1
|
Yang C, Zhang Y, Liu Y, Wu X, Sun F. Study on the molecular mechanism of UBA52 and BARD1 regulating hepatocellular carcinoma through the PI3 K/AKT signaling pathway. Discov Oncol 2025; 16:840. [PMID: 40397202 PMCID: PMC12095107 DOI: 10.1007/s12672-025-02600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally, with its development closely related to complex molecular mechanisms such as gene mutations and abnormal signaling pathways. However, the specific roles of many key genes remain unclear. UBA52 and BARD1 are important genes associated with protein degradation, DNA repair, and cell cycle regulation, but their mechanisms in liver cancer are not well understood. METHODS This study integrated HCC datasets (GSE135631, GSE184733, GSE202853) from the gene expression omnibus (GEO) database to screen for differentially expressed genes (DEGs), perform functional enrichment analysis, weighted gene co-expression network analysis (WGCNA), construct protein-protein interaction (PPI) networks, and conduct survival analysis. Western Blot (WB) and RT-qPCR experiments were used to verify the expression of UBA52 and BARD1 in liver cancer cells and their association with the PI3K/AKT signaling pathway. RESULTS Bioinformatics analysis identified UBA52 and BARD1 as core genes, showing high expression in HCC tissues and correlation with poor prognosis. Western Blot and RT-qPCR results further confirmed the high expression of UBA52 and BARD1 in HCC cell lines (HepG2 and Hep3b). PI3K inhibitors significantly downregulated the expression of UBA52 and BARD1, restored the levels of apoptosis-related factors (Fas, BAX, Caspase-3), and inhibited the expression of cell cycle-related proteins (Cyclin-D1, c-Myc). These findings suggest that UBA52 and BARD1 may regulate HCC cell proliferation, apoptosis, and metastasis through the PI3K/AKT signaling pathway. Furthermore, the molecular mechanism of hepatocellular carcinoma can be modulated by knocking out BARD1 or UBA52. CONCLUSION UBA52 and BARD1 are highly expressed in HCC, and their abnormal expression may promote the occurrence and development of liver cancer by regulating the PI3K/AKT signaling pathway and mechanisms related to apoptosis and cell cycle. The high expression of UBA52 and BARD1 is closely associated with poor prognosis, indicating their potential value as early diagnostic and targeted therapeutic biomarkers for HCC.
Collapse
Affiliation(s)
- Chenrui Yang
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| | - Yanzhong Zhang
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China.
| | - Yajuan Liu
- Department of Clinical Pharmacy, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| | - Xiaoyong Wu
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| | - Fangyuan Sun
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| |
Collapse
|
2
|
Xie C, Qiu N, Wang C, Chen J, Zhang H, Lu X, Chen S, Sun Y, Lian Z, Hu H, Zhu H, Xu X. G-LERP/miR-374i-b Attenuates IRI and Suppresses Hepatocellular Carcinoma Progression. Transplantation 2025:00007890-990000000-01080. [PMID: 40336158 DOI: 10.1097/tp.0000000000005412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND Liver transplantation (LT) is the most effective therapeutic strategy for late-stage hepatocellular carcinoma (HCC), but it is prone to ischemia-reperfusion injury (IRI), leading to poor prognosis. Previous articles have reported that miR-374b-5p expression is increased in HCC tissues, and its relationship with IRI and HCC carcinoma progression is unclear. METHODS Previous reports have shown that miR-374b-5p expression is significantly upregulated in HCC tissues. The effect of miR-374b-5p on patient symptoms and prognosis were analyzed from The Cancer Genome Atlas database and liver specimens from LT patients. To further explore its therapeutic potential, a liver-targeted esterase-responsive gene delivery system (G-LERP/miR-374i-b) was developed to downregulate miR-374b-5p expression in the mouse hepatic IRI (HIRI) model. An orthotopic HCC model was further established to mimic the postoperative recurrence of HCC. RESULTS In this study, we found that miR-374b-5p expression correlates with tumor size and microvascular invasion based on patients' clinical information. Patients with low miR-374b-5p expression had a higher Milan criteria score and a lower Model for End-stage Liver Disease score. We verified the positive correlation between miR-374b-5p expression and the proliferation and invasion of HCC cells. Effective downregulation of miR-374b-5p simultaneously alleviated HIRI and reduced tumor burden by 56%, whereas miR-374b-5p upregulation promoted HCC progression. Furthermore, we found G-LERP/miR-374i-b attenuated hepatic inflammation by downregulating the nuclear factor kappa-B pathway, thereby reducing HIRI and the risk of HCC recurrence. CONCLUSIONS This research is the first to demonstrate miR-374b-5p as a dual therapeutic target during LT and postoperative recurrence of HCC. Preintervention of miR-374b-5p using an esterase-responsive gene delivery system during the preoperative period simultaneously alleviates IRI and suppresses HCC progression.
Collapse
Affiliation(s)
- Chang Xie
- School of Clinical Medicine, Hangzhou Normal University, Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Nasha Qiu
- School of Clinical Medicine, Hangzhou Normal University, Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Chao Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Jun Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Hui Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Xinfeng Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Siyu Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Yiyang Sun
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Haitao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Hengkai Zhu
- Department of Hepatobiliary Pancreatic Surgery, Shulan Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Zhejiang Province, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Chen Y, Wang P, Lian R, Yuan M, Yu P, He H, Chen P, Zhou H, Chen W, Zhang D, Lin H, Liu S, Wang F. Comprehensive characterization of PD-L1 expression and immunotherapy-related genomic biomarkers in early- versus advanced-stage non-small cell lung cancer. BMC Pulm Med 2025; 25:219. [PMID: 40336032 PMCID: PMC12056983 DOI: 10.1186/s12890-025-03687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) expression is a key biomarker for predicting the efficacy of immune checkpoint inhibitors (ICIs). With the successful application of perioperative immunotherapy, understanding PD-L1-associated clinical and molecular characteristics in early-stage non-small cell lung cancer (NSCLC) patients is essential. METHODS We analyzed 3185 NSCLC patients undergoing targeted next-generation sequencing (NGS) and PD-L1 immunohistochemistry (IHC). Associations between PD-L1 expression and molecular profiles were compared across early- (I-III) and advanced-stage (IV) cohorts. RESULTS In early-stage NSCLC (n = 974), high PD-L1 expression was less common than in advanced-stage patients (lung adenocarcinoma [LUAD]: 7.52% vs. 15.98%, p < 0.001; lung squamous cell carcinoma [LUSC]: 18.33% vs. 20.84%, p = 0.058). For LUAD, high PD-L1 expression was more frequent in older patients, males and smokers. Additionally, LUSC overall showed a higher rate of high PD-L1 expression than LUAD. In LUAD, early-stage patients had a lower proportion of tumor mutation burden-high (TMB-H) compared to advanced-stage patients (p < 0.001), but no significant difference was observed in LUSC (p = 0.597). Early-stage patients also had a lower proportion of immunotherapy resistance genes than advanced-stage (LUAD: 31.15% vs. 48.50%, p = 0.014; LUSC: 13.64% vs. 45.24%, p = 0.0067). Moreover, among LUAD patients with high PD-L1 expression and all LUSC patients, early-stage patients exhibited more significantly different genetic features compared to advanced-stage patients. CONCLUSIONS This study provides a comprehensive analysis of immunotherapy-related biomarker rates in early-stage NSCLC patients, offering insights for perioperative immunotherapy research and biomarker analysis. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
| | - Peiyuan Wang
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350011, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, 350011, China
| | - Rong Lian
- Beijing GenePlus Technology Co., Ltd., Beijing, China
| | - Mingming Yuan
- Beijing GenePlus Technology Co., Ltd., Beijing, China
| | - Pengli Yu
- Beijing GenePlus Technology Co., Ltd., Beijing, China
| | - Hao He
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
| | - Peng Chen
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
| | - Hang Zhou
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
| | - Weijie Chen
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
| | - Derong Zhang
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
| | - Hui Lin
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China
| | - Shuoyan Liu
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China.
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350011, China.
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, 350011, China.
| | - Feng Wang
- Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou, 350011, Fujian Province, China.
| |
Collapse
|
4
|
Miri H, Rahimzadeh P, Hashemi M, Nabavi N, Aref AR, Daneshi S, Razzaghi A, Abedi M, Tahmasebi S, Farahani N, Taheriazam A. Harnessing immunotherapy for hepatocellular carcinoma: Principles and emerging promises. Pathol Res Pract 2025; 269:155928. [PMID: 40184729 DOI: 10.1016/j.prp.2025.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
HCC is considered as one of the leadin causes of death worldwide, with the ability of resistance towards therapeutics. Immunotherapy, particularly ICIs, have provided siginficant insights towards harnessing the immune system. The present review introduces the concepts and possibilities of immunotherapy for HCC treatment, emphasizing its underlying mechanisms and capacity to enhance patient results, focusing on both pre-clinical and clinical insights. The functions of TME and immune evasion mechanisms typical of HCC would be evaluated along with how contemporary immunotherapeutic approaches are designed to address these challenges. Furthermore, the clinical application of immunotherapy in HCC is discussed, emphasizing recent trial findings demonstrating the effectiveness and safety of drugs. In addition, the problems caused by immune evasion and resistance would be discussed to increase potential of immunotherapy along with combination therapy.
Collapse
Affiliation(s)
- Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Alireza Razzaghi
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Wu HH, Leng S, Eisenstat DD, Sergi C, Leng R. Targeting p53 for immune modulation: Exploring its functions in tumor immunity and inflammation. Cancer Lett 2025; 617:217614. [PMID: 40054656 DOI: 10.1016/j.canlet.2025.217614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
p53, often referred to as the "guardian of the genome," is a critical regulator of cellular responses to stress. p53 plays a dual role in tumor suppression and immune regulation. In addition to its well-known functions of maintaining genomic stability and inducing apoptosis, p53 orchestrates a complex interaction between innate and adaptive immune responses. This involvement contributes to pathogen clearance, immune surveillance, and immunogenic cell death (ICD). This review explores the influence of p53 on immune dynamics, detailing its effects on macrophages, dendritic cells, natural killer cells (NK), T cells, and B cells. This review explains how mutations in p53 disrupt immune responses, promoting tumor immune evasion, and highlights its regulation of inflammatory cytokines and pattern recognition receptors. Furthermore, p53's role in ICD marks it as a key player in antitumor immunity, which has significant implications for cancer immunotherapy. The review also discusses the role of p53 in inflammation, autoimmune diseases, and chronic infections, revealing its dual function in promoting and suppressing inflammation through interactions with NF-κB signaling. Therapeutically, approaches that target p53, including wild-type p53 reactivation and combination therapies with immune checkpoint inhibitors, show considerable promise. Advances in high-throughput technologies, such as single-cell RNA sequencing and CRISPR screens, provide new insights into the immunological functions of p53, including its role in microbiome-immune interactions and immune senescence. This comprehensive review highlights the importance of incorporating immunological insights from p53 into innovative therapeutic strategies, addressing existing knowledge gaps, and paving the way for personalized medicine.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada; Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta, T6G 1C9, Canada; Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, Alberta, T6G 2H7, Canada; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada; Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
6
|
Zhang G, Zhang G, Zhao Y, Wan Y, Jiang B, Wang H. Unveiling the nexus of p53 and PD-L1: insights into immunotherapy resistance mechanisms in hepatocellular carcinoma. Am J Cancer Res 2025; 15:1410-1435. [PMID: 40371157 PMCID: PMC12070102 DOI: 10.62347/brto3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/25/2025] [Indexed: 05/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer worldwide, continues to pose a substantial health challenge with limited treatment options for advanced stages. Despite progress in therapies such as surgery, transplantation, and targeted treatments, prognosis remains bleak for many patients. The advent of immunotherapy has revolutionized the landscape of advanced HCC treatment, offering hope for improved outcomes. However, its efficacy is limited, with a modest response rate of approximately 20% as a single-agent therapy, underscoring the urgent need to decipher mechanisms of immunotherapy resistance. Tumor protein 53 gene (TP53), a pivotal tumor suppressor gene, and Programmed death ligand 1 (PD-L1), a crucial immune checkpoint ligand, play central roles in HCC's evasion of immune responses. Understanding how tumor protein 53 (p53) influences PD-L1 expression and immune system interactions is essential for unraveling the complexities of immunotherapy resistance mechanisms. Elucidating these molecular interactions not only enhances our understanding of HCC's underlying mechanisms but also lays the foundation for developing targeted treatments that may improve outcomes for patients with advanced-stage liver cancer. Ultimately, deciphering the nexus of p53 and PD-L1 in immunotherapy resistance promises to advance treatment strategies and outcomes in the challenging landscape of HCC. This review delves into the intricate relationship between p53 and PD-L1 concerning immunotherapy resistance in HCC, offering insights that could pave the way for novel therapeutic strategies aimed at enhancing treatment efficacy and overcoming resistance in advanced stages of the disease.
Collapse
Affiliation(s)
- Guoyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Gan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Yixuan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Yunyan Wan
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Bin Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Huaxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|
7
|
Jeong M, Kim KB. Recent Research on Role of p53 Family in Small-Cell Lung Cancer. Cancers (Basel) 2025; 17:1110. [PMID: 40227619 PMCID: PMC11988120 DOI: 10.3390/cancers17071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive malignancy characterized by rapid proliferation, early metastasis, and frequent recurrence, which contribute to a poor prognosis. SCLC is defined by the near-universal inactivation of key tumor suppressor genes, notably TP53 and RB1, which play central roles in its pathogenesis and resistance to therapy. The p53 family of proteins, including p53, p63, and p73, is essential to maintaining cellular homeostasis and tumor suppression. TP53 mutations are almost ubiquitous in SCLC, leading to dysregulated apoptosis and cell cycle control. Moreover, p73 shows potential as a compensatory mechanism for p53 loss, while p63 has a minimal role in this cancer type. In this review, we explore the molecular and functional interplay of the p53 family in SCLC, emphasizing its members' distinct yet interconnected roles in tumor suppression, immune modulation, and therapy resistance. We highlight emerging therapeutic strategies targeting these pathways, including reactivating mutant p53, exploiting synthetic lethality, and addressing immune evasion mechanisms. Furthermore, this review underscores the urgent need for novel, isoform-specific interventions to enhance treatment efficacy and improve patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Minho Jeong
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Wang H, Sun P, Yuan X, Xu Z, Jiang X, Xiao M, Yao X, Shi Y. Autophagy in tumor immune escape and immunotherapy. Mol Cancer 2025; 24:85. [PMID: 40102867 PMCID: PMC11921617 DOI: 10.1186/s12943-025-02277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
The immunotherapy targeting tumor immune escape mechanisms has become a critical strategy in anticancer treatment; however, the challenge of immune resistance remains significant. Autophagy, a cellular response to various stressors, involves the degradation of damaged proteins and organelles via lysosomal pathways, maintaining cellular homeostasis. This process not only supports tumor cell survival but also profoundly impacts the efficacy of cancer immunotherapies. The modulation of autophagy in tumor cells or immune cells exerts dual effects on tumor immune escape and immunotherapy. However, the mechanistic details of how autophagy influences the immune system and therapy remain inadequately understood. Given this complexity, a deeper understanding of the role of autophagy in the tumor-immune landscape could reveal novel therapeutic avenues. By manipulating autophagy appropriately, it may be possible to overcome immune resistance and enhance the effectiveness of immunotherapeutic strategies. This article summarizes the role of autophagy in tumor immunity, its relationship with immunotherapy, and the potential therapeutic benefits of targeting autophagy to strengthen antitumor immune responses and optimize the outcomes of immunotherapy.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Sun
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xijing Yuan
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xinyuan Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
9
|
Madeddu C, Lai E, Neri M, Sanna E, Gramignano G, Nemolato S, Scartozzi M, Giglio S, Macciò A. Association Between TP53 Mutations and Platinum Resistance in a Cohort of High-Grade Serous Ovarian Cancer Patients: Novel Implications for Personalized Therapeutics. Int J Mol Sci 2025; 26:2232. [PMID: 40076854 PMCID: PMC11901047 DOI: 10.3390/ijms26052232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The integrity of p53 machinery is crucial for platinum activity, while p53 mutation is frequent in high-grade serous ovarian cancer (HGS-OC). This study aimed to evaluate the link between p53 mutations, platinum sensitivity (PS), and the platinum-free interval (PFI) in patients with HGS-OC. We prospectively analyzed 159 consecutive women with ovarian cancer who underwent surgery. The somatic mutational status of BRCA, HRD, and TP53 (according to structural, hotspot, and functional classification) was evaluated. Among enrolled patients, 82.4% of cases were TP53-mutated (MT), and 27.8% were BRCA-MT. The distribution of TP53 mutation categories did not differ significantly between the BRCA-MT and wild-type (WT) cases. In the entire population, the proportion of PS patients was significantly lower in TP53-MT compared to TP53-WT (p = 0.0208), in nonsense/frameshift/splicing compared to missense (p = 0.0319), and in loss-of-function (LOF) compared to GOF (p = 0.0048) MT cases. For the BRCA-MT patients, structural and functional TP53 mutations were not significantly different between the PS and PR patients. Conversely, for the BRCA WT patients, the distribution of structural and functional TP53 mutations significantly differed between PS and PR patients. In a multivariate regression analysis, LOF mutations were found to be independent negative predictors of PS (HR: 0.1717; 95% CI: 0.0661-0.4461; p-value: 0.0003). Kaplan-Meier curves showed a significantly lower PFI in cases with LOF mutations in the overall population (log-rank p = 0.0020) and in BRCA-WT patients (log-rank p = 0.0140). Via multivariate COX testing, it was found that LOF mutations were independently associated with a decreased PFI (p = 0.0036). In conclusion, our data show that HGS-OC harboring p53 LOF mutations is the poorest prognostic subgroup regarding PS and the PFI. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Clelia Madeddu
- Medical Oncology Unit, Department of Medical Sciences and Public Health, University Hospital Cagliari, University of Cagliari, 09100 Cagliari, Italy; (E.L.); (M.S.)
| | - Eleonora Lai
- Medical Oncology Unit, Department of Medical Sciences and Public Health, University Hospital Cagliari, University of Cagliari, 09100 Cagliari, Italy; (E.L.); (M.S.)
| | - Manuela Neri
- Gynecologic Oncology Unit, ARNAS G. Brotzu, Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.N.); (E.S.)
| | - Elisabetta Sanna
- Gynecologic Oncology Unit, ARNAS G. Brotzu, Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.N.); (E.S.)
| | - Giulia Gramignano
- Medical Oncology Unit, San Gavino Hospital, 09037 San Gavino, Italy;
| | - Sonia Nemolato
- Department of Pathology, ARNAS G. Brotzu, 09100 Cagliari, Italy;
| | - Mario Scartozzi
- Medical Oncology Unit, Department of Medical Sciences and Public Health, University Hospital Cagliari, University of Cagliari, 09100 Cagliari, Italy; (E.L.); (M.S.)
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, R. Binaghi Hospital, University of Cagliari, ASL 8, 09100 Cagliari, Italy;
| | - Antonio Macciò
- Gynecologic Oncology Unit, ARNAS G. Brotzu, Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.N.); (E.S.)
| |
Collapse
|
10
|
Qu H, Wang C, Sun S, Zhang W, Liu C, Du X, Shu Y, Wang X, Pan Q, Luo F, Wu H, Zhang X, Liu M. Bioinformatics Identification of Lactate-Associated Genes in Hepatocellular Carcinoma: G6PD's Role in Immune Modulation. Cancer Med 2025; 14:e70801. [PMID: 40116585 PMCID: PMC11927016 DOI: 10.1002/cam4.70801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major global health issue, with poor prognosis often associated with dysregulated metabolic pathways, especially lactate metabolism. This study explored the prognostic significance of lactate-associated genes in HCC and their potential as therapeutic targets. METHODS We analyzed RNA-seq and clinical data from 374 patients with HCC from The Cancer Genome Atlas (TCGA) database. Using Cox regression, LASSO analysis, and Kaplan-Meier survival curves, we identified key lactate-associated genes associated with patient outcomes. Functional validations, including Western blot, flow cytometry, and molecular docking studies, were performed to confirm the biological impact of these genes. RESULTS G6PD, IK, and CALML5 were identified as significant prognostic markers for HCC. A prognostic model was developed that effectively stratified patients into risk groups, which correlated with survival. G6PD's role in immune modulation and its potential as a drug target were validated through biochemical assays and computational analyses. Functional assays in HepG2 cells confirmed that alterations in G6PD expression affect T cell activity, with knockdown enhancing IFN-γ production and overexpression inhibiting it, demonstrating G6PD's role in immune evasion. CONCLUSIONS This study establishes lactate metabolism genes, particularly G6PD, as key prognostic markers in HCC. The validation of G6PD's immunomodulatory effects further supports its potential as a therapeutic target for strategies aimed at enhancing immune surveillance and treatment outcomes in HCC.
Collapse
Affiliation(s)
- Hao‐ran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Chao‐qun Wang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Su‐juan Sun
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Wen‐wen Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Cheng‐hao Liu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xuan‐shuang Du
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Yao‐yi‐ao Shu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xi‐cheng Wang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qin Pan
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Feng‐ling Luo
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Hong‐yan Wu
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyChina Three Gorges UniversityYichangChina
- School of Basic MedicineChina Three Gorges UniversityYichangChina
| | - Xiao‐lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Min Liu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Department of Allergy Zhongnan HospitalWuhan University School of MedicineWuhanChina
| |
Collapse
|
11
|
Zhang YZ, Ma Y, Ma E, Chen X, Zhang Y, Yin B, Zhao J. Sophisticated roles of tumor microenvironment in resistance to immune checkpoint blockade therapy in hepatocellular carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:10. [PMID: 40051497 PMCID: PMC11883234 DOI: 10.20517/cdr.2024.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a serious threat to global health, with rising incidence and mortality rates. Therapeutic options for advanced HCC are quite limited, and the overall prognosis remains poor. Recent advancements in immunotherapy, particularly immune-checkpoint blockade (ICB) targeting anti-PD1/PD-L1 and anti-CTLA4, have facilitated a paradigm shift in cancer treatment, demonstrating substantial survival benefits across various cancer types, including HCC. However, only a subset of HCC patients exhibit a favorable response to ICB therapy, and its efficacy is often hindered by the development of resistance. There are many studies to explore the underlying mechanisms of ICB response. In this review, we compiled the latest progression in immunotherapies for HCC and systematically summarized the sophisticated mechanisms by which components of the tumor microenvironment (TME) regulate resistance to ICB therapy. Additionally, we also outlined some scientific rationale strategies to boost antitumor immunity and enhance the efficacy of ICB in HCC. These insights may serve as a roadmap for future research and help improve outcomes for HCC patients.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Yunshu Ma
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Ensi Ma
- Liver Transplantation Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Xizhi Chen
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Baobing Yin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Jing Zhao
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
- Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| |
Collapse
|
12
|
Zhang D, Lu B, Ma Q, Xu W, Zhang Q, Xiao Z, Li Y, Chen R, Wang AJ. Identification of a novel immunogenic cell death-related classifier to predict prognosis and optimize precision treatment in hepatocellular carcinoma. Heliyon 2025; 11:e41380. [PMID: 39897773 PMCID: PMC11786863 DOI: 10.1016/j.heliyon.2024.e41380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Accumulating studies have highlighted the biological significance of immunogenic cell death (ICD) in cancer immunity. However, the influence of ICD on tumor microenvironment (TME) formation and immune response in Hepatocellular carcinoma (HCC) remains largely unexplored. In this study, we systematically analyzed the mRNA profiles of ICD-related genes in 1847 HCC patients and identified three molecular subtypes with significantly different immune features and prognostic stratification. A reliable risk model named ICD score was constructed via machine learning algorithms to assess the immunological status, therapeutic responses, and clinical outcomes of individual HCC patients. High ICD score indicated an immune-excluded TME phenotype, with lower anticancer immunity and shorter survival time. In contrast, low ICD score corresponded to abundant immune cell infiltration, high sensitivity to immunotherapy and a positive prognosis, indicating an "immune-hot" phenotype. Pan-cancer analysis further validated a negative association between ICD score and the immune cell infiltration levels. In conclusion, our findings revealed that the ICD score could serve as a robust prognostic biomarker to predict the benefits of immunotherapy and optimize the clinical decision-making of HCC patients.
Collapse
Affiliation(s)
- Dongjing Zhang
- Department of Gastroenterology and Hepatology, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Bingyun Lu
- Department of Gastroenterology and Hepatology, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qianqian Ma
- Department of Infectious Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Xu
- Department of Gastroenterology and Hepatology, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qi Zhang
- Department of Gastroenterology and Hepatology, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhiqi Xiao
- Department of Gastroenterology and Hepatology, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yuanheng Li
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Ren Chen
- Department of Infectious Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - An-jiang Wang
- Department of Gastroenterology and Hepatology, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Mo Y, Zou Z, Chen E. [Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:715-725. [PMID: 39694527 PMCID: PMC11726010 DOI: 10.3724/zdxbyxb-2024-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Collapse
Affiliation(s)
- Yuqian Mo
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China.
| | - Zhilin Zou
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
14
|
Shobab L, Al-Souri D, Mathews-Kim L, McCoy M, Kuenstner W, Hubbard GK, Kumari S, Chou J, Lee W, Rosen J, Klubo-Gwiezdzinska J, Atkins M, Wartofsky L, Vasko V, Burman K. PD-L1 Expression Varies in Thyroid Cancer Types and Is Associated with Decreased Progression Free Survival (PFS) in Patients with Anaplastic Thyroid Cancer. Cancers (Basel) 2024; 16:3632. [PMID: 39518072 PMCID: PMC11545090 DOI: 10.3390/cancers16213632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Thyroid cancer (TC) remains a significant clinical challenge worldwide, with a subset of patients facing aggressive disease progression and therapeutic resistance. Immune checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1) have emerged as promising therapeutic approaches for various malignancies, yet their efficacy in TC remains uncertain. The objective of this study was to investigate PD-L1 expression in aggressive TC and its association with histological subtypes, molecular mutation, and progression-free survival. METHODS This is a retrospective study of patients with advanced TC seen in two tertiary health care centers. Included in this study were patients with advanced TC with recurrence or progression on therapy for whom tumor molecular profiling and PD-L1 status were available. Kaplan-Meier estimators were utilized to analyze the progression-free survival (PFS) between patients with PD-L1 positive and negative status in Anaplastic TC (ATC) subgroup. RESULTS A total of 176 patients with advanced thyroid cancer were included (48.9% female). Of the patients, 13 had ATC, 11 Medullary TC (MTC), 81 Papillary TC Classic Variant (PTCCV), 20 Follicular TC (FTC), 8 Oncocytic TC (OTC), 10 Poorly Differentiated TC (PDTC), and 30 had the Papillary TC Follicular Variant (PTCFV). BRAF mutation was present in 41%, TERT in 30%, RAS in 19%, TP53 in 10%, and RET in 8.6% of patients. PD-L1 positivity was significantly different across different TC types and histological subtypes (p < 0.01): Patients with OTC had the highest frequency of PD-L1 positivity (71%), followed by ATC (69%), PTCCV (28.5%), and FTC (11%). Patients with MTC and PTCFV did not exhibit any PD-L1 positivity. TP53 mutation was positively associated with PD-L1 expression (21.6% vs. 7.5%, p = 0.03), and RAS mutation was negatively associated with PD-L1 expression (8.1% vs. 24.2% p = 0.04). Among patients with ATC, positive PD-L1 expression was associated with lower PFS (p = 0.002). CONCLUSIONS PD-L1 expression varies across different TC types and histological subtypes and may be modulated by the mutational landscape. PD-L1 expression in ATC is associated with shorter PFS. Follow up studies are warranted to elucidate the molecular mechanism driving the observed differences in immune pathways, potentially paving the way for the development of more effective and personalized immune therapies for patients with aggressive TC.
Collapse
Affiliation(s)
- Leila Shobab
- Department of Medicine, Division of Endocrinology, MedStar Washington Hospital Center, Washington, DC 20010, USA; (D.A.-S.); (K.B.)
| | - Deema Al-Souri
- Department of Medicine, Division of Endocrinology, MedStar Washington Hospital Center, Washington, DC 20010, USA; (D.A.-S.); (K.B.)
| | - Liza Mathews-Kim
- School of Medicine, Georgetown University, Washington, DC 20057, USA;
| | - Matthew McCoy
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007, USA
| | - William Kuenstner
- Department of Medicine, Division of Endocrinology, MedStar Washington Hospital Center, Washington, DC 20010, USA; (D.A.-S.); (K.B.)
| | | | - Sonam Kumari
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jiling Chou
- MedStar Health Research Institute, Columbia, MD 21044, USA
| | - Wen Lee
- Department of Pathology, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Jennifer Rosen
- Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA;
| | - Joanna Klubo-Gwiezdzinska
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Michael Atkins
- Division of Hematology/Oncology, MedStar Georgetown University Hospital, Washington, DC 20007, USA;
| | - Leonard Wartofsky
- Department of Medicine, Division of Endocrinology, MedStar Washington Hospital Center, Washington, DC 20010, USA; (D.A.-S.); (K.B.)
| | - Vasyl Vasko
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Kenneth Burman
- Department of Medicine, Division of Endocrinology, MedStar Washington Hospital Center, Washington, DC 20010, USA; (D.A.-S.); (K.B.)
| |
Collapse
|
15
|
Tang M, Song J, Zhang S, Shu X, Liu S, Ashrafizadeh M, Ertas YN, Zhou Y, Lei M. Innovative theranostic hydrogels for targeted gastrointestinal cancer treatment. J Transl Med 2024; 22:970. [PMID: 39465365 PMCID: PMC11514878 DOI: 10.1186/s12967-024-05749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.
Collapse
Affiliation(s)
- Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China
| | - Junzhou Song
- Department of Oncology, BoAo Evergrande International Hospital, Qionghai, 571400, Hainan Province, China
| | - Shuyi Zhang
- Department of Health Management Center, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaolei Shu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Türkiye
- Department of Technical Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Ya Zhou
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China.
| | - Ming Lei
- Department of Nuclear Medicine, Chongqing University FuLing Hospital, Chongqing University, No. 2 Gaosuntang Road, Chongqing, China.
| |
Collapse
|
16
|
Wang M, Qin L, Thia K, Nguyen T, MacDonald S, Belobrov S, Kranz S, Goode D, Trapani JA, Wiesenfeld D, Neeson PJ. Cancer cell-specific PD-L1 expression is a predictor of poor outcome in patients with locally advanced oral cavity squamous cell carcinoma. J Immunother Cancer 2024; 12:e009617. [PMID: 39357980 PMCID: PMC11448134 DOI: 10.1136/jitc-2024-009617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Locally advanced oral cavity squamous cell carcinoma (OCSCC) presents a significant clinical challenge despite being partially responsive to standard treatment modalities. This study investigates the prognostic implications of programmed death-ligand 1 (PD-L1) expression in these tumors, focusing on its association with treatment outcomes and the immune microenvironment. METHODS We assessed tumor-infiltrating lymphocytes (TILs) in 132 patients with OCSCC to evaluate their impact on survival. Multiplex immunohistochemistry staining for CD3, CD68, CD11c, PD-L1, and P40 was used to explore correlations with clinical outcomes in patients with early-stage (n=22) and locally advanced (n=36) OCSCC. These initial findings were validated through differential gene expression analysis, gene set enrichment, and immune cell deconvolution in a The Cancer Genome Atlas cohort of 163 locally advanced OCSCC tumors. Additionally, single-cell RNA sequencing (scRNA-seq) on a smaller cohort (n=10) further characterized the PD-L1hi or PD-L1lo cancer cells in these tumors. RESULTS Elevated PD-L1 expression was associated with poor outcomes in patients with locally advanced OCSCC undergoing standard adjuvant therapy, irrespective of "hot" or "cold" classification based on TILs assessment. PD-L1hi tumors exhibited an active immune response phenotype, enriched with M1 macrophages, CD8+ T cells and T regulatory cells in the tumor microenvironment. Notably, the negative impact of PD-L1 expression on outcomes was primarily attributed to its expression by cancer cells, rather than immune cells. Furthermore, scRNA-seq revealed that immune interactions were not essential for PD-L1 upregulation in cancer cells, instead, complex regulatory networks were involved. Additionally, PD-L1lo locally advanced tumors exhibited more complex pathway enrichment and diverse T-cell populations compared with those in the early-stage. CONCLUSION Our findings underscore the prognostic significance of PD-L1 expression in locally advanced OCSCC, and unveil the complex interplay between PD-L1 expression, immune responses, and molecular pathways in the tumor microenvironment. This study provides insights that may inform future therapeutic strategies, including the possibility of tailored immunotherapeutic approaches for patients with PD-L1hi locally advanced OCSCC.
