1
|
Xu X, Liu Z, Liu J, Yao C, Chen X, Huang X, Huang S, Shi P, Li M, Wang L, Tao Y, Chen HJ, Xie X. Multi-sized microelectrode array coupled with micro-electroporation for effective recording of intracellular action potential. MICROSYSTEMS & NANOENGINEERING 2025; 11:85. [PMID: 40360468 PMCID: PMC12075571 DOI: 10.1038/s41378-025-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 05/15/2025]
Abstract
Microelectrode arrays (MEAs) are essential tools for studying the extracellular electrophysiology of cardiomyocytes in a multi-channel format. However, they typically lack the capability to record intracellular action potentials (APs). Recent studies have relied on costly fabrication of high-resolution microelectrodes combined with electroporation for intracellular recordings, but the impact of microelectrode size on micro-electroporation and the quality of intracellular signal acquisition has yet to be explored. Understanding these effects could facilitate the design of microelectrodes of various sizes to enable lower-cost manufacturing processes. In this study, we investigated the influence of microelectrode size on intracellular AP parameters and recording metrics post-micro-electroporation through simulations and experiments. We fabricated microelectrodes of different sizes using standard photolithography techniques to record cardiomyocyte APs from various culture environments with coupled micro-electroporation. Our findings indicate that larger microelectrodes generally recorded electrophysiological signals with higher amplitude and better signal-to-noise ratios, while smaller electrodes exhibited higher perforation efficiency, AP duration, and single-cell signal ratios. This work demonstrates that the micro-electroporation technique can be applied to larger microelectrodes for intracellular recordings, rather than being limited to high-resolution designs. This approach may provide new opportunities for fabricating microelectrodes using alternative low-cost manufacturing techniques for high-quality intracellular AP recordings.
Collapse
Affiliation(s)
- Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Chen
- Shanghai Namin Core Technology Co., Shanghai, 201210, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Centre for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Centre for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Su Y, Ning Y, Jiang Z, Zhong G. Blood Metabolome Mediates the Effect of the Plasma Lipidome on the Risk of Atrial Fibrillation: A Mendelian Randomization Study. Clin Cardiol 2025; 48:e70112. [PMID: 40051326 PMCID: PMC11885885 DOI: 10.1002/clc.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Atrial fibrillation (AF), a common arrhythmic disorder, is increasing in prevalence annually and has become an important public health problem that jeopardizes human health. Metabolites are small molecules produced in the process of metabolic reactions, and they can affect the risk of disease and possibly become targets for disease management. METHODS We used two-sample and bidirectional MR to explore potential causal associations between lipid groups and AF. Two-step MR analysis was used to explore whether plasma metabolites mediated a causal effect from lipidomes to AF. RESULT We assessed the effect of 179 lipids on AF using IVW models and observed that 8 lipids were associated significantly with AF (p < 0.05). Likewise, we assessed the effect of 1091 metabolites and 309 metabolite ratios on AF and observed that 22 metabolites were significantly associated with AF (p < 0.05). We analyzed the blood metabolites above as mediators in the pathway from the lipidomes above to AF. We found that levels. Of lipid sterol ester (27:1/18:3) were associated with lower homoarginine levels, and lower metabolite homoarginine levels were associated with an increased risk of AF. CONCLUSION Our study identified a causal relationship between plasma liposomes and AF, and additionally found that the plasma metabolite homoarginine levels can act as a mediator of the lipid sterol ester in its effect on AF.
Collapse
Affiliation(s)
- Yanglulu Su
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Yi Ning
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Zhiyuan Jiang
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Guoqiang Zhong
- Department of CardiologyThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| |
Collapse
|
3
|
Duan HY, Barajas-Martinez H, Antzelevitch C, Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc Diabetol 2024; 23:252. [PMID: 39010053 PMCID: PMC11251349 DOI: 10.1186/s12933-024-02312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.
