1
|
Schulz LN, Redwan A, Edwards S, Hamilton MG, Isaacs AM. Hydrocephalus Pathophysiology and Epidemiology. Neurosurg Clin N Am 2025; 36:113-126. [PMID: 40054966 DOI: 10.1016/j.nec.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Adult hydrocephalus is a common neurologic condition with an estimated prevalence of 85 per 100,000 globally, caused by abnormal cerebrospinal fluid (CSF) accumulation within the cerebral ventricles. Subtypes include idiopathic normal pressure hydrocephalus, posthemorrhagic, postinfectious, posttraumatic, and tumor-associated forms. Its pathophysiology involves glymphatic dysfunction, neuroinflammation, vascular compromise, and impaired CSF absorption. Despite advances in treatment, significant gaps remain in understanding its epidemiology, particularly in regards to regional variability and comorbidities, alongside unresolved questions about glymphatic pathways and neurodegenerative overlap. Standardized diagnostic and therapeutic frameworks are urgently needed.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University College of Medicine, 410 W, 10th Avenue, Columbus, OH 43210, USA
| | - Asma Redwan
- Department of Neurological Surgery, Ohio State University College of Medicine, 410 W, 10th Avenue, Columbus, OH 43210, USA
| | - Sara Edwards
- Division of Neurosurgery, Department of Clinical Neurosciences, Cumming School of Medicine, Foothills Hospital, 1403 - 29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Mark G Hamilton
- Division of Neurosurgery, Department of Clinical Neurosciences, Cumming School of Medicine, Foothills Hospital, 1403 - 29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University College of Medicine, 410 W, 10th Avenue, Columbus, OH 43210, USA; Department of Pediatric Neurosurgery, Nationwide Children's Hospital, 4th Floor Faculty Office Building, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
2
|
Deng Z, Wang H, Zhong K, Li Y, Deng H, Gao B, Huang K, Tong A, Zhou L. The Role of Choroid Plexus in Hydrocephalus from the Perspective of Structure and Function: a Therapeutic Target. Mol Neurobiol 2025:10.1007/s12035-025-04823-7. [PMID: 40085357 DOI: 10.1007/s12035-025-04823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Hydrocephalus is one of the most common neurological diseases, characterized by abnormal excessive accumulation of cerebrospinal fluid (CSF) in the ventricular system. Its pathophysiological mechanism is believed to be related to the imbalance of CSF circulation and homeostasis. As the main source of CSF secretion, the choroid plexus is closely related to hydrocephalus. The choroid plexus is a specialized vascularized tissue located within the cerebral ventricles. It has multiple physiological functions including regulating CSF, immune response, endocrine metabolism, etc. Strategies that reduce choroid plexus CSF secretion have been shown to be effective in the treatment of hydrocephalus. However, the role of other physiological functions of the choroid plexus in hydrocephalus is still unclear. Recent studies on the choroid plexus and the blood-CSF barrier have deepened our understanding of the structure and function of the choroid plexus. The idea of targeting the choroid plexus to treat hydrocephalus has spawned many branches: choroid plexus epithelial cells, choroid plexus immune cells, choroid plexus peptides, and choroid plexus cilia, etc. This review introduces the basic structure and function of the choroid plexus, summarizes their changes in hydrocephalus, and analyzes the possibility of the choroid plexus as a therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Ziang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyou Li
- Department of Pediatric Neurosurgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huajiang Deng
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Sichuan Province, Luzhou City, China
| | - Baocheng Gao
- Department of Neurosurgery, The First People'S Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology) Kunming, Yunan, China
| | - Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia, Shizuishan, China.
| |
Collapse
|
3
|
Schulz LN, Varghese A, Michenkova M, Wedemeyer M, Pindrik JA, Leonard JR, Garcia-Bonilla M, McAllister JP, Cassady K, Wilson RK, Mardis ER, Limbrick DD, Isaacs AM. Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus. Pediatr Res 2025; 97:1345-1357. [PMID: 39725707 DOI: 10.1038/s41390-024-03733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Post-hemorrhagic hydrocephalus (PHH) is a severe complication in premature infants following intraventricular hemorrhage (IVH). It is characterized by abnormal cerebrospinal fluid (CSF) accumulation, disrupted CSF dynamics, and elevated intracranial pressure (ICP), leading to significant neurological impairments. OBJECTIVE This review provides an overview of recent molecular insights into the pathophysiology of PHH and evaluates emerging therapeutic approaches aimed at addressing its underlying mechanisms. METHODS Recent studies were reviewed, focusing on molecular and cellular mechanisms implicated in PHH, including neuroinflammatory pathways, immune mediators, and regulatory genes. The potential of advanced technologies such as whole genome/exome sequencing, proteomics, epigenetics, and single-cell transcriptomics to identify key molecular targets was also analyzed. RESULTS PHH has been strongly linked to neuroinflammatory processes triggered by the degradation of blood byproducts. These processes involve cytokines, chemokines, the complement system, and other immune mediators, as well as regulatory genes and epigenetic mechanisms. Current treatments, primarily surgical CSF diversion, do not address the underlying molecular pathology. Emerging therapies, such as mesenchymal stem cell-based interventions, show promise in modulating immune responses and mitigating neurological damage. However, concerns about the safety of these novel approaches in neonatal populations and their potential effects on brain development remain unresolved. CONCLUSIONS Advanced molecular tools and emerging therapies have the potential to transform the treatment of PHH by targeting its underlying pathophysiology. Further research is needed to validate these approaches, enhance their safety profiles, and improve outcomes for infants with PHH. IMPACT STATEMENT 1. This review elucidates the molecular complexities of post-hemorrhagic hydrocephalus (PHH) by examining specific immune pathways and their impact on disease pathogenesis and progression. 2. It outlines the application of genomic, epigenomic, and proteomic technologies to identify critical molecular targets in PHH, setting the stage for innovative, targeted therapeutic approaches that could improve the outcomes of neonates affected by PHH. 3. It discusses the potential of gene and stem cell therapies in treating PHH, offering non-surgical alternatives and focusing on the underlying neuroinflammatory mechanisms.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Aaron Varghese
- Department of Undergraduate Studies, Miami University, Oxford, OH, USA
| | - Marie Michenkova
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan A Pindrik
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Pat McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Cassady
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - David D Limbrick
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA.
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
4
|
Ren Z, Li T, Liu X, Zhang Z, Chen X, Chen W, Li K, Sheng J. Transforming growth factor-beta 1 enhances discharge activity of cortical neurons. Neural Regen Res 2025; 20:548-556. [PMID: 38819066 PMCID: PMC11317929 DOI: 10.4103/nrr.nrr-d-23-00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00031/figure1/v/2024-05-28T214302Z/r/image-tiff Transforming growth factor-beta 1 (TGF-β1) has been extensively studied for its pleiotropic effects on central nervous system diseases. The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved. Voltage-gated sodium channels (VGSCs) are essential ion channels for the generation of action potentials in neurons, and are involved in various neuroexcitation-related diseases. However, the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear. In this study, we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice. We found that TGF-β1 increased VGSC current density in a dose- and time-dependent manner, which was attributable to the upregulation of Nav1.3 expression. Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase (PD98059), p38 mitogen-activated protein kinase (SB203580), and Jun NH2-terminal kinase 1/2 inhibitor (SP600125). Interestingly, TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons. These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway, which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions. Thus, this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.
Collapse
Affiliation(s)
- Zhihui Ren
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Tian Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
5
|
Deng X, Chen Y, Duan Q, Ding J, Wang Z, Wang J, Chen X, Zhou L, Zhao L. Genetic and molecular mechanisms of hydrocephalus. Front Mol Neurosci 2025; 17:1512455. [PMID: 39839745 PMCID: PMC11746911 DOI: 10.3389/fnmol.2024.1512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yiqian Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Junchi Wang
- School of Dentistry, North Sichuan Medical College, Nanchong, China
| | - Xinlong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Suzuki R, Takigawa T, Nagaishi M, Hyodo A, Suzuki K. Cytotoxic Lesions of the Corpus Callosum Associated with Aneurysmal Subarachnoid Hemorrhage May Influence Shunt-Dependent Chronic Hydrocephalus. World Neurosurg 2024; 185:e944-e950. [PMID: 38458249 DOI: 10.1016/j.wneu.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Cytotoxic lesions of the corpus callosum (CLOCCs) are occasionally associated with aneurysmal subarachnoid hemorrhage (aSAH). The effects of aSAH on clinical outcomes in such cases are unclear. The present study aimed to investigate the frequency and characteristics of CLOCCs associated with aSAH to ascertain the predictors of shunt-dependent chronic hydrocephalus (SDCH) after aSAH. METHODS We retrospectively investigated cases of aSAH treated by coil embolization. Patients were divided into those with and without CLOCCs. Between-group differences were evaluated, including clinical outcomes and the characteristics of both the patients and the aneurysms. Patients were divided into those with and without SDCH to identify predictive factors of SDCH after aSAH focusing on CLOCCs. RESULTS This single-center study included 196 patients with aSAH. All patients received coil embolization between April 2013 and March 2020. CLOCCs were detected in 38 (19.4%) patients. In the group with CLOCCs, male sex, poor severity grade at onset, acute hydrocephalus, SDCH (all P < 0.01), and Fisher group 3 or 4 (P = 0.04) were significantly more common than in the group without CLOCCs. Diabetes and CLOCCs were significant predictors of SDCH after aSAH in multivariate analysis (diabetes: P < 0.01, odds ratio: 6.73, 95% confidence interval: 1.61-28.09; CLOCCs: P < 0.01, odds ratio: 6.86, 95% confidence interval: 2.87-16.38). CONCLUSIONS CLOCCs and SDCH were common in patients with poor-grade aSAH, and CLOCCs were independent predictors of SDCH after aSAH. Meticulous follow-up is necessary to detect SDCH after aSAH, especially in patients with poor-grade aSAH and CLOCCs.
