1
|
Grapsy J, Ueng CS, Patel K, Dassner A, Sharma P. Initial Antibiotic Selection Based on Microbiologic History in Pediatric Cystic Fibrosis-Related Pulmonary Exacerbations. Pediatr Pulmonol 2025; 60:e27491. [PMID: 39898731 DOI: 10.1002/ppul.27491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/03/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION The Cystic Fibrosis (CF) Foundation guideline for the treatment of pulmonary exacerbations (PEx) does not address empiric antibiotic selection. The primary objective of this study is to characterize how patient-specific microbiological histories are utilized in initial antibiotic selection for CF-related PEx at a pediatric institution. The secondary outcome was to characterize why changes were made to empiric antibiotic regimens. METHODS This single-center, retrospective study evaluated individuals aged 1-21 years hospitalized for CF-related PEx at Children's Medical Center Dallas between August 1, 2016 and July 31, 2018. RESULTS Among 285 screened hospital encounters, 156 encounters met inclusion criteria. Median age was 12.9 years with a median baseline forced expiratory volume (FEV1) of 84% predicted. Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia were the organisms most targeted by empiric antibiotics with median months since last growth of 1.5, 9.2, and 5.5, respectively. A difference was observed in median time since last growth for targeted organisms versus those not targeted by the initial antibiotics, but wide overlapping timeframes were noted. Organisms isolated on admission cultures were sensitive to the initial antibiotics regimen in 78.2% of encounters. CONCLUSION While variable, patient-specific microbiologic history and time since last growth of historical organisms are taken into consideration when selecting initial antibiotics for the treatment of PEx in children with CF. Expanding initial antibiotic coverage to target microbiological growth histories beyond 1 year prior to a hospital admission did not appear to increase the likelihood of providing coverage for organism(s) isolated on the admission sputum culture in children hospitalized for CF-related PEx.
Collapse
Affiliation(s)
- Jillian Grapsy
- Department of Pharmacy, Children's Medical Center Dallas, Dallas, Texas, USA
| | - Ching-Sui Ueng
- Department of Pharmacy, Children's Medical Center Dallas, Dallas, Texas, USA
| | - Karisma Patel
- Department of Pharmacy, Children's Medical Center Dallas, Dallas, Texas, USA
| | - Aimee Dassner
- Department of Pharmacy, Children's National Hospital, Washington, District of Columbia, USA
| | - Preeti Sharma
- Department of Pediatrics - Pulmonology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Saiman L, Waters V, LiPuma JJ, Hoffman LR, Alby K, Zhang SX, Yau YC, Downey DG, Sermet-Gaudelus I, Bouchara JP, Kidd TJ, Bell SC, Brown AW. Practical Guidance for Clinical Microbiology Laboratories: Updated guidance for processing respiratory tract samples from people with cystic fibrosis. Clin Microbiol Rev 2024; 37:e0021521. [PMID: 39158301 PMCID: PMC11391703 DOI: 10.1128/cmr.00215-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.
Collapse
Affiliation(s)
- Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Valerie Waters
- Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kevin Alby
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yvonne C Yau
- Division of Microbiology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Ireland
| | | | - Jean-Philippe Bouchara
- University of Angers-University of Brest, Infections Respiratoires Fongiques, Angers, France
| | - Timothy J Kidd
- Microbiology Division, Pathology Queensland Central Laboratory, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- The Translational Research Institute, Brisbane, Australia
| | - A Whitney Brown
- Cystic Fibrosis Foundation, Bethesda, Maryland, USA
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
3
|
Abstract
In the past three decades, fungal respiratory colonization and fungal respiratory infections increasingly raised concern in cystic fibrosis (CF). Reasons for this are a better knowledge of the pathogenicity of fungi, whereby detection is sought in more and more CF centers, but also improvement of detection methods. However, differences in fungal detection rates within and between geographical regions exist and indicate the need for standardization of mycological examination of respiratory secretions. The still existing lack of standardization also complicates the assessment of fungal pathogenicity, relevance of fungal detection and risk factors for fungal infections. Nevertheless, numerous studies have now been conducted on differences in detection methods, epidemiology, risk factors, pathogenicity and therapy of fungal diseases in CF. Meanwhile, some research groups now have classified fungal disease entities in CF and developed diagnostic criteria as well as therapeutic guidelines.The following review presents an overview on fungal species relevant in CF. Cultural detection methods with their respective success rates as well as susceptibility testing will be presented, and the problem of increasing azole resistance in Aspergillus fumigatus will be highlighted. Next, current data and conflicting evidence on the epidemiology and risk factors for fungal diseases in patients with CF will be discussed. Finally, an overview of fungal disease entities in CF with their current definitions, diagnostic criteria and therapeutic options will be presented.
Collapse
|
4
|
Fungal Infection and Inflammation in Cystic Fibrosis. Pathogens 2021; 10:pathogens10050618. [PMID: 34069863 PMCID: PMC8157353 DOI: 10.3390/pathogens10050618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi are frequently recovered from lower airway samples from people with cystic fibrosis (CF), yet the role of fungi in the progression of lung disease is debated. Recent studies suggest worsening clinical outcomes associated with airway fungal detection, although most studies to date are retrospective or observational. The presence of fungi can elicit a T helper cell type 2 (Th-2) mediated inflammatory reaction known as allergic bronchopulmonary aspergillosis (ABPA), particularly in those with a genetic atopic predisposition. In this review, we discuss the epidemiology of fungal infections in people with CF, risk factors associated with development of fungal infections, and microbiologic approaches for isolation and identification of fungi. We review the spectrum of fungal disease presentations, clinical outcomes after isolation of fungi from airway samples, and the importance of considering airway co-infections. Finally, we discuss the association between fungi and airway inflammation highlighting gaps in knowledge and future research questions that may further elucidate the role of fungus in lung disease progression.
Collapse
|
5
|
Hughes DA, Archangelidi O, Coates M, Armstrong-James D, Elborn SJ, Carr SB, Davies JC. Clinical characteristics of Pseudomonas and Aspergillus co-infected cystic fibrosis patients: A UK registry study. J Cyst Fibros 2021; 21:129-135. [PMID: 33958279 DOI: 10.1016/j.jcf.2021.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa (Pa) and Aspergillus species (Asp) are the most common bacterial and fungal organisms respectively in CF airways. Our aim was to examine impacts of Asp infection and Pa/Asp co-infection. METHODS Patients on the UK CF Registry in 2016 were grouped into: absent (Pa-), intermittent (Pai) or chronic Pa (Pac), each with Asp positive (Asp+) or negative (Asp-). Primary outcome was best percentage predicted FEV1 (ppFEV1) that year. Secondary outcomes were intravenous (IV) antibiotic courses, growth (height, weight, BMI) and additional disease complications. Associations between outcomes and infection-status were assessed using regression models adjusting for significant confounders (age, sex, Phe508del homozygosity and CF-related diabetes (CFRD)). RESULTS 9,270 patients were included (median age 19 [IQR 9-30] years, 54% male, 50% Phe508del/F508del). 4,142 patients (45%) isolated Pa, 1,460 (16%) Asp. Pa-/Asp+ subjects had an adjusted ppFEV1 that was 5.9% lower than Pa-/Asp- (p < 0.0001). In patients with Pai or Pac, there was no additional impact of Asp on ppFEV1. However, there was a higher probability that Pac/Asp+ patients had required IV antibiotics than Pac/Asp- group (OR 1.23 [1.03-1.48]). Low BMI, ABPA, CF-liver disease and CFRD were all more frequent with Asp alone than Pa-/Asp-, though not more common in Pac/Asp+ than Pac/Asp-. CONCLUSIONS Co-infection with Pa and Asp was not associated with reduced lung function compared with Pa alone, but was associated with additional use of IV antibiotics. Asp infection itself is associated with several important indicators of disease severity. Longitudinal analyses should explore the impact of co-infection on disease progression.
Collapse
Affiliation(s)
- Dominic A Hughes
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK.
| | | | - Matthew Coates
- National Heart & Lung Institute, Imperial College London, UK
| | - Darius Armstrong-James
- Royal Brompton and Harefield Hospitals, London, UK; Department of Infectious Diseases, Imperial College London, UK
| | | | - Siobhán B Carr
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, UK; Royal Brompton and Harefield Hospitals, London, UK
| |
Collapse
|
6
|
Bui S, Dournes G, Fayon M, Bouchet S, Burgel PR, Macey J, Murris M, Delhaes L. [Allergic Broncho-Pulmonary Aspergillosis (ABPA) in cystic fibrosis: Mechanisms, diagnosis and therapeutic options]. Rev Mal Respir 2021; 38:466-476. [PMID: 33926779 DOI: 10.1016/j.rmr.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fungal aspergillosis colonization and allergic bronchopulmonary aspergillosis (ABPA) can have a strong impact on the prognosis in cystic fibrosis (CF). We conducted round table discussions involving French experts from pediatric and adult centers caring for patients with CF, microbiologists, radiologists and pharmacists. The aim was to explore the current state of knowledge on: the pathophysiological mechanisms of Aspergillus and other micromycetes infections in CF (such as Scedosporium sp.), and on the clinico-biological diagnosis of ABPA. In perspective, the experts explored the role of imaging in the diagnosis of APBA, specifically CT and MRI; as well as the role of bronchoscopy in the management. We also reviewed the therapeutic management, including different corticosteroid regimens, antifungals and anti-IgE antibodies. CONCLUSION The diagnosis of ABPA in CF should be based on more standardized biological assays and imaging to optimize treatment and follow-up.