Collapse
Affiliation(s)
- Hong-Yi Duan
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China.
| |
Collapse
|
4
|
Shuyuan L, Haoyu C. Mechanism of Nardostachyos Radix et Rhizoma-Salidroside in the treatment of premature ventricular beats based on network pharmacology and molecular docking. Sci Rep 2023; 13:20741. [PMID: 38007574 PMCID: PMC10676380 DOI: 10.1038/s41598-023-48277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023] Open
Abstract
To analyse the mechanism of Nardostachyos Radix et Rhizoma-Salidroside in the treatment of Premature Ventricular Brats by using network pharmacology and molecular docking and to provide the basis for developing the use of experimental and clinical traditional Chinese medicine. The chemical compositions of Nardostachyos Radix et Rhizoma and Salidroside were determined, and their related targets were predicted. The disease-related targets were obtained by searching the common disease databases Genecards, OMIM, Drugbank and DisGeNET, and the intersection between the predicted targets and the disease targets was determined. Then using the STRING database to set up the protein‒protein interactions (PPIs) network between Nardostachyos Radix et Rhizoma-Salidroside and the common targets of PVB. An "herb-ingredient-target" network was constructed and analyzed by Cytoscape3.7.2 software. Using the metascape database to analysis the predicted therapeutic targets based on the GO and KEGG. Finally, molecular docking technology was used toconfirm the capacity of the primary active ingredients of the 2 herbs to bind to central targets using the online CB-Dock2 database. 41 active components of Nardostachyos Radix et Rhizoma-Salidroside were detected, with 420 potential targets of action, with a total of 1688 PVB targets, and the top 10 core targets of herb-disease degree values were AKT1, TNF, GAPDH, SRC, PPARG, EGFR, PTGS2, ESR1, MMP9, and STAT3. KEGG analysis indicated that its mechanism may be related to the calcium signalling pathway, cancer signalling pathway, AGE-RAGE signalling pathway and other pathways. Molecular docking suggested that main of the active ingredients of the Nardostachyos Radix et Rhizoma-Salidroside pairs were well bound to the core targets. Based on novel network pharmacology and molecular docking validation research methods, we revealed for the first time the potential mechanism of Nardostachyos Radix et Rhizoma-Salidroside in PVB therapy.
Collapse
Affiliation(s)
- Liu Shuyuan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, ShanDong, People's Republic of China, 250013
| | - Chen Haoyu
- Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, ShanDong, People's Republic of China, 250011.
| |
Collapse
|
5
|
Atzemian N, Dovrolis N, Ragia G, Portokallidou K, Kolios G, Manolopoulos VG. Beyond the Rhythm: In Silico Identification of Key Genes and Therapeutic Targets in Atrial Fibrillation. Biomedicines 2023; 11:2632. [PMID: 37893006 PMCID: PMC10604372 DOI: 10.3390/biomedicines11102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia worldwide and is characterized by a high risk of thromboembolism, ischemic stroke, and fatality. The precise molecular mechanisms of AF pathogenesis remain unclear. The purpose of this study was to use bioinformatics tools to identify novel key genes in AF, provide deeper insights into the molecular pathogenesis of AF, and uncover potential therapeutic targets. Four publicly available raw RNA-Seq datasets obtained through the ENA Browser, as well as proteomic analysis results, both derived from atrial tissues, were used in this analysis. Differential gene expression analysis was performed and cross-validated with proteomics results to identify common genes/proteins between them. A functional enrichment pathway analysis was performed. Cross-validation analysis revealed five differentially expressed genes, namely FGL2, IGFBP5, NNMT, PLA2G2A, and TNC, in patients with AF compared with those with sinus rhythm (SR). These genes play crucial roles in various cardiovascular functions and may be part of the molecular signature of AF. Furthermore, functional enrichment analysis revealed several pathways related to the extracellular matrix, inflammation, and structural remodeling. This study highlighted five key genes that constitute promising candidates for further experimental exploration as biomarkers as well as therapeutic targets for AF.