Collapse
Affiliation(s)
- Ryotaro Suzuki
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan.
| | - Tomoji Takigawa
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Masaya Nagaishi
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Akio Hyodo
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Kensuke Suzuki
- Department of Neurosurgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| |
Collapse
|
7
|
Lu W, Huang J, Flores J, Li P, Wang W, Liu S, Zhang JH, Tang J. GW0742 reduces mast cells degranulation and attenuates neurological impairments via PPAR β/δ/CD300a/SHP1 pathway after GMH in neonatal rats. Exp Neurol 2024; 372:114615. [PMID: 37995951 PMCID: PMC10842885 DOI: 10.1016/j.expneurol.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Activation of mast cells plays an important role in brain inflammation. CD300a, an inhibitory receptor located on mast cell surfaces, has been reported to reduce the production of pro-inflammatory cytokines and exert protective effects in inflammation-related diseases. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ), a ligand-activated nuclear receptor, activation upregulates the transcription of CD300a. In this study, we aim to investigate the role of PPARβ/δ in the attenuation of germinal matrix hemorrhage (GMH)-induced mast cell activation via CD300a/SHP1 pathway. METHODS GMH model was induced by intraparenchymal injection of bacterial collagenase into the right hemispheric ganglionic eminence in P7 Sprague Dawley rats. GW0742, a PPARβ/δ agonist, was administered intranasally at 1 h post-ictus. CD300a small interfering RNA (siRNA) and PPARβ/δ siRNA were injected intracerebroventricularly 5 days and 2 days before GMH induction. Behavioral tests, Western blot, immunofluorescence, Toluidine Blue staining, and Nissl staining were applied to assess post-GMH evaluation. RESULTS Results demonstrated that endogenous protein levels of PPARβ/δ and CD300a were decreased, whereas chymase, tryptase, IL-17A and transforming growth factor β1 (TGF-β1) were elevated after GMH. GMH induced significant short- and long-term neurobehavioral deficits in rat pups. GW0742 decreased mast cell degranulation, improved neurological outcomes, and attenuated ventriculomegaly after GMH. Additionally, GW0742 increased expression of PPARβ/δ, CD300a and phosphorylation of SHP1, decreased phosphorylation of Syk, chymase, tryptase, IL-17A and TGF-β1 levels. PPARβ/δ siRNA and CD300a siRNA abolished the beneficial effects of GW0742. CONCLUSIONS GW0742 inhibited mast cell-induced inflammation and improved neurobehavior after GMH, which is mediated by PPARβ/δ/CD300a/SHP1 pathway. GW0742 may serve as a potential treatment to reduce brain injury for GMH patients.
Collapse
Affiliation(s)
- Weitian Lu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Juan Huang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
8
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
9
|
Wang JW, Zhang DD, Wu W, Zhou Y, Tao T, Li W, Zhuang Z, Hang CH. Predictive Value of Leucine-Rich Alpha-2 Glycoprotein 1 in Cerebrospinal Fluid for the Prognosis of Aneurysmal Subarachnoid Hemorrhage: A Prospective Study. World Neurosurg 2023; 172:e225-e230. [PMID: 36608792 DOI: 10.1016/j.wneu.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To determine whether leucine-rich alpha-2 glycoprotein 1 (LRG1) is a potential prognostic and severity biomarker in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS This observational and prospective study included 44 patients with aSAH from Nanjing Drum Tower Hospital from June to December 2020. Concentrations of LRG1 in the cerebrospinal fluid (CSF) were determined by enzyme-linked immunosorbent assay within 24 hours after aSAH. We further determined the relationship of CSF LRG1 levels with disease severity and prognosis 3 months after aSAH. RESULTS Higher CSF LRG1 levels were associated with a higher Hunt-Hess grade (P < 0.05). Using univariate analysis, poor outcomes at 3 months were associated with higher World Federation of Neurological Surgeons scale grade, higher Hunt-Hess grade, higher CSF LRG1 levels, and higher Fisher grade. Logistic regression analysis revealed a significant impact of LRG1 on poor outcomes as well as after adjustment for confounding factors. CONCLUSIONS These findings suggest an increase in CSF LRG1 levels in patients with aSAH, which may serve as a potential biomarker of unfavorable prognosis and disease severity.
Collapse
Affiliation(s)
- Jin-Wei Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Ding-Ding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
10
|
Li Y, Zhang Z, Liu D. Intracranial Aneurysms Induced by RUNX1 Through Regulation of NFKB1 in Patients With Hypertension-An Integrated Analysis Based on Multiple Datasets and Algorithms. Front Neurol 2022; 13:877801. [PMID: 35655614 PMCID: PMC9152011 DOI: 10.3389/fneur.2022.877801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The purpose of this study was to identify potential therapeutic targets by examining the hub genes contributing to progression of intracranial aneurysm (IA) in patients with hypertension. Methods The bulk RNA sequencing (RNA-seq) datasets of hypertension and IA were obtained from the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo) database. These data were then used to calculate disease-related differentially expressed genes (DEGs) at the individual level. An scRNA-seq dataset of patients with abdominal aortic aneurysms (AAA) was used to analyze monocyte/macrophage-related DEGs. On the basis of the DEG data related to monocytes and macrophages, a TF-genes network has been developed. Hub genes and core sub-networks have also been identified. Furthermore, the key genes have been validated in an external cohort. Results From combined monocyte and macrophage-derived DEGs from abdominal aortic aneurysms, five hub DEGs were detected, including IFI30, SERPINE1, HMOX1, IL24, and RUNX1. A total of 57 genes were found in the IA bulk RNA-seq dataset. A support vector machine-recursive feature elimination algorithm (SVM-RFE) was applied to further screen the seven genes (RPS4Y1, DDX3Y, RUNX1, CLEC10A, PLAC8, SLA, and LILRB3). RUNX1 was the hub gene that regulated NFKB1 in the monocyte/macrophage-related network. And RUNX1 is implicated in IA progression by regulating hematopoietic stem cell differentiation and abnormal platelet production, according to gene set enrichment analysis. Conclusion Among patients with hypertension, RUNX1 in monocytes and macrophages was associated with a higher risk of IA through its regulation of NFKB1.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Zhen Zhang
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Donghua Liu
- Department of Neurosurgery, The Second People's Hospital of Yinchuan, Yinchuan, China
| |
Collapse
|
11
|
Li Y, Chen W, Deng H, Li T, Liu Z, Liu X, Zhang Z, Chen X, Sheng J, Li K. TGF-β1 Protects Trauma-injured Murine Cortical Neurons by Upregulating L-type Calcium Channel Ca v1.2 via the p38 Pathway. Neuroscience 2022; 492:47-57. [PMID: 35460836 DOI: 10.1016/j.neuroscience.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death in adolescents, and there is a lack of effective methods of treatment. The neuroprotective effects exerted by TGF-β1 can ameliorate a range of neuronal lesions in multiple central nervous system diseases. In this study, we used an in-vitro TBI model of mechanical injury on murine primary cortical neurons and the neuro-2a cell line to investigate the neuroprotective role played by TGF-β1 in cortical neurons in TBI. Our results showed that TGF-β1 significantly increased neuronal viability and inhibited apoptosis for 24 h after trauma. The expression of Cav1.2, an L-type calcium channel (LTCC) isoform, decreased significantly after trauma injury, and this change was reversed by TGF-β1. Nimodipine, a classic LTCC blocker, abolished the protective effect of TGF-β1 on trauma-induced neuronal apoptosis. The knockdown of Cav1.2 in differentiated neuro-2a cells significantly inhibited the anti-apoptosis effect of TGF-β1 exerted on injured neuro-2a cells. Moreover, TGF-β1 rescued and enhanced the trauma-suppressed neuro-2a intracellular Ca2+ concentration, while the effect of TGF-β1 was partially inhibited by nimodipine. TGF-β1 significantly upregulated the expression of Cav1.2 by activating the p38 MAPK pathway and by inhibiting trauma-induced neuronal apoptosis. In conclusion, TGF-β1 increased trauma-injured murine cortical neuronal activity and inhibited apoptosis by upregulating Cav1.2 channels via activating the p38 MAPK pathway. Therefore, the TGF-β1/p38 MAPK/Cav 1.2 pathway has the potential to be used as a novel therapeutic target for TBI.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Tian Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhenning Liu
- Department of Laboratory, Guangzhou Chest Hospital, China
| | - Xueer Liu
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
12
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
13
|
Yang YC, Liu SH, Hsu YH, Wu YL, Chu PT, Lin PC. Cerebrospinal fluid predictors of shunt-dependent hydrocephalus after hemorrhagic stroke: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:1847-1859. [PMID: 35015193 DOI: 10.1007/s10143-022-01731-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
Hydrocephalus is a common complication of hemorrhagic stroke and has been reported to contribute to poor neurological outcomes. Herein, we aimed to investigate the validity of cerebrospinal fluid (CSF) data in predicting shunt-dependent hydrocephalus (SDHC) in patients with hemorrhagic stroke. PubMed, CENTRAL, and Embase databases were searched for relevant studies published through July 31, 2021. The 16 studies with 1505 patient included those in which CSF data predicted risk for SDHC and reports on CSF parameters in patients in whom SDHC or hydrocephalus that was not shunt-dependent developed following hemorrhagic stroke. We appraised the study quality using Newcastle-Ottawa Scale and conducted a meta-analysis of the pooled estimates of the CSF predictors. The meta-analysis revealed three significant CSF predictors for shunt dependency, i.e., higher protein levels (mean difference [MD] = 32.09 mg/dL, 95% confidence interval [CI] = 25.48-38.70, I2 = 0%), higher levels of transforming growth factor β1 (TGF-β1; MD = 0.52 ng/mL, 95% CI = 0.42-0.62, I2 = 0%), and higher ferritin levels (MD = 108.87 µg/dL, 95% CI = 56.68-161.16, I2 = 36%). The red blood cell count, lactate level, and glucose level in CSF were not significant in predicting SDHC in patients with hemorrhagic stroke. Therefore, higher protein, TGF-β1, and ferritin levels in CSF are significant predictors for SDHC in patients with hemorrhagic stroke. Measuring these CSF parameters would help in the early recognition of SDHC risk in clinical care.
