1
|
Georgi GM, Bachmann F, Luther J, Derer A, Heimel P, Tangl S, Kahl-Nieke B, LeBlanc A, Helms J, Schett G, Hirsch C, Gruber R, Amling M, Schinke T, Koehne T, Petersen J. The effect of Rsk2 on TNFα-mediated bone loss in the TMJ and craniofacial skeleton. BMC Oral Health 2025; 25:435. [PMID: 40140815 PMCID: PMC11938757 DOI: 10.1186/s12903-025-05779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
OBJECTIVES This study aims to investigate the impact of the pro-osteoblastogenic ERK-activated ribosomal S6 kinase (Rsk2) on Tumor necrosis factor (TNF)α-induced bone loss in the craniofacial system, focusing on its role in rheumatoid arthritis (RA). The objective is to understand whether Rsk2, previously shown to have protective effects in long bones against TNFα-induced bone resorption, exhibits similar effects in the craniofacial region. MATERIALS , and Methods. The study compares mice with TNFα overexpression, Rsk2 knockout mice, and a combination of TNFα, and Rsk2 knockout mice using detailed micro-computed tomography coupled with landmark based morphometric analysis, and classical histology. The overall skull morphology, mandible shape, and the temporomandibular joint were examined. Additionally, histological sections were utilized to examine the synovial membrane. RESULTS Combining TNFα, and Rsk2 deficiency does not further alter overall skull shape compared to TNFα alone. TNFα overexpression shortens the mandibular ramus, exacerbated by Rsk2 absence. Micro-computed tomography (µCT) reveals significant temporomandibular joint damage from TNFα, independent of Rsk2. However, histological sections show increased synovial membrane thickness with TNFα, heightened in the absence of Rsk2. CONCLUSIONS Rsk2 mitigates TNFα-induced effects on mandibular ramus length in the craniofacial system but has limited impact on the temporomandibular joint, except for synovial membrane thickness. Overall, Rsk2 demonstrates a weaker preventive effect on TNFα-induced craniofacial bone loss compared to its established role in the appendicular skeleton. CLINICAL RELEVANCE This study highlights regional differences in Rsk2's protective mechanisms, emphasizing the need for further exploration of the underlying mechanisms for these disparities. Understanding these regional differences can be crucial for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Gina Marie Georgi
- Department of Orthodontics, University of Leipzig Medical Center, Liebigstraße 12, 04103, Leipzig, Germany
| | - Frédéric Bachmann
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Luther
- Institute of Osteology, and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Patrick Heimel
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, the Research Center in Cooperation with AUVA, Vienna, Austria
| | - Stefan Tangl
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aaron LeBlanc
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Jill Helms
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Georg Schett
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg, and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology, and Immunology, Friedrich Alexander University Erlangen-Nuremberg, and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Hirsch
- Clinic of Pediatric and Preventive Dentistry, University of Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Michael Amling
- Institute of Osteology, and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology, and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till Koehne
- Department of Orthodontics, University of Leipzig Medical Center, Liebigstraße 12, 04103, Leipzig, Germany.
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Liebigstraße 12, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Okasha AH, Hegab II, Seleem MA, Azzam AR, Ibrahim S, Ghalwash AA, El-Gohary RM. Effects of Fisetin and Nicorandil on adjuvant-induced rheumatoid arthritis in rats: Emerging role of TLR4/NF-κB-induced Pyroptosis, Nrf-2/HO-1, and OPG/RANKL pathways. Cytokine 2025; 187:156876. [PMID: 39884184 DOI: 10.1016/j.cyto.2025.156876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
AIM AND BACKGROUND Our study explored the novel mechanisms implicated in the anti-rheumatic potential of fisetin and/or nicorandil (NIC) intervention. METHODS AND MATERIALS Fifty male rats were categorized into; control, rheumatoid arthritis (RA), fisetin-treated RA, NIC-treated RA, and co-treated RA groups. We assessed paw thickness, arthritis indices, serum CRP, RF, OPG, RANKL, and gene expressions of synovial TLR4, NLRP3, caspase-1, GSDMD, Nrf-2, and HO, along with synovial histopathology and NF-κB immunoreactivity. RESULTS The combined therapy demonstrated significantly better anti-rheumatic potential, suppressing oxidative stress and NF-κB, downregulating synovial TLR4, NLRP3, caspase-1, GSDMD, and increasing serum OPG while decreasing RANKL, confirmed by histopathological findings. CONCLUSION Our investigation uncovered the TLR4/NF-κB pyroptotic signaling, Nrf-2/HO-1, and OPG/RANKL pathways as novel mechanistic insights into the anti-rheumatoid potential of fisetin and/or NIC, with superiority of combination approach, providing a beacon of hope for RA patients in terms of optimizing treatment protocol effectiveness and patient outcomes.
Collapse
Affiliation(s)
- Asmaa H Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt,; Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Monira A Seleem
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Asmaa R Azzam
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
3
|
Oryniak D, Brown M, Cholakis L, Elgazzar R. Case Report: Development of medication-related osteonecrosis of the jaw in a patient on long-term infliximab therapy. FRONTIERS IN ORAL HEALTH 2024; 5:1427060. [PMID: 39045331 PMCID: PMC11263092 DOI: 10.3389/froh.2024.1427060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Medication-Related Osteonecrosis of the Jaw (MRONJ) is a challenging and evolving aspect of Oral and Maxillofacial Surgery. In recent years, several medications apart from those traditionally associated with MRONJ such as bisphosphates (BPs) and Denosumab (DMB) have been implicated in bony necrosis of the jaw. This aim of this report is to demonstrate a significant case of bone necrosis following dental extractions on a patient being treated with infliximab therapy for Crohn's disease. Several cases in literature have reported MRONJ associated with infliximab but very few patients have developed as significant a form of the disease as seen in this report. Previous investigators have proposed pathophysiological pathways via which TNF-α inhibitors such as infliximab have a causative mechanism for MRONJ. When osteoclastic activity is restricted via these pathways, bone healing is impaired and MRONJ can occur. However, it remains a diagnostic challenge to differentiate between antiresorptive MRONJ and chronic osteomyelitis with bone necrosis in patients with acquired immunodeficiency. This case aims to illustrate why the antiresorptive effects of TNF-α inhibitors need to be considered as a possible primary driver of bone necrosis in such patients.