Collapse
Affiliation(s)
- Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantina Portokallidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Ezeani M, Prabhu S. PI3K signalling at the intersection of cardio-oncology networks: cardiac safety in the era of AI. Cell Mol Life Sci 2022; 79:594. [PMID: 36380172 PMCID: PMC11803020 DOI: 10.1007/s00018-022-04627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Class I phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases. They are super elevated in many human cancer types and exert their main cellular functions by activating Akt to trigger an array of distinct responses, affecting metabolism and cell polarity. The signal equally plays important roles in cardiovascular pathophysiology. PI3K is required for cardiogenesis and regulation of cardiac structure and function. Overexpression of PI3K governs the development of cardiac pressure overload adaptation and compensatory hypertrophy. Therefore, inhibition of PI3K shortens life span, enhances cardiac dysfunction and pathological hypertrophy. The inverse inhibition effect, however, desirably destroys many cancer cells by blocking several aspects of the tumorigenesis phenotype. Given the contrasting effects in cardio-oncology; the best therapeutic strategy to target PI3K in cancer, while maintaining or rather increasing cardiac safety is under intense investigational scrutiny. To improve our molecular understanding towards identifying cardiac safety signalling of PI3K and/or better therapeutic strategy for cancer treatment, this article reviews PI3K signalling in cardio-oncology. PI3K signalling at the interface of metabolism, inflammation and immunity, and autonomic innervation networks were examined. Examples were then given of cardiovascular drugs that target the networks, being repurposed for cancer treatment. This was followed by an intersection scheme of the networks that can be functionalised with machine learning for safety and risk prediction, diagnoses, and defining new novel encouraging leads and targets for clinical translation. This will hopefully overcome the challenges of the one-signalling-one-health-outcome alliance, and expand our knowledge of the totality of PI3K signalling in cardio-oncology.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| | - Sandeep Prabhu
- The Alfred, and University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| |
Collapse
|
7
|
Schmitt P, Demoulin R, Poyet R, Capilla E, Rohel G, Pons F, Jégo C, Sidibe S, Prevautel T, Druelle A, Brocq FX, Cellarier GR. [Ibrutinib-associated atrial fibrillation : A therapeutic challenge]. Ann Cardiol Angeiol (Paris) 2022; 71:321-324. [PMID: 36115721 DOI: 10.1016/j.ancard.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ibrutinib is a potent Bruton tyrosine kinase inhibitor and is an effective and well-tolerated treatment for a variety of lymphoid diseases. However, its use is associated with an increased incidence of atrial fibrillation ranging from 4% to 16%. New onset atrial fibrillation in cancer patients is associated with a significantly higher risk of heart failure and thromboembolism, even after adjusting for known risk factors. Ibrutinib also inhibits platelet activation and decisions regarding anticoagulation must be carefully weighed against this increased risk of bleeding. It is well-known that the anti-arrhythmic and antithrombotic strategy for atrial fibrillation related to ibrutinib has its own characteristics. Physicians should be familiar with the special management considerations imposed by this drug. Indeed, the co-prescription of therapy in combination with ibrutinib must be carefully weighed in view of its numerous drug interactions. We review the potential mechanisms and incidence of ibrutinib-associated atrial fibrillation.
Collapse
Affiliation(s)
- Paul Schmitt
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France.
| | | | - Raphael Poyet
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France
| | - Eléonore Capilla
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France
| | - Gwénolé Rohel
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France
| | - Frédéric Pons
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France
| | - Christophe Jégo
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France
| | - Salimatou Sidibe
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France
| | | | - Arnaud Druelle
- Service de médecine hyperbare, HIA Sainte-Anne, Toulon, France
| | | | - Gilles R Cellarier
- Service de cardiologie, HIA Sainte-Anne, 2 boulevard Sainte-Anne 83000, Toulon, France
| |
Collapse
|
8
|
Altena R, Bajalica-Lagercrantz S, Papakonstantinou A. Pharmacogenomics for Prediction of Cardiovascular Toxicity: Landscape of Emerging Data in Breast Cancer Therapies. Cancers (Basel) 2022; 14:cancers14194665. [PMID: 36230587 PMCID: PMC9563074 DOI: 10.3390/cancers14194665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacogenomics is an emerging field in oncology, one that could provide valuable input on identifying patients with inherent risk of toxicity, thus allowing for treatment tailoring and personalization on the basis of the clinical and genetic characteristics of a patient. Cardiotoxicity is a well-known side effect of anthracyclines and anti-HER2 agents, although at a much lower incidence for the latter. Data on single-nucleotide polymorphisms related to cardiotoxicity are emerging but are still scarce, mostly being of retrospective character and heterogeneous. A literature review was performed, aiming to describe current knowledge in pharmacogenomics and prediction of cardiotoxicity related to breast cancer systemic therapies and radiotherapies. Most available data regard genes encoding various enzymes related to anthracycline metabolism and HER2 polymorphisms. The available data are presented, together with the challenges and open questions in the field.
Collapse
Affiliation(s)
- Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Breast cancer, Endocrine tumors and Sarcoma, Theme Cancer, Karolinska University Hospital, 17 176 Stockholm, Sweden
| | - Svetlana Bajalica-Lagercrantz
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, 17 176 Stockholm, Sweden
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, 17 177 Stockholm, Sweden
- Department of Breast cancer, Endocrine tumors and Sarcoma, Theme Cancer, Karolinska University Hospital, 17 176 Stockholm, Sweden
- Breast Cancer Group, Vall D’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
9
|
Mechanism of Danhong Injection in the Treatment of Arrhythmia Based on Network Pharmacology, Molecular Docking, and In Vitro Experiments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4336870. [PMID: 35915792 PMCID: PMC9338864 DOI: 10.1155/2022/4336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Background. Danhong injection (DHI) is widely used in the treatment of cardiovascular and cerebrovascular diseases, and its safety and effectiveness have been widely recognized and applied in China. However, the potential molecular mechanism of action for the treatment of arrhythmia is not fully understood. Aim. In this study, through network pharmacology and in vitro cell experiments, we explored the active compounds of DHI for the treatment of arrhythmia and predicted the potential targets of the drug to investigate its mechanism of action. Materials and Methods. First, the potential therapeutic effect of DHI on arrhythmia was investigated in an in vitro arrhythmia model using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), in which calcium transients were recorded to evaluate the status of arrhythmia. Next, the active compounds and key targets in the treatment of arrhythmia were identified through network pharmacology and molecular docking, and the key signaling pathways related to the treatment of arrhythmia were analyzed. Furthermore, we used real-time quantitative reverse transcription PCR (qRT–PCR) to verify the expression levels of key genes. Results. Early afterdepolarizations (EADs) were observed during aconitine treatment in hiPSC-CMs, and the proarrhythmic effect of aconitine was partially rescued by DHI, indicating that the antiarrhythmic role of DHI was verified in an in vitro human cardiomyocyte model. To further dissect the underlying molecular basis of this observation, network pharmacology analysis was performed, and the results showed that there were 108 crosstargets between DHI and arrhythmia. Moreover, 30 of these targets, such as AKT1 and HMOX1, were key genes. In addition, the mRNA expression of AKT1 and HMOX1 could be regulated by DHI. Conclusion. DHI can alleviate aconitine-induced arrhythmia in an in vitro model, presumably because of its multitarget regulatory mechanism. Key genes, such as AKT1 and HMOX1, may contribute to the antiarrhythmic role of DHI in the heart.
Collapse
|
10
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
11
|
Ezeani M, Prabhu S. Pathophysiology and therapeutic relevance of PI3K(p110α) protein in atrial fibrillation: A non-interventional molecular therapy strategy. Pharmacol Res 2021; 165:105415. [PMID: 33412279 DOI: 10.1016/j.phrs.2020.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Genetically modified animal studies have revealed specific expression patterns and unequivocal roles of class I PI3K isoenzymes. PI3K(p110α), a catalytic subunit of class I PI3Ks is ubiquitously expressed and is well characterised in the cardiovascular system. Given that genetic inhibition of PI3K(p110α) causes lethal phenotype embryonically, the catalytic subunit is critically important in housekeeping and biological processes. A growing number of studies underpin crucial roles of PI3K(p110α) in cell survival, proliferation, hypertrophy and arrhythmogenesis. While the studies provide great insights, the precise mechanisms involved in PI3K(p110α) hypofunction and atrial fibrillation (AF) are not fully known. AF is a well recognised clinical problem with significant management limitations. In this translational review, we attempted a narration of PI3K(p110α) hypofunction in the molecular basis of AF pathophysiology. We sought to cautiously highlight the relevance of this molecule in the therapeutic approaches for AF management per se (i.e without conditions associate with cell proliferation, like cancer), and in mitigating effects of clinical risk factors in atrial substrate formation leading to AF progression. We also considered PI3K(p110α) in AF gene association, with the aim of identifying mechanistic links between the ever increasingly well-defined genetic loci (regions and genes) and AF. Such mechanisms will aid in identifying new drug targets for arrhythmogenic substrate and AF.