Collapse
Affiliation(s)
- Yao-Chung Yang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,National Defense Medical Center, Taipei, Taiwan
| | - Szu-Hao Liu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Hone Hsu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Lun Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-Teng Chu
- Division of Surgical Intensive Care, Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan. .,Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Kuo LT, Huang APH. The Pathogenesis of Hydrocephalus Following Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22095050. [PMID: 34068783 PMCID: PMC8126203 DOI: 10.3390/ijms22095050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrocephalus is a common complication of aneurysmal subarachnoid hemorrhage (aSAH) and reportedly contributes to poor neurological outcomes. In this review, we summarize the molecular and cellular mechanisms involved in the pathogenesis of hydrocephalus following aSAH and summarize its treatment strategies. Various mechanisms have been implicated for the development of chronic hydrocephalus following aSAH, including alterations in cerebral spinal fluid (CSF) dynamics, obstruction of the arachnoid granulations by blood products, and adhesions within the ventricular system. Regarding molecular mechanisms that cause chronic hydrocephalus following aSAH, we carried out an extensive review of animal studies and clinical trials about the transforming growth factor-β/SMAD signaling pathway, upregulation of tenascin-C, inflammation-dependent hypersecretion of CSF, systemic inflammatory response syndrome, and immune dysregulation. To identify the ideal treatment strategy, we discuss the predictive factors of shunt-dependent hydrocephalus between surgical clipping and endovascular coiling groups. The efficacy and safety of other surgical interventions including the endoscopic removal of an intraventricular hemorrhage, placement of an external ventricular drain, the use of intraventricular or cisternal fibrinolysis, and an endoscopic third ventriculostomy on shunt dependency following aSAH were also assessed. However, the optimal treatment is still controversial, and it necessitates further investigations. A better understanding of the pathogenesis of acute and chronic hydrocephalus following aSAH would facilitate the development of treatments and improve the outcome.
Collapse
|
15
|
Purohit D, Finkel DA, Malfa A, Liao Y, Ivanova L, Kleinman GM, Hu F, Shah S, Thompson C, Joseph E, Wolin MS, Cairo MS, La Gamma EF, Vinukonda G. Human Cord Blood Derived Unrestricted Somatic Stem Cells Restore Aquaporin Channel Expression, Reduce Inflammation and Inhibit the Development of Hydrocephalus After Experimentally Induced Perinatal Intraventricular Hemorrhage. Front Cell Neurosci 2021; 15:633185. [PMID: 33897371 PMCID: PMC8062878 DOI: 10.3389/fncel.2021.633185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Intraventricular hemorrhage (IVH) is a severe complication of preterm birth associated with cerebral palsy, intellectual disability, and commonly, accumulation of cerebrospinal fluid (CSF). Histologically, IVH leads to subependymal gliosis, fibrosis, and disruption of the ependymal wall. Importantly, expression of aquaporin channels 1 and 4 (AQP1 and AQP4) regulating respectively, secretion and absorption of cerebrospinal fluids is altered with IVH and are associated with development of post hemorrhagic hydrocephalus. Human cord blood derived unrestricted somatic stem cells (USSCs), which we previously demonstrated to reduce the magnitude of hydrocephalus, as having anti-inflammatory, and beneficial behavioral effects, were injected into the cerebral ventricles of rabbit pups 18 h after glycerol-induced IVH. USSC treated IVH pups showed a reduction in ventricular size when compared to control pups at 7 and 14 days (both, P < 0.05). Histologically, USSC treatment reduced cellular infiltration and ependymal wall disruption. In the region of the choroid plexus, immuno-reactivity for AQP1 and ependymal wall AQP4 expression were suppressed after IVH but were restored following USSC administration. Effects were confirmed by analysis of mRNA from dissected choroid plexus and ependymal tissue. Transforming growth factor beta (TGF-β) isoforms, connective tissue growth factor (CTGF) and matrix metalloprotease-9 (MMP-9) mRNA, as well as protein levels, were significantly increased following IVH and restored towards normal with USSC treatment (P < 0.05). The anti-inflammatory cytokine Interleukin-10 (IL-10) mRNA was reduced in IVH, but significantly recovered after USSC injection (P < 0.05). In conclusion, USSCs exerted anti-inflammatory effects by suppressing both TGF-β specific isoforms, CTGF and MMP-9, recovered IL-10, restored aquaporins expression towards baseline, and reduced hydrocephalus. These results support the possibility of the use of USSCs to reduce IVH consequences in prematurity.
Collapse
Affiliation(s)
- Deepti Purohit
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Dina A Finkel
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Ana Malfa
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - George M Kleinman
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Furong Hu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Shetal Shah
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Carl Thompson
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Etlinger Joseph
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Departments of Medicine, Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Edmund F La Gamma
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States.,Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Govindaiah Vinukonda
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
16
|
Yang YC, Yin CH, Chen KT, Lin PC, Lee CC, Liao WC, Chen JS. Prognostic Nomogram of Predictors for Shunt-Dependent Hydrocephalus in Patients with Aneurysmal Subarachnoid Hemorrhage Receiving External Ventricular Drain Insertion: A Single-Center Experience and Narrative Review. World Neurosurg 2021; 150:e12-e22. [PMID: 33556600 DOI: 10.1016/j.wneu.2021.01.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study aimed to create a prediction model with a radiographic score, serum, and cerebrospinal fluid (CSF) values for the occurrence of shunt-dependent hydrocephalus (SDHC) in patients with aneurysmal subarachnoid hemorrhage (aSAH) and to review and analyze literature related to the prediction of the development of SDHC. METHODS Sixty-three patients with aSAH who underwent external ventricular drain insertion were included and separated into 2 subgroups: non-SDHC and SDHC. Patient characteristics, computed tomography scoring system, and serum and CSF parameters were collected. Multivariate logistic regression was conducted to illustrate a nomogram for determining the predictors of SDHC. Furthermore, we sorted and summarized previous meta-analyses for predictors of SDHC. RESULTS The SDHC group had 42 cases. Stepwise logistic regression analysis revealed 3 independent predictive factors associated with a higher modified Graeb (mGraeb) score, lower level of estimated glomerular filtration rate group, and lower level of CSF glucose. The nomogram, based on these 3 factors, was presented with significant predictive performance (area under curve = 0.895) for SDHC development, compared with other scoring systems (AUC = 0.764-0.885). In addition, a forest plot was generated to present the 12 statistically significant predictors and odds ratio for correlations with the development of SDHC. CONCLUSIONS First, the development of a nomogram with combined significant factors had a good performance in estimating the risk of SDHC in primary patient evaluation and assisted in clinical decision making. Second, a narrative review, presented with a forest plot, provided the current published data on predicting SDHC.
Collapse
Affiliation(s)
- Yao-Chung Yang
- Department of Surgery, Division of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Hao Yin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuan-Ting Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Radiology, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chih Lee
- School of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chuan Liao
- Department of Surgery, Division of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Jin-Shuen Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Guzelcicek A, Koyuncu I, Gönel A, Cigdem G, Karadag M. Relationship Between Oxidative Stress, Tau Level and Antioxidant Mechanisms of the KEAP-1/NRF-2/HO-1 in Children with Hydrocephalus. Antiinflamm Antiallergy Agents Med Chem 2020; 20:282-289. [PMID: 33371862 DOI: 10.2174/1871523019666201228111713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrocephalus is a complex neurologic disorder which has a widespread impact on the central nervous system, and a multifactor disease which effect the CSF dynamics and causes severe neurological impairments in children. The pathophysiology of hydrocephalus is not fully understood. However, increasing evidence suggests that oxidative stress may be an important factor in the pathogenesis of hydrocephalus. OBJECTIVE The purpose of this study is to investigate the relationship of KEAP-1/NRF-2/HO-1 pathway, one of the main regulators of the antioxidant system in the hydrocephalus pathology, on oxidative stress and tau protein level. METHODS The study included 32 patients with hydrocephalus and 32 healthy controls. KEAP-1, NRF-2, HO-1, TAU, and MPO levels are measured using ELISA method TAS, TOS, Total THIOL colorimetric method. RESULTS KEAP-1, TAS, Total THIOL levels were found significantly low in the hydrocephalus group compared to the control group. Nevertheless, it is identified in the hydrocephalus group that the NRF-2, HO-1, TAU, MPO, TOS, and OSI levels were significantly elevated. CONCLUSION In conclusion, although KEAP-1/NRF-2/HO-1 pathway is activated in patients with hydrocephalus, it is identified that the antioxidant defense system is insufficient, and ultimately leads to elevated oxidative stress. The elevation in the tau level may be an indicator of oxidative stress induced neurodegenerative damage.
Collapse
Affiliation(s)
- Ahmet Guzelcicek
- Department of Pediatrics, Faculty of Medicine,Harran University, Sanliurfa. Turkey
| | - Ismail Koyuncu
- Department of Medicinal Biochemistry, Faculty of Medicine, Harran University, Sanliurfa. Turkey
| | - Ataman Gönel
- Department of Medicinal Biochemistry, Faculty of Medicine, Harran University, Sanliurfa. Turkey
| | - Gulyara Cigdem
- Department of Neurosurgery, Faculty of Medicine, Harran University, Sanliurfa. Turkey
| | - Mehmet Karadag
- Department of Biostatistics, Faculty of Medicine,Mustafa Kemal University, Hatay. Turkey
| |
Collapse
|
18
|
Wang Z, Zhang Y, Hu F, Ding J, Wang X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020; 26:1230-1240. [PMID: 33242372 PMCID: PMC7702234 DOI: 10.1111/cns.13526] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH), the most common type of adult-onset hydrocephalus, is a potentially reversible neuropsychiatric entity characterized by dilated ventricles, cognitive deficit, gait apraxia, and urinary incontinence. Despite its relatively typical imaging features and clinical symptoms, the pathogenesis and pathophysiology of iNPH remain unclear. In this review, we summarize current pathogenetic conceptions of iNPH and its pathophysiological features that lead to neurological deficits. The common consensus is that ventriculomegaly resulting from cerebrospinal fluid (CSF) dynamics could initiate a vicious cycle of neurological damages in iNPH. Pathophysiological factors including hypoperfusion, glymphatic impairment, disturbance of metabolism, astrogliosis, neuroinflammation, and blood-brain barrier disruption jointly cause white matter and gray matter lesions, and eventually lead to various iNPH symptoms. Also, we review the current treatment options and discuss the prospective treatment strategies for iNPH. CSF diversion with ventriculoperitoneal or lumboperitonealshunts remains as the standard therapy, while its complications prompt attempts to refine shunt insertion and develop new therapeutic procedures. Recent progress on advanced biomaterials and improved understanding of pathogenesis offers new avenues to treat iNPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Fan Hu
- Department of NeurosugeryZhongshan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jing Ding
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xin Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Feng Z, Liu S, Chen Q, Tan Q, Xian J, Feng H, Chen Z, Li G. uPA alleviates kaolin-induced hydrocephalus by promoting the release and activation of hepatocyte growth factor in rats. Neurosci Lett 2020; 731:135011. [PMID: 32497735 DOI: 10.1016/j.neulet.2020.135011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
Abstract
Urokinase-type plasminogen activator (uPA) was demonstrated to alleviate kaolin-induced communicating hydrocephalus via inhibiting subarachnoid space fibrosis, but the exact mechanism remains elusive. Thus, this study was designed to investigate if hepatocyte growth factor (HGF), which plays a vital role in uPA-triggered inhibiting of fibrosis in multiple systems, is involved in this process in hydrocephalus. There were 2 parts in this study. First, hydrocephalus was induced in rats by basal cistern injection of kaolin. Then rats were treated with saline or uPA and brain tissue and CSF were collected for Western blot and enzyme-linked immuno sorbent assay (ELISA) four days later. Second, kaolin-induced hydrocephalus rats were treated with saline, uPA, uPA + PHA665752 (antagonist of HGF) or PHA665752. Some animals received MRI four weeks later and brains were used for immunofluorescence. The others were euthanized four days later for ELISA. Both levels of total and activated HGF in the CSF was increased after uPA injections, but related mRNA expression of HGF showed no statistical significance when compared with the control group. Further, the effects of uPA that alleviating ventricular enlargement, subarachnoid fibrosis and reactive astrocytosis were partially reversed by PHA665752. Moreover, PHA665752 partially abolished uPA-induced reduction of transforming growth factor- β1(TGF- β1) level in CSF. Our data suggest that uPA effectively inhibited subarachnoid fibrosis and restricted the development of communicating hydrocephalus in rats in part by promoting HGF release and activation, which may further regulate the TGF-β1 expression in CSF.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Shengyan Liu
- Chongqing Mental Health Center, Chongqing, 4001147, PR China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jishu Xian
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gang Li
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Guizhou, 563003, PR China.
| |
Collapse
|
20
|
Zhan C, Xiao G, Zhang X, Chen X, Zhang Z, Liu J. Decreased MiR-30a promotes TGF-β1-mediated arachnoid fibrosis in post-hemorrhagic hydrocephalus. Transl Neurosci 2020; 11:60-74. [PMID: 33335750 PMCID: PMC7711221 DOI: 10.1515/tnsci-2020-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Background Fibrosis in the ventricular system is closely associated with post-hemorrhagic hydrocephalus (PHH). It is characterized by an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH). The activation of transforming growth factor-β1 (TGF-β1) may be involved in thrombin-induced arachnoid fibrosis. Methods A rat model of PHH was established by injection of autologous non-anticoagulated blood from the right femoral artery into the lateral ventricles. Differential expression of miR-30a was detected in rat arachnoid cells by RNA sequencing. AP-1, c-Fos, and TRAF3IP2 were knocked down in primary arachnoid cells, and the degree of arachnoid fibrosis was assessed. Results Decreased expression of miR-30a and increased expression of TRAF3IP2, TGF-β1, and α-SMA were detected in the arachnoid cells of PHH rat. Besides, overexpression of miR-30a targets TRAF3IP2 mRNA 3′UTR and inhibits the expression of TRAF3IP2, TGF-β1, and α-SMA in the primary arachnoid cells. Furthermore, TRAF3IP2 activates AP-1 to promote arachnoid fibrosis. The content of type I collagen in the primary arachnoid cells was reduced after the silencing of AP-1 and TRAF3IP2. Conclusions This study identified a miR-30a-regulated mechanism of arachnoid fibrosis, suggesting a previously unrecognized contribution of miR-30a to the pathogenesis of fibrosis in the ventricular system. These results might provide a new target for the clinical diagnosis and treatment of PHH.
Collapse
Affiliation(s)
- Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Xiangyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Xiaoyu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| |
Collapse
|
21
|
Yang H, Gao XJ, Li YJ, Su JB, E TZ, Zhang X, Ni W, Gu YX. Minocycline reduces intracerebral hemorrhage-induced white matter injury in piglets. CNS Neurosci Ther 2019; 25:1195-1206. [PMID: 31556245 PMCID: PMC6776747 DOI: 10.1111/cns.13220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Aims White matter (WM) injury after intracerebral hemorrhage (ICH) results in poor or even fatal outcomes. As an anti‐inflammatory drug, minocycline has been considered a promising choice to treat brain injury after ICH. However, whether minocycline can reduce WM injury after ICH is still controversial. In the present study, we investigate the effect and underlying mechanism of minocycline on WM injury after ICH. Methods An ICH model was induced by an injection of autologous blood into the right frontal lobe of piglets. First, transcriptional analysis was performed at day 1 or 3 to investigate the dynamic changes in neuroinflammatory gene expression in WM after ICH. Second, ICH piglets were treated either with minocycline or with vehicle alone. All piglets then underwent magnetic resonance imaging to measure brain swelling. Brain tissue was used for real‐time polymerase chain reaction (RT‐PCR), immunohistochemistry, Western blot, and electron microscopy. Results Transcriptional analysis demonstrated that transforming growth factor‐β (TGF‐β)/mitogen‐activated protein kinase (MAPK) signaling is associated with microglia/macrophage‐mediated inflammation activation after ICH and is then involved in WM injury after ICH in piglets. Minocycline treatment results in less ICH‐induced brain swelling, fewer neurological deficits, and less WM injury in comparison with the vehicle alone. In addition, minocycline reduces microglial activation and alleviates demyelination in white matter after ICH. Finally, we found that minocycline attenuates WM injury by increasing the expression of TGF‐β and suppressing MAPK activation after ICH. Conclusion These results indicate that TGF‐β–mediated MAPK signaling contributes to WM injury after ICH, which can be altered by minocycline treatment.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Jie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan-Jiang Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Bin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tong-Zhou E
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Xiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Hao X, Wei D. The risk factors of shunt-dependent hydrocephalus after subarachnoid space hemorrhage of intracranial aneurysms. Medicine (Baltimore) 2019; 98:e15970. [PMID: 31277089 PMCID: PMC6635240 DOI: 10.1097/md.0000000000015970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022] Open
Abstract
Shunt-dependent hydrocephalus is a common complication of aneurysmal subarachnoid hemorrhage (aSAH) which indicated intensive care unit stay and unfavorable outcome. Our aim is to study the risk factors of shunt-dependent hydrocephalus after aneurysmal subarachnoid space hemorrhage. Patients with intracranial aneurysms treated in our department from January 2014 to October 2018 were included in the study. Patients' age, gender, history of hypertension and diabetes, location of aneurysms, Glasgow coma scale (GCS) score, Hunt-Hess grading, intraventricular hemorrhage, therapeutic option, shunt placement, clinical outcome, length of stay were analyzed. The follow-up period was 1 to 5 years. Statistics included Chi-squared, Student t test, 1-way analysis of variance, Pearson correlation coefficient, and multivariate logistic regression. About 845 cases with intracranial aneurysms treated in our department were included in the study. The mean age was 52.19 ± 9.51 years and the sex ratio was 317/528. About 14.3% (121/845) of the patients developed shunt-dependent hydrocephalus in the follow-up period. According to our results, older than 60, Hunt-Hess grading, GCS, coma, posterior circulation aneurysm, external ventricular drainage, and decompress craniotomy were risk factors of shunt dependency (P < .05). Moreover, older than 60, GCS 3 to 8, Hunt-Hess 3 to 5, and posterior circulation aneurysm were the independent risk factors of shunt dependency. Moreover, shunt dependency was related to longer hospital stay and unfavorable outcome (P < .05). In conclusion, patients older than 60, GCS 3 to 8, Hunt-Hess 3 to 5, and posterior circulation aneurysm need more strict observation and longer follow-up. Timely and appropriate treatment may benefit patients in recovery, while further exploration is still needed in the future.