Collapse
Affiliation(s)
| | | | | | - Reda Elgazzar
- Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Ali M, Benfante V, Di Raimondo D, Laudicella R, Tuttolomondo A, Comelli A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life (Basel) 2024; 14:751. [PMID: 38929734 PMCID: PMC11204982 DOI: 10.3390/life14060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder caused by inflammation of cartilaginous diarthrodial joints that destroys joints and cartilage, resulting in synovitis and pannus formation. Timely detection and effective management of RA are pivotal for mitigating inflammatory arthritis consequences, potentially influencing disease progression. Nuclear medicine using radiolabeled targeted vectors presents a promising avenue for RA diagnosis and response to treatment assessment. Radiopharmaceutical such as technetium-99m (99mTc), combined with single photon emission computed tomography (SPECT) combined with CT (SPECT/CT), introduces a more refined diagnostic approach, enhancing accuracy through precise anatomical localization, representing a notable advancement in hybrid molecular imaging for RA evaluation. This comprehensive review discusses existing research, encompassing in vitro, in vivo, and clinical studies to explore the application of 99mTc radiolabeled targeting vectors with SPECT imaging for RA diagnosis. The purpose of this review is to highlight the potential of this strategy to enhance patient outcomes by improving the early detection and management of RA.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Messina University, 98124 Messina, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Abdel-Maksoud MA, Askar MA, Abdel-rahman IY, Gharib M, Aufy M. Integrating Network Pharmacology and Molecular Docking Approach to Elucidate the Mechanism of Commiphora wightii for the Treatment of Rheumatoid Arthritis. Bioinform Biol Insights 2024; 18:11779322241247634. [PMID: 38765022 PMCID: PMC11102677 DOI: 10.1177/11779322241247634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/28/2024] [Indexed: 05/21/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is considered a notable prolonged inflammatory condition with no proper cure. Synovial inflammation and synovial pannus are crucial in the onset of RA. The "tumor-like" invading proliferation of new arteries is a keynote of RA. Commiphora wightii (C wightii) is a perennial, deciduous, and trifoliate plant used in several areas of southeast Asia to cure numerous ailments, including arthritis, diabetes, obesity, and asthma. Several in vitro investigations have indicated C wightii's therapeutic efficacy in the treatment of arthritis. However, the precise molecular action is yet unknown. Material and methods In this study, a network pharmacology approach was applied to uncover potential targets, active therapeutic ingredients and signaling pathways in C wightii for the treatment of arthritis. In the groundwork of this research, we examined the active constituent-compound-target-pathway network and evaluated that (Guggulsterol-V, Myrrhahnone B, and Campesterol) decisively donated to the development of arthritis by affecting tumor necrosis factor (TNF), PIK3CA, and MAPK3 genes. Later on, docking was employed to confirm the active components' efficiency against the potential targets. Results According to molecular-docking research, several potential targets of RA bind tightly with the corresponding key active ingredient of C wightii. With the aid of network pharmacology techniques, we conclude that the signaling pathways and biological processes involved in C wightii had an impact on the prevention of arthritis. The outcomes of molecular docking also serve as strong recommendations for future research. In the context of this study, network pharmacology combined with molecular docking analysis showed that C wightii acted on arthritis-related signaling pathways to exhibit a promising preventive impact on arthritis. Conclusion These results serve as the basis for grasping the mechanism of the antiarthritis activity of C wightii. However, further in vivo/in vitro study is needed to verify the reliability of these targets for the treatment of arthritis.
Collapse
Affiliation(s)
- Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A Askar
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ibrahim Y Abdel-rahman
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mustafa Gharib
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Xiao D, Fang L, Liu Z, He Y, Ying J, Qin H, Lu A, Shi M, Li T, Zhang B, Guan J, Wang C, Abu-Amer Y, Shen J. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation. J Clin Invest 2023; 134:e168558. [PMID: 38051594 PMCID: PMC10849763 DOI: 10.1172/jci168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Shriners Hospital for Children, St. Louis, Missouri, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Malik MNH, Tahir MN, Alsahli TG, Tusher MMH, Alzarea SI, Alsuwayt B, Jahan S, Gomaa HAM, Shaker ME, Ali M, Anjum I, Khan MT, Roman M, Shabbir R. Geraniol Suppresses Oxidative Stress, Inflammation, and Interstitial Collagenase to Protect against Inflammatory Arthritis. ACS OMEGA 2023; 8:37128-37139. [PMID: 37841186 PMCID: PMC10568708 DOI: 10.1021/acsomega.3c04684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Geraniol (GER) is a plant-derived acyclic isoprenoid monoterpene that has displayed anti-inflammatory effects in numerous in vivo and in vitro models. This study was therefore designed to evaluate the antiarthritic potential of GER in complete Freund's adjuvant (CFA)-induced inflammatory arthritis (IA) model in rats. IA was induced by intraplantar injection of CFA (0.1 mL), and a week after CFA administration, rats were treated with various doses of methotrexate (MTX; 1 mg/kg) or GER (25, 50, and 100 mg/kg). Treatments were given on every alternate day, and animals were sacrificed on the 35th day. Paw volume, histopathological, hematological, radiographic, and qPCR analyses were performed to analyze the severity of the disease. GER significantly reduced paw edema after 35 days of treatment, and these results were comparable to the MTX-treated group. GER-treated animals displayed a perfect joint structure with minimal inflammation and no signs of cartilage or bone damage. Moreover, GER restored red blood cell and hemoglobin levels, normalized erythrocyte sedimentation rate, platelet, and c-reactive protein values, and also attenuated the levels of rheumatoid factor. RT-qPCR analysis demonstrated that GER decreased mRNA expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta. GER also down-regulated the transcript levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1, prostaglandin D2 synthase, and interstitial collagenase (MMP-1). Molecular docking of GER with COX-2, TNF-α, and MMP-1 also revealed that the antiarthritic effects of GER could be due to its direct interactions with these mediators. Based on our findings, it is conceivable that the antiarthritic effects of GER could be attributed to downregulation of pro-inflammatory mediators and protease like MMP-1.