Collapse
Affiliation(s)
- Minyu Wang
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Lei Qin
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kevin Thia
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Thu Nguyen
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sean MacDonald
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Simone Belobrov
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sevastjan Kranz
- Department of Pathology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - David Goode
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - David Wiesenfeld
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
- Oral and Maxillofacial Surgery Unit, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Paul Joseph Neeson
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Immunotherapy, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Liu T, Meng G, Ma S, You J, Yu L, He R, Zhao X, Cui Y. Progress of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma. Front Immunol 2024; 15:1455716. [PMID: 39185414 PMCID: PMC11341420 DOI: 10.3389/fimmu.2024.1455716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Among primary liver cancers, hepatocellular carcinoma is the most common pathological type. Its onset is insidious, and most patients have no obvious discomfort in the early stage, so it is found late, and the opportunity for surgical radical treatment is lost, resulting in a poor prognosis. With the introduction of molecular-targeted drugs represented by sorafenib, patients with middle- and late-stage liver cancer have regained the light of day. However, their therapeutic efficacy is relatively low due to the limited target of drug action, toxic side effects, and other reasons. At this time, the emergence of immunotherapy represented by immune checkpoint inhibitors (ICIs) well breaks this embarrassing situation, which mainly achieves the anti-tumor purpose by improving the tumor immune microenvironment. Currently, ICI monotherapy, as well as combination therapy, has been widely used in the clinic, further prolonging the survival of patients with advanced hepatocellular carcinoma. This article reviews the development of monotherapy and combination therapy for ICIs in advanced hepatocellular carcinoma and the latest research progress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Qiu L, Ma T, Guo Y, Chen J. Immune landscape of hepatocellular carcinoma: The central role of TP53-inducible glycolysis and apoptosis regulator. Open Med (Wars) 2024; 19:20240999. [PMID: 39091612 PMCID: PMC11292791 DOI: 10.1515/med-2024-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Objective This study aims to address the substantive issue of lacking reliable prognostic biomarkers in hepatocellular carcinoma (HCC) by investigating the relationship between TP53-inducible glycolysis and apoptosis regulator (TIGAR) and HCC prognosis using The Cancer Genome Atlas database. Methods (1) Integrated statistical analyses, including logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test, were conducted to explore the association between TIGAR expression and clinical-pathological features of HCC. (2) The Kaplan-Meier method combined with univariate and multivariate Cox regression models underscored TIGAR as a prognostic factor in HCC. (3) Gene set enrichment analysis (GSEA) revealed key pathways associated with TIGAR, while single-sample gene set enrichment analysis (ssGSEA) determined its relevance to cancer immune infiltration. Results (1) Elevated TIGAR expression was significantly correlated with decreased survival outcomes in HCC patients. (2) GSEA highlighted the significant link between TIGAR and humoral immunity. (3) ssGSEA revealed a positive correlation between TIGAR expression and infiltration of Th1 and Th2 cells and a negative correlation with Th17 cell infiltration. Conclusion TIGAR, as a potential prognostic biomarker for HCC, holds significant value in immune infiltration. Understanding the role of TIGAR could contribute to improved prognostic predictions and personalized treatment strategies for HCC patients.
Collapse
Affiliation(s)
- Lingbing Qiu
- Department of Oncology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 518020, Shenzhen, Guangdong Province, P. R. China
| | - Tianyi Ma
- Department of Oncology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 518020, Shenzhen, Guangdong Province, P. R. China
| | - Yunmiao Guo
- Clinical Research Institute of Zhanjiang, Central People’s Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, 524045, Zhanjiang, Guangdong Province, P. R. China
| | - Jugao Chen
- Department of Oncology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, 518020, Shenzhen, Guangdong Province, P. R. China
| |
Collapse
|
19
|
Muñoz-Medel M, Pinto MP, Goralsky L, Cáceres M, Villarroel-Espíndola F, Manque P, Pinto A, Garcia-Bloj B, de Mayo T, Godoy JA, Garrido M, Retamal IN. Porphyromonas gingivalis, a bridge between oral health and immune evasion in gastric cancer. Front Oncol 2024; 14:1403089. [PMID: 38807771 PMCID: PMC11130407 DOI: 10.3389/fonc.2024.1403089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a gram-negative oral pathogen associated with chronic periodontitis. Previous studies have linked poor oral health and periodontitis with oral cancer. Severe cases of periodontal disease can result in advanced periodontitis, leading to tissue degradation, tooth loss, and may also correlate with higher gastric cancer (GC) risk. In fact, tooth loss is associated with an elevated risk of cancer. However, the clinical evidence for this association remains inconclusive. Periodontitis is also characterized by chronic inflammation and upregulation of members of the Programmed Death 1/PD1 Ligand 1 (PD1/PDL1) axis that leads to an immunosuppressive state. Given that chronic inflammation and immunosuppression are conditions that facilitate cancer progression and carcinogenesis, we hypothesize that oral P. gingivalis and/or its virulence factors serve as a mechanistic link between oral health and gastric carcinogenesis/GC progression. We also discuss the potential impact of P. gingivalis' virulence factors (gingipains, lipopolysaccharide (LPS), and fimbriae) on inflammation and the response to immune checkpoint inhibitors in GC which are part of the current standard of care for advanced stage patients.
Collapse
Affiliation(s)
- Matías Muñoz-Medel
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Mauricio P. Pinto
- Support Team for Oncological Research and Medicine (STORM), Santiago, Chile
| | - Lauren Goralsky
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Mónica Cáceres
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Patricio Manque
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Andrés Pinto
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, United States
| | - Benjamin Garcia-Bloj
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Tomas de Mayo
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Juan A. Godoy
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Marcelo Garrido
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Ignacio N. Retamal
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| |
Collapse
|
20
|
Zhang M, Yang J, Liang G, Yuan H, Wu Y, Li L, Yu T, Zhang Y, Wang J. FOXA1-Driven pathways exacerbate Radiotherapy-Induced kidney injury in colorectal cancer. Int Immunopharmacol 2024; 131:111689. [PMID: 38471364 DOI: 10.1016/j.intimp.2024.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of FOXA1 in acute kidney injury (AKI) induced by radiotherapy in colorectal cancer. Although FOXA1 is known to be aberrantly expressed in malignant tumors, its contribution to AKI remains unclear. This study aimed to explore the involvement of FOXA1 in AKI induced by radiotherapy in colorectal cancer and its influence on the regulation of downstream target genes. METHODS Firstly, a transcriptome analysis was performed on mice to establish a radiation-induced AKI model, and qPCR was used to determine the expression of FOXA1 in renal cell injury models induced by X-ray irradiation. Additionally, FOXA1 was silenced using lentiviral vectors to investigate its effects on the apoptosis of mice with radiation-induced AKI and HK-2 cells. Next, bioinformatics analysis and various experimental validation methods such as ChIP assays, co-immunoprecipitation, and dual-luciferase reporter assays were employed to explore the relationship between FOXA1 and the downstream regulatory factors ITCH promoter and the ubiquitin ligase-degradable TXNIP. Finally, lentiviral overexpression or knockout techniques were used to investigate the impact of the FOXA1/ITCH/TXNIP axis on oxidative stress and the activation of inflammatory body NLRP3. RESULTS This study revealed that FOXA1 was significantly upregulated in the renal tissues of mice with radiation-induced AKI and in the injured HK-2 cells. Furthermore, in vitro cell experiments and animal experiments demonstrated that FOXA1 suppressed the transcription of the E3 ubiquitin ligase ITCH, thereby promoting apoptosis of renal tubular cells and causing renal tissue damage. Further in vivo animal experiments confirmed that TXNIP, a protein degraded by ITCH ubiquitination, could inhibit oxidative stress and the activation of NLRP3 inflammasome in the AKI mouse model. CONCLUSION FOXA1 enhances oxidative stress, cell apoptosis, and NLRP3 inflammasome activation by regulating the ITCH/TXNIP axis, thereby exacerbating radiotherapy-induced AKI.
Collapse
Affiliation(s)
- Minhai Zhang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Guodong Liang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiqiong Yuan
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanni Wu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Li
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| |
Collapse
|
21
|
Liu F, Zhang X, Lu M, Liu C, Zhang X, Chu Q, Chen Y, Zhang P. The association of genomic alterations with PD-L1 expression in Chinese patients with EGFR/ALK wild-type lung adenocarcinoma and potential predictive value of Hippo pathway mutations to immunotherapy. Cancer Med 2024; 13:e7038. [PMID: 38396367 PMCID: PMC10891359 DOI: 10.1002/cam4.7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The study focuses on PD-L1 expression as an essential biomarker for gauging the response of EGFR/ALK wild-type NSCLC patients to FDA-approved immune checkpoint inhibitors (ICIs). It aims to explore clinical, molecular, and immune microenvironment characteristics associated with PD-L1 expression in EGFR/ALK wild-type lung adenocarcinoma patients eligible for ICI therapy. METHODS In this retrospective study, tumor samples from 359 Chinese EGFR/ALK wild-type lung adenocarcinoma patients underwent comprehensive evaluations for PD-L1 expression and NGS-targeted sequencing. The investigation encompassed the analysis and comparison of clinical traits, gene mutations, pathways, and immune signatures between two groups categorized by PD-L1 status: negative (TPS < 1%) and positive (TPS ≥ 1%). Additionally, the study explored the link between genomic changes and outcomes following immunotherapy. RESULTS High tumor mutational burden correlated significantly with PD-L1 positivity in patients with EGFR/ALK wild-type lung adenocarcinoma. Gene alterations, including TP53, KRAS, and others, were more pronounced in the PD-L1 positive group. Pathway analysis highlighted higher frequencies of alterations in pathways like RTK/RAS, p53, and Hippo in PD-L1-positive patients. The Hippo pathway's relevance was confirmed in separate immunotherapy cohorts, associated with better outcomes. In terms of immune cell infiltration, Hippo mutants exhibited higher levels of CD68+ PD-L1+ macrophages, CD8+ T cells, and CD8+ PD-1- T cells. CONCLUSIONS This study offers insights into genomic features of Chinese EGFR/ALK wild-type lung adenocarcinoma patients based on PD-L1 expression. Notably, Hippo pathway alterations were linked to improved immunotherapy outcomes. These findings suggest connections between the Hippo pathway and PD-L1 expression, warranting further clinical and functional investigations. The research advances our understanding of PD-L1 expression's genomic context and immunotherapy response in EGFR/ALK wild-type lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chun Liu
- Genecast Biotechnology Co., LtdWuxiJiangsuChina
| | | | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
22
|
Xiao LX, Liu L, Deng W. Case report: The first account of undifferentiated sarcoma with epithelioid features originating in the pleura. Front Med (Lausanne) 2024; 11:1301941. [PMID: 38362539 PMCID: PMC10867128 DOI: 10.3389/fmed.2024.1301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Undifferentiated epithelioid sarcoma (USEF) is a rare subtype of undifferentiated soft tissue sarcoma that presents unique challenges in clinical diagnosis and treatment. Here, we report a case of USEF occurring in the pleura of a 51-year-old man for the first time. Thoracoscopic examination revealed widespread nodular changes, and pathological analysis confirmed the presence of numerous epithelioid atypical cells. Immunohistochemical (IHC) analysis demonstrated an undifferentiated phenotype with distinct characteristics: epithelial membrane antigen (foci +), vimentin (+), Ki-67 (+70% +), TTF-1 (+), P53 (mutant type +90%), INI-1 (+), and CK5/6 (small foci +). Immunohistochemical examination of the tumor showed that the tumor was an undifferentiated epithelioid sarcoma. High-throughput DNA sequencing revealed pivotal mutations, including a nonsense mutation in the NF1 gene (c.641A > G(p.H214R)). and critical TP53 missense mutation (c.641A > G(p.H214R)). This TP53 mutation, with a tumor mutation burden of 16.5 Muts/Mb, signifies a high level of genomic instability, likely contributing to the rapid progression and aggressiveness of the disease. Detection of the TP53 mutation provides essential insights, indicating the disease's rapid progression and highlighting the potential for targeted therapies. Although the patient's disease progressed extremely rapidly and he tragically died within a week, we discussed the results of IHC and DNA sequencing in detail and discussed his possible treatment options. Insights gained from this case will be critical in shaping future diagnostic and therapeutic paradigms for USEF, particularly in the context of TP53 mutations.
Collapse
Affiliation(s)
- Ling-Xi Xiao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Liu
- Department of Pathology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|