACT failure in solid tumors is poor trafficking or access of transferred T cells to the tumor site. Tumors employ a variety of mechanisms shielding themselves from immune cell infiltrates, often translating to only fractions of transferred T cells reaching the tumor site. To overcome this bottleneck, extensive efforts are being undertaken at engineering T cells to improve ACT access to solid tumors. In this review, we provide an overview of the immune cell infiltrate in human tumors and the mechanisms tumors employ toward immune exclusion. We will discuss ways in which T cells can be engineered to circumvent these barriers. We give an outlook on ongoing clinical trials targeting immune cell migration to improve ACT and its perspective in solid tumors.
Collapse
Affiliation(s)
- Stefanos Michaelides
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Hannah Obeck
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Daryna Kechur
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstrasse 8a, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstrasse 8a, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
16
|
Multi-scale characterization of tumor-draining lymph nodes in resectable lung cancer treated with neoadjuvant immune checkpoint inhibitors. EBioMedicine 2022; 84:104265. [PMID: 36116212 PMCID: PMC9486045 DOI: 10.1016/j.ebiom.2022.104265] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Background Regional lymph node (LN) acts as a pivotal organ for antitumor immunity. Paradoxically, tumor-draining LNs (TDLNs) are usually the first site of tumor metastasis in lung cancer. It is largely unknown about the association between the status of TDLNs and the response of primary tumor beds to immune checkpoint inhibitors (ICIs) in lung cancer patients. Also, studies characterizing the TDLNs in response to ICIs are scarce. Methods We characterized and compared the radiological, metabolic (18F-FDG) and pathologic responses between primary tumor beds and paired TDLNs (invaded/non-invaded) from 68 lung cancer patients who underwent neoadjuvant ICIs plus surgery. Additionally, we performed the spatial profiling of immune and non-immune cells within TDLNs using multiplexed immunofluorescence. Therapy responses (e.g., pathologic complete (pCR) or major response (MPR)) of primary lung tumor beds and paired TDLNs were investigated separately. Findings We observed that responses of TDLNs to ICIs markedly differ from their paired primary lung tumors regarding the radiological, metabolic (18F-FDG uptake), and pathologic alterations. Neoadjuvant ICIs therapy specifically decreased 18F-FDG-reflected metabolic activity in the primary tumor beds with pCR/MPR but not their TDLNs counterparts. Furthermore, the presence of invaded TDLNs was associated with poor pathologic responses in the matched primary tumor beds and predictive of rapid post-treatment tumor relapse. Spatial profiling demonstrated exclusion of T cell infiltrates within the metastatic lesions of invaded TDLNs, and diminished multiple immune and non-immune compositions in non-involved regions surrounding the metastatic lesions. Interpretation These results provide the first clinically-relevant evidence demonstrating unique response patterns of TDLNs under ICIs treatment and revealing the underappreciated association of TDLNs status with the response of their paired primary tumors to ICIs in lung cancer. Funding This work was supported by the National Natural Science Foundation of China (82072570 to F. Yao; 82002941 to B. Sun), the excellent talent program of Shanghai Chest Hospital (to F.Y), the Basic Foundation Program for Youth of Shanghai Chest Hospital (2021YNJCQ2 to H.Yang), and the Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZLCX20212302 to F. Yao).
Collapse
|
17
|
Hu L, Yang K, Chen Y, Sun C, Wang X, Zhu S, Yang S, Cao G, Xiong M, Chen B. Survival nomogram for different grades of gastric cancer patients based on SEER database and external validation cohort. Front Oncol 2022; 12:951444. [PMID: 36185304 PMCID: PMC9523147 DOI: 10.3389/fonc.2022.951444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Influencing factors varied among gastric cancer (GC) for different differentiation grades which affect the prognosis accordingly. This study aimed to develop a nomogram to effectively identify the overall survival (OS). Methods Totally, 9,568 patients with GC were obtained from the SEER database as the training cohort and internal validation cohort. We then retrospectively enrolled patients diagnosed with GC to construct the external validation cohort from the First Affiliated Hospital of Anhui Medical University. The prognostic factors were integrated into the multivariate Cox regression to construct a nomogram. To test the accuracy of the model, we used the calibration curves, receiver operating characteristics (ROC) curves, C-index, and decision curve analysis (DCA). Results Race chemotherapy, tumor size, and other four factors were significantly associated with the prognosis of Grade III GC Patients. On this basis, we developed a nomogram. The discrimination of the nomogram revealed good prognostic accuracy The results of the area under the curve (AUC) calculated by ROC for five-year survival were 0.828 and 0.758 in the training set and external validation cohort, higher than that of the TNM staging system. The calibration plot revealed that the estimated risk was close to the actual risk. DCA also suggested an excellent predictive value of the nomogram. Similar results were obtained in Grade-I and Grade-II GC patients. Conclusions The nomogram developed in this study and other findings could help individualize the treatment of GC patients and assist clinicians in their shared decision-making with patients.
Collapse
Affiliation(s)
- Lei Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, Hefei, China
| | - Kang Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yue Chen
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, Hefei, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaopu Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shiyi Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Maoming Xiong, ; Bo Chen,
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Maoming Xiong, ; Bo Chen,
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of surgery, the People’s Hospital of Hanshan County, Ma’anshan City, China
- *Correspondence: Guodong Cao, ; Maoming Xiong, ; Bo Chen,
| |
Collapse
|
18
|
Hussain B, Kasinath V, Ashton-Rickardt GP, Clancy T, Uchimura K, Tsokos G, Abdi R. High endothelial venules as potential gateways for therapeutics. Trends Immunol 2022; 43:728-740. [PMID: 35931612 PMCID: PMC10804419 DOI: 10.1016/j.it.2022.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
High endothelial venules (HEVs) are specialized blood vessels that support the migration of lymphocytes from the bloodstream into lymph nodes (LNs). They are also formed ectopically in mammalian organs affected by chronic inflammation and cancer. The recent arrival of immunotherapy at the forefront of many cancer treatment regimens could boost a crucial role for HEVs as gateways for the treatment of cancer. In this review, we describe the microanatomical and biochemical characteristics of HEVs, mechanisms of formation of newly made HEVs, immunotherapies potentially dependent on HEV-mediated T cell homing to tumors, and finally, how HEV-targeted therapies might be used as a complementary approach to potentially shape the therapeutic landscape for the treatment of cancer and immune-mediated diseases.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Thomas Clancy
- Division of Surgical Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kenji Uchimura
- University Lille, CNRS, UMR8576 - UGSF - Unite de Glycogiologie Structurale et Functionelle, 59000 Lille, France
| | - George Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
He C, He L, Lu Q, Xiao J, Dong W. The functions and prognostic values of chemokine and chemokine receptors in gastric cancer. Am J Cancer Res 2022; 12:3034-3050. [PMID: 35968351 PMCID: PMC9360243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023] Open
Abstract
Chemokine and chemokine receptors (CCRs) play a significant role in tumor infiltration of immune cells, tumor angiogenesis and distant metastasis. In this study, we explored the importance of CCRs in gastric cancer (GC) by analyzing the datasets from TCGA database. First, we analyzed the characteristics of the CCRs mutations. Then, we screened the differentially expressed CCRs and performed GO functional annotation and KEGG pathway analyses to explore their potential biological functions. Using multivariate Cox regression analyses, we constructed a prediction model based on four-CCRs (CCL15, CCL21, CCR3 and ACKR3) signature, and we found that the risk score of the model was an independent prognostic factor of GC. Next, a nomogram was constructed to assess the prognosis of GC patients. GSEA indicated that the high-risk group was significantly enriched in immune response and immune system process. Moreover, GSVA was employed to investigate the up- and down-regulated signaling pathways in the high- and low-risk groups. The correlation between risk score and immune-cell infiltration indicated that the four-CCRs signature might play a pivotal role in GC immune microenvironment. In conclusion, we revealed the potential molecular mechanisms of CCRs in GC and constructed a prediction model which might guide personalized treatment and prognosis for GC patients.
Collapse
Affiliation(s)
- Chenglong He
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| | - Liping He
- Guangdong Provincial People’s Hospital Zhuhai HospitalZhuhai 519040, Guangdong, China
| | - Qiaowei Lu
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| | - Jianjun Xiao
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| | - Wenjing Dong
- Department of Oncology, Zhongshan City People’s HospitalZhongshan 528400, Guangdong, China
| |
Collapse
|
20
|
Liu H, Wu J, Xu X, Wang H, Zhang C, Yin S, He Y. Peritumoral TIGIT+CD20+ B cell infiltration indicates poor prognosis but favorable adjuvant chemotherapeutic response in gastric cancer. Int Immunopharmacol 2022; 108:108735. [DOI: 10.1016/j.intimp.2022.108735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023]
|
21
|
Lee WS, Kim DS, Kim JH, Heo Y, Yang H, Go EJ, Kim JH, Lee SJ, Ahn BC, Yum JS, Chon HJ, Kim C. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade. J Immunother Cancer 2022; 10:jitc-2022-004799. [PMID: 35764365 PMCID: PMC9240943 DOI: 10.1136/jitc-2022-004799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are critical innate immune sensors that elicit antitumor immune responses in cancer immunotherapy. Although a few TLR agonists have been approved for the treatment of patients with early-stage superficial cancers, their therapeutic efficacy is limited in patient with advanced invasive cancers. Here, we identified the therapeutic role of a TLR2/3 agonist, L-pampo (LP), which promotes antitumor immunity and enhances the immune checkpoint blockade. METHODS We generated LP by combining a TLR2 agonist, Pam3CSK4, with a TLR3 agonist, Poly (I:C). Immune responses to stimulation with various TLR agonists were compared. Tumor-bearing mice were intratumorally treated with LP, and their tumor sizes were measured. The antitumor effects of LP treatment were determined using flow cytometry, multiplexed imaging, and NanoString nCounter immune profiling. The immunotherapeutic potential of LP in combination with α-programmed cell death protein-1 (PD-1) or α-cytotoxic T-lymphocytes-associated protein 4 (CTLA-4) was evaluated in syngeneic MC38 colon cancer and B16F10 melanoma. RESULTS The LP treatment induced a potent activation of T helper 1 (Th1) and 2 (Th2)-mediated immunity, tumor cell apoptosis, and immunogenic tumor cell death. Intratumoral LP treatment effectively inhibited tumor progression by activating tumor-specific T cell immunity. LP-induced immune responses were mediated by CD8+ T cells and interferon-γ, but not by CD4+ T cells and CD25+ T cells. LP simultaneously activated TLR2 and TLR3 signaling, thereby extensively changing the immune-related gene signatures within the tumor microenvironment (TME). Moreover, intratumoral LP treatment led to systemic abscopal antitumor effects in non-injected distant tumors. Notably, LP treatment combined with ɑPD-1 and ɑCTLA-4 further enhanced the efficacy of monotherapy, resulting in complete tumor regression and prolonged overall survival. Furthermore, LP-based combination immunotherapy elicited durable antitumor immunity with tumor-specific immune memory in colon cancer and melanoma. CONCLUSIONS Our study demonstrated that intratumoral LP treatment improves the innate and adaptive antitumor immunity within the TME and enhances the efficacy of αPD-1 and αCTLA-4 immune checkpoint blockade.
Collapse
Affiliation(s)
- Won Suk Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Dong Sung Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Jeong Hun Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Yoonki Heo
- CHA Vaccine Institute, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Hannah Yang
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Eun-Jin Go
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Jin Hyoung Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Seung Joon Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Byung Cheol Ahn
- CHA Vaccine Institute, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Jung Sun Yum
- CHA Vaccine Institute, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of) .,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Gyeonggi-do, Korea (the Republic of) .,Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, Korea (the Republic of).,Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea (the Republic of)
| |
Collapse
|
22
|
Kim JH, Lee WS, Lee HJ, Yang H, Lee SJ, Kong SJ, Je S, Yang HJ, Jung J, Cheon J, Kang B, Chon HJ, Kim C. Deep learning model enables the discovery of a novel immunotherapeutic agent regulating the kynurenine pathway. Oncoimmunology 2021; 10:2005280. [PMID: 34858729 PMCID: PMC8632076 DOI: 10.1080/2162402x.2021.2005280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Kynurenine (Kyn) is a key inducer of an immunosuppressive tumor microenvironment (TME). Although indoleamine 2,3-dioxygenase (IDO)-selective inhibitors have been developed to suppress the Kyn pathway, the results were not satisfactory due to the presence of various opposing mechanisms. Here, we employed an orally administered novel Kyn pathway regulator to overcome the limitation of anti-tumor immune response. We identified a novel core structure that inhibited both IDO and TDO. An orally available lead compound, STB-C017 (designated hereafter as STB), effectively inhibited the enzymatic and cellular activity of IDO and TDO in vitro. Moreover, it potently suppressed Kyn levels in both the plasma and tumor in vivo. STB monotherapy increased the infiltration of CD8+ T cells into TME. In addition, STB reprogrammed the TME with widespread changes in immune-mediated gene signatures. Notably, STB-based combination immunotherapy elicited the most potent anti-tumor efficacy through concurrent treatment with immune checkpoint inhibitors, leading to complete tumor regression and long-term overall survival. Our study demonstrated that a novel Kyn pathway regulator derived using deep learning technology can activate T cell immunity and potentiate immune checkpoint blockade by overcoming an immunosuppressive TME.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Won Suk Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea
| | - Hye Jin Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Hannah Yang
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea
| | - Seung Joon Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - So Jung Kong
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea
| | - Soyeon Je
- Medical Science Study Centre, Syntekabio Inc, Seoul, South Korea
| | - Hyun-Jin Yang
- Medical Science Study Centre, Syntekabio Inc, Seoul, South Korea
| | - Jongsun Jung
- Insilico Clinical Trial Research Center, Syntekabio Inc, Daejeon, South Korea
| | - Jaekyung Cheon
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Beodeul Kang
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| |
Collapse
|