Collapse
Affiliation(s)
- Muhammad Nasir Hayat Malik
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Tariq G. Alsahli
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Md. Mahedi Hassan Tusher
- Department
of Pharmacology, Faculty of Basic Sciences, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Bader Alsuwayt
- Department
of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Shah Jahan
- Department
of Immunology, University of Health Sciences, Lahore 54000, Pakistan
| | - Hesham A. M. Gomaa
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohamed E. Shaker
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Muhammad Ali
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Irfan Anjum
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
- Shifa
College of Pharmaceutical Sciences,Shifa
Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Muhammad Tariq Khan
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
| | - Muhammad Roman
- Department
of Microbiology, University of Health Sciences, Lahore 54000, Pakistan
| | - Ramla Shabbir
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Changes in Bone Metabolism in Patients with Rheumatoid Arthritis during Tumor Necrosis Factor Inhibitor Therapy. J Clin Med 2023; 12:jcm12051901. [PMID: 36902687 PMCID: PMC10003627 DOI: 10.3390/jcm12051901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α), which enhances osteoclast activity and bone resorption, is one of the key inflammation mediators in rheumatoid arthritis (RA). The aim of this study was to assess the influence of yearlong TNF-α inhibitor application on bone metabolism. The study sample comprised 50 female patients with RA. Analyses involved the osteodensitometry measurements obtained using a "Lunar" type apparatus and the following biochemical markers from serum: procollagen type 1 N-terminal propeptide (P1NP), beta crosslaps C-terminal telopeptide of collagen type I (b-CTX) by ECLIA method, total and ionized calcium, phosphorus, alkaline phosphatase, parathyroid hormone and vitamin D. Analyses revealed changes in bone mineral density (BMD) at L1-L4 and the femoral neck, with the difference in mean BMD (g/cm2) not exceeding the threshold of statistical significance (p = 0.180; p = 0.502). Upon completion of 12-month therapy, a significant increase (p < 0.001) in P1NP was observed relative to b-CTX, with mean total calcium and phosphorus values following a decreasing trend, while vitamin D levels increased. These results suggest that yearlong application of TNF inhibitors has the capacity to positively impact bone metabolism, as indicated by an increase in bone-forming markers and relatively stable BMD (g/cm2).
Collapse
|
9
|
Evangelatos G, Bamias G, Kitas GD, Kollias G, Sfikakis PP. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol Int 2022; 42:1493-1511. [PMID: 35503130 PMCID: PMC9063259 DOI: 10.1007/s00296-022-05136-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable efficacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pandemic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. Moreover, the current implementation of the "treat-to-target" approach and treatment de-escalation strategies of IMIDs were based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
| | - George Kollias
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Romanos GE, Vaglica M, Sculean A. Drug-associated bone resorption with potential dental and implant implications. Periodontol 2000 2022; 90:236-246. [PMID: 35916776 DOI: 10.1111/prd.12461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Every year more and more innovative pharmacological agents are introduced medicine, to treat systemic diseases. Due to these rapid and recent advancements, many patients are receiving treatment with a high variety of drugs, such as selective serotonin reuptake inhibitors, bisphosphonates, tumor necrosis factor (TNF)-α inhibitors, cyclosporine, and steroids. Since implant and osseous surgery are common treatment modalities used, within dentistry, it is of critical important to acknowledge and discuss the potential effects of selective serotonin reuptake inhibitors, bisphosphonates, TNF-α inhibitors, cyclosporine, and steroids, on bone healing. The present paper discusses the possible detrimental ramifications and risks these drug classes may have on bone healing.
Collapse
Affiliation(s)
- Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Michael Vaglica
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, Bern, Switzerland
| |
Collapse
|
11
|
Abstract
Inflammation is among the major determinants of bone loss in chronic disease and aging. Bone metabolism is radically affected by inflammation with consequent bone loss and increased fracture risk. Various cytokines and mediators are involved in the pathogenesis of bone loss in inflammatory conditions. The present review has the aim of discussing the main pathways involved in the pathogenesis of bone loss in inflammatory diseases, focusing in particular on the Wnt system and its regulators. Literature review of studies published between inception to 2021 on osteoporosis and inflammation was conducted. I will discuss the epidemiology of osteoporosis and fractures in common inflammatory diseases. The molecular basis of bone loss related to inflammation will be discussed as well. Finally, the effects of various anti-inflammatory medications on bone metabolism will be reviewed.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, Italy.
| |
Collapse
|
12
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
13
|
Novelli L, Lubrano E, Venerito V, Perrotta FM, Marando F, Curradi G, Iannone F. Extra-Articular Manifestations and Comorbidities in Psoriatic Disease: A Journey Into the Immunologic Crosstalk. Front Med (Lausanne) 2021; 8:737079. [PMID: 34631754 PMCID: PMC8495009 DOI: 10.3389/fmed.2021.737079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease primarily affecting peripheral and axial joints, with the possible presence of extra-articular manifestations (EAMs), such as psoriasis, uveitis, and inflammatory bowel disease. Recently, the concept of psoriatic disease (PsD) has been proposed to define a systemic condition encompassing, in addition to joints and EAMs, some comorbidities (e.g., metabolic syndrome, type II diabetes, hypertension) that can affect the disease outcome and the achievement of remission. EAMs and comorbidities in PsA share common immunopathogenic pathways linked to the systemic inflammation of this disease; these involve a broad variety of immune cells and cytokines. Currently, various therapeutics are available targeting different cytokines and molecules implicated in the inflammatory response of this condition; however, despite an improvement in the management of PsA, comprehensive disease control is often not achievable. There is, therefore, a big gap to fill especially in terms of comorbidities and EAMs management. In this review, we summarize the clinical aspects of the main comorbidities and EAMs in PsA, and we focus on the immunopathologic features they share with the articular manifestations. Moreover, we discuss the effect of a diverse immunomodulation and the current unmet needs in PsD.
Collapse
Affiliation(s)
| | - Ennio Lubrano
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vincenzo Venerito
- Rheumatology Unit-Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro", Bari, Italy
| | - Fabio Massimo Perrotta
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | | | - Florenzo Iannone
- Rheumatology Unit-Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
14
|
Wang C, Ying J, Nie X, Zhou T, Xiao D, Swarnkar G, Abu-Amer Y, Guan J, Shen J. Targeting angiogenesis for fracture nonunion treatment in inflammatory disease. Bone Res 2021; 9:29. [PMID: 34099632 PMCID: PMC8184936 DOI: 10.1038/s41413-021-00150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Atrophic fracture nonunion poses a significant clinical problem with limited therapeutic interventions. In this study, we developed a unique nonunion model with high clinical relevance using serum transfer-induced rheumatoid arthritis (RA). Arthritic mice displayed fracture nonunion with the absence of fracture callus, diminished angiogenesis and fibrotic scar tissue formation leading to the failure of biomechanical properties, representing the major manifestations of atrophic nonunion in the clinic. Mechanistically, we demonstrated that the angiogenesis defect observed in RA mice was due to the downregulation of SPP1 and CXCL12 in chondrocytes, as evidenced by the restoration of angiogenesis upon SPP1 and CXCL12 treatment in vitro. In this regard, we developed a biodegradable scaffold loaded with SPP1 and CXCL12, which displayed a beneficial effect on angiogenesis and fracture repair in mice despite the presence of inflammation. Hence, these findings strongly suggest that the sustained release of SPP1 and CXCL12 represents an effective therapeutic approach to treat impaired angiogenesis and fracture nonunion under inflammatory conditions.