Collapse
Affiliation(s)
- Martin Ezeani
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Sandeep Prabhu
- The Alfred, and Baker Heart and Diabetes Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Han Z, Wu X, Gao Y, Liu X, Bai J, Gu R, Lan R, Xu B, Xu W. PDK1-AKT signaling pathway regulates the expression and function of cardiac hyperpolarization-activated cyclic nucleotide-modulated channels. Life Sci 2020; 250:117546. [PMID: 32184125 DOI: 10.1016/j.lfs.2020.117546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022]
Abstract
AIM The enzyme 3-phosphoinositide-dependent protein kinase-1 (PDK1) is associated with cardiac and pathological remodeling and ion channel function regulation. However, whether it regulates hyperpolarization-activated cyclic nucleotide-modulated channels (HCNs) remains unclear. MAIN METHODS In the atrial myocytes of heart-specific PDK1 "knockout" mouse model and neonatal mice, protein kinase B (AKT)-related inhibitors or agonists as well as knockdown or overexpression plasmids were used to study the relationship between PDK1 and HCNs. KEY FINDINGS HCN1 expression and AKT phosphorylation at the Thr308 site were significantly decreased in atrial myocytes after PDK1 knockout or inhibition; in contrast, HCN2 and HCN4 levels were significantly increased. Also, a similar trend of HCNs expression has been observed in cultured atrial myocytes after PDK1 inhibition, as further demonstrated via immunofluorescence and patch-clamp experiments. Moreover, these results of PDK1 overexpression indicate an opposite trend compared with the previous experimental results. However, the results of PDK1 inhibition or overexpression could be reversed by activating or inhibiting AKT, respectively. SIGNIFICANCE These results indicate that the PDK1-AKT signaling pathway is involved in the regulation of HCN mRNA transcription, protein expression, HCN current density, and cell membrane location.
Collapse
Affiliation(s)
- Zhonglin Han
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiang Wu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yuan Gao
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xuehua Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Bai
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Rong Gu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - RongFang Lan
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Wei Xu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
13
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
14
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:4823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
15
|
Boknik P, Drzewiecki K, Eskandar J, Gergs U, Hofmann B, Treede H, Grote-Wessels S, Fabritz L, Kirchhof P, Fortmüller L, Müller FU, Schmitz W, Zimmermann N, Kirchhefer U, Neumann J. Evidence for Arrhythmogenic Effects of A 2A-Adenosine Receptors. Front Pharmacol 2019; 10:1051. [PMID: 31619997 PMCID: PMC6759833 DOI: 10.3389/fphar.2019.01051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
Adenosine can be released from the heart and may stimulate four different cardiac adenosine receptors. A receptor subtype that couples to the generation of cyclic adenosine monophosphate (cAMP) is the A2A-adenosine receptor (A2A-AR). To better understand its role in cardiac function, we studied mechanical and electrophysiological effects in transgenic mice that overexpress the human A2A-AR in cardiomyocytes (A2A-TG). We used isolated preparations from the left atrium, the right atrium, isolated perfused hearts with surface electrocardiogram (ECG) recording, and surface body ECG recordings of living mice. The hypothesized arrhythmogenic effects of transgenicity per se and A2A-AR stimulation were studied. We noted an increase in the incidence of supraventricular and ventricular arrhythmias under these conditions in A2A-TG. Moreover, we noted that the A2A-AR agonist CGS 21680 exerted positive inotropic effect in isolated human electrically driven (1 Hz) right atrial trabeculae carneae. We conclude that A2A-ARs are functional not only in A2A-TG but also in isolated human atrial preparations. A2A-ARs in A2A-TG per se and their stimulation can lead to cardiac arrhythmias not only in isolated cardiac preparations from A2A-TG but also in living A2A-TG.
Collapse
Affiliation(s)
- Peter Boknik
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Katharina Drzewiecki
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - John Eskandar
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Britt Hofmann
- Klinik für Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hendrik Treede
- Klinik für Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Stephanie Grote-Wessels
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Sandwell and West Birmingham Hospital NHS Trust, Birmingham, United Kingdom
| | - Lisa Fortmüller
- Institute for Human Genetics, Genetic epidemiology, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank Ulrich Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Wilhelm Schmitz
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
16
|
Li G, Yang Q, Yang Y, Yang G, Wan J, Ma Z, Du L, Sun Y, Ζhang G. Laminar shear stress alters endothelial KCa2.3 expression in H9c2 cells partially via regulating the PI3K/Akt/p300 axis. Int J Mol Med 2019; 43:1289-1298. [PMID: 30664154 PMCID: PMC6365081 DOI: 10.3892/ijmm.2019.4063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
In cardiac tissues, myoblast atrial myocytes continue to be exposed to mechanical forces including shear stress. However, little is known about the effects of shear stress on atrial myocytes, particularly on ion channel function, in association with disease. The present study demonstrated that the Ca2+-activated K+ channel (KCa)2.3 serves a vital role in regulating arterial tone. As increased intracellular Ca2+ levels and activation of histone acetyltransferase p300 (p300) are early responses to laminar shear stress (LSS) that result in the transcriptional activation of genes, the role of p300 and the phosphoinositide3-kinase (PI3K)/protein kinase B (Akt) pathway, an intracellular pathway that promotes the growth and proliferation rather than the differentiation of adult cells, in the LSS-dependent regulation of KCa2.3 in cardiac myoblasts was examined. In cultured H9c2 cells, exposure to LSS (15 dyn/cm2) for 12 h markedly increased KCa2.3 mRNA expression. Inhibiting PI3K attenuated the LSS-induced increases in the expression and channel activity of KCa2.3, and decreased the phosphorylation levels of p300. The upregulation of these channels was abolished by the inhibition of Akt through decreasing p300 phosphorylation. ChIP assays indicated that p300 was recruited to the promoter region of the KCa2.3 gene. Therefore, the PI3K/Akt/p300 axis serves a crucial role in the LSS-dependent induction of KCa2.3 expression, by regulating cardiac myoblast function and adaptation to hemodynamic changes. The key novel insights gained from the present study are: i) KCa2.3 was upregulated in patients with atrial fibrillation (AF) and in patients with AF combined with mitral value disease; ii) LSS induced a profound upregulation of KCa2.3 mRNA and protein expression in H9c2 cells; iii) PI3K activation was associated with LSS-induced upregulation of the KCa2.3 channel; iv) PI3K activation was mediated by PI3K/Akt-dependent Akt activation; and v) LSS induction of KCa2.3 involved the binding of p300 to transcription factors in the promoter region of the KCa2.3 gene.
Collapse
Affiliation(s)
- Guojian Li
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Qionghui Yang
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650200, P.R. China
| | - Yong Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Guokai Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Zhenhuan Ma
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Lingjuan Du
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Guimin Ζhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| |
Collapse
|
17
|
Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis A, Tsoukalas D, Spandidos DA, Margina D. The Akt pathway in oncology therapy and beyond (Review). Int J Oncol 2018; 53:2319-2331. [PMID: 30334567 PMCID: PMC6203150 DOI: 10.3892/ijo.2018.4597] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Protein kinase B (Akt), similar to many other protein kinases, is at the crossroads of cell death and survival, playing a pivotal role in multiple interconnected cell signaling mechanisms implicated in cell metabolism, growth and division, apoptosis suppression and angiogenesis. Akt protein kinase displays important metabolic effects, among which are glucose uptake in muscle and fat cells or the suppression of neuronal cell death. Disruptions in the Akt-regulated pathways are associated with cancer, diabetes, cardiovascular and neurological diseases. The regulation of the Akt signaling pathway renders Akt a valuable therapeutic target. The discovery process of Akt inhibitors using various strategies has led to the identification of inhibitors with great selectivity, low side-effects and toxicity. The usefulness of Akt emerges beyond cancer therapy and extends to other major diseases, such as diabetes, heart diseases, or neurodegeneration. This review presents key features of Akt structure and functions, and presents the progress of Akt inhibitors in regards to drug development, and their preclinical and clinical activity in regards to therapeutic efficacy and safety for patients.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Maryna Van De Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Georgiana Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Petras Juzenas
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Qian Peng
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Daniela Grădinaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitris Tsoukalas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margina
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
18
|
Ganatra S, Sharma A, Shah S, Chaudhry GM, Martin DT, Neilan TG, Mahmood SS, Barac A, Groarke JD, Hayek SS, Dani S, Venesy D, Patten R, Nohria A. Ibrutinib-Associated Atrial Fibrillation. JACC Clin Electrophysiol 2018; 4:1491-1500. [PMID: 30573111 DOI: 10.1016/j.jacep.2018.06.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 11/28/2022]
Abstract
Ibrutinib, a novel and potent Bruton tyrosine kinase inhibitor, is an effective and well-tolerated treatment for a variety of B-cell lymphomas. However, its use is associated with an increased incidence of atrial fibrillation (AF), ranging from 4% to 16%. We reviewed the original clinical trials that led to the approval of ibrutinib, as well as several other prospective and retrospective studies, to better appreciate the incidence of ibrutinib-associated AF. Based on 16 studies included in our analysis, the incidence of ibrutinib-associated AF was 5.77 per 100 person-years, which is much higher than rates previously reported with ibrutinib and compared with the general adult population. New onset AF in cancer patients is associated with a significantly higher risk of heart failure and thromboembolism, even after adjusting for known risk factors. In addition, ibrutinib poses unique challenges due to its interactions with many medications that are commonly used to manage AF. Ibrutinib also inhibits platelet activation and decisions regarding anticoagulation have to be carefully weighed against this increased risk of bleeding. Ibrutinib's interaction with calcium channel blockers, digoxin, amiodarone, and direct oral anticoagulants can result in either ibrutinib or other drug-related toxicity and careful selection and dose adjustment may be needed. Ibrutinib-associated AF can be a therapy-limiting side effect and physicians should be familiar with the special management considerations imposed by this agent. We review the potential mechanisms and incidence of ibrutinib-associated AF and propose an algorithm for its management.