Collapse
Affiliation(s)
- Xu Hao
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui
| | - Ding Wei
- Department of Neurosurgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Zeng J, Qin L, Wang D, Gong J, Pan J, Zhu Y, Sun T, Xu K, Zhan R. Comparing the Risk of Shunt-Dependent Hydrocephalus in Patients with Ruptured Intracranial Aneurysms Treated by Endovascular Coiling or Surgical Clipping: An Updated Meta-Analysis. World Neurosurg 2019; 121:e731-e738. [DOI: 10.1016/j.wneu.2018.09.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
24
|
Predicting factors for shunt-dependent hydrocephalus in patients with aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien) 2018; 160:1407-1413. [PMID: 29766339 DOI: 10.1007/s00701-018-3560-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic hydrocephalus after aneurysmal subarachnoid hemorrhage (SAH) is a major complication that leads to a medical burden and poor clinical outcomes. The aim of this study was to evaluate the predictive factors of shunt-dependent hydrocephalus focusing on postoperative fever and infection. METHOD A total of 418 patients were included in this study and the patient demographic features, radiologic findings, days of fever burden, and infection were compared between the shunt (n = 72) and no shunt group (n = 346). Days of fever burden was defined as the total number of days with the highest body temperature ≥ 38.0 °C each day from day 1 to day 14. Pneumonia, urinary tract infection (UTI), meningitis, and bacteremia were recorded in all patients. RESULTS The independent predictive factors for shunt-dependent hydrocephalus were older age ≥ 65, microsurgical clipping, placement of extraventricular drainage (EVD), days of fever burden, and infection. The incidence of shunt dependency was 2.4% in the no fever burden patients (n = 123), 14.9% in the 1-3 days of fever burden patients (n = 161), 27.0% in the 4-6 days of fever burden patients (n = 74), and 41.7% in the ≥ 7 days of fever burden patients with statistical significance among groups (p < 0.001). CONCLUSION The rate of shunt dependency increased proportionally as the days of fever burden increased. Older age (≥ 65), microsurgical clipping, placement of EVD, days of fever burden, and infection were independent predictive factors for shunt dependency. Proper postoperative care for maintaining normal body temperature and preventing infectious disease can help reduce the rate of shunt dependency and improve clinical outcomes.
Collapse
|
25
|
Liu Z, Sheng J, Peng G, Yang J, Chen W, Li K. TGF-β1 Regulation of P-JNK and L-Type Calcium Channel Cav1.2 in Cortical Neurons. J Mol Neurosci 2018; 64:374-384. [PMID: 29423686 DOI: 10.1007/s12031-018-1033-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/25/2018] [Indexed: 02/05/2023]
Abstract
Central nervous system (CNS) diseases can cause a series of neuronal lesions, which may be improved by the anti-apoptotic neuroprotection of transforming growth factor-beta 1 (TGF-β1). In neurons, L-type Ca2+ channels (LTCC) are mainly composed of Cav1.2 subunits. Given the implication of TGF-β1 in numerous CNS diseases, we examined the neuroprotective effects of TGF-β1 on the Cav1.2 channel in the CNS. To simulate acute mechanical traumatic brain injury (TBI), we used a needle to create parallel scratches across plates, which were cultured for 9 h. Meanwhile, Fluo4-AM-loaded laser scanning confocal microscopy with a dual wavelength of 488 nm/530 nm was employed to determine intracellular calcium concentrations ([Ca2+]i). We found that MAPK inhibitors impede TGF-β1-induced cell viability and that TGF-β1 recovered from the trauma-induced cell viability in neurons. Cav1.2 production was significantly decreased in the TGF-β1-treated (10 ng/mL) neurons. At this TGF-β1 concentration, Cav1.2 was significantly down-regulated in a time-dependent manner after 12 h. Moreover, TGF-β1 partially recovered the protein levels of Cav1.2 that were reduced by TBI. TGF-β1 significantly inhibited the fluorescence intensity of [Ca2+]i increased by KCl and delayed the time of the peak [Ca2+]i. The observed effects of TGF-β1 on Cav1.2 were regulated by MAPK inhibitors. The observed effects of TGF-β1 on P-JNK were also impeded by pre-incubation with the LTCC inhibitor (10 μM) nimodipine in trauma-injured neurons. Altogether, TGF-β1 regulated LTCCs through a mechanism dependent on MEK, JNK1/2 and p38 MAPK signal pathways in cortical neurons. Thus, we suggest the involvement of this mechanism in cell viability.
Collapse
Affiliation(s)
- Zhenning Liu
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Guoyi Peng
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, China
| | - Jinhua Yang
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, China
| | - Weiqiang Chen
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong, 515041, China.
| | - Kangsheng Li
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| |
Collapse
|
26
|
Zeiler FA, Thelin EP, Czosnyka M, Hutchinson PJ, Menon DK, Helmy A. Cerebrospinal Fluid and Microdialysis Cytokines in Aneurysmal Subarachnoid Hemorrhage: A Scoping Systematic Review. Front Neurol 2017; 8:379. [PMID: 28848487 PMCID: PMC5550693 DOI: 10.3389/fneur.2017.00379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/18/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To perform two scoping systematic reviews of the literature on cytokine measurement in cerebral microdialysis (CMD) and cerebrospinal fluid (CSF) in aneurysmal subarachnoid hemorrhage (SAH) patients, aiming to summarize the evidence relating cytokine levels to pathophysiology, disease progression, and outcome. METHODS Two separate systematic reviews were conducted: one for CMD cytokines and the second for CSF cytokines. DATA SOURCES Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016), reference lists of relevant articles, and gray literature were searched. STUDY SELECTION Two reviewers independently identified all manuscripts utilizing predefined inclusion/exclusion criteria. A two-tier filter of references was conducted. DATA EXTRACTION Patient demographic and study data were extracted to tables. RESULTS There were 9 studies identified describing the analysis of cytokines via CMD in 246 aneurysmal SAH patients. Similarly, 20 studies were identified describing the analysis of CSF cytokines in 630 patients. The two scoping systematic reviews demonstrated the following: (1) limited literature available on CMD cytokine measurement in aneurysmal SAH with some preliminary data supporting feasibility of measurement and potential association between interleukin (IL)-6 and patient outcome. (2) Various CSF measured cytokines may be associated with patient outcome at 3-6 months, including IL-1ra, IL-6, IL-8, and tumor necrosis factor-alpha. (3) There is a small literature body supporting an association between acute/subacute CSF transforming growth factor levels and the development of chronic hydrocephalus at 2-3 months. CONCLUSION The evaluation of CMD and CSF cytokines is an emerging area of the literature in aneurysmal SAH. Further large prospective multicenter studies on cytokines in CMD and CSF need to be conducted.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Rady Faculty of Health Sciences, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
- Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K. Menon
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
27
|
Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One 2017; 12:e0172353. [PMID: 28212403 PMCID: PMC5315300 DOI: 10.1371/journal.pone.0172353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/04/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Hydrocephalus is a complex neurological disorder with a pervasive impact on the central nervous system. Previous work has demonstrated derangements in the biochemical profile of cerebrospinal fluid (CSF) in hydrocephalus, particularly in infants and children, in whom neurodevelopment is progressing in parallel with concomitant neurological injury. The objective of this study was to examine the CSF of children with congenital hydrocephalus (CHC) to gain insight into the pathophysiology of hydrocephalus and identify candidate biomarkers of CHC with potential diagnostic and therapeutic value. Methods CSF levels of amyloid precursor protein (APP) and derivative isoforms (sAPPα, sAPPβ, Aβ42), tau, phosphorylated tau (pTau), L1CAM, NCAM-1, aquaporin 4 (AQP4), and total protein (TP) were measured by ELISA in 20 children with CHC. Two comparative groups were included: age-matched controls and children with other neurological diseases. Demographic parameters, ventricular frontal-occipital horn ratio, associated brain malformations, genetic alterations, and surgical treatments were recorded. Logistic regression analysis and receiver operating characteristic curves were used to examine the association of each CSF protein with CHC. Results CSF levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, and NCAM-1 but not AQP4 or TP were increased in untreated CHC. CSF TP and normalized L1CAM levels were associated with FOR in CHC subjects, while normalized CSF tau levels were associated with FOR in control subjects. Predictive ability for CHC was strongest for sAPPα, especially in subjects ≤12 months of age (p<0.0001 and AUC = 0.99), followed by normalized sAPPβ (p = 0.0001, AUC = 0.95), tau, APP, and L1CAM. Among subjects ≤12 months, a normalized CSF sAPPα cut-point of 0.41 provided the best prediction of CHC (odds ratio = 528, sensitivity = 0.94, specificity = 0.97); these infants were 32 times more likely to have CHC. Conclusions CSF proteins such as sAPPα and related proteins hold promise as biomarkers of CHC in infants and young children, and provide insight into the pathophysiology of CHC during this critical period in neurodevelopment.
Collapse
|
28
|
Feng Z, Tan Q, Tang J, Li L, Tao Y, Chen Y, Yang Y, Luo C, Feng H, Zhu G, Chen Q, Chen Z. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus. Transl Res 2017; 180:77-90.e2. [PMID: 27614013 DOI: 10.1016/j.trsl.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/18/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023]
Abstract
Fibrosis of the subarachnoid space (SAS) after infection, inflammation, or hemorrhage can impair cerebrospinal fluid absorption and circulation, causing diffuse ventricular dilatation. In the present study, we tested the hypothesis that urokinase (also known as urokinase-type plasminogen activator [uPA]), a fibrinolytic agent, attenuates fibrosis and ventriculomegaly in a rat model of kaolin-induced communicating hydrocephalus and thus may have potential as a therapy for these conditions. Thirty microliters of sterile 25% kaolin suspension was injected into the basal cisterns of adult Sprague-Dawley rats to induce hydrocephalus, and 2 intraventricular injections of either uPA or vehicle (saline) were administered immediately and 3 days thereafter. Ventricular volumes were measured by magnetic resonance imaging (MRI) on days 3, 14, and 28 after kaolin injection. Fibrosis and reactive astrogliosis were evaluated on day 28 by immunofluorescence and Western blotting. Neurocognitive features were tested using the Morris water maze from days 23 to 28. MRI analysis demonstrated that kaolin administration successfully induced hydrocephalus in rats and that uPA treatment significantly attenuated ventricular enlargement. In addition, uPA inhibited the deposition of laminin and fibronectin, extracellular matrix molecules, in the SAS, attenuated gliosis, and improved learning and memory in kaolin-treated rats. Therefore, we concluded that uPA prevents the development of kaolin-induced communicating hydrocephalus by preventing the development of subarachnoid fibrosis and by eliciting improvements in neurocognition. The results of this study indicate that uPA may be a novel clinical therapy for communicating hydrocephalus.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Lin Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yunfeng Yang
- Department of Neurosurgery, Sichuan Provincial Corps Hospital, Chinese People's Armed Police Forces, Leshan, People's Republic of China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
29
|
Chen Q, Feng Z, Tan Q, Guo J, Tang J, Tan L, Feng H, Chen Z. Post-hemorrhagic hydrocephalus: Recent advances and new therapeutic insights. J Neurol Sci 2017; 375:220-230. [PMID: 28320134 DOI: 10.1016/j.jns.2017.01.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Post-hemorrhagic hydrocephalus (PHH), also referred to as progressive ventricular dilatation, is caused by disturbances in cerebrospinal fluid (CSF) flow or absorption following hemorrhage in the brain. As one of the most serious complications of neonatal/adult intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), and traumatic brain injury (TBI), PHH is associated with increased morbidity and disability of these events. Common sequelae of PHH include neurocognitive impairment, motor dysfunction, and growth impairment. Non-surgical measures to reduce increased intracranial pressure (ICP) in PHH have shown little success and most patients will ultimately require surgical management, such as external ventricular drainage and shunting which mostly by inserting a CSF drainage shunt. Unfortunately, shunt complications are common and the optimum time for intervention is unclear. To date, there remains no comprehensive strategy for PHH management and it becomes imperative that to explore new therapeutic targets and methods for PHH. Over past decades, increasing evidence have indicated that hemorrhage-derived blood and subsequent metabolic products may play a key role in the development of IVH-, SAH- and TBI-associated PHH. Several intervention strategies have recently been evaluated and cross-referenced. In this review, we summarized and discussed the common aspects of hydrocephalus following IVH, SAH and TBI, relevant experimental animal models, clinical translation of in vivo experiments, and potential preventive and therapeutic targets for PHH.
Collapse
Affiliation(s)
- Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jing Guo
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; Department of Neurosurgery, The 211st Hospital of PLA, Harbin 150086, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
30
|
Cannabinoid receptor 2 activation restricts fibrosis and alleviates hydrocephalus after intraventricular hemorrhage. Brain Res 2017; 1654:24-33. [DOI: 10.1016/j.brainres.2016.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 01/31/2023]
|
31
|
Liao F, Li G, Yuan W, Chen Y, Zuo Y, Rashid K, Zhang JH, Feng H, Liu F. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-β1 signaling activity following subarachnoid hemorrhage in rats. Exp Ther Med 2016; 12:2537-2543. [PMID: 27698755 PMCID: PMC5038515 DOI: 10.3892/etm.2016.3640] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/19/2022] Open
Abstract
Hydrocephalus has been demonstrated to be an independent risk factor for poor outcomes in patients with subarachnoid hemorrhage (SAH). Blockage of cerebrospinal fluid (CSF) flow and drainage is widely considered to play a vital role in communicating hydrocephalus, possibly due to subarachnoid fibrosis. A previous study indicated that transforming growth factor-β1 (TGF-β1), a key fibrogenic factor, is significantly increased in the CSF following SAH, implying a pivotal role in the development of chronic hydrocephalus. To investigate whether LSKL peptide, a small molecular peptide and competitive antagonist for TGF-β1, protects against subarachnoid fibrosis and hydrocephalus after SAH, a two-hemorrhage injection model of SAH was created in Sprague-Dawley rats. LSKL (1 mg/kg) was administered intraperitoneally immediately following the first intravenous injection of blood in the SAH model, with repeated injections of LSKL every 12 h until sacrifice. Thrombospondin-1 (TSP1), TGF-β1, p-Smad2/3, collagen I and pro-collagen I c-terminal propeptide levels were assessed via western blotting and ELISA. Lateral ventricular index, Masson staining and Morris water maze tests were employed to evaluate subarachnoid fibrosis, hydrocephalus and long-term neurological function following SAH. It was found that the LKSL peptide readily crossed the blood brain barrier, was protective against subarachnoid fibrosis, attenuated ventriculomegaly and effectively suppressed hydrocephalus. In addition, the results indicated that the protective effects of the LSKL peptide were achieved via the inhibition of TGF-β1 activity and subsequent Smad2/3 signaling. Importantly, the LSKL peptide may improve long-term neurocognitive deficits after SAH. In conclusion, the LSKL peptide suppresses subarachnoid fibrosis via inhibition of TSP1-mediated TGF-β1 activity, prevents the development of chronic hydrocephalus and improves long-term neurocognitive defects following SAH.
Collapse
Affiliation(s)
- Fan Liao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Gaofeng Li
- Department of Oncology, Zhuzhou Central Hospital, Zhuzhou, Hunan 412007, P.R. China
| | - Wen Yuan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412007, P.R. China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuchun Zuo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Kauthar Rashid
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
32
|
Aojula A, Botfield H, McAllister JP, Gonzalez AM, Abdullah O, Logan A, Sinclair A. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus. Fluids Barriers CNS 2016; 13:9. [PMID: 27246837 PMCID: PMC4888658 DOI: 10.1186/s12987-016-0033-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/20/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. METHODS Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. RESULTS Decorin significantly decreased myelin damage in the caudal internal capsule and prevented caudal periventricular white matter oedema and astrogliosis. Furthermore, decorin treatment prevented the increase in caudal periventricular white matter mean diffusivity (p = 0.032) as well as caudal corpus callosum axial diffusivity (p = 0.004) and radial diffusivity (p = 0.034). Furthermore, diffusion tensor imaging parameters correlated primarily with periventricular white matter astrocyte and aquaporin-4 levels. CONCLUSIONS Overall, these findings suggest that decorin has the therapeutic potential to reduce white matter cytopathology in hydrocephalus. Moreover, diffusion tensor imaging is a useful tool to provide surrogate measures of periventricular white matter pathology in communicating hydrocephalus.
Collapse
Affiliation(s)
- Anuriti Aojula
- />Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- />Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH UK
- />Neurotrauma, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Hannah Botfield
- />Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- />Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH UK
- />Neurotrauma, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - James Patterson McAllister
- />Department of Neurosurgery, Division of Pediatric Neurosurgery at the Washington University School of Medicine and the Saint Louis Children’s Hospital, St. Louis, MO 63110 USA
| | - Ana Maria Gonzalez
- />Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- />Neurotrauma, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Osama Abdullah
- />Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Ann Logan
- />Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
- />Neurotrauma, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Alexandra Sinclair
- />Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- />Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH UK
- />Neurotrauma, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- />Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH UK
| |
Collapse
|
33
|
Shim JW, Sandlund J, Hameed MQ, Blazer-Yost B, Zhou FC, Klagsbrun M, Madsen JR. Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus. Sci Rep 2016; 6:26794. [PMID: 27243144 PMCID: PMC4886677 DOI: 10.1038/srep26794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.
Collapse
Affiliation(s)
- Joon W Shim
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Johanna Sandlund
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive L235, Stanford, CA 94305, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, 3375 Hillview Avenue Palo, Alto, CA 94304, USA
| | - Mustafa Q Hameed
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery and Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Del Bigio MR, Di Curzio DL. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 2016; 13:3. [PMID: 26846184 PMCID: PMC4743412 DOI: 10.1186/s12987-016-0025-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
Pharmacological interventions have been tested experimentally and clinically to prevent hydrocephalus and avoid the need for shunting beginning in the 1950s. Clinical trials of varied quality have not demonstrated lasting and convincing protective effects through manipulation of cerebrospinal fluid production, diuresis, blood clot fibrinolysis, or manipulation of fibrosis in the subarachnoid compartment, although there remains some promise in the latter areas. Acetazolamide bolus seems to be useful for predicting shunt response in adults with hydrocephalus. Neuroprotection in the situation of established hydrocephalus has been tested experimentally beginning more recently. Therapies designed to modify blood flow or pulsation, reduce inflammation, reduce oxidative damage, or protect neurons are so far of limited success; more experimental work is needed in these areas. As has been recommended for preclinical studies in stroke and brain trauma, stringent conditions should be met for preclinical studies in hydrocephalus.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba; Children's Hospital Research Institute of Manitoba, Diagnostic Services Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| | - Domenico L Di Curzio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
35
|
Glycosaminoglycans in subdural fluid and CSF after meningeal injury. Acta Neurochir (Wien) 2015; 157:2105-10; discussion 2110. [PMID: 26424088 DOI: 10.1007/s00701-015-2591-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Inflammatory mechanisms have an acknowledged role in the progression of chronic subdural hematoma (CSDH) and in tissue response after subarachnoid hemorrhage (SAH). The participation of extracellular matrix, especially glycosaminoglycans, in the cellular events during tissue repair is known to be important. We studied the production of glycosaminoglycans after two types of meningeal injury-one caused by rupture of the dural border cell layer after head injury, and the other caused by SAH. METHODS Patients with CSDH (n = 28), subdural effusion (n = 8), and SAH (n = 33) were included in the study. Samples from subdural fluid or cerebrospinal fluid (CSF) were assayed for hyaluronic acid (HA) with an enzyme-linked assay and for sulfated glycosaminoglycans (sGAGs) with a dye-binding assay. RESULTS The median HA concentration was 3021 (range, 408-14,012) ng/ml in the CSDH fluid, 668 (392-3607) ng/ml in the effusion fluid, and 21.7 (5.8-195) ng/ml in the serum. In lumbar CSF after SAH, the median HA concentration was 246 (47-3686) ng/ml being 1.5-fold higher than that in control CSF. The median sGAG concentration was 52.8 (0-144) μg/ml in CSDH fluid, but only 5.32 (0-20.5) μg/ml in the effusion fluid, where the concentration was similar to that in the serum. CONCLUSIONS We found high, but variable, concentrations of sGAGs and HA in the CSDH and effusion fluid after head injury and HA in the CSF after SAH. Our results show that HA and sGAGs are induced after meningeal injury and that these proteins may participate in a reactive process.
Collapse
|
36
|
Yan H, Chen Y, Li L, Jiang J, Wu G, Zuo Y, Zhang JH, Feng H, Yan X, Liu F. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats. Brain Res 2015; 1630:241-53. [PMID: 26556770 DOI: 10.1016/j.brainres.2015.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/08/2015] [Accepted: 11/02/2015] [Indexed: 01/01/2023]
Abstract
Chronic hydrocephalus is one of the severe complications after subarachnoid hemorrhage (SAH). However, there is no efficient treatment for the prevention of chronic hydrocephalus, partially due to poor understanding of underlying pathogenesis, subarachnoid fibrosis. Transforming growth factor-β1(TGF-β1) is a potent fibrogenic factor implicated in wide range of fibrotic diseases. To investigate whether decorin, a natural antagonist for TGF-β1, protects against subarachnoid fibrosis and chronic hydrocephalus after SAH, two-hemorrhage-injection SAH model was conducted in 6-week-old rats. Recombinant human decorin(rhDecorin) (30ug/2ul) was administered before blood injection and on the 10th day after SAH. TGF-β1, p-Smad2/3, connective tissue growth factor (CTGF), collagen I and pro-collagen I c-terminal propeptide were assessed via western blotting, enzyme-linked immunosorbent assay, radioimmunoassay and immunofluorescence. And neurobehavioral tests and Morris water maze were employed to evaluate long-term neurological functions after SAH. We found that SAH induced heightened activation of TGF-β1/Smad/CTGF axis, presenting as a two peak response of TGF-β1 in cerebrospinal fluid, elevation of TGF-β1, p-Smad2/3, CTGF, collagen I in brain parenchyma and pro-collagen I c-terminal propeptide in cerebrospinal fluid, and increased lateral ventricle index. rhDecorin treatment effectively inhibited up-regulation of TGF-β1, p-Smad2/3, CTGF, collagen I and pro-collagen I c-terminal propeptide after SAH. Moreover, rhDecorin treatment significantly reduced lateral ventricular index and incidence of chronic hydrocephalus after SAH. Importantly, rhDecorin improved neurocognitive deficits after SAH. In conclusion, rhDecorin suppresses extracellular matrix accumulation and following subarachnoid fibrosis via inhibiting TGF-β1/Smad/CTGF pathway, preventing development of hydrocephalus and attenuating long-term neurocognitive defects after SAH.
Collapse
Affiliation(s)
- Hui Yan
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lingyong Li
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaode Jiang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangyong Wu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuchun Zuo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Jiménez AJ, Rodríguez-Pérez LM, Domínguez-Pinos MD, Gómez-Roldán MC, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco MC, Martínez-León MI, García-Martín ML, Cifuentes M, Ros B, Arráez MÁ, Vitorica J, Gutiérrez A, Pérez-Fígares JM. Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 2015; 40:911-32. [PMID: 24707814 DOI: 10.1111/nan.12115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
Abstract
AIMS Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFβ1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFβ1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS The TGFβ1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.
Collapse
Affiliation(s)
- Antonio-Jesús Jiménez
- Department of Cell Biology, Genetics, and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang D, Yan H, Li H, Hao S, Zhuang Z, Liu M, Sun Q, Yang Y, Zhou M, Li K, Hang C. TGFβ-activated Kinase 1 (TAK1) Inhibition by 5Z-7-Oxozeaenol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage. J Biol Chem 2015; 290:19900-9. [PMID: 26100626 DOI: 10.1074/jbc.m115.636795] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that activation of mitogen-activated protein kinases (MAPKs) and nuclear factor NF-κB exacerbates early brain injury (EBI) following subarachnoid hemorrhage (SAH) by provoking proapoptotic and proinflammatory cellular signaling. Here we evaluate the role of TGFβ-activated kinase 1 (TAK1), a critical regulator of the NF-κB and MAPK pathways, in early brain injury following SAH. Although the expression level of TAK1 did not present significant alternation in the basal temporal lobe after SAH, the expression of phosphorylated TAK1 (Thr-187, p-TAK1) showed a substantial increase 24 h post-SAH. Intracerebroventricular injection of a selective TAK1 inhibitor (10 min post-SAH), 5Z-7-oxozeaenol (OZ), significantly reduced the levels of TAK1 and p-TAK1 at 24 h post-SAH. Involvement of MAPKs and NF-κB signaling pathways was revealed that OZ inhibited SAH-induced phosphorylation of p38 and JNK, the nuclear translocation of NF-κB p65, and degradation of IκBα. Furthermore, OZ administration diminished the SAH-induced apoptosis and EBI. As a result, neurological deficits caused by SAH were reversed. Our findings suggest that TAK1 inhibition confers marked neuroprotection against EBI following SAH. Therefore, TAK1 might be a promising new molecular target for the treatment of SAH.
Collapse
Affiliation(s)
- Dingding Zhang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Huiying Yan
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Hua Li
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Rd., Nanjing 210093, Jiangsu Province, and
| | - Zong Zhuang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Ming Liu
- the Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, China
| | - Qing Sun
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Yiqing Yang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Mengliang Zhou
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Rd., Nanjing 210093, Jiangsu Province, and
| | - Chunhua Hang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, the Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
39
|
Anesthesia for the surgical treatment of cerebral aneurysms☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2015. [DOI: 10.1097/01819236-201543001-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Anestesia para el tratamiento quirúrgico de aneurismas cerebrales. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2015. [DOI: 10.1016/j.rca.2014.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Lecours M, Gelb AW. Anesthesia for the surgical treatment of cerebral aneurysms. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2015. [DOI: 10.1016/j.rcae.2014.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
Altered Cerebrospinal Fluid Concentrations of TGFβ1 in Patients with Drug-Resistant Epilepsy. Neurochem Res 2014; 39:2211-7. [DOI: 10.1007/s11064-014-1422-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/24/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
43
|
Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH. Inhibition of transforming growth factor-β attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage. Stroke 2014; 45:828-34. [PMID: 24425124 DOI: 10.1161/strokeaha.113.003754] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Transforming growth factor-β (TGF-β) overproduction and activation of the TGF-β pathway are associated with the development of brain injury following germinal matrix hemorrhage (GMH) in premature infants. We examined the effects of GMH on the level of TGF-β1 in a novel rat collagenase-induced GMH model and determined the effect of inhibition of the TGF receptor I. METHODS In total, 92 seven-day old (P7) rats were used. Time-dependent effects of GMH on the level of TGF-β1 and TGF receptor I were evaluated by Western blot. A TGF receptor I inhibitor (SD208) was administered daily for 3 days, starting either 1 hour or 3 days after GMH induction. The effects of GMH and SD208 on the TGF-β pathway were evaluated by Western blot at day 3. The effects of GMH and SD208 on cognitive and motor function were also assessed. The effects of TGF receptor I inhibition by SD208 on GMH-induced brain injury and underlying molecular pathways were investigated by Western blot, immunofluorescence, and morphology studies 24 days after GMH. RESULTS GMH induced significant delay in development, caused impairment in both cognitive and motor functions, and resulted in brain atrophy in rat subjects. GMH also caused deposition of both vitronectin (an extracellular matrix protein) and glial fibrillary acidic protein in perilesion areas, associated with development of hydrocephalus. SD208 ameliorated GMH-induced developmental delay, improved cognitive and motor functions, and attenuated body weight loss. SD208 also decreased vitronectin and glial fibrillary acidic protein deposition and decreased GMH-induced brain injury. CONCLUSIONS Increased level of TGF-β1 and activation of the TGF-β pathway associate with the development of brain injury after GMH. SD208 inhibits GMH-induced activation of the TGF-β pathway and leads to an improved developmental profile, partial recovery of cognitive and motor functions, and attenuation of GMH-induced brain atrophy and hydrocephalus.