Collapse
Affiliation(s)
- Cuicui Wang
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| | - Jun Ying
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA ,grid.417400.60000 0004 1799 0055Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China ,grid.417400.60000 0004 1799 0055Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Nie
- grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, School of Engineering, Washington University, St. Louis, MO USA
| | - Tianhong Zhou
- grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, School of Engineering, Washington University, St. Louis, MO USA
| | - Ding Xiao
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| | - Gaurav Swarnkar
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| | - Yousef Abu-Amer
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA ,grid.415840.c0000 0004 0449 6533Shriners Hospital for Children, St. Louis, MO USA
| | - Jianjun Guan
- grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, School of Engineering, Washington University, St. Louis, MO USA
| | - Jie Shen
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| |
Collapse
|
15
|
Ansalone C, Cole J, Chilaka S, Sunzini F, Sood S, Robertson J, Siebert S, McInnes IB, Goodyear CS. TNF is a homoeostatic regulator of distinct epigenetically primed human osteoclast precursors. Ann Rheum Dis 2021; 80:748-757. [PMID: 33692019 PMCID: PMC8142443 DOI: 10.1136/annrheumdis-2020-219262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Circulating myeloid precursors are responsible for post-natal osteoclast (OC) differentiation and skeletal health, although the exact human precursors have not been defined. Enhanced osteoclastogenesis contributes to joint destruction in rheumatoid arthritis (RA) and tumour necrosis factor (TNF) is a well-known pro-osteoclastogenic factor. Herein, we investigated the interplay between receptor activator of nuclear factor kappa-Β ligand (RANK-L), indispensable for fusion of myeloid precursors and the normal development of OCs, and TNF in directing the differentiation of diverse pre-OC populations derived from human peripheral blood. METHODS Flow cytometric cell sorting and analysis was used to assess the potential of myeloid populations to differentiate into OCs. Transcriptomic, epigenetic analysis, receptor expression and inhibitor experiments were used to unravel RANK-L and TNF signalling hierarchy. RESULTS TNF can act as a critical homoeostatic regulator of CD14+ monocyte (MO) differentiation into OCs by inhibiting osteoclastogenesis to favour macrophage development. In contrast, a distinct previously unidentified CD14-CD16-CD11c+ myeloid pre-OC population was exempt from this negative regulation. In healthy CD14+ MOs, TNF drove epigenetic modification of the RANK promoter via a TNFR1-IKKβ-dependent pathway and halted osteoclastogenesis. In a subset of patients with RA, CD14+ MOs exhibited an altered epigenetic state that resulted in dysregulated TNF-mediated OC homoeostasis. CONCLUSIONS These findings fundamentally re-define the relationship between RANK-L and TNF. Moreover, they have identified a novel pool of human circulating non-MO OC precursors that unlike MOs are epigenetically preconditioned to ignore TNF-mediated signalling. In RA, this epigenetic preconditioning occurs in the MO compartment providing a pathological consequence of failure of this pathway.
Collapse
Affiliation(s)
- Cecilia Ansalone
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John Cole
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Sabarinadh Chilaka
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Flavia Sunzini
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Shatakshi Sood
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jamie Robertson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Boutet MA, Courties G, Nerviani A, Le Goff B, Apparailly F, Pitzalis C, Blanchard F. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun Rev 2021; 20:102758. [PMID: 33476818 DOI: 10.1016/j.autrev.2021.102758] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting joints and causing progressive damage and disability. Macrophages are of critical importance in the initiation and perpetuation of synovitis in RA, they can function as antigen presenting cells leading to T-cell dependent B-cell activation, assume a variety of inflammatory cell states with the production of destructive cytokines, but also contribute to tissue homeostasis/repair. The recent development of high-throughput technologies, including bulk and single cells RNA-sequencing, has broadened our understanding of synovial cell diversity, and opened novel perspectives to the discovery of new potential therapeutic targets in RA. In this review, we will focus on the relationship between the synovial macrophage infiltration and clinical disease severity and response to treatment. We will then provide a state-of-the-art picture of the biological roles of synovial macrophages and distinct macrophage subsets described in RA. Finally, we will review the effects of approved conventional and biologic drugs on the synovial macrophage component and highlight the therapeutic potential of future strategies to re-program macrophage phenotypes in RA.
Collapse
Affiliation(s)
- Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Gabriel Courties
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France.
| | - Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Benoit Le Goff
- INSERM UMR1238, Bone Sarcoma and Remodelling of Calcified Tissues, Nantes University, Nantes, France; Rheumatology Department, Nantes University Hospital, Nantes, France.
| | | | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Frédéric Blanchard
- INSERM UMR1238, Bone Sarcoma and Remodelling of Calcified Tissues, Nantes University, Nantes, France.
| |
Collapse
|
17
|
Bonek K, Roszkowski L, Massalska M, Maslinski W, Ciechomska M. Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment. Cells 2021; 10:323. [PMID: 33557301 PMCID: PMC7914976 DOI: 10.3390/cells10020323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) affects around 1.2% of the adult population. RA is one of the main reasons for work disability and premature retirement, thus substantially increasing social and economic burden. Biological disease-modifying antirheumatic drugs (bDMARDs) were shown to be an effective therapy especially in those rheumatoid arthritis (RA) patients, who did not adequately respond to conventional synthetic DMARD therapy. However, despite the proven efficacy, the high cost of the therapy resulted in limitation of the widespread use and unequal access to the care. The introduction of biosimilars, which are much cheaper relative to original drugs, may facilitate the achievement of the therapy by a much broader spectrum of patients. In this review we present the properties of original biologic agents based on cytokine-targeted (blockers of TNF, IL-6, IL-1, GM-CSF) and cell-targeted therapies (aimed to inhibit T cells and B cells properties) as well as biosimilars used in rheumatology. We also analyze the latest update of bDMARDs' possible influence on DNA methylation, miRNA expression and histone modification in RA patients, what might be the important factors toward precise and personalized RA treatment. In addition, during the COVID-19 outbreak, we discuss the usage of biologicals in context of effective and safe COVID-19 treatment. Therefore, early diagnosing along with therapeutic intervention based on personalized drugs targeting disease-specific genes is still needed to relieve symptoms and to improve the quality of life of RA patients.
Collapse
Affiliation(s)
- Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (K.B.); (L.R.)
| | - Leszek Roszkowski
- Department of Rheumatology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (K.B.); (L.R.)
| | - Magdalena Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (M.M.); (W.M.)
| | - Wlodzimierz Maslinski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (M.M.); (W.M.)
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland; (M.M.); (W.M.)
| |
Collapse
|
18
|
Teoh L, Moses G, Nguyen AP, McCullough MJ. Medication-related osteonecrosis of the jaw: Analysing the range of implicated drugs from the Australian database of adverse event notifications. Br J Clin Pharmacol 2020; 87:2767-2776. [PMID: 33245790 DOI: 10.1111/bcp.14681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/14/2023] Open
Abstract
AIMS Medication-related osteonecrosis of the jaw (MRONJ) is an uncommon but potentially debilitating condition, characterised by nonhealing jawbone, with or without mucosal exposure, in the presence of certain drugs. Those already strongly associated with MRONJ include antiresorptives denosumab and bisphosphonates; however, a growing range of other non-antiresorptive drugs is implicated. The aim of this study was to analyse all case reports of MRONJ submitted to the publicly available Database of Adverse Event Notification from the Therapeutic Goods Administration in Australia. METHODS The Therapeutic Goods Administration was contacted on 6 January 2020 and asked for all reports containing the words "osteonecrosis of the jaw". This was provided in a spreadsheet of de-identified reports received from commencement of the database in 1971 until 1 October 2019. RESULTS The drugs implicated in the 419 cases were divided by established drugs with MRONJ and secondary drugs that possibly contribute to MRONJ development. While the majority of cases were associated with denosumab or bisphosphonates (n = 405), there were 14 reports where secondary agents that directly or indirectly affect bone turnover, were also implicated. Some of these secondary drugs, including adalimumab, etanercept, methotrexate and rituximab have previously been associated with MRONJ in published case reports. CONCLUSIONS This study contributes to the sparse but growing literature associating an increasing number of drugs with MRONJ, and underscores the importance of considering all possible drugs that elevate a patient's MRONJ risk.
Collapse
|
19
|
Rotta D, Fassio A, Rossini M, Giollo A, Viapiana O, Orsolini G, Bertoldo E, Gatti D, Adami G. Osteoporosis in Inflammatory Arthritides: New Perspective on Pathogenesis and Treatment. Front Med (Lausanne) 2020; 7:613720. [PMID: 33335907 PMCID: PMC7736072 DOI: 10.3389/fmed.2020.613720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a skeletal disorder characterized by impaired bone strength and increased risk of fragility fracture and is among the most relevant comorbidities of rheumatic diseases. The purpose of the present review is to discuss the pathogenesis of local and systemic bone involvement in inflammatory arthritides, especially Rheumatoid Arthritis, Psoriatic Arthritis, and Spondyloarthritides, as well as the effect of anti-rheumatic treatments and anti-osteoporotic medication on bone health and fracture incidence, including recent data on novel therapeutic perspective.
Collapse
Affiliation(s)
- Denise Rotta
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy
| | | | | | | | | | | | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| | | |
Collapse
|
20
|
Shin A, Park EH, Dong YH, Ha YJ, Lee YJ, Lee EB, Song YW, Kang EH. Comparative risk of osteoporotic fracture among patients with rheumatoid arthritis receiving TNF inhibitors versus other biologics: a cohort study. Osteoporos Int 2020; 31:2131-2139. [PMID: 32514765 DOI: 10.1007/s00198-020-05488-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
UNLABELLED In this population-based cohort study on comparative osteoporotic fracture risks between different biologic disease-modifying drugs among patients with rheumatoid arthritis (RA), we did not find a significant difference in the risk of osteoporotic fractures between RA patients receiving TNF inhibitors versus abatacept or tocilizumab. INTRODUCTION We aimed to investigate the comparative risk of osteoporotic fractures between rheumatoid arthritis (RA) patients who initiated TNF inhibitors (TNFis) versus abatacept or tocilizumab. METHODS Using the Korea National Health Insurance Service datasets from 2002 to 2016, RA patients who initiated TNFis, abatacept, or tocilizumab were identified. The primary outcome was a composite end point of non-vertebral fractures and hospitalized vertebral fractures; secondary outcomes were two components of the primary outcome and fractures occurring at the humerus/forearm. Propensity score (PS) matching with a variable ratio up to 10 TNFi initiators per 1 comparator drug initiator was used to adjust for > 50 baseline confounders. We estimated hazard ratios (HRs) and 95% confidence interval (CI) of fractures comparing TNFi initiators to abatacept and to tocilizumab by Cox proportional hazard models stratified by a matching ratio. RESULTS After PS-matching, 2307 TNFi initiators PS-matched on 588 abatacept initiators, and 2462 TNFi initiators on 640 tocilizumab initiators were included. A total of 77 fractures occurred during a mean follow-up of 454 days among TNFi and abatacept initiators and 83 fractures during 461 days among TNFi and tocilizumab initiators. The PS-matched HR (95% CI) was 0.91 (0.48-1.71) comparing TNFi versus abatacept initiators, and 1.00 (0.55-1.83) comparing TNFi versus tocilizumab initiators. Analysis on vertebral and non-vertebral fractures showed similar results. CONCLUSIONS In this nationally representative cohort, we did not find a significant difference in the risk of fractures between TNFi initiators versus abatacept or tocilizumab among RA patients.
Collapse
Affiliation(s)
- A Shin
- Division of Rheumatology Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - E H Park
- Division of Rheumatology Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Y-H Dong
- Faculty of Pharmacy School of Pharmaceutical Science, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Y-J Ha
- Division of Rheumatology Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Y J Lee
- Division of Rheumatology Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - E B Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Y W Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, South Korea
| | - E H Kang
- Division of Rheumatology Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
21
|
Adami G, Fassio A, Rossini M, Caimmi C, Giollo A, Orsolini G, Viapiana O, Gatti D. Osteoporosis in Rheumatic Diseases. Int J Mol Sci 2019; 20:E5867. [PMID: 31766755 PMCID: PMC6928928 DOI: 10.3390/ijms20235867] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a chronic disease characterized by an increased risk of fragility fracture. Patients affected by rheumatic diseases are at greater risk of developing osteoporosis. The purpose of the present review is to discuss the pathogenesis, epidemiology, and treatment of osteoporosis in patients affected by rheumatic diseases with special focus for rheumatoid arthritis, psoriatic arthritis, spondyloarthritis, systemic lupus erythematosus, systemic sclerosis, vasculitides, Sjogren syndrome, and crystal-induced arthritis.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, University of Verona, Policlinico Borgo Roma, Pz Scuro 10, 37134 Verona, Italy; (A.F.); (M.R.); (C.C.); (A.G.); (G.O.); (O.V.); (D.G.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Proinflammatory Effects of IL-1β Combined with IL-17A Promoted Cartilage Degradation and Suppressed Genes Associated with Cartilage Matrix Synthesis In Vitro. Molecules 2019; 24:molecules24203682. [PMID: 31614911 PMCID: PMC6833041 DOI: 10.3390/molecules24203682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Combinations of IL-1β and other proinflammatory cytokines reportedly promote the severity of arthritis. We aimed to investigate the effects of IL-1β combined with IL-17A on cartilage degradation and synthesis in in vitro models. Cartilage explant degradation was determined using sulfated glycosaminoglycans (S-GAGs) levels, matrix metalloproteinase (MMP13) gene expression, uronic acid, and collagen contents. Cell morphology and accumulation of proteoglycans were evaluated using hematoxylin-eosin and safranin O staining, respectively. In the pellet culture model, expressions of cartilage-specific anabolic and catabolic genes were evaluated using real-time qRT-PCR. Early induction of MMP13 gene expression was found concomitantly with significant S-GAGs release. During the prolonged period, S-GAGs release was significantly elevated, while MMP-13 enzyme levels were persistently increased together with the reduction of the cartilaginous matrix molecules. The pellet culture showed anabolic gene downregulation, while expression of the proinflammatory cytokines, mediators, and MMP13 genes were elevated. After cytokine removal, these effects were restored to nearly basal levels. This study provides evidence that IL-1β combined with IL-17A promoted chronic inflammatory arthritis by activating the catabolic processes accompanied with the suppression of cartilage anabolism. These suggest that further applications, which suppress inflammatory enhancers, especially IL-17A, should be considered as a target for arthritis research and therapy.
Collapse
|
23
|
Geesala R, Issuree PD, Maretzky T. Novel functions of inactive rhomboid proteins in immunity and disease. J Leukoc Biol 2019; 106:823-835. [PMID: 31369701 DOI: 10.1002/jlb.3vmr0219-069r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
iRhoms are related to a family of intramembrane serine proteinases called rhomboids but lack proteolytic activity. In mammals, there are two iRhoms, iRhom1 and iRhom2, which have similar domain structures and overlapping specificities as well as distinctive functions. These catalytically inactive rhomboids are essential regulators for the maturation and trafficking of the disintegrin metalloprotease ADAM17 from the endoplasmic reticulum to the cell surface, and are required for the cleavage and release of a variety of membrane-associated proteins, including the IL-6 receptor, l-selectin, TNF, and EGFR ligands. iRhom2-dependent regulation of ADAM17 function has been recently implicated in the development and progression of several autoimmune diseases including rheumatoid arthritis, lupus nephritis, as well as hemophilic arthropathy. In this review, we discuss our current understanding of iRhom biology, their implications in autoimmune pathologies, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Adami G, Saag KG. Osteoporosis Pathophysiology, Epidemiology, and Screening in Rheumatoid Arthritis. Curr Rheumatol Rep 2019; 21:34. [DOI: 10.1007/s11926-019-0836-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Niccoli L, Nannini C, Blandizzi C, Mantarro S, Mosca M, Di Munno O, Goletti D, Benucci M, Gobbi FL, Cassarà E, Kaloudi O, Cantini F. Personalization of biologic therapy in patients with rheumatoid arthritis: less frequently accounted choice-driving variables. Ther Clin Risk Manag 2018; 14:2097-2111. [PMID: 30498353 PMCID: PMC6207089 DOI: 10.2147/tcrm.s175772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective To propose appropriate statements that drive the choice of biologic therapies in patients with rheumatoid arthritis (RA), factoring in their impact on the following issues: anti-drug antibody (ADAb) formation, suspicion and management of infections, lupus-like syndrome (LLS), effects on bone mass and sexual sphere, and relationship between RA and periodontal disease (PD). Methods An overview of existing evidence was undertaken by an expert panel on behalf of the Italian board for the TAilored BIOlogic therapy (ITABIO). Data were extracted from controlled trials, national registries, national health care databases, post-marketing surveys, and, when required by the paucity of controlled studies, from open-label clinical series. Anti-tumor necrosis factor (anti-TNF) and non-anti-TNF-targeted biologics approved for RA were investigated. Results ADAb formation is chiefly associated with anti-TNFs, and it is reduced by combination therapy with methotrexate. To date, ADAb titration is not advisable for clinical practice, and, in case of anti-TNF secondary failure, a non-anti-TNF biologic is indicated. LLS is observed in anti-TNF receivers and, in most cases, resolves without anti-TNF withdrawal. A non-anti-TNF biologic is advisable in patients experiencing LLS. Non-anti-TNFs demonstrated a low or absent infection risk and are preferable in patients with comorbidities. Due to their positive effects on bone mass, anti-TNFs are indicated in women at osteoporosis risk, whereas non-anti-TNF have been poorly investigated. The emerging evidence of the relationship between RA and PD and the effects on anti-TNF efficacy should lead clinicians to consider the periodontal status in RA patients. Anti-TNFs may exert a positive effect on fertility and sexuality, and clinicians should explore these aspects in RA patients. Conclusion The optimization of biologic therapies by taking into proper account the above issues would improve patient outcomes.
Collapse
Affiliation(s)
- Laura Niccoli
- Department of Rheumatology, Hospital of Prato, Prato, Italy,
| | | | - Corrado Blandizzi
- Section of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Mantarro
- Section of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Mosca
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ombretta Di Munno
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | | | | | | | - Olga Kaloudi
- Department of Rheumatology, Hospital of Prato, Prato, Italy,
| | | |
Collapse
|
26
|
Wheater G, Elshahaly M, Naraghi K, Tuck SP, Datta HK, van Laar JM. Changes in bone density and bone turnover in patients with rheumatoid arthritis treated with rituximab, results from an exploratory, prospective study. PLoS One 2018; 13:e0201527. [PMID: 30080871 PMCID: PMC6078302 DOI: 10.1371/journal.pone.0201527] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
Data describing the effect of in vivo B cell depletion on general bone loss in patients with rheumatoid arthritis (RA) are limited. Given the pathogenetic role of B cells in RA, it is tempting to speculate that B cell depletion might have a beneficial effect on bone loss. We prospectively investigated the changes in bone mineral density (BMD), bone turnover, inflammation and disease activity before and after rituximab in 45 RA patients over a 12 month period, 36 patients of whom completed the study and were included in the analysis. There was no significant change in our primary endpoint; lumbar spine BMD after 12 months. However, we found a significant decrease in neck of femur (mean -0.017 g/cm2, 95% CI -0.030, -0.004 p = 0.011) and total femur BMD (mean -0.016 g/cm2, 95% CI -0.025, -0.007 p = 0.001). Additionally, there was a significant increase in procollagen type 1 amino-terminal propeptide (P1NP) and bone specific alkaline phosphatase (BAP); biomarkers of bone formation (median change from baseline to 12 months; P1NP 11.3 μg/L, 95% CI -1.1, 24.8 p = 0.025; BAP 2.5 μg/L, 95% CI 1.2, 3.6 p = 0.002), but no significant change in bone resorption or osteocyte markers. The fall in BMD occurred despite improvement in disease control. Post-menopausal women had the lowest mean lumbar spine, femoral and forearm BMD at baseline and after 12 months, additionally they had a higher level of bone turnover throughout the study. In conclusion, BMD was maintained at the lumbar spine and forearm, but fell at the femur sites. A high prevalence of vitamin D deficiency was observed and these patients had lower BMD and evidence of higher bone turnover.
Collapse
Affiliation(s)
- Gillian Wheater
- Department of Biochemistry, The James Cook University Hospital, Middlesbrough, United Kingdom
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Mohsen Elshahaly
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Rheumatology and Physical Medicine Department, Suez Canal University, Ismailia, Egypt
| | - Kamran Naraghi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Stephen P. Tuck
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Department of Rheumatology, The James Cook University Hospital, Middlesbrough, United Kingdom
| | - Harish K. Datta
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jacob M. van Laar
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
27
|
Sarzi-Puttini P, Filippucci E, Adami S, Meroni PL, Batticciotto A, Idolazzi L, De Lucia O, Talavera P, Kumke T, Grassi W. Clinical, Ultrasound, and Predictability Outcomes Following Certolizumab Pegol Treatment (with Methotrexate) in Patients with Moderate-to-Severe Rheumatoid Arthritis: 52-Week Results from the CZP-SPEED Study. Adv Ther 2018; 35:1153-1168. [PMID: 30043210 PMCID: PMC6096970 DOI: 10.1007/s12325-018-0751-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION To assess the impact of certolizumab pegol (CZP) treatment on clinical, patient-reported, and musculoskeletal ultrasound outcomes and to determine the treatment response time point most predictive of long-term outcomes in Italian patients with rheumatoid arthritis (RA). METHODS CZP-SPEED (NCT01443364) was a 52-week, open-label, prospective, interventional, multicenter study. Biologic-naïve patients with moderate-to-severe active RA, who had failed at least one DMARD treatment, received CZP (400 mg at weeks 0, 2, and 4, then 200 mg every 2 weeks) concomitantly with methotrexate. The primary objective was to identify the time point of clinical response {decrease in 28-joint Disease Activity Score [DAS28(ESR)] ≥ 1.2} most predictive of a clinical response at week 52. Additional clinical and patient-reported outcomes were measured. Power Doppler (PD) ultrasound was used to assess synovial effusion, synovial proliferation, PD signal, cartilage damage, and bone erosion according to international guidelines. RESULTS A total of 132 patients were enrolled and received CZP; 91/132 (69%) completed to week 52. Predicted 52-week responses for early responders (week 2 onwards) were between 65% and 70%. Rapid improvements in joint cavity widening and PD signal were observed to week 8 and maintained to week 52. Cartilage damage and bone erosion were stable over 52 weeks. No new safety signals were identified. CONCLUSION In Italian CZP-treated patients with moderate-to-severe RA, week 12 clinical responses may be predictive of long-term response at week 52. Rapid improvements in clinical, patient-reported, and musculoskeletal ultrasound outcomes were maintained to week 52. These data may aid rheumatologists to make earlier treatment decisions. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01443364. FUNDING UCB Pharma.
Collapse
Affiliation(s)
| | | | - Silvano Adami
- Università degli Studi di Verona, Azienda Ospedaliera di Verona, Verona, Italy
| | - Pier Luigi Meroni
- ASST Centro Ortopedico Traumatologico Gaetano Pini-CTO-Università degli Studi di Milano, Milan, Italy
| | | | - Luca Idolazzi
- Università degli Studi di Verona, Azienda Ospedaliera di Verona, Verona, Italy
| | - Orazio De Lucia
- ASST Centro Ortopedico Traumatologico Gaetano Pini-CTO-Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
28
|
Briot K, Geusens P, Em Bultink I, Lems WF, Roux C. Inflammatory diseases and bone fragility. Osteoporos Int 2017; 28:3301-3314. [PMID: 28916915 DOI: 10.1007/s00198-017-4189-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Abstract
Systemic osteoporosis and increased fracture rates have been described in chronic inflammatory diseases such as rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, inflammatory bowel diseases, and chronic obstructive pulmonary disease. Most of these patients receive glucocorticoids, which have their own deleterious effects on bone. However, the other main determinant of bone fragility is the inflammation itself, as shown by the interactions between the inflammatory mediators, the actors of the immune system, and the bone remodelling. The inflammatory disease activity is thus on top of the other well-known osteoporotic risk factors in these patients. Optimal control of inflammation is part of the prevention of osteoporosis, and potent anti-inflammatory drugs have positive effects on surrogate markers of bone fragility. More data are needed to assess the anti-fracture efficacy of a tight control of inflammation in patients with a chronic inflammatory disorder. This review aimed at presenting different clinical aspects of inflammatory diseases which illustrate the relationships between inflammation and bone fragility.
Collapse
Affiliation(s)
- K Briot
- Department of Rheumatology, Cochin Hospital, Assistance-Publique-Hôpitaux de Paris, Paris, France.
- Hôpital Cochin, Service de Rhumatologie, 27, Rue du Faubourg, St. Jacques, 75014, Paris, France.
- INSERM UMR 1153, Paris, France.
| | - P Geusens
- Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, The Netherlands
- Hasselt University, Hasselt, Belgium
| | - I Em Bultink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - W F Lems
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - C Roux
- Department of Rheumatology, Cochin Hospital, Assistance-Publique-Hôpitaux de Paris, Paris, France
- Hôpital Cochin, Service de Rhumatologie, 27, Rue du Faubourg, St. Jacques, 75014, Paris, France
- INSERM UMR 1153, Paris, France
- Paris Descartes University, Paris, France
| |
Collapse
|
29
|
Yuan M, Wang S, Yu L, Qu B, Xu L, Liu L, Sun H, Li C, Shi Y, Liu H. Long noncoding RNA profiling revealed differentially expressed lncRNAs associated with disease activity in PBMCs from patients with rheumatoid arthritis. PLoS One 2017; 12:e0186795. [PMID: 29140972 PMCID: PMC5687725 DOI: 10.1371/journal.pone.0186795] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/07/2017] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently emerged as important biological regulators, and the aberrant expression of lncRNAs has been reported in numerous diseases. However, the expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) in rheumatoid arthritis (RA) has not been well documented. We applied a microarray analysis to profile the lncRNA and mRNA expression in 3 pairs of samples. Each sample was mixed with equivalent PBMCs from 9 female RA patients and 9 corresponding healthy controls, and the data were validated via qPCR using another cohort that comprised 36 RA patients and 24 healthy controls. A bioinformatic analysis was performed to investigate the potential functions of differentially expressed genes. Overall, 2,099 lncRNAs and 2,307 mRNAs were differentially expressed between the RA patients and healthy controls. The bioinformatic analysis indicated that the differentially expressed lncRNAs regulated the abnormally expressed mRNAs, which were involved in the pathogenesis of RA through several different pathways. The qPCR results showed that the expression levels of ENST00000456270 and NR_002838 were significantly increased in the RA patients, whereas the expression levels of NR_026812 and uc001zwf.1 were significantly decreased. Furthermore, the expression level of ENST00000456270 was strongly associated with the serum levels of IL-6 and TNF-a and the Simplified Disease Activity Index (SDAI) of the RA patients. Our data provided comprehensive evidence regarding the differential expression of lncRNAs in PBMCs of RA patients, which shed light on the understanding of the molecular mechanisms of lncRNAs in the pathogenesis of RA.
Collapse
Affiliation(s)
- Min Yuan
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Shujun Wang
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- Department of Rheumatology, Central Hospital of Zibo, Zibo, China
| | - Lijie Yu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- Department of Rheumatology, Dong’e People’s Hospital, Liaocheng, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Xu
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Lining Liu
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Huanxia Sun
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Chunxian Li
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Yanjun Shi
- Department of Rheumatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, China
- * E-mail:
| |
Collapse
|
30
|
Yang N, Baban B, Isales CM, Shi XM. Role of glucocorticoid-induced leucine zipper (GILZ) in inflammatory bone loss. PLoS One 2017; 12:e0181133. [PMID: 28771604 PMCID: PMC5542557 DOI: 10.1371/journal.pone.0181133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
TNF-α plays a key role in the development of rheumatoid arthritis (RA) and inflammatory bone loss. Unfortunately, treatment of RA with anti-inflammatory glucocorticoids (GCs) also causes bone loss resulting in osteoporosis. Our previous studies showed that overexpression of glucocorticoid-induced leucine zipper (GILZ), a mediator of GC's anti-inflammatory effect, can enhance osteogenic differentiation in vitro and bone acquisition in vivo. To investigate whether GILZ could antagonize TNF-α-induced arthritic inflammation and protect bone in mice, we generated a TNF-α-GILZ double transgenic mouse line (TNF-GILZ Tg) by crossbreeding a TNF-α Tg mouse, which ubiquitously expresses human TNF-α, with a GILZ Tg mouse, which expresses mouse GILZ under the control of a 3.6kb rat type I collagen promoter fragment. Results showed that overexpression of GILZ in bone marrow mesenchymal stem/progenitor cells protected mice from TNF-α-induced inflammatory bone loss and improved bone integrity (TNF-GILZ double Tg vs. TNF-αTg, n = 12-15). However, mesenchymal cell lineage restricted GILZ expression had limited effects on TNF-α-induced arthritic inflammation as indicated by clinical scores and serum levels of inflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Nianlan Yang
- Departments of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States of America
| | - Babak Baban
- Departments of Oral Biology, Augusta University, Augusta, GA, United States of America
| | - Carlos M. Isales
- Departments of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States of America
- Departments of Orthopaedic Surgery, Augusta University, Augusta, GA, United States of America
| | - Xing-Ming Shi
- Departments of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States of America
- Departments of Orthopaedic Surgery, Augusta University, Augusta, GA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Adami G, Orsolini G, Adami S, Viapiana O, Idolazzi L, Gatti D, Rossini M. Effects of TNF Inhibitors on Parathyroid Hormone and Wnt Signaling Antagonists in Rheumatoid Arthritis. Calcif Tissue Int 2016; 99:360-4. [PMID: 27307275 DOI: 10.1007/s00223-016-0161-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023]
Abstract
Tumor necrosis factor α inhibitors (TNFi) are the major class of biologic drug used for the treatment of Rheumatoid arthritis (RA). Their effects on inflammation and disease control are well established, but this is not true also for bone metabolism, especially for key factors as parathyroid hormone and Wnt pathway. Those two pathways are gaining importance in the pathogenesis RA bone damage, both systemic and local, but how the new treatment affects them is still largely unknown. We studied 54 RA patients who were starting an anti-TNFα treatment due to the failure of the conventional synthetic disease-modifying antirheumatic drugs. Serum levels of Wnt/βcatenin pathway inhibitors (Dickkopf-related protein 1, Dkk1, and Sclerostin), Parathyroid hormone (PTH), vitamin D, and bone turnover markers were measured at baseline in the morning after fasting and after 6 months of therapy. We found a significant percentage increase in serum PTH (+32 ± 55 %; p = 0.002) and a decrease in Dkk1 mean serum levels (-2.9 ± 12.1; p = 0.05). PTH percentage changes were positively correlated both with C-terminal telopeptide of type I collagen and Dkk1 percentage changes. Sclerostin serum levels showed no significant difference. TNFi treatment provokes in the short term a rise in PTH levels and a decrease in Dkk1 serum levels. The increase of PTH might promote bone resorption and blunt the normalization of Dkk1 serum levels in RA. Those data give a new insight into TNFi metabolic effects on bone and suggest new strategies to achieve better results in terms of prevention of bone erosions and osteoporosis with TNFi treatment in RA.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B Rossi, Piazzale Ludovico Scuro, 10, 37134, Verona, Italy.
| | - Giovanni Orsolini
- Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B Rossi, Piazzale Ludovico Scuro, 10, 37134, Verona, Italy
| | - Silvano Adami
- Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B Rossi, Piazzale Ludovico Scuro, 10, 37134, Verona, Italy
| | - Ombretta Viapiana
- Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B Rossi, Piazzale Ludovico Scuro, 10, 37134, Verona, Italy
| | - Luca Idolazzi
- Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B Rossi, Piazzale Ludovico Scuro, 10, 37134, Verona, Italy
| | - Davide Gatti
- Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B Rossi, Piazzale Ludovico Scuro, 10, 37134, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B Rossi, Piazzale Ludovico Scuro, 10, 37134, Verona, Italy
| |
Collapse
|
32
|
Adalimumab: Another Medication Related to Osteonecrosis of the Jaws? Case Rep Dent 2016; 2016:2856926. [PMID: 27088019 PMCID: PMC4819088 DOI: 10.1155/2016/2856926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Objective. The acronym MRONJ has been created in order to identify “Medication-Related Osteonecrosis of the Jaw,” observed after the use of Bisphosphonates, RANK ligand inhibitor, and antiangiogenic medications. Only a case of osteonecrosis of the jaw in a Chron's disease patient following a course of Bisphosphonate and Adalimumab therapy has been recently described, so that it has been supposed that also this medication could promote manifestation of osteonecrosis. Clinical Case. On August, 2014, a 63-year-old female with a history of idiopathic arthritis treated with medical treatment with Adalimumab from 2010 to 2013 presented referring pain in the right mandible. Results. This patient presented with nonexposed osteonecrosis of the jaw after placement, on September, 2010, of four titanium fixtures in the mandible. Conclusions. The authors suggest that the biologic therapy with an anti-TNF-α antibody might promote the manifestation of osteonecrosis and compromise oral healing capacity of the bone.
Collapse
|