Collapse
Affiliation(s)
- S Bui
- CRCM pédiatrique, Centre d'investigation clinique (CIC 1401), hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France.
| | - G Dournes
- Service de radiologie, hôpital Haut L'Evêque, CHU de Bordeaux, Bordeaux, France
| | - M Fayon
- CRCM pédiatrique, Centre d'investigation clinique (CIC 1401), hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - S Bouchet
- Service de pharmacologie, hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - P R Burgel
- CRCM Adultes, AP-HP, hôpital Cochin, Paris, France
| | - J Macey
- CRCM adultes, hôpital Haut L'Evêque, CHU de Bordeaux, Bordeaux, France
| | - M Murris
- CRCM adultes, hôpital Larrey, CHU de Toulouse, Toulouse, France
| | - L Delhaes
- Service de parasitologie, CHU de Bordeaux, hôpital Pellegrin, Bordeaux, France
| |
Collapse
|
7
|
Elkadi OA, Hassan R, Elanany M, Byrne HJ, Ramadan MA. Identification of Aspergillus species in human blood plasma by infrared spectroscopy and machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119259. [PMID: 33307345 DOI: 10.1016/j.saa.2020.119259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Invasive Aspergillosis is a challenging infection that requires convenient, efficient, and cost-effective diagnostics. This study addresses the potential of infrared spectroscopy to satisfy this clinical need with the aid of machine learning. Two models, based on Partial Least Squares-Discriminant Analysis (PLS-DA), have been trained by a set of infrared spectral data of 9 Aspergillus-spiked and 7 Aspergillus-free plasma samples, and a set of 200 spectral data simulated by oversampling these 16 samples. Two further models have also been trained by the same sets but with auto-scaling performed prior to PLS-DA. These models were assessed using 45 mock samples, simulating the challenging samples of patients at risk of Invasive Aspergillosis, including the presence of drugs (9 tested) and other common pathogens (5 tested) as potential confounders. The simple model shows good prediction performance, yielding a total accuracy of 84.4%, while oversampling and autoscaling improved this accuracy to 93.3%. The results of this study have shown that infrared spectroscopy can identify Aspergillus species in blood plasma even in presence of potential confounders commonly present in blood of patients at risk of Invasive Aspergillosis.
Collapse
Affiliation(s)
- Omar Anwar Elkadi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Dar Elsalam Cancer Center, Cairo, Egypt.
| | - Reem Hassan
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mervat Elanany
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Renner S, Nachbaur E, Jaksch P, Dehlink E. Update on Respiratory Fungal Infections in Cystic Fibrosis Lung Disease and after Lung Transplantation. J Fungi (Basel) 2020; 6:jof6040381. [PMID: 33371198 PMCID: PMC7766476 DOI: 10.3390/jof6040381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis is the most common autosomal-recessive metabolic disease in the Western world. Impaired trans-membrane chloride transport via the cystic fibrosis transmembrane conductance regulator (CFTR) protein causes thickened body fluids. In the respiratory system, this leads to chronic suppurative cough and recurrent pulmonary infective exacerbations, resulting in progressive lung damage and respiratory failure. Whilst the impact of bacterial infections on CF lung disease has long been recognized, our understanding of pulmonary mycosis is less clear. The range and detection rates of fungal taxa isolated from CF airway samples are expanding, however, in the absence of consensus criteria and univocal treatment protocols for most respiratory fungal conditions, interpretation of laboratory reports and the decision to treat remain challenging. In this review, we give an overview on fungal airway infections in CF and CF-lung transplant recipients and focus on the most common fungal taxa detected in CF, Aspergillus fumigatus, Candida spp., Scedosporium apiospermum complex, Lomentospora species, and Exophiala dermatitidis, their clinical presentations, common treatments and prophylactic strategies, and clinical challenges from a physician’s point of view.
Collapse
Affiliation(s)
- Sabine Renner
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Edith Nachbaur
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Eleonora Dehlink
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Associated National Center in the European Reference Network on Rare Respiratory Diseases ERN-LUNG and the European Reference Network on Transplantation in Children, ERN TRANSPLANT-CHILD, Medical University of Vienna, 1090 Vienna, Austria; (S.R.); (E.N.)
- Correspondence:
| |
Collapse
|
9
|
Keown K, Reid A, Moore JE, Taggart CC, Downey DG. Coinfection with Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis. Eur Respir Rev 2020; 29:29/158/200011. [PMID: 33208485 DOI: 10.1183/16000617.0011-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Cystic fibrosis (CF) lung disease is characterised by mucus stasis, chronic infection and inflammation, causing progressive structural lung disease and eventual respiratory failure. CF airways are inhabited by an ecologically diverse polymicrobial environment with vast potential for interspecies interactions, which may be a contributing factor to disease progression. Pseudomonas aeruginosa and Aspergillus fumigatus are the most common bacterial and fungal species present in CF airways respectively and coinfection results in a worse disease phenotype. METHODS In this review we examine existing expert knowledge of chronic co-infection with P. aeruginosa and A. fumigatus in CF patients. We summarise the mechanisms of interaction and evaluate the clinical and inflammatory impacts of this co-infection. RESULTS P. aeruginosa inhibits A. fumigatus through multiple mechanisms: phenazine secretion, iron competition, quorum sensing and through diffusible small molecules. A. fumigatus reciprocates inhibition through gliotoxin release and phenotypic adaptations enabling evasion of P. aeruginosa inhibition. Volatile organic compounds secreted by P. aeruginosa stimulate A. fumigatus growth, while A. fumigatus stimulates P. aeruginosa production of cytotoxic elastase. CONCLUSION A complex bi-directional relationship exists between P. aeruginosa and A. fumigatus, exhibiting both mutually antagonistic and cooperative facets. Cross-sectional data indicate a worsened disease state in coinfected patients; however, robust longitudinal studies are required to derive causality and to determine whether interspecies interaction contributes to disease progression.
Collapse
Affiliation(s)
- Karen Keown
- Royal Belfast Hospital for Sick Children, Belfast Health and Social Care Trust, Belfast, UK.,Wellcome Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Alastair Reid
- Royal Belfast Hospital for Sick Children, Belfast Health and Social Care Trust, Belfast, UK
| | - John E Moore
- Northern Ireland Public Health Laboratory, Dept of Bacteriology, Belfast City Hospital, Belfast, UK
| | - Clifford C Taggart
- Wellcome Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Damian G Downey
- Wellcome Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
10
|
Chatterjee P, Sass G, Swietnicki W, Stevens DA. Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas-Aspergillus Interplay, for the Mycology Community. J Fungi (Basel) 2020; 6:jof6020081. [PMID: 32517271 PMCID: PMC7345761 DOI: 10.3390/jof6020081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most prominent opportunistic bacteria in airways of cystic fibrosis patients and in immunocompromised patients. These bacteria share the same polymicrobial niche with other microbes, such as the opportunistic fungus Aspergillus fumigatus. Their inter-kingdom interactions and diverse exchange of secreted metabolites are responsible for how they both fare in competition for ecological niches. The outcomes of their contests likely determine persistent damage and degeneration of lung function. With a myriad of virulence factors and metabolites of promising antifungal activity, P. aeruginosa products or their derivatives may prove useful in prophylaxis and therapy against A. fumigatus. Quorum sensing underlies the primary virulence strategy of P. aeruginosa, which serves as cell–cell communication and ultimately leads to the production of multiple virulence factors. Understanding the quorum-sensing-related pathogenic mechanisms of P. aeruginosa is a first step for understanding intermicrobial competition. In this review, we provide a basic overview of some of the central virulence factors of P. aeruginosa that are regulated by quorum-sensing response pathways and briefly discuss the hitherto known antifungal properties of these virulence factors. This review also addresses the role of the bacterial secretion machinery regarding virulence factor secretion and maintenance of cell–cell communication.
Collapse
Affiliation(s)
- Paulami Chatterjee
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-114 Wroclaw, Poland;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
11
|
Scott J, Sueiro-Olivares M, Ahmed W, Heddergott C, Zhao C, Thomas R, Bromley M, Latgé JP, Krappmann S, Fowler S, Bignell E, Amich J. Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection. Front Microbiol 2019; 10:2311. [PMID: 31649650 PMCID: PMC6794476 DOI: 10.3389/fmicb.2019.02311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Pathogen-pathogen interactions in polymicrobial infections are known to directly impact, often to worsen, disease outcomes. For example, co-infection with Pseudomonas aeruginosa and Aspergillus fumigatus, respectively the most common bacterial and fungal pathogens isolated from cystic fibrosis (CF) airways, leads to a worsened prognosis. Recent studies of in vitro microbial cross-talk demonstrated that P. aeruginosa-derived volatile sulfur compounds (VSCs) can promote A. fumigatus growth in vitro. However, the mechanistic basis of such cross-talk and its physiological relevance during co-infection remains unknown. In this study we combine genetic approaches and GC-MS-mediated volatile analysis to show that A. fumigatus assimilates VSCs via cysteine (CysB)- or homocysteine (CysD)-synthase. This process is essential for utilization of VSCs as sulfur sources, since P. aeruginosa-derived VSCs trigger growth of A. fumigatus wild-type, but not of a ΔcysBΔcysD mutant, on sulfur-limiting media. P. aeruginosa produces VSCs when infecting Galleria mellonella and co-infection with A. fumigatus in this model results in a synergistic increase in mortality and of fungal and bacterial burdens. Interestingly, the increment in mortality is much greater with the A. fumigatus wild-type than with the ΔcysBΔcysD mutant. Therefore, A. fumigatus' ability to assimilate P. aeruginosa derived VSCs significantly triggers a synergistic association that increases the pathobiology of infection. Finally, we show that P. aeruginosa can promote fungal growth when growing on substrates that resemble the lung environment, which suggests that this volatile based synergism is likely to occur during co-infection of the human respiratory airways.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Monica Sueiro-Olivares
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Waqar Ahmed
- Respiratory and Allergy Research Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | | | - Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Riba Thomas
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephen Fowler
- Respiratory and Allergy Research Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre - Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
12
|
Interactions between Aspergillus fumigatus and Pulmonary Bacteria: Current State of the Field, New Data, and Future Perspective. J Fungi (Basel) 2019; 5:jof5020048. [PMID: 31212791 PMCID: PMC6617096 DOI: 10.3390/jof5020048] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are central fungal and bacterial members of the pulmonary microbiota. The interactions between A. fumigatus and P. aeruginosa have only just begun to be explored. A balance between inhibitory and stimulatory effects on fungal growth was observed in mixed A. fumigatus-P. aeruginosa cultures. Negative interactions have been seen for homoserine-lactones, pyoverdine and pyochelin resulting from iron starvation and intracellular inhibitory reactive oxidant production. In contrast, several types of positive interactions were recognized. Dirhamnolipids resulted in the production of a thick fungal cell wall, allowing the fungus to resist stress. Phenazines and pyochelin favor iron uptake for the fungus. A. fumigatus is able to use bacterial volatiles to promote its growth. The immune response is also differentially regulated by co-infections.
