1
|
Karimi B, Samadi S. Long-term exposure to air pollution on cardio-respiratory, and lung cancer mortality: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:75-95. [PMID: 38887768 PMCID: PMC11180069 DOI: 10.1007/s40201-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/02/2024] [Indexed: 06/20/2024]
Abstract
Air pollution is a major cause of specific deaths worldwide. This review article aimed to investigate the results of cohort studies for air pollution connected with the all-cause, cardio-respiratory, and lung cancer mortality risk by performing a meta-analysis. Relevant cohort studies were searched in electronic databases (PubMed/Medline, Web of Science, and Scopus). We used a random effect model to estimate the pooled relative risks (RRs) and their 95% CIs (confidence intervals) of mortality. The risk of bias for each included study was also assessed by Office of Health Assessment and Translation (OHAT) checklists. We applied statistical tests for heterogeneity and sensitivity analyses. The registration code of this study in PROSPERO was CRD42023422945. A total of 88 cohort studies were eligible and included in the final analysis. The pooled relative risk (RR) per 10 μg/m3 increase of fine particulate matter (PM2.5) was 1.080 (95% CI 1.068-1.092) for all-cause mortality, 1.058 (95% CI 1.055-1.062) for cardiovascular mortality, 1.066 (95%CI 1.034-1.097) for respiratory mortality and 1.118 (95% CI 1.076-1.159) for lung cancer mortality. We observed positive increased associations between exposure to PM2.5, PM10, black carbon (BC), and nitrogen dioxide (NO2) with all-cause, cardiovascular and respiratory diseases, and lung cancer mortality, but the associations were not significant for nitrogen oxides (NOx), sulfur dioxide (SO2) and ozone (O3). The risk of mortality for males and the elderly was higher compared to females and younger age. The pooled effect estimates derived from cohort studies provide substantial evidence of adverse air pollution associations with all-cause, cardiovascular, respiratory, and lung cancer mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00900-6.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Samadi
- Department of Occupational Health and safety, School of Health, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Ducruet C, Polo Martin B, Sene MA, Lo Prete M, Sun L, Itoh H, Pigné Y. Ports and their influence on local air pollution and public health: A global analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170099. [PMID: 38224889 DOI: 10.1016/j.scitotenv.2024.170099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Despite the skyrocketing growth in recent decades of environmental studies on ports and shipping, their local health impacts remain largely under-researched. This article tackles this gap in research by statistically analyzing data on global shipping flows across nearly 5000 ports in 35 OECD countries between 2001 and 2018. The different traffic types, from containers to bulk and passengers, are analyzed jointly with data on natural conditions, air pollution, socio-economic indicators, and public health. The principal results show that port regions pollute more than non-port regions on average, while health impacts vary according to the size and specialization of the port region. Three types of port regions are clearly differentiated: industrial, intermediate, and metropolitan port regions.
Collapse
Affiliation(s)
- César Ducruet
- French National Centre for Scientific Research, UMR 7235 EconomiX, University of Paris-Nanterre, France.
| | - Bárbara Polo Martin
- French National Centre for Scientific Research, UMR 7235 EconomiX, University of Paris-Nanterre, France
| | - Mame Astou Sene
- French National Centre for Scientific Research, UMR 7235 EconomiX, University of Paris-Nanterre, France
| | - Mariantonia Lo Prete
- Laboratory Territoires, Villes, Environnement et Société (TVES ULR 4477), Université du Littoral Côte d'Opale (ULCO), France
| | - Ling Sun
- Fudan University & Shanghai Maritime University, China
| | | | - Yoann Pigné
- LITIS, University of Le Havre Normandie, France
| |
Collapse
|
3
|
Ramamoorthy T, Nath A, Singh S, Mathew S, Pant A, Sheela S, Kaur G, Sathishkumar K, Mathur P. Assessing the Global Impact of Ambient Air Pollution on Cancer Incidence and Mortality: A Comprehensive Meta-Analysis. JCO Glob Oncol 2024; 10:e2300427. [PMID: 38513187 DOI: 10.1200/go.23.00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.
Collapse
Affiliation(s)
- Thilagavathi Ramamoorthy
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Anita Nath
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Shubhra Singh
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Stany Mathew
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Apourv Pant
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Samvedana Sheela
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Gurpreet Kaur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Krishnan Sathishkumar
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Prashant Mathur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| |
Collapse
|
4
|
Jiménez T, Pollán M, Domínguez-Castillo A, Lucas P, Sierra MÁ, Castelló A, Fernández de Larrea-Baz N, Lora-Pablos D, Salas-Trejo D, Llobet R, Martínez I, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Lope V, García-Pérez J. Mammographic density in the environs of multiple industrial sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162768. [PMID: 36907418 DOI: 10.1016/j.scitotenv.2023.162768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Mammographic density (MD), defined as the percentage of dense fibroglandular tissue in the breast, is a modifiable marker of the risk of developing breast cancer. Our objective was to evaluate the effect of residential proximity to an increasing number of industrial sources in MD. METHODS A cross-sectional study was conducted on 1225 premenopausal women participating in the DDM-Madrid study. We calculated distances between women's houses and industries. The association between MD and proximity to an increasing number of industrial facilities and industrial clusters was explored using multiple linear regression models. RESULTS We found a positive linear trend between MD and proximity to an increasing number of industrial sources for all industries, at distances of 1.5 km (p-trend = 0.055) and 2 km (p-trend = 0.083). Moreover, 62 specific industrial clusters were analyzed, highlighting the significant associations found between MD and proximity to the following 6 industrial clusters: cluster 10 and women living at ≤1.5 km (β = 10.78, 95 % confidence interval (95%CI) = 1.59; 19.97) and at ≤2 km (β = 7.96, 95%CI = 0.21; 15.70); cluster 18 and women residing at ≤3 km (β = 8.48, 95%CI = 0.01; 16.96); cluster 19 and women living at ≤3 km (β = 15.72, 95%CI = 1.96; 29.49); cluster 20 and women living at ≤3 km (β = 16.95, 95%CI = 2.90; 31.00); cluster 48 and women residing at ≤3 km (β = 15.86, 95%CI = 3.95; 27.77); and cluster 52 and women living at ≤2.5 km (β = 11.09, 95%CI = 0.12; 22.05). These clusters include the following industrial activities: surface treatment of metals/plastic, surface treatment using organic solvents, production/processing of metals, recycling of animal waste, hazardous waste, urban waste-water treatment plants, inorganic chemical industry, cement and lime, galvanization, and food/beverage sector. CONCLUSIONS Our results suggest that women living in the proximity to an increasing number of industrial sources and those near certain types of industrial clusters have higher MD.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Adela Castelló
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - David Lora-Pablos
- Scientific Support Unit, Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain; Spanish Clinical Research Network (SCReN), Madrid, Spain; Faculty of Statistical Studies, Universidad Complutense de Madrid (UCM), Madrid, Spain.
| | - Dolores Salas-Trejo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Inmaculada Martínez
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Mercedes Martínez-Cortés
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Virgina Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
5
|
Boogaard H, Samoli E, Patton AP, Atkinson RW, Brook JR, Chang HH, Hoffmann B, Kutlar Joss M, Sagiv SK, Smargiassi A, Szpiro AA, Vienneau D, Weuve J, Lurmann FW, Forastiere F, Hoek G. Long-term exposure to traffic-related air pollution and non-accidental mortality: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2023; 176:107916. [PMID: 37210806 DOI: 10.1016/j.envint.2023.107916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The health effects of traffic-related air pollution (TRAP) continue to be of important public health interest across the globe. Following its 2010 review, the Health Effects Institute appointed a new expert Panel to systematically evaluate the epidemiological evidence regarding the associations between long-term exposure to TRAP and selected health outcomes. This paper describes the main findings of the systematic review on non-accidental mortality. METHODS The Panel used a systematic approach to conduct the review. An extensive search was conducted of literature published between 1980 and 2019. A new exposure framework was developed to determine whether a study was sufficiently specific to TRAP, which included studies beyond the near-roadway environment. We performed random-effects meta-analysis when at least three estimates were available of an association between a specific exposure and outcome. We evaluated confidence in the evidence using a modified Office of Health Assessment and Translation (OHAT) approach, supplemented with a broader narrative synthesis. RESULTS Thirty-six cohort studies were included. Virtually all studies adjusted for a large number of individual and area-level covariates-including smoking, body mass index, and individual and area-level socioeconomic status-and were judged at a low or moderate risk for bias. Most studies were conducted in North America and Europe, and a few were based in Asia and Australia. The meta-analytic summary estimates for nitrogen dioxide, elemental carbon and fine particulate matter-pollutants with more than 10 studies-were 1.04 (95% CI 1.01, 1.06), 1.02 (1.00, 1.04) and 1.03 (1.01, 1.05) per 10, 1 and 5 µg/m3, respectively. Effect estimates are interpreted as the relative risk of mortality when the exposure differs with the selected increment. The confidence in the evidence for these pollutants was judged as high, because of upgrades for monotonic exposure-response and consistency across populations. The consistent findings across geographical regions, exposure assessment methods and confounder adjustment resulted in a high confidence rating using a narrative approach as well. CONCLUSIONS The overall confidence in the evidence for a positive association between long-term exposure to TRAP and non-accidental mortality was high.
Collapse
Affiliation(s)
- H Boogaard
- Health Effects Institute, Boston, MA, United States.
| | - E Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A P Patton
- Health Effects Institute, Boston, MA, United States
| | - R W Atkinson
- Population Health Research Institute, St. George's University of London, United Kingdom
| | - J R Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - H H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - B Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - M Kutlar Joss
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany; Swiss Tropical and Public Health Institute, Allschwill, Switzerland; University of Basel, Switzerland
| | - S K Sagiv
- Center for Environmental Research and Children's Health, Division of Epidemiology, University of California Berkeley School of Public Health, Berkeley, CA, United States
| | - A Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, QC, Canada
| | - A A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - D Vienneau
- Swiss Tropical and Public Health Institute, Allschwill, Switzerland; University of Basel, Switzerland
| | - J Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - F W Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - F Forastiere
- Environmental Research Group, School of Public Health, Imperial College, London, United Kingdom
| | - G Hoek
- Institute for Risk Assessment Sciences, Environmental Epidemiology, Utrecht University, Netherlands
| |
Collapse
|
6
|
Carapezza ML, Tarchini L, Ancona C, Forastiere F, Ranaldi M, Ricci T, De Simone G, Mataloni F, Pagliuca NM, Barberi F. Health impact of natural gas emission at Cava dei Selci residential zone (metropolitan city of Rome, Italy). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:707-729. [PMID: 35278168 PMCID: PMC10014802 DOI: 10.1007/s10653-022-01244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Natural gas hazard was assessed at Cava dei Selci, a residential neighbourhood of Marino (Rome) by a joint study of gas emissions and related health problems. Here a densely urbanized zone with 4000 residents surrounds a dangerous natural gas discharge where, along the years, dozens of animals were killed by the gas. Gas originates from Colli Albani volcano and consists mostly of CO2 with ~ 1 vol% of H2S. In recent years, several gas-related accidents occurred in the urbanized zone (gas blowouts and road collapses). Some houses were evacuated because of hazardous indoor air gas concentration. Gas hazard was assessed by soil CO2 flux and concentration surveys and indoor and outdoor air CO2 and H2S concentration measurements. Open fields and house gardens release a high quantity of CO2 (32.23 tonnes * day-1). Inside most houses, CO2 air concentration exceeds 0.1 vol%, the acceptable long-term exposure range. In several houses both CO2 and H2S exceed the IDLH level (Immediately Dangerous to Life and Health). An epidemiological cohort study was carried out on the residents of two Cava dei Selci zones with high (zone A) and medium (zone B) gas hazard exposure, using the rest of Marino as reference zone. We found excess mortality and emergency room visits (ERV) related to high exposure to CO2 and H2S; in particular, an increased risk of mortality and ERV for diseases of central nervous system (HR 1.57, 95% CI 0.76-3.25 and HR 5.82, 95% CI 1.27-26.56, respectively) was found among men living in zone A.