Collapse
Affiliation(s)
- Anatol Manaenko
- From the Departments of Basic Science (A.M., T.L., J.H.Z.), Neurosurgery (J.H.Z.), Anesthesiology (M.B., J.H.Z.), and Psychology (R.H.), Loma Linda University, CA
| | | | | | | | | |
Collapse
|
44
|
Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister JP, Logan A. Decorin prevents the development of juvenile communicating hydrocephalus. ACTA ACUST UNITED AC 2013; 136:2842-58. [PMID: 23983032 DOI: 10.1093/brain/awt203] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In post-haemorrhagic and other forms of communicating hydrocephalus, cerebrospinal fluid flow and drainage is obstructed by subarachnoid fibrosis in which the potent fibrogenic cytokine transforming growth factor-β has been aetiologically implicated. Here, the hypothesis that the transforming growth factor-β antagonist decorin has therapeutic potential for reducing fibrosis and ventriculomegaly was tested using a rat model of juvenile communicating hydrocephalus. Hydrocephalus was induced by a single basal cistern injection of kaolin in 3-week-old rats, immediately followed by 3 or 14 days of continuous intraventricular infusion of either human recombinant decorin or phosphate-buffered saline (vehicle). Ventricular expansion was measured by magnetic resonance imaging at Day 14. Fibrosis, transforming growth factor-β/Smad2/3 activation and hydrocephalic brain pathology were evaluated at Day 14 and the inflammatory response at Days 3 and 14 by immunohistochemistry and basic histology. Analysis of ventricular size demonstrated the development of hydrocephalus in kaolin-injected rats but also revealed that continuous decorin infusion prevented ventricular enlargement, such that ventricle size remained similar to that in intact control rats. Decorin prevented the increase in transforming growth factor-β1 and phosphorylated Smad2/3 levels throughout the ventricular system after kaolin injection and also inhibited the deposition of the extracellular matrix molecules, laminin and fibronectin in the subarachnoid space. In addition, decorin protected against hydrocephalic brain damage inferred from attenuation of glial and inflammatory reactions. Thus, we conclude that decorin prevented the development of hydrocephalus in juvenile rats by blocking transforming growth factor-β-induced subarachnoid fibrosis and protected against hydrocephalic brain damage. The results suggest that decorin is a potential clinical therapeutic for the treatment of juvenile post-haemorrhagic communicating hydrocephalus.
Collapse
Affiliation(s)
- Hannah Botfield
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lee JH, Park DH, Back DB, Lee JY, Lee CI, Park KJ, Kang SH, Cho TH, Chung YG. Comparison of cerebrospinal fluid biomarkers between idiopathic normal pressure hydrocephalus and subarachnoid hemorrhage-induced chronic hydrocephalus: a pilot study. Med Sci Monit 2013. [PMID: 23197244 PMCID: PMC3560808 DOI: 10.12659/msm.883586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background We examined the cerebrospinal fluid (CSF) markers of subarachnoid hemorrhage (SAH)-induced and idiopathic normal pressure hydrocephalus (INPH) to investigate the pathophysiology and mechanism of communicating hydrocephalus compared to obstructive hydrocephalus. Material/Methods We obtained CSF samples from 8 INPH, 10 SAH-induced hydrocephalus, and 6 unmatched patients with non-hemorrhagic obstructive hydrocephalus during their ventriculoperitoneal shunt operations. Transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and total tau in the CSF were analyzed via enzyme-linked immunosorbent assay. Results The mean VEGF levels in the CSF of patients with SAH-induced hydrocephalus, INPH, and obstructive hydrocephalus were 239±131, 239±75, and 163±122 pg/mL, respectively. The total tau concentrations in the CSF of the groups were 1139±1900, 325±325, and 1550±2886 pg/mL, respectively. TNF-α values were 114±34, 134±38, and 55±16 pg/mL, respectively. TGF-β1 values were 953±430, 869±447, and 136±63 pg/mL, respectively. A significant difference in TNF-α and TGF-β1 levels was observed only between SAH-induced and chronic obstructive hydrocephalus, and between INPH and chronic obstructive hydrocephalus (p<0.01). Conclusions No significant differences in the 4 CSF biomarker levels were observed between INPH and SAH-induced hydrocephalus, whereas CSF TNF-α and TGF-β1 levels were increased compared to those in patients with chronic obstructive hydrocephalus. Post-SAH hydrocephalus and INPH are probably more destructive to neural tissues, and then stimulate the inflammatory reaction and healing process, compared with obstructive hydrocephalus.
Collapse
Affiliation(s)
- Jeong-Hyun Lee
- Department of Anesthesiology and Pain Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J Transplant 2013; 2013:521369. [PMID: 23691272 PMCID: PMC3649190 DOI: 10.1155/2013/521369] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 01/26/2023] Open
Abstract
Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.
Collapse
|
47
|
Zhang S, Chen D, Huang C, Bao J, Wang Z. Expression of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue of adult rats with hydrocephalus. Int J Neurosci 2013; 123:392-9. [PMID: 23270462 DOI: 10.3109/00207454.2012.762363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECT The hepatocyte growth factor (HGF), matrix metallopeptidase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) are important cytokines with modulatory actions in the nervous system. In this study, we attempted to investigate the role and expression of HGF, MMP-9 and TGF-β1 in the cerebral tissue and cerebrospinal fluid (CSF) of adult rats with hydrocephalus induced via intraventricular kaolin injection. METHODS Adult male Sprague-Dawley rats were randomly divided into two groups: control group (n = 12) and experimental group (n = 20). Kaolin was injected into the lateral ventricle of experimental animals. Control rats underwent the same procedure but received sterile saline injection instead of kaolin. Magnetic resonance imaging was used to assess ventricle size. The CSF was studied by enzyme-linked immunosorbent assay and the excised brains were studied by reverse-transcription polymerase chain reaction and immunohistochemical analyses to measure the messenger RNA and protein expression level of HGF, MMP-9 and TGF-β1. RESULTS Hydrocephalus was induced in all the rats after kaolin injection into the lateral ventricle. After 2 weeks, the expressions of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue were significantly increased in the experimental group compared with the control group. CONCLUSIONS This results indicated that HGF, MMP-9 and TGF-β1 may participate in the formation and prognosis of hydrocephalus after kaolin induction.
Collapse
Affiliation(s)
- Shaolin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | | | | | | |
Collapse
|
48
|
Aquilina K, Chakkarapani E, Thoresen M. Early deterioration of cerebrospinal fluid dynamics in a neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg Pediatr 2012; 10:529-37. [PMID: 23020227 DOI: 10.3171/2012.8.peds11386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The optimal management of neonatal intraventricular hemorrhage (IVH) and posthemorrhagic ventricular dilation is challenging. The importance of early treatment has been demonstrated in a recent randomized study, involving early ventricular irrigation and drainage, which showed significant cognitive improvement at 2 years. The objective of this study was to define the changes in CSF absorption capacity over time in a neonatal piglet model of IVH. METHODS Ten piglets (postnatal age 9-22 hours) underwent intraventricular injection of homologous blood. A ventricular access device was inserted 7-10 days later. Ventricular dilation was measured by ultrasonography. Serial constant flow infusion studies were performed through the access device from Week 2 to Week 8. RESULTS Seven piglets survived long term, 43-60 days, and developed ventricular dilation; this reached a maximum by Week 6. There was no significant difference in baseline intracranial pressure throughout this period. The resistance to CSF outflow, R(out), increased from 63.5 mm Hg/ml/min in Week 2 to 118 mm Hg/ml/min in Week 4. Although R(out) decreased after Week 5, the ventriculomegaly persisted. CONCLUSIONS In this neonatal piglet model, reduction in CSF absorptive capacity occurs early after IVH and accompanies progressive and irreversible ventriculomegaly. This suggests that early treatment of premature neonates with IVH is desirable.
Collapse
Affiliation(s)
- Kristian Aquilina
- University of Bristol School of Clinical Sciences, Frenchay Hospital, Bristol, England.
| | | | | |
Collapse
|
49
|
Optimisation of the quantification of glutamine synthetase and myelin basic protein in cerebrospinal fluid by a combined acidification and neutralisation protocol. J Immunol Methods 2012; 381:1-8. [DOI: 10.1016/j.jim.2012.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/05/2012] [Accepted: 04/05/2012] [Indexed: 11/20/2022]
|
50
|
Johnson MD, O’Connell M, Iqbal MA, Williams JP. Radiation effects on human leptomeningeal cell response to cerebrospinal fluid and PDGF-BB. Int J Radiat Biol 2012; 88:547-55. [DOI: 10.3109/09553002.2012.690929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|