Collapse
Affiliation(s)
- Sarju Ganatra
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts; Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts.
| | - Ajay Sharma
- Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Sachin Shah
- Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Ghulam M Chaudhry
- Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - David T Martin
- Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Tomas G Neilan
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Syed Saad Mahmood
- Division of Cardiovascular Medicine, New York Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Ana Barac
- Cardio-Oncology Program, Division of Cardiology, Medstar Washington Hospital Center, Washington, DC
| | - John D Groarke
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Cardio-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Salim S Hayek
- Division of Cardiology, Emory University, Atlanta, Georgia
| | - Saurbha Dani
- Division of Cardiovascular Medicine, Eastern Maine Medical Center, Bangor, Maine
| | - David Venesy
- Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Richard Patten
- Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Anju Nohria
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Cardio-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
19
|
Yang T, Meoli DF, Moslehi J, Roden DM. Inhibition of the α-Subunit of Phosphoinositide 3-Kinase in Heart Increases Late Sodium Current and Is Arrhythmogenic. J Pharmacol Exp Ther 2018; 365:460-466. [PMID: 29563327 PMCID: PMC5931436 DOI: 10.1124/jpet.117.246157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
Although inhibition of phosphoinositide 3-kinase (PI3K) is an emerging strategy in cancer therapy, we and others have reported that this action can also contribute to drug-induced QT prolongation and arrhythmias by increasing cardiac late sodium current (INaL). Previous studies in mice implicate the PI3K-α isoform in arrhythmia susceptibility. Here, we have determined the effects of new anticancer drugs targeting specific PI3K isoforms on INaL and action potentials (APs) in mouse cardiomyocytes and Chinese hamster ovary cells (CHO). Chronic exposure (10-100 nM; 5-48 hours) to PI3K-α-specific subunit inhibitors BYL710 (alpelisib) and A66 and a pan-PI3K inhibitor (BKM120) increased INaL in SCN5A-transfected CHO cells and mouse cardiomyocytes. The specific inhibitors (10-100 nM for 5 hours) markedly prolonged APs and generated triggered activity in mouse cardiomyocytes (9/12) but not in controls (0/6), and BKM120 caused similar effects (3/6). The inclusion of water-soluble PIP3, a downstream effector of the PI3K signaling pathway, in the pipette solution reversed these arrhythmogenic effects. By contrast, inhibition of PI3K-β, -γ, and -δ isoforms did not alter INaL or APs. We conclude that inhibition of cardiac PI3K-α is arrhythmogenic by increasing INaL and this effect is not seen with inhibition of other PI3K isoforms. These results highlight a mechanism underlying potential cardiotoxicity of PI3K-α inhibitors.
Collapse
Affiliation(s)
- Tao Yang
- Departments of Medicine (T.Y., D.F.M, J.M., D.M.R.), Pharmacology (T.Y., D.M.R.), and Biomedical Informatics (D.M.R.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David F Meoli
- Departments of Medicine (T.Y., D.F.M, J.M., D.M.R.), Pharmacology (T.Y., D.M.R.), and Biomedical Informatics (D.M.R.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Javid Moslehi
- Departments of Medicine (T.Y., D.F.M, J.M., D.M.R.), Pharmacology (T.Y., D.M.R.), and Biomedical Informatics (D.M.R.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Dan M Roden
- Departments of Medicine (T.Y., D.F.M, J.M., D.M.R.), Pharmacology (T.Y., D.M.R.), and Biomedical Informatics (D.M.R.), Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|