Collapse
Affiliation(s)
| | - Luca Tarchini
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Rome, Italy
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | - Massimo Ranaldi
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Rome, Italy
| | - Tullio Ricci
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Rome, Italy
| | - Gabriele De Simone
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Rome, Italy
| | | | | | - Franco Barberi
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Rome, Italy
| |
Collapse
|
7
|
Choi JY, Kim SY, Kim T, Lee C, Kim S, Chung HM. Ambient air pollution and the risk of neurological diseases in residential areas near multi-purposed industrial complexes of korea: A population-based cohort study. ENVIRONMENTAL RESEARCH 2023; 219:115058. [PMID: 36521536 DOI: 10.1016/j.envres.2022.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Emerging evidence suggest that long-term exposure to air pollution may induce adverse effects on the central nervous system. However, no study explored the associations in large industrial complex (IC) areas which are one of the major contributors to air pollution. Therefore, we aimed to investigate the pollution status and the association between residential proximity and incidence of neurological diseases near two major ICs characterized as multi-purposed ICs in Korea. A retrospective cohort of residents near the ICs was constructed using Korea's health insurance data and monitored from 2008 to 2019. Emission amounts of the ICs and the air pollution status in the nearby (exposed) and remote (control) area were evaluated using data from national regulatory networks, and hazard ratios (HRs) and 95% confidence intervals (CIs) for neurological diseases of the exposed group compared to the control group were calculated using Cox proportional regression models. Overall, the complexes emitted large amounts of VOCs, CO, NOx, and PM10, and annual levels of ambient PM (2.5, 10), gaseous substances (NO2, SO2), VOCs and PAHs were higher in the exposed area compared to the control and/or the national average. The risk of inflammatory disease of the CNS (G00-09) and extrapyramidal and movement disorders (G20-26) were higher in the exposed area with a HR (95% CI) of 1.36 (1.10-1.68) and 1.33 (1.27-1.39) respectively. Among the subclasses, other extrapyramidal and movement disorders (G25) and epilepsy (G40) were associated with higher risks in the exposed area (HR (95%CI): 1.11 (1.04-1.18), 1.08 (1.00-1.16)) after adjusting for potential confounders. These results suggest that people living near ICs are more likely to be exposed to higher air pollution levels and have higher risks of developing several neurological disorders. However, further epidemiological studies in these industrial areas supplemented with other indicators of environmental exposure and control of other diverse factors are warranted.
Collapse
Affiliation(s)
- Ji Yoon Choi
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Sung Yeon Kim
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea.
| | - Taekyu Kim
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Chulwoo Lee
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Suejin Kim
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Hyen-Mi Chung
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| |
Collapse
|
8
|
Jiménez T, Pollán M, Domínguez-Castillo A, Lucas P, Sierra MÁ, Fernández de Larrea-Baz N, González-Sánchez M, Salas-Trejo D, Llobet R, Martínez I, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Lope V, García-Pérez J. Residential proximity to industrial pollution and mammographic density. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154578. [PMID: 35304152 DOI: 10.1016/j.scitotenv.2022.154578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mammographic density (MD), expressed as percentage of fibroglandular breast tissue, is an important risk factor for breast cancer. Our objective is to investigate the relationship between MD and residential proximity to pollutant industries in premenopausal Spanish women. METHODS A cross-sectional study was carried out in a sample of 1225 women extracted from the DDM-Madrid study. Multiple linear regression models were used to assess the association of MD percentage (and their 95% confidence intervals (95%CIs)) and proximity (between 1 km and 3 km) to industries included in the European Pollutant Release and Transfer Register. RESULTS Although no association was found between MD and distance to all industries as a whole, several industrial sectors showed significant association for some distances: "surface treatment of metals and plastic" (β = 4.98, 95%CI = (0.85; 9.12) at ≤1.5 km, and β = 3.00, 95%CI = (0.26; 5.73) at ≤2.5 km), "organic chemical industry" (β = 6.73, 95%CI = (0.50; 12.97) at ≤1.5 km), "pharmaceutical products" (β = 4.14, 95%CI = (0.58; 7.70) at ≤2 km; β = 3.55, 95%CI = (0.49; 6.60) at ≤2.5 km; and β = 3.11, 95%CI = (0.20; 6.01) at ≤3 km), and "urban waste-water treatment plants" (β = 8.06, 95%CI = (0.82; 15.30) at ≤1 km; β = 5.28; 95%CI = (0.49; 10.06) at ≤1.5 km; β = 4.30, 95%CI = (0.03; 8.57) at ≤2 km; β = 5.26, 95%CI = (1.83; 8.68) at ≤2.5 km; and β = 3.19, 95%CI = (0.46; 5.92) at ≤3 km). Moreover, significant increased MD was observed in women close to industries releasing specific pollutants: ammonia (β = 4.55, 95%CI = (0.26; 8.83) at ≤1.5 km; and β = 3.81, 95%CI = (0.49; 7.14) at ≤2 km), dichloromethane (β = 3.86, 95%CI = (0.00; 7.71) at ≤2 km), ethylbenzene (β = 8.96, 95%CI = (0.57; 17.35) at ≤3 km), and phenols (β = 2.60, 95%CI = (0.21; 5.00) at ≤2.5 km). CONCLUSIONS Our results suggest no statistically significant relationship between MD and proximity to industries as a whole, although we detected associations with various industrial sectors and some specific pollutants, which suggests that MD could have a mediating role in breast carcinogenesis.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain.
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain.
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Mario González-Sánchez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Dolores Salas-Trejo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Inmaculada Martínez
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Mercedes Martínez-Cortés
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain.
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
9
|
Longo V, Forleo A, Radogna AV, Siciliano P, Notari T, Pappalardo S, Piscopo M, Montano L, Capone S. A novel human biomonitoring study by semiconductor gas sensors in Exposomics: investigation of health risk in contaminated sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119119. [PMID: 35341815 DOI: 10.1016/j.envpol.2022.119119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 05/04/2023]
Abstract
Two areas in central-southern Italy Land of Fires in Campania and Valley of Sacco river in Lazio are known to be contaminated sites, the first due to illegal fly-tipping and toxic fires, and the second due to an intensive industrial exploitation done by no-scruple companies and crooked public administration offices with dramatic consequences for environment and resident people. The work is intended to contribute to Human BioMonitoring (HBM) studies conducted in these areas on healthy young male population by a semiconductor gas sensor array trained by SPME-GC/MS. Human semen, blood and urine were investigated. The fingerprinting of the Volatile Organic Compounds (VOCs) by a gas sensors system allowed to discriminate the different contamination of the two areas and was able to predict the chemical concentration of several VOCs identified by GC/MS.
Collapse
Affiliation(s)
- Valentina Longo
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Angiola Forleo
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Antonio Vincenzo Radogna
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy; Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Pietro Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy
| | - Tiziana Notari
- Reproductive Medicine Unit of Check Up Polydiagnostic Center, Salerno, Italy
| | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), Italy "Oliveto Citra Hospital", Salerno, Italy; PhD Program in Evolutionary Biology and Ecology, Un. of Rome Tor Vergata, Rome, Italy
| | - Simonetta Capone
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Lecce, Italy.
| |
Collapse
|
10
|
Kasdagli MI, Katsouyanni K, de Hoogh K, Lagiou P, Samoli E. Investigating the association between long-term exposure to air pollution and greenness with mortality from neurological, cardio-metabolic and chronic obstructive pulmonary diseases in Greece. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118372. [PMID: 34656679 DOI: 10.1016/j.envpol.2021.118372] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
Long-term exposure to air pollution has been associated with increased natural-cause mortality, but the evidence on diagnoses-specific mortality outcomes is limited. Few studies have examined the potential synergistic effects of exposure to pollutants and greenness. We investigated the association between exposure to air pollution and greenness with nervous system related mortality, cardiometabolic and chronic obstructive pulmonary diseases (COPD) mortality in Greece, using an ecological study design. We collected socioeconomic and mortality data for 1035 municipal units from the 2011 Census. Annual PM2.5, NO2, BC and O3 concentrations for 2010 were predicted at 100 × 100 m grids by hybrid land use regression models. The normalized difference vegetation index (NDVI) was used for greenness. We applied single and two-exposure Poisson regression models on standardized mortality rates accounting for spatial autocorrelation. We assessed interactions between pollutants and greenness. An interquartile range increase in PM2.5, NO2 and BC was associated with increased risk in mortality from diseases of the nervous system (relative risk (RR): 1.14, 95% confidence interval (CI): 1.01, 1.28); 1.03 (95% CI: 0.99, 1.07); 1.05 (95% CI: 1.00, 1.10) respectively) and from cerebrovascular disease (RR: 1.14, 95% CI: 1.10, 1.18); 1.02 (95% CI: 1.01, 1.04); 1.02 (95% CI: 1.00, 1.04) respectively). PM2.5 was associated with ischemic heart disease mortality (RR: 1.05, 95% CI: 1.01, 1.10). We estimated inverse associations for all outcomes with O3 and for mortality from diseases of the nervous system or COPD with greenness. Estimates were mostly robust to co-exposure adjustment. Interactions were identified between NDVI and O3 or PM2.5 on mortality from the diseases of the nervous system, with higher effect estimates in greener areas. Our findings support the adverse effects of air pollution and the beneficial role of greenness on cardiovascular and nervous system related mortality. Further research is needed on diabetes mellitus.
Collapse
Affiliation(s)
- Maria-Iosifina Kasdagli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Environmental Research Group, MRC Centre for Environment and Health, Imperial College, United Kingdom
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
11
|
Liu G, Xia H, Zhang W, Song L, Chen Q, Niu Y. Improvement mechanism of NO photocatalytic degradation performance of self-cleaning synergistic photocatalytic coating under high humidity. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126337. [PMID: 34126379 DOI: 10.1016/j.jhazmat.2021.126337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic coating has been widely studied as a promising material to remove air pollutants. However, the effectiveness and long-term effect of photocatalysis in high relative humidity environment is still the main challenge in this field. In this study, a fluorinated WO3-TiO2 nanorods/SiO2 epoxy photocatalytic superamphiphobic coating (FTSE coating) was prepared using a simple spraying method. The micromorphology and chemical composition of FTSE coating was characterized by SEM, EDS, FT-IR, XPS and TGA techniques. The advanced contact angle and hysteresis angle test show that the FTSE coating had excellent superamphiphobicity. The mechanical abrasions, corrosion resistance and UV aging tests show that the FTSE coating exhibited reasonable durability. Besides, the NO degradation efficiency of hydrophilic and superamphiphobic coatings with contact angles of 20.19°, 87.74°, 162.93° and 164.47° was tested in different humidity environment. The results showed that the superamphiphobic coating exhibited more superior photocatalytic degradation efficiency (84.02%) than the hydrophilic coating (51.38%) at a high relative humidity (RH=98%). Finally, FTSE coating exhibited prominent photocatalytic stability and the synergistic effect of photocatalysis and self-cleaning. After 30 d outdoor weathering test, the NO degradation efficiency decreased by 13.07% and recovered to the original level after flushing. The improvement mechanism of NO degradation performance was proposed based on the characteristics of superamphiphobic surface.
Collapse
Affiliation(s)
- Guanyu Liu
- Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Huiyun Xia
- Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China.
| | - Wenshuo Zhang
- Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Lifang Song
- Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Qiwei Chen
- Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Yanhui Niu
- Engineering Research Center of Transportation Materials of Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China.
| |
Collapse
|
12
|
Rahman MM, Alam K, Velayutham E. Is industrial pollution detrimental to public health? Evidence from the world's most industrialised countries. BMC Public Health 2021; 21:1175. [PMID: 34144705 PMCID: PMC8213381 DOI: 10.1186/s12889-021-11217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Industrial pollution is considered to be a detrimental factor for human health. This study, therefore, explores the link between health status and industrial pollution for the top 20 industrialised countries of the world. METHODS Crude death rate is used to represent health status and CO2 emissions from manufacturing industries and construction, and nitrous oxide emissions are considered to be indicators of industrial pollution. Using annual data of 60 years (1960-2019), an unbalanced panel data estimation method is followed where (Driscoll, J. C. et al. Rev Econ Stat, 80, 549-560, 1998) standard error technique is employed to deal with heteroscedasticity, autocorrelation and cross-sectional dependence problems. RESULTS The research findings indicate that industrial pollution arising from both variables has a detrimental impact on human health and significantly increases the death rate, while an increase in economic growth, number of physicians, urbanisation, sanitation facilities and schooling decreases the death rate. CONCLUSIONS Therefore, minimisation of industrial pollution should be the topmost policy agenda in these countries. All the findings are consistent theoretically, and have empirical implications as well. The policy implication of this study is that the mitigation of industrial pollution, considering other pertinent factors, should be addressed appropriately by enunciating effective policies to reduce the human death rate and improve health status in the studied panel countries.
Collapse
Affiliation(s)
| | - Khosrul Alam
- Department of Economics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eswaran Velayutham
- School of Business, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| |
Collapse
|
13
|
Abstract
We report here a simple approach that allows for rapid mapping of raw voltage readings to concentrations for parts-per-billion level air quality electrochemical sensors. The key step is the introduction of an auxiliary sensor and then covering it with a thin Nafion membrane, one that is well-known for its both highly efficient and selective permeation of water vapor. This sensor captures any signal that is induced by changes of relative humidity, and such a signal can then be used to rapidly correct for drifts of the main sensor which sees both the target gas and the ambient water vapor. The whole process is entirely based on first principles, preserves physical clarity, is very amenable for implementation by routine sensor users, and delivers data that compare favorably with those from reference instruments. We also suggest that this double-sensor setup can be further condensed into one sensor in which one of the electrodes is coated by Nafion and exposed to ambient air in the same way as the normal sensing electrode.
Collapse
Affiliation(s)
- Bin Ouyang
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
14
|
Industrial Air Pollution and Respiratory Health Status among Residents in an Industrial Area in Central Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113795. [PMID: 32471097 PMCID: PMC7312516 DOI: 10.3390/ijerph17113795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
The area of Civitavecchia (Lazio region, Central Italy) has been a reason of concern in the past because of environmental air contamination. The aim of this study was to evaluate the association between air pollution from different sources and respiratory symptoms and lung function in the population. A sample of 1177 residents underwent medical examination and lung function tests. Information on individual characteristics, histories of exposure and medical history were collected through a validated questionnaire. Long-term exposure to industrial, harbour, biomass combustion emissions (PM10) and urban traffic (NOx) at residential address was assessed using a Lagrangian dispersion model. The associations between exposure and wheezing and dyspnea were assessed using logistic regression models, while modified Poisson regression models were used to evaluate cough with phlegm. Relationships between exposure and lung function were analysed using linear mixed-effects models and cross-correlation. PM10 emissions from the harbour were associated with lower lung function parameters (FEV1: β = –0.12, 95% CI –0.21 –0.03; p = 0.02; FEV1/FVC: β = –1.67, (–3.10 –0.23); p = 0.02. This association was observed also in healthy subjects, but not in females. We found, even if at low exposure level, an effect of environmental PM10 exposure from harbour on lung function.
Collapse
|