Collapse
|
13
|
Górski A, Bollyky PL, Przybylski M, Borysowski J, Międzybrodzki R, Jończyk-Matysiak E, Weber-Dąbrowska B. Perspectives of Phage Therapy in Non-bacterial Infections. Front Microbiol 2019; 9:3306. [PMID: 30687285 PMCID: PMC6333649 DOI: 10.3389/fmicb.2018.03306] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
While the true value of phage therapy (PT) in human bacterial infections still awaits formal confirmation by clinical trials, new data have been accumulating indicating that in the future PT may be applied in the treatment of non-bacterial infections. Thus, "phage guests" may interact with eukaryotic cells and such interactions with cells of the immune system may protect human health (Guglielmi, 2017) and cause clinically useful immunomodulatory and anti-inflammatory effects when administered for therapeutic purposes (Górski et al., 2017; Van Belleghem et al., 2017). Recently, a vision of how these effects could translate into advances in novel means of therapy in a variety of human pathologies secondary to immune disturbances and allergy was presented (Górski et al., 2018a). In this article we present what is currently known about anti-microbial effects of phage which are not directly related to their antibacterial action and how these findings could be applied in the future in treatment of viral and fungal infections.
Collapse
Affiliation(s)
- Andrzej Górski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, United States.,Immunology Program, Stanford University, Stanford, CA, United States
| | - Maciej Przybylski
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ryszard Międzybrodzki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
14
|
Vongthilath R, Richaud Thiriez B, Dehillotte C, Lemonnier L, Guillien A, Degano B, Dalphin ML, Dalphin JC, Plésiat P. Clinical and microbiological characteristics of cystic fibrosis adults never colonized by Pseudomonas aeruginosa: Analysis of the French CF registry. PLoS One 2019; 14:e0210201. [PMID: 30620748 PMCID: PMC6324790 DOI: 10.1371/journal.pone.0210201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa is the main cause of chronic airway infection in cystic fibrosis (CF). However, for unclear reasons some patients are never colonized by P. aeruginosa. The objectives of this study were to better define the clinical, genetic, and microbiological characteristics of such a subpopulation and to identify predictive factors of non-colonization with P. aeruginosa. The French CF patient registry 2013–2014 was used to identify CF patients aged ≥ 20 years. The clinical outcomes, CF Transmembrane conductance Regulator (CFTR) genotypes, and microbiological data of patients reported positive at least once for P. aeruginosa (“Pyo” group, n = 1,827) were compared to those of patients with no history of P. aeruginosa isolation (“Never” group, n = 303). Predictive factors of non-colonization by P. aeruginosa were identified by multivariate logistic regression model with backward selection. Absence of aspergillosis (odds ratio (OR) [95% CI] = 1.64 [1.01–2.66]), absence of diabetes (2.25 [1.21–4.18]), pancreatic sufficiency (1.81 [1.30–2.52]), forced expiratory volume 1 (FEV1) ≥ 80% (3.03 [2.28–4.03]), older age at CF diagnosis (1.03 [1.02–1.04]), and absence of F508del/F508del genotype (2.17 [1.48–3.19]) were predictive clinical factors associated with absence of infection (“Never” group). Microbiologically, this same group was associated with more frequent detection of Haemophilus influenzae and lower rates of Stenotrophomonas maltophilia, Achromobacter xylosoxidans and Aspergillus spp. (all p<0.01) in sputum. This study strongly suggests that the absence of pulmonary colonization by P. aeruginosa in a minority of CF adults (14.2%) is associated with a milder form of the disease. Recent progress in the development of drugs to correct CFTR deficiency thus may be decisive in the control of P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Réchana Vongthilath
- Department of Respiratory Medicine, University Hospital Jean Minjoz, Besançon, France
| | | | | | - Lydie Lemonnier
- Medical Department of Vaincre La Mucoviscidose, Paris, France
| | - Alicia Guillien
- Department of Physiology, University Hospital Jean Minjoz, Besançon, France
| | - Bruno Degano
- Department of Physiology, University Hospital Jean Minjoz, Besançon, France
- EA3920, University of Franche-Comté, Besançon, France
| | - Marie-Laure Dalphin
- Department of Pediatric Medicine, University Hospital Jean Minjoz, Besançon, France
| | - Jean-Charles Dalphin
- Department of Respiratory Medicine, University Hospital Jean Minjoz, Besançon, France
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
| | - Patrick Plésiat
- UMR/CNRS 6249 Chrono-Environnement, University of Franche-Comté, Besançon, France
- Department of Bacteriology, University Hospital Jean Minjoz, Besançon, France
- * E-mail:
| |
Collapse
|
15
|
Melloul E, Roisin L, Durieux MF, Woerther PL, Jenot D, Risco V, Guillot J, Dannaoui E, Decousser JW, Botterel F. Interactions of Aspergillus fumigatus and Stenotrophomonas maltophilia in an in vitro Mixed Biofilm Model: Does the Strain Matter? Front Microbiol 2018; 9:2850. [PMID: 30542331 PMCID: PMC6277776 DOI: 10.3389/fmicb.2018.02850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/06/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction:Aspergillus fumigatus (Af) and Stenotrophomonas maltophilia (Sm) are pathogenic microorganisms, which coexist in the respiratory tract of cystic fibrosis (CF) patients. We recently developed an in vitro model of mixed biofilm associating Af ATCC 13073-GFP (Af13073) and Sm ATCC 13637 (Sm13637) and described an antibiosis effect. The present study aim was to assess the antibiosis of Sm on Af using different strains and to analyze the potential synergistic virulence of these strains in an in vivo Galleria mellonella model. Methods: The effect of Sm13637 was evaluated on eight Af strains and the effect of nine Sm strains was evaluated on Af13073. The strains originated from clinical cases (human and animal) and from environment. Fungal and bacterial inocula were simultaneously inoculated to initiate mixed biofilm formation. Fungal growth inhibition was analyzed by qPCR and CLSM and the fungal cell wall modifications by TEM analysis. The virulence of different Sm strains was assessed in association with Af in G. mellonella larvae. Results: All strains of Af and Sm were able to produce single and mixed biofilms. The antibiosis effect of Sm13637 was similar whatever the Af strain tested. On the other hand, the antibiosis effect of Sm strains was bacterial-fitness and strain dependent. One strain (1/9) originated from animal clinical case was never able to induce an antibiosis, even with high bacterial concentration. In the G. mellonella model, co-inoculation with Sm13637 and Af13073 showed synergism since the mortality was 50%, i.e., more than the summed virulence of both. Conclusion: Human clinical strains of Sm yielded in higher antibiosis effect on Af and in a thinner mixed biofilm, probably due to an adaptive effect of these strains. Further research covering Af increased wall thickness in the presence of Sm strains, and its correlation with modified antifungal susceptibility is encouraged in patients with chronic respiratory infections by these 2 microorganisms.
Collapse
Affiliation(s)
- Elise Melloul
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France
| | - Lolita Roisin
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France
| | - Marie-Fleur Durieux
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Service de Parasitologie-Mycologie, Limoges, France
| | - Paul-Louis Woerther
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Bactériologie-Hygiéne, Département de Microbiologie, Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France
| | - Delphine Jenot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Veronica Risco
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jacques Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Dannaoui
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Jean-Winoc Decousser
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Bactériologie-Hygiéne, Département de Microbiologie, Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France
| | - Françoise Botterel
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Microbiologie, Groupe Hospitalier Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
16
|
Zhao J, Yu W. Interaction between Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis. PeerJ 2018; 6:e5931. [PMID: 30430043 PMCID: PMC6231424 DOI: 10.7717/peerj.5931] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cystic fibrosis (CF) is a disease characterized by chronic airway infection with a high incidence and poor prognosis. Pseudomonas aeruginosa and Aspergillus fumigatus are pathogens commonly found in CF patients. Clinically, these two microorganisms often coexist in the airway of CF patients. Combined infection with P. aeruginosa and A. fumigatus results in worsening lung function and clinical condition. Methods In this review, we focus on the mutual inhibition and promotion mechanisms of P. aeruginosa and A. fumigatus in CF patients. We also summarized the mechanisms of the interaction between these pathogenic microorganisms. Results P. aeruginosa inhibits A. fumigatus growth through the effects of phenazines, the quorum sensing system, iron competition, bacteriophages, and small colony variants. P. aeruginosa induces A. fumigatus growth through volatile organic compounds and subbacteriostatic concentrations of phenazines. A. fumigatus interferes with P. aeruginosa, affecting its metabolic growth via phenazine metabolic transformation, gliotoxin production, and reduced antibiotic sensitivity. Discussion Coexistence of P. aeruginosa and A. fumigatus can lead to both mutual inhibition and promotion. In different stages of CF disease, the interaction between these two pathogenic microorganisms may shift between promotion and inhibition. A discussion of the mechanisms of P. aeruginosa and A. fumigatus interaction can be beneficial for further treatment of CF patients and for improving the prognosis of the disease.
Collapse
Affiliation(s)
- Jingming Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wencheng Yu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Zhao J, Cheng W, He X, Liu Y. The co-colonization prevalence of Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis: A systematic review and meta-analysis. Microb Pathog 2018; 125:122-128. [PMID: 30217514 DOI: 10.1016/j.micpath.2018.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE The co-colonization prevalence of P. aeruginosa and A. fumigatus in cystic fibrosis (CF) has been inconsistently reported. The purpose of this systematic review and meta-analysis was to estimate the overall co-colonization prevalence of P. aeruginosa and A. fumigatus in CF. METHODS The Embase, PubMed and Web of Science databases were systematically searched for studies reporting the co-colonization prevalence of P. aeruginosa and A. fumigatus in CF. The co-colonization prevalence of two pathogenic microorganisms in the individual studies was assessed by calculating the proportion and 95% confidence interval (CI). The random effects model was used to calculate the pooled prevalence. The I2 test was used to assess statistical heterogeneity. The funnel plot and two statistical methods were used to assess publication bias. RESULTS Twenty-three eligible studies were included in this analysis. The pooled co-colonization prevalence of P. aeruginosa and A. fumigatus in CF patients was 15.8% (95% CI: 9.9-21.8). The co-colonization prevalence of P. aeruginosa and A. fumigatus chronic colonization was lower than that of intermittent colonization, higher in sputum cultures than in bronchoalveolar lavage (BAL) cultures, and lower in children than in adults. There was a statistically significant difference in co-colonization prevalence among studies from different decades, but the prevalence was similar in different geographical regions and with different study types. CONCLUSIONS The co-colonization prevalence of P. aeruginosa and A. fumigatus in the lower respiratory tract of CF patients was high. The anti-infective treatment in exacerbation of CF should be considered to cover the two pathogenic microorganisms simultaneously. Large-scale research is still needed to obtain more accurate co-colonization data.
Collapse
Affiliation(s)
- Jingming Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, 16#, Jiangsu Road, Qingdao, 266003, PR China.
| | - Wei Cheng
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, 16#, Jiangsu Road, Qingdao, 266003, PR China
| | - Xigang He
- Department of Respiratory Medicine, People's Hospital of Rizhao Lanshan, 566#, Lanshan Xi Road, Lanshan District, Rizhao, 276807, PR China
| | - Yanli Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, 16#, Jiangsu Road, Qingdao, 266003, PR China
| |
Collapse
|
18
|
Xiao W, Gong DY, Mao B, Du XM, Cai LL, Wang MY, Fu JJ. Sputum signatures for invasive pulmonary aspergillosis in patients with underlying respiratory diseases (SPARED): study protocol for a prospective diagnostic trial. BMC Infect Dis 2018; 18:271. [PMID: 29890956 PMCID: PMC5996557 DOI: 10.1186/s12879-018-3180-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Invasive pulmonary aspergillosis (IPA) has been increasingly reported in patients with underlying respiratory diseases (URD). Early diagnosis of IPA is crucial for mortality reduction and improved prognosis, yet remains difficult. Existing diagnostic tools for IPA largely rely on the detection of biomarkers based on serum or bronchoalveolar lavage fluid (BALF), both of which have their limitations. The use of sputum sample is non-invasive, and Aspergillus detection is feasible; however, the usefulness of sputum biomarkers for the diagnosis of IPA, especially in patients with URD, has not been systematically studied. METHODS This is a prospective diagnostic trial. At least 118 participants will be recruited from respiratory wards and intensive care units. IPA is defined according to the EORTC/MSG criteria modified for patients with URD. Induced sputum and blood will be collected, and BALF will be obtained by bronchoscopy. Sputum biomarkers, including galactomannan, Aspergillus DNA, triacetylfusarinine and bis(methylthio)gliotoxin will be determined, and the presence of a JF5 antigen will be examined with a lateral fluid device. The sensitivity, specificity, negative predictive value, positive predictive value and diagnostic odds ratio will be computed for different biomarkers and compared using the McNemar χ2 test. Receiver operating characteristic analyses will be performed, and the cut-off values will be established. Participants will receive follow-up evaluations at 3 months and 6 months after recruitment. The difference in hospital stay and survival will be analysed, and the relationships between the levels of biomarkers and hospital stay and survival will be analysed via regression models. DISCUSSION We have developed and verified the feasibility of Aspergillus-related biomarker assays for sputum. The study findings will contribute to a novel look at the diagnostic performance of sputum biomarkers in IPA and provide important insight into the improvement of the early diagnosis of IPA, particularly in patients with URD. TRIAL REGISTRATION This study has been registered with the Chinese Clinical Trial Registry ( ChiCTR-DPD-16009070 ) on 24th of August 2016.
Collapse
Affiliation(s)
- Wei Xiao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - De-ying Gong
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Mao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-miao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin-Li Cai
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Min-yu Wang
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan-juan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. THE LANCET RESPIRATORY MEDICINE 2018; 6:461-471. [PMID: 29778403 PMCID: PMC5971213 DOI: 10.1016/s2213-2600(18)30171-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 01/10/2023]
Abstract
Background Pathogen surveillance is challenging but crucial in children with cystic fibrosis—who are often non-productive of sputum even if actively coughing—because infection and lung disease begin early in life. The role of sputum induction as a diagnostic tool for infection has not previously been systematically addressed in young children with cystic fibrosis. We aimed to assess the pathogen yield from sputum induction compared with that from cough swab and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage. Methods This prospective internally controlled interventional trial was done at the Children's Hospital for Wales (Cardiff, UK) in children with cystic fibrosis aged between 6 months and 18 years. Samples from cough swab, sputum induction, and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage were matched for within-patient comparisons. Primary outcomes were comparative pathogen yield between sputum induction and cough swab for stage 1, and between sputum induction, and single-lobe, two-lobe, and six-lobe bronchoalveolar lavage for stage 2. Data were analysed as per protocol. This study is registered with the UK Clinical Research Network (14615) and with the International Standard Randomised Controlled Trial Network Registry (12473810). Findings Between Jan 23, 2012, and July 4, 2017, 124 patients were prospectively recruited to the trial and had 200 sputum induction procedures for stage 1. 167 (84%) procedures were successful and the procedure was well tolerated. Of the 167 paired samples, 63 (38%) sputum-induction samples were pathogen positive compared with 24 (14%) cough swabs (p<0·0001; odds ratio [OR] 7·5; 95% CI 3·19–17·98). More pathogens were isolated from sputum induction than cough swab (79 [92%] of 86 vs 27 [31%] of 86; p<0·0001). For stage 2, 35 patients had a total of 41 paired sputum-induction and bronchoalveolar lavage procedures. Of the 41 paired samples, 28 (68%) were positive for at least one of the concurrent samples. 39 pathogens were isolated. Sputum induction identified 27 (69%) of the 39 pathogens, compared with 22 (56%; p=0·092; OR 3·3, 95% CI 0·91–12·11) on single-lobe, 28 (72%; p=1·0; OR 1·1, 95% CI 0·41–3·15) on two-lobe, and 33 (85%; p=0·21; OR 2·2, 95% CI 0·76–6·33) on six-lobe bronchoalveolar lavage. Interpretation Sputum induction is superior to cough swab for pathogen detection, is effective at sampling the lower airway, and is a credible surrogate for bronchoalveolar lavage in symptomatic children. A substantial number of bronchoscopies could be avoided if sputum induction is done first and pathogens are appropriately treated. Both sputum induction and six-lobe bronchoalveolar lavage provide independent, sizeable gains in pathogen detection compared with the current gold-standard two-lobe bronchoalveolar lavage. We propose that sputum induction and six-lobe bronchoalveolar lavage combined are used as standard of care for comprehensive lower airway pathogen detection in children with cystic fibrosis. Funding Health and Care Research Wales—Academic Health Science Collaboration and Wellcome Trust Institutional Strategic Support Fund.
Collapse
|
20
|
Träger J, Melichar VO, Meyer R, Rauh M, Bogdan C, Held J. Serum (1→3)-β-D-glucan and galactomannan levels in patients with cystic fibrosis: a retrospective cohort study. BMC Pulm Med 2018; 18:52. [PMID: 29587700 PMCID: PMC5870392 DOI: 10.1186/s12890-018-0614-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Aspergillus fumigatus is frequently encountered in sputum samples of patients with cystic fibrosis (CF), which traditionally has been interpreted as saprophytic airway colonization. However, this mere bystander role has been challenged by recent data. There is now evidence that Aspergillus fumigatus accelerates the decline of pulmonary function. (1→3)-β-D-glucan (BDG) and galactomannan (GM) are highly sensitive fungal biomarkers that are used to diagnose invasive fungal disease. However, their diagnostic value in CF patients is largely unknown. Methods We conducted a retrospective cohort study on 104 CF patients to determine whether serum BDG and GM levels correlate with parameters such as Aspergillus-positive sputum cultures and lung function. Results Aspergillus fumigatus was persistently detected in 22 of the 104 CF patients (21%). Mean serum BDG and GM levels in the Aspergillus-positive patients were significantly higher than in those without persistent Aspergillus detection (89 versus 40 pg/ml [p = 0.022] and 0.30 versus 0.15 ODI [p = 0.013], respectively). 27 and 7 patients had elevated BDG (≥ 60 pg/ml) or GM levels (> 0.5 ODI), respectivly. BDG and GM levels showed a significant correlation (p = 0.004). Patients with increased serum concentrations of BDG were more frequently Aspergillus-positive (40.7 versus 14.3%, p = 0.004) and had a significantly lower forced expiratory volume in one second (FEV1) than patients with a normal BDG (61.6 versus 77.1%, p = 0.007). In the multivariate analysis, BDG but not GM or the growth of A. fumigatus, proved to be an independent predictor for the FEV1. Conclusions CF patients with persistent Aspergillus detection have elevated BDG and GM levels which ranged between healthy and invasively infected patients. Serum BDG may be superior to GM and fungal culture in predicting an impaired lung function in CF patients.
Collapse
Affiliation(s)
- Johannes Träger
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany
| | - Volker Otto Melichar
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Renate Meyer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany
| | - Manfred Rauh
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany
| | - Jürgen Held
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany.
| |
Collapse
|
21
|
Hong G, Psoter KJ, Jennings MT, Merlo CA, Boyle MP, Hadjiliadis D, Kawut SM, Lechtzin N. Risk factors for persistent Aspergillus respiratory isolation in cystic fibrosis. J Cyst Fibros 2018; 17:624-630. [PMID: 29444760 DOI: 10.1016/j.jcf.2018.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Aspergillus species are increasingly detected in the respiratory tracts of individuals with cystic fibrosis (CF), and chronic Aspergillus fumigatus is associated with more frequent hospitalizations for pulmonary exacerbations. However, patient and clinical factors that may contribute to the acquisition of persistent Aspergillus infection have yet to be identified. The objective of this study was to identify risk factors for development of Aspergillus respiratory isolation in CF. METHODS A retrospective cohort study of participants in the CF Foundation Patient Registry between 2006 and 2012 was conducted. Generalized estimating equation models were used to evaluate the association between the development of persistent Aspergillus respiratory isolation and individual level demographic and clinical characteristics. RESULTS Among 16,095 individuals with CF followed from 2006 to 2012, 1541 (9.6%) subjects developed persistent Aspergillus isolation. White race (Odds Ratio [OR] 1.74, 95% confidence interval 1.23, 2.48, p<0.001) and pancreatic insufficiency (OR 1.50, 95% CI 1.09, 2.06, p<0.001) were found to be risk factors for persistent Aspergillus isolation. Chronic therapies, including inhaled antibiotics (OR 1.33; 95% CI 1.21, 1.46), macrolides (OR 1.23, 95% CI 1.14, 1.32, p<0.001), and inhaled corticosteroids (OR 1.13, 95% CI 1.04, 1.20, p<0.001) were also independently associated with an increased risk for persistent Aspergillus isolation. CONCLUSIONS We identified macrolides and inhaled antibiotics, which individually have been shown to improve CF outcomes, and inhaled corticosteroids as risk factors for developing persistent Aspergillus isolation. Further work is needed to determine whether these associations are causal or due to confounding by other factors.
Collapse
Affiliation(s)
- Gina Hong
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States.
| | - Kevin J Psoter
- Johns Hopkins School of Medicine, Department of Pediatrics, Division of General Pediatrics and Adolescent Medicine, Baltimore, MD, United States
| | - Mark T Jennings
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Christian A Merlo
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Michael P Boyle
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States; Cystic Fibrosis Foundation, Bethesda, MD, United States
| | - Denis Hadjiliadis
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States
| | - Steven M Kawut
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States
| | - Noah Lechtzin
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Everaerts S, Lagrou K, Vermeersch K, Dupont LJ, Vanaudenaerde BM, Janssens W. Aspergillus fumigatus Detection and Risk Factors in Patients with COPD-Bronchiectasis Overlap. Int J Mol Sci 2018; 19:ijms19020523. [PMID: 29425123 PMCID: PMC5855745 DOI: 10.3390/ijms19020523] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022] Open
Abstract
The role of Aspergillus fumigatus in the airways of chronic obstructive pulmonary disease (COPD) patients with bronchiectasis is currently unclear. We searched for a sensitive and noninvasive method for A. fumigatus detection in the sputum of COPD patients and addressed potential risk factors for its presence. Induced sputum samples of 18 COPD patients and 17 COPD patients with bronchiectasis were analyzed for the presence of A. fumigatus by culture, galactomannan detection, and PCR. Of the patients with COPD–bronchiectasis overlap, 23.5% had a positive culture for A. fumigatus versus 10.5% of COPD patients without bronchiectasis (p = 0.39). The median sputum galactomannan optical density index was significantly higher in patients with COPD and bronchiectasis compared with patients with COPD alone (p = 0.026) and ranged between the levels of healthy controls and A. fumigatus-colonized cystic fibrosis patients. Both the presence of bronchiectasis and the administration of systemic corticosteroids were associated with sputum galactomannan (p = 0.0028 and p = 0.0044, respectively) and showed significant interaction (p interaction = 0.022). PCR for Aspergillus was found to be a less sensitive method, but was critically dependent on the extraction technique. The higher sputum galactomannan levels suggest a more abundant presence of A. fumigatus in the airways of patients with COPD–bronchiectasis overlap compared with patients with COPD without bronchiectasis, particularly when systemic corticosteroids are administered.
Collapse
Affiliation(s)
- Stephanie Everaerts
- Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium.
- Department of Chronic Diseases, Metabolism & Aging, Laboratory of Respiratory Diseases, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | - Kristina Vermeersch
- Department of Chronic Diseases, Metabolism & Aging, Laboratory of Respiratory Diseases, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | - Lieven J Dupont
- Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium.
- Department of Chronic Diseases, Metabolism & Aging, Laboratory of Respiratory Diseases, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | - Bart M Vanaudenaerde
- Department of Chronic Diseases, Metabolism & Aging, Laboratory of Respiratory Diseases, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | - Wim Janssens
- Department of Respiratory Diseases, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium.
- Department of Chronic Diseases, Metabolism & Aging, Laboratory of Respiratory Diseases, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
23
|
Aspergillus Bronchitis in Patients with Cystic Fibrosis. Mycopathologia 2017; 183:61-69. [PMID: 28819878 DOI: 10.1007/s11046-017-0190-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/06/2017] [Indexed: 10/19/2022]
Abstract
Aspergillus fumigatus frequently colonizes the airways of patients with cystic fibrosis (CF) and may cause various severe infections, such as bronchitis. Serological data, sputum dependent markers and longitudinal data of treated cases of Aspergillus bronchitis were evaluated for further description of this infection. This study, which comprises three substudies, aimed to analyze epidemiological data of Aspergillus in CF and the entity of Aspergillus bronchitis. In a first step, data of the German Cystic Fibrosis Registry were used to evaluate the frequency of Aspergillus colonization in patients with CF (n = 2599). Then a retrospective analysis of 10 cases of Aspergillus bronchitis was performed to evaluate longitudinal data for lung function and clinical presentation parameters: sputum production, cough and physical capacity. Finally, a prospective cohort study (n = 22) was conducted to investigate serological markers for Aspergillus bronchitis: total serum IgE, specific serum IgE, specific serum IgG, as well as sputum galactomannan, real-time PCR detection of Aspergillus DNA in sputum and fungal cultures. Analysis of the German CF registry revealed an Aspergillus colonization rate of 32.5% among the 2599 patients. A retrospective data analysis of 10 treated cases revealed the clinical course of Aspergillus bronchitis, including repeated positive sputum culture findings for A. fumigatus, no antibiotic treatment response, total serum IgE levels <200 kU/l, no observation of new pulmonary infiltrates and appropriate antifungal treatment response. Antifungal treatment durations of 4 ± 1.6 (2-6) weeks significantly reduced cough (P = 0.0067), sputum production (P < 0.0001) and lung function measures (P = 0.0358) but not physical capacity (P = 0.0794). From this retrospective study, a prevalence of 1.6% was calculated. In addition, two cases of Aspergillus bronchitis were identified in the prospective cohort study according to immunological, molecular and microbiological parameters. A prevalence of 9% was assessed. Aspergillus bronchitis appears to occur in a minority of colonized CF patients. Antifungal treatment may reduce respiratory symptoms and restore lung function.
Collapse
|
24
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
25
|
Comparative performance of Aspergillus galactomannan ELISA and PCR in sputum from patients with ABPA and CPA. J Microbiol Methods 2017. [PMID: 28645480 DOI: 10.1016/j.mimet.2017.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Galactomannan (GM) and Aspergillus DNA detection are useful tools for the diagnosis of invasive pulmonary aspergillosis (IPA), primarily in blood and bronchoscopy samples. This study aimed to evaluate the utility of both markers for detection of Aspergillus in sputum from patients with allergic bronchopulmonary aspergillosis (ABPA) and chronic pulmonary aspergillosis (CPA). METHODS ABPA or CPA demographic patient data were retrieved. This retrospective observational audit included 159 patients with at least one sputum pair. 223 sputum sample pairs were analysed, as well as six control samples for GM only. Real time PCR was performed following sputum DNA extraction using the MycAssay™ Aspergillus kit and cycle thresholds were subtracted from 38 to give positive values (transformed Ct, TCt). RESULTS The mean age of the patients was 61.81years (SD: ±11.06; range 29-100). One hundred and twenty-six (79.2%) had CPA. Cultures were positive for fungi in 13.1% of the samples, and A. fumigatus was the commonest (11.9%) fungus isolated. Receiver operating characteristic (ROC curve) analysis of sputum GM comparing TCt of >0.0, and >2.0 to derive GMI cut-off values showed a cut-off of 6.5. About 50% of sputa with strongly positive PCR values had GM values>6.5. Two of six (33%) control samples had GM indices>6.5. CONCLUSION It is not clear that GM determinations in sputum are useful for diagnosis of either CPA or ABPA, or following therapy.
Collapse
|
26
|
Abstract
Galactosaminogalactan and Pel are cationic heteropolysaccharides produced by the opportunistic pathogens Aspergillus fumigatus and Pseudomonas aeruginosa, respectively. These exopolysaccharides both contain 1,4-linked N-acetyl-d-galactosamine and play an important role in biofilm formation by these organisms. Proteins containing glycoside hydrolase domains have recently been identified within the biosynthetic pathway of each exopolysaccharide. Recombinant hydrolase domains from these proteins (Sph3h from A. fumigatus and PelAh from P. aeruginosa) were found to degrade their respective polysaccharides in vitro. We therefore hypothesized that these glycoside hydrolases could exhibit antibiofilm activity and, further, given the chemical similarity between galactosaminogalactan and Pel, that they might display cross-species activity. Treatment of A. fumigatus with Sph3h disrupted A. fumigatus biofilms with an EC50 of 0.4 nM. PelAh treatment also disrupted preformed A. fumigatus biofilms with EC50 values similar to those obtained for Sph3h In contrast, Sph3h was unable to disrupt P. aeruginosa Pel-based biofilms, despite being able to bind to the exopolysaccharide. Treatment of A. fumigatus hyphae with either Sph3h or PelAh significantly enhanced the activity of the antifungals posaconazole, amphotericin B, and caspofungin, likely through increasing antifungal penetration of hyphae. Both enzymes were noncytotoxic and protected A549 pulmonary epithelial cells from A. fumigatus-induced cell damage for up to 24 h. Intratracheal administration of Sph3h was well tolerated and reduced pulmonary fungal burden in a neutropenic mouse model of invasive aspergillosis. These findings suggest that glycoside hydrolases can exhibit activity against diverse microorganisms and may be useful as therapeutic agents by degrading biofilms and attenuating virulence.
Collapse
|
27
|
Aspergillus Species in Bronchiectasis: Challenges in the Cystic Fibrosis and Non-cystic Fibrosis Airways. Mycopathologia 2017; 183:45-59. [DOI: 10.1007/s11046-017-0143-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
|
28
|
Cowley AC, Thornton DJ, Denning DW, Horsley A. Aspergillosis and the role of mucins in cystic fibrosis. Pediatr Pulmonol 2017; 52:548-555. [PMID: 27870227 PMCID: PMC5396363 DOI: 10.1002/ppul.23618] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
The prevalence of aspergillosis in CF patients has until recently been underestimated, but increasing evidence suggests that it may play an important role in the progression of CF lung disease. In healthy airways, Aspergillus fumigatus can be efficiently removed from the lung by mechanisms such as mucociliary clearance and cough. However, these mechanisms are defective in CF, allowing pathogens such as A. fumigatus to germinate and establish chronic infections within the airways. The precise means by which A. fumigatus contributes to CF lung disease remain largely unclear. As the first point of contact within the lung, and an important component of the innate immune system, it is likely that the mucus barrier plays an important role in this process. Study of the functional interplay between this vital protective barrier, and in particular its principal structural components, the polymeric gel-forming mucins, and CF pathogens such as A. fumigatus, is at an early stage. A. fumigatus protease activity has been shown to upregulate mucus production by inducing mucin mRNA and protein expression, and A. fumigatus proteases and glycosidases are able to degrade mucins. This may allow A. fumigatus to alter mucus barrier properties to promote fungal colonization of the airways and/or utilize mucins as a nutrient source. Moreover, conidial surface lectin binding to mucin glycans is a key aspect of clearance of Aspergillus from the lung in health but may be an important aspect of colonization, where mucociliary clearance is compromised, as in the CF lung. Here we discuss the nature of the mucus barrier and its mucin components in CF, and how they may be implicated in A. fumigatus infection. Pediatr Pulmonol 2017;52:548-555. © 2016 The Authors. Pediatric Pulmonology. Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abigail C Cowley
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom.,Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom.,Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David W Denning
- Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Alexander Horsley
- Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Adult CF Centre, Manchester, United Kingdom
| |
Collapse
|
29
|
Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3 glucan synthase activity. ISME JOURNAL 2017; 11:1578-1591. [PMID: 28338676 PMCID: PMC5584477 DOI: 10.1038/ismej.2017.32] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus are the two microorganisms responsible for most of the chronic infections in cystic fibrosis patients. P. aeruginosa is known to produce quorum-sensing controlled rhamnolipids during chronic infections. Here we show that the dirhamnolipids secreted from P. aeruginosa (i) induce A. fumigatus to produce an extracellular matrix, rich in galactosaminogalactan, 1,8-dihydroxynaphthalene (DHN)- and pyo-melanin, surrounding their hyphae, which facilitates P. aeruginosa binding and (ii) inhibit A. fumigatus growth by blocking β1,3 glucan synthase (GS) activity, thus altering the cell wall architecture. A. fumigatus in the presence of diRhls resulted in a growth phenotype similar to that upon its treatment with anjpegungal echinocandins, showing multibranched hyphae and thicker cell wall rich in chitin. The diRhl structure containing two rhamnose moieties attached to fatty acyl chain is essential for the interaction with β1,3 GS; however, the site of action of diRhls on GS is different from that of echinocandins, and showed synergistic anjpegungal effect with azoles.
Collapse
|
30
|
Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients. J Clin Microbiol 2017; 55:1122-1130. [PMID: 28100601 DOI: 10.1128/jcm.02182-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/13/2017] [Indexed: 01/26/2023] Open
Abstract
The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus, Scedosporium, and Trichosporon species and Exophiala dermatitidis, in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions.
Collapse
|
31
|
Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Transl Res 2017; 179:84-96. [PMID: 27559681 DOI: 10.1016/j.trsl.2016.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023]
Abstract
Significant advances in culture-independent methods have expanded our knowledge about the diversity of the lung microbial environment. Complex microorganisms and microbial communities can now be identified in the distal airways in a variety of respiratory diseases, including cystic fibrosis (CF) and the posttransplantation lung. Although there are significant methodologic concerns about sampling the lung microbiome, several studies have now shown that the microbiome of the lower respiratory tract is distinct from the upper airway. CF is a disease characterized by chronic airway infections that lead to significant morbidity and mortality. Traditional culture-dependent methods have identified a select group of pathogens that cause exacerbations in CF, but studies using bacterial 16S rRNA gene-based microarrays have shown that the CF microbiome is an intricate and dynamic bacterial ecosystem, which influences both host immune health and disease pathogenesis. These microbial communities can shift with external influences, including antibiotic exposure. In addition, there have been a number of studies suggesting a link between the gut microbiome and respiratory health in CF. Compared with CF, there is significantly less knowledge about the microbiome of the transplanted lung. Risk factors for bronchiolitis obliterans syndrome, one of the leading causes of death, include microbial infections. Lung transplant patients have a unique lung microbiome that is different than the pretransplanted microbiome and changes with time. Understanding the host-pathogen interactions in these diseases may suggest targeted therapies and improve long-term survival in these patients.
Collapse
|
32
|
Abstract
For a long time, the microbiology of cystic fibrosis has been focussed on Pseudomonas aeruginosa and associated Gram-negative pathogens. An increasing body of evidence has been compiled demonstrating an important role for moulds and yeasts within this complex patient group. Whether or not fungi are active participants, spectators or transient passersby remain to be elucidated. However, functionally, they do appear to play a contributory role in pathogenesis, albeit we do not know if this is a direct or indirect effect. The following review examines some of the key evidence for the role of fungi in CF pathogenesis.
Collapse
|
33
|
Characteristics of Aspergillus fumigatus in Association with Stenotrophomonas maltophilia in an In Vitro Model of Mixed Biofilm. PLoS One 2016; 11:e0166325. [PMID: 27870863 PMCID: PMC5117647 DOI: 10.1371/journal.pone.0166325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
Background Biofilms are communal structures of microorganisms that have long been associated with a variety of persistent infections poorly responding to conventional antibiotic or antifungal therapy. Aspergillus fumigatus fungus and Stenotrophomonas maltophilia bacteria are examples of the microorganisms that can coexist to form a biofilm especially in the respiratory tract of immunocompromised patients or cystic fibrosis patients. The aim of the present study was to develop and assess an in vitro model of a mixed biofilm associating S. maltophilia and A. fumigatus by using analytical and quantitative approaches. Materials and Methods An A. fumigatus strain (ATCC 13073) expressing a Green Fluorescent Protein (GFP) and an S. maltophilia strain (ATCC 13637) were used. Fungal and bacterial inocula (105 conidia/mL and 106 cells/mL, respectively) were simultaneously deposited to initiate the development of an in vitro mixed biofilm on polystyrene supports at 37°C for 24 h. The structure of the biofilm was analysed via qualitative microscopic techniques like scanning electron and transmission electron microscopy, and fluorescence microscopy, and by quantitative techniques including qPCR and crystal violet staining. Results Analytic methods revealed typical structures of biofilm with production of an extracellular matrix (ECM) enclosing fungal hyphae and bacteria. Quantitative methods showed a decrease of A. fumigatus growth and ECM production in the mixed biofilm with antibiosis effect of the bacteria on the fungi seen as abortive hyphae, limited hyphal growth, fewer conidia, and thicker fungal cell walls. Conclusion For the first time, a mixed A. fumigatus—S. maltophilia biofilm was validated by various analytical and quantitative approaches and the bacterial antibiosis effect on the fungus was demonstrated. The mixed biofilm model is an interesting experimentation field to evaluate efficiency of antimicrobial agents and to analyse the interactions between the biofilm and the airways epithelium.
Collapse
|
34
|
Gonçalves SM, Lagrou K, Duarte-Oliveira C, Maertens JA, Cunha C, Carvalho A. The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases. Virulence 2016; 8:673-684. [PMID: 27820674 DOI: 10.1080/21505594.2016.1257458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi of the genus Aspergillus are responsible for several superficial and invasive infections and allergic syndromes. The risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and pathogen exposure. There is increasing evidence that the individual microbiome supervises the outcome of the host-fungus interaction by influencing mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. Microbiome-mediated mechanisms of resistance allow therefore the control of fungal colonization, preventing the onset of overt disease, particularly in patients with underlying immune dysfunction. Here, we review this emerging area of research and discuss the contribution of the microbiota (and its dysbiosis), including its immunoregulatory properties and relationship with the metabolic activity of commensals, to respiratory fungal diseases. Finally, we highlight possible strategies aimed at decoding the microbiome-metabolome dialog and at its exploitation toward personalized medical interventions in patients at high risk of infection.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| | - Katrien Lagrou
- c Department of Microbiology and Immunology , KU Leuven - University of Leuven , Leuven , Belgium.,d Department of Laboratory Medicine and National Reference Center for Medical Mycology , University Hospitals Leuven , Leuven , Belgium
| | - Cláudio Duarte-Oliveira
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| | - Johan A Maertens
- e Department of Hematology , University Hospitals Leuven , Leuven , Belgium
| | - Cristina Cunha
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| | - Agostinho Carvalho
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| |
Collapse
|
35
|
De Soyza A, Aliberti S. Bronchiectasis and Aspergillus: How are they linked? Med Mycol 2016; 55:69-81. [PMID: 27794529 DOI: 10.1093/mmy/myw109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/25/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022] Open
Abstract
Bronchiectasis is a chronic airway infection syndrome, distinct from cystic fibrosis that is rising in prevalence and is associated with significant morbidity and mortality. It can be caused by many etiologies including post-infectious effects or be seen in common lung diseases such as chronic obstructive pulmonary disease (COPD) or severe asthma. Bronchiectasis is associated with many Aspergillus-associated syndromes: allergic bronchopulmonary aspergillosis (ABPA) may complicate asthma, thus leading to bronchiectasis as part of the diagnostic criteria of ABPA or can complicate preexisting bronchiectasis due to another etiology. Aspergilloma can develop in areas of lung damage seen in patients with bronchiectasis, whereas fungal bronchitis may lead to later bronchiectasis. Invasive aspergillosis, perhaps more commonly viewed as a consequence of significant immunosuppression, is also seen in the absence of immunosuppression in those with underlying lung diseases including bronchiectasis. The pathogenesis and treatments of these diverse Aspergillus-associated diseases in bronchiectasis are discussed.
Collapse
Affiliation(s)
- Anthony De Soyza
- Institute of Cellular Medicine, Newcastle University NE2 4HH; and Adult Bronchiectasis Service, Department of Respiratory Medicine, Freeman Hospital, Heaton Road, Newcastle, NE7 7DN, UK
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
36
|
Burgel PR, Paugam A, Hubert D, Martin C. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy. Infect Drug Resist 2016; 9:229-238. [PMID: 27703383 PMCID: PMC5036609 DOI: 10.2147/idr.s63621] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is the main fungus cultured in the airways of patients with cystic fibrosis (CF). Allergic bronchopulmonary aspergillosis occurs in ~10% of CF patients and is clearly associated with airway damage and lung function decline. The effects of A. fumigatus colonization in the absence of allergic bronchopulmonary aspergillosis are less well established. Retrospective clinical studies found associations of A. fumigatus-positive cultures with computed tomography scan abnormalities, greater risk of CF exacerbations and hospitalizations, and/or lung function decline. These findings were somewhat variable among studies and provided only circumstantial evidence for a role of A. fumigatus colonization in CF lung disease progression. The availability of a growing number of oral antifungal triazole drugs, together with the results of nonrandomized case series suggesting positive effects of azole therapies, makes it tempting to treat CF patients with these antifungal drugs. However, the only randomized controlled trial that has used itraconazole in CF patients showed no significant benefit. Because triazoles may have significant adverse effects and drug interactions, and because their prolonged use has been associated with the emergence of azole-resistant A. fumigatus isolates, it remains unclear whether or not CF patients benefit from azole therapy.
Collapse
Affiliation(s)
- Pierre-Régis Burgel
- Department of Respiratory Medicine, Cochin Hospital, Assistance Publique - Hôpitaux de Paris; Université Paris Descartes, Sorbonne Paris Cité
| | - André Paugam
- Université Paris Descartes, Sorbonne Paris Cité; Parasitology-Mycology Laboratory, Cochin Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Dominique Hubert
- Department of Respiratory Medicine, Cochin Hospital, Assistance Publique - Hôpitaux de Paris; Université Paris Descartes, Sorbonne Paris Cité
| | - Clémence Martin
- Department of Respiratory Medicine, Cochin Hospital, Assistance Publique - Hôpitaux de Paris; Université Paris Descartes, Sorbonne Paris Cité
| |
Collapse
|
37
|
Penner JC, Ferreira JAG, Secor PR, Sweere JM, Birukova MK, Joubert LM, Haagensen JAJ, Garcia O, Malkovskiy AV, Kaber G, Nazik H, Manasherob R, Spormann AM, Clemons KV, Stevens DA, Bollyky PL. Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. MICROBIOLOGY-SGM 2016; 162:1583-1594. [PMID: 27473221 DOI: 10.1099/mic.0.000344] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) are major human pathogens known to interact in a variety of disease settings, including airway infections in cystic fibrosis. We recently reported that clinical CF isolates of Pa inhibit the formation and growth of Af biofilms. Here, we report that the bacteriophage Pf4, produced by Pa, can inhibit the metabolic activity of Af biofilms. This phage-mediated inhibition was dose dependent, ablated by phage denaturation, and was more pronounced against preformed Af biofilm rather than biofilm formation. In contrast, planktonic conidial growth was unaffected. Two other phages, Pf1 and fd, did not inhibit Af, nor did supernatant from a Pa strain incapable of producing Pf4. Pf4, but not Pf1, attaches to Af hyphae in an avid and prolonged manner, suggesting that Pf4-mediated inhibition of Af may occur at the biofilm surface. We show that Pf4 binds iron, thus denying Af a crucial resource. Consistent with this, the inhibition of Af metabolism by Pf4 could be overcome with supplemental ferric iron, with preformed biofilm more resistant to reversal. To our knowledge, this is the first report of a bacterium producing a phage that inhibits the growth of a fungus and the first description of a phage behaving as an iron chelator in a biological system.
Collapse
Affiliation(s)
- Jack C Penner
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jose A G Ferreira
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Patrick R Secor
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Johanna M Sweere
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Stanford Immunology Program, Stanford University, Stanford, CA, USA
| | - Maria K Birukova
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Stanford Immunology Program, Stanford University, Stanford, CA, USA
| | - Lydia-Marie Joubert
- Cell Sciences Imaging Facility (CSIF), Stanford University Medical School, Stanford, CA, USA
| | - Janus A J Haagensen
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Omar Garcia
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andrey V Malkovskiy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Biomaterial and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hasan Nazik
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Department of Medical Microbiology, Istanbul University, Istanbul, Turkey
| | - Robert Manasherob
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Alfred M Spormann
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Karl V Clemons
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.,Stanford Immunology Program, Stanford University, Stanford, CA, USA
| |
Collapse
|
38
|
Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JAH, Bennett JE. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63:e1-e60. [PMID: 27365388 DOI: 10.1093/cid/ciw326] [Citation(s) in RCA: 1789] [Impact Index Per Article: 198.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
- Thomas F Patterson
- University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System
| | | | - David W Denning
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, United Kingdom
| | - Jay A Fishman
- Massachusetts General Hospital and Harvard Medical School
| | | | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Vicki A Morrison
- Hennepin County Medical Center and University of Minnesota, Minneapolis
| | | | - Brahm H Segal
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, and Roswell Park Cancer Institute, New York
| | | | | | - Thomas J Walsh
- New York-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | | | | | - John E Bennett
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Hayes GE, Novak-Frazer L. Chronic Pulmonary Aspergillosis-Where Are We? and Where Are We Going? J Fungi (Basel) 2016; 2:jof2020018. [PMID: 29376935 PMCID: PMC5753080 DOI: 10.3390/jof2020018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic pulmonary aspergillosis (CPA) is estimated to affect 3 million people worldwide making it an under recognised, but significant health problem across the globe, conferring significant morbidity and mortality. With variable disease forms, high levels of associated respiratory co-morbidity, limited therapeutic options and prolonged treatment strategies, CPA is a challenging disease for both patients and healthcare professionals. CPA can mimic smear-negative tuberculosis (TB), pulmonary histoplasmosis or coccidioidomycosis. Cultures for Aspergillus are usually negative, however, the detection of Aspergillus IgG is a simple and sensitive test widely used in diagnosis. When a fungal ball/aspergilloma is visible radiologically, the diagnosis has been made late. Sometimes weight loss and fatigue are predominant symptoms; pyrexia is rare. Despite the efforts of the mycology community, and significant strides being taken in optimising the care of these patients, much remains to be learnt about this patient population, the disease itself and the best use of available therapies, with the development of new therapies being a key priority. Here, current knowledge and practices are reviewed, and areas of research priority highlighted.
Collapse
Affiliation(s)
- Gemma E Hayes
- The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Academic Health Science Centre, 46 Grafton Street, Manchester M13 9NT, UK.
- National Aspergillosis Centre, 2nd Floor Education and Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT, UK.
| | - Lilyann Novak-Frazer
- The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Academic Health Science Centre, 46 Grafton Street, Manchester M13 9NT, UK.
- The University of Manchester, Manchester Academic Health Science Centre, 2nd Floor Education and Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT, UK.
- Mycology Reference Centre, Manchester, 2nd Floor Education and Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT, UK.
| |
Collapse
|
40
|
Abstract
In vivo, Aspergillus fumigatus grows as a typical biofilm with hyphae covered by an extracellular matrix (ECM) composed of polysaccharides, galactomannan, and galactosaminogalactan. α1,3 glucans and melanin are also constitutive of the ECM in aspergilloma but not in invasive aspergillosis. In vitro, two biofilm models were established to mimic the in vivo situation. The first model (model 1) uses submerged liquid conditions and is characterized by slow growth, while the second model (model 2) uses agar medium and aerial conditions and is characterized by rapid growth. The composition of the ECM was studied only in the second model and has been shown to be composed of galactomannan, galactosaminogalactan (GAG), and α1,3 glucans, melanin, antigens, and hydrophobins. The presence of extracellular DNA was detected in model 1 biofilm but not in model 2. Transcriptomic analysis employing both biofilm models showed upregulation of genes coding for proteins involved in the biosynthesis of secondary metabolites, adhesion, and drug resistance. However, most data on A. fumigatus biofilms have been obtained in vitro and should be confirmed using in vivo animal models. There is a need for new therapeutic antibiofilm strategies that focus on the use of combination therapy, since biofilm formation poses an important clinical problem due to their resistance to antifungal agents. Furthermore, in vivo investigations of A. fumigatus biofilms that incorporate the associated microbiota are needed. Such studies will add another layer of complexity to our understanding of the role of A. fumigatus biofilm during lung invasion.
Collapse
|
41
|
Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus. mBio 2016; 7:e00219. [PMID: 26980832 PMCID: PMC4807360 DOI: 10.1128/mbio.00219-16] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. Microbiota studies have shown that pathogens cannot be studied individually anymore and that the establishment and progression of a specific disease are due not to a single microbial species but are the result of the activity of many species living together. To date, the interaction between members of the human microbiota has been analyzed in situations of direct contact or liquid-mediated contact between organisms. This study showed unexpectedly that human opportunistic pathogens can interact at a distance after sensing volatiles emitted by another microbial species. This finding will open a new research avenue for the understanding of microbial communities.
Collapse
|
42
|
Shirazi F, Ferreira JAG, Stevens DA, Clemons KV, Kontoyiannis DP. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis. PLoS One 2016; 11:e0150155. [PMID: 26930399 PMCID: PMC4773012 DOI: 10.1371/journal.pone.0150155] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/10/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (p<0.0001). Intracellular ROS levels were elevated (p<0.001) in NMuc-CF-treated Af biofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (p<0.0001) filtrates. Exposure to filtrates resulted in more DNA fragmentation in Af biofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.
Collapse
Affiliation(s)
- Fazal Shirazi
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M D Anderson Cancer Center, Houston, TX, 77030, United States of America
| | - Jose A. G. Ferreira
- Div. of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, 94305, United States of America
- California Institute for Medical Research, San Jose, California, 95128, United States of America
| | - David A. Stevens
- Div. of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, 94305, United States of America
- California Institute for Medical Research, San Jose, California, 95128, United States of America
| | - Karl V. Clemons
- Div. of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, 94305, United States of America
- California Institute for Medical Research, San Jose, California, 95128, United States of America
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M D Anderson Cancer Center, Houston, TX, 77030, United States of America
| |
Collapse
|
43
|
Cabaret O, Bonnal C, Canoui-Poitrine F, Emirian A, Bizouard G, Levesque E, Maitre B, Fihman V, Decousser JW, Botterel F. Concomitant presence of Aspergillus fumigatus and Stenotrophomonas maltophilia in the respiratory tract: a new risk for patients with liver disease? J Med Microbiol 2016; 65:414-419. [PMID: 26872817 DOI: 10.1099/jmm.0.000233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Concomitant lung colonization by Aspergillus fumigatus and Stenotrophomonas maltophilia was reported mainly in patients with cystic fibrosis (CF) and immunocompromised patients. The aim of the study was to assess the frequency of co-culture of A. fumigatus and S. maltophilia in respiratory samples of hospitalized patients, and to determine its associated factors. Between 2007 and 2011, all patients who had A. fumigatus in their respiratory samples were retrospectively enrolled in the study. Their clinical and laboratory data, including the presence of S. maltophilia in a respiratory sample, were collected within the same month. Of the 257 enrolled patients (372 respiratory samples), 71 % were immunocompromised and 32 % had chronic respiratory disease. S. maltophilia was isolated within the same month in 20 patients (7.8 %). In the univariate analysis, factors associated with concomitant culture of A. fumigatus and S. maltophilia were liver disease (P = 0.009), orotracheal intubation (P = 0.001), ventilator-associated pneumonia (P = 0.006), central venous catheter (P = 0.003), parenteral nutrition (P = 0.008) and culture of Pseudomonas aeruginosa in respiratory samples (P = 0.002). In the multivariate analysis, the simultaneous presence of P. aeruginosa in the respiratory tract (odds ratio (OR) = 3.19, 95 % confidence interval (CI) 1.11-9.14, P = 0.031), liver disease (OR = 3.92, 95 % CI 1.32-11.62, P = 0.014) and orotracheal intubation (OR = 3.42, 95 % CI 1.17-9.96, P = 0.024) were independently associated with the co-culture of S. maltophilia and A. fumigatus. Factors independently associated with the concomitant culture of A. fumigatus and S. maltophilia were identified. These results support a future prospective study focusing on liver disease and its complications.
Collapse
Affiliation(s)
- Odile Cabaret
- Unité de Mycologie, DHU VIC, AP-HP, Hôpital Henri Mondor and Département de Microbiologie,Créteil,France
| | - Christine Bonnal
- Unité de Mycologie, DHU VIC, AP-HP, Hôpital Henri Mondor and Département de Microbiologie,Créteil,France
| | - Florence Canoui-Poitrine
- Université Paris Est Créteil,LIC EA4393, Créteil,France.,Service de Santé publique, AP-HP, Hôpital Henri-Mondor,Créteil,France
| | - Aurélie Emirian
- Unité de Bactériologie-Hygiène, DHU VIC, AP-HP, Hôpital Henri Mondor and Département de Microbiologie,Créteil,France
| | - Geoffray Bizouard
- Université Paris Est Créteil,LIC EA4393, Créteil,France.,Service de Santé publique, AP-HP, Hôpital Henri-Mondor,Créteil,France
| | - Eric Levesque
- Département d'anesthésie et de réanimation, DHU VIC, AP-HP, Hôpital Henri-Mondor,Créteil,France
| | - Bernard Maitre
- Unité de Pneumologie, Réanimation médicale Hôpital Henri Mondor, Centre Intercommunal de Créteil,Créteil,France
| | - Vincent Fihman
- Unité de Bactériologie-Hygiène, DHU VIC, AP-HP, Hôpital Henri Mondor and Département de Microbiologie,Créteil,France
| | - Jean-Winoc Decousser
- Unité de Bactériologie-Hygiène, DHU VIC, AP-HP, Hôpital Henri Mondor and Département de Microbiologie,Créteil,France
| | - Françoise Botterel
- Unité de Mycologie, DHU VIC, AP-HP, Hôpital Henri Mondor and Département de Microbiologie,Créteil,France
| |
Collapse
|
44
|
Hector A, Kirn T, Ralhan A, Graepler-Mainka U, Berenbrinker S, Riethmueller J, Hogardt M, Wagner M, Pfleger A, Autenrieth I, Kappler M, Griese M, Eber E, Martus P, Hartl D. Microbial colonization and lung function in adolescents with cystic fibrosis. J Cyst Fibros 2016; 15:340-9. [PMID: 26856310 DOI: 10.1016/j.jcf.2016.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/24/2016] [Accepted: 01/24/2016] [Indexed: 11/18/2022]
Abstract
With intensified antibiotic therapy and longer survival, patients with cystic fibrosis (CF) are colonized with a more complex pattern of bacteria and fungi. However, the clinical relevance of these emerging pathogens for lung function remains poorly defined. The aim of this study was to assess the association of bacterial and fungal colonization patterns with lung function in adolescent patients with CF. Microbial colonization patterns and lung function parameters were assessed in 770 adolescent European (German/Austrian) CF patients in a retrospective study (median follow-up time: 10years). Colonization with Pseudomonas aeruginosa and MRSA were most strongly associated with loss of lung function, while mainly colonization with Haemophilus influenzae was associated with preserved lung function. Aspergillus fumigatus was the only species that was associated with an increased risk for infection with P. aeruginosa. Microbial interaction analysis revealed three distinct microbial clusters within the longitudinal course of CF lung disease. Collectively, this study identified potentially protective and harmful microbial colonization patterns in adolescent CF patients. Further studies in different patient cohorts are required to evaluate these microbial patterns and to assess their clinical relevance.
Collapse
Affiliation(s)
- Andreas Hector
- Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Tobias Kirn
- Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Anjali Ralhan
- Children's Hospital of the University of Tübingen, Tübingen, Germany
| | | | - Sina Berenbrinker
- Children's Hospital of the University of Tübingen, Tübingen, Germany
| | | | - Michael Hogardt
- Institute of Medical Microbiology and Hygiene, University of Frankfurt, Frankfurt, Germany
| | - Marlies Wagner
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Pfleger
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, Graz, Austria
| | - Ingo Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Matthias Kappler
- Department of Pediatric Pneumology, Hauner Children's Hospital, Ludwig-Maximilians University, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Griese
- Department of Pediatric Pneumology, Hauner Children's Hospital, Ludwig-Maximilians University, Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Ernst Eber
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, Graz, Austria
| | - Peter Martus
- Institute of Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Children's Hospital of the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
45
|
M�iz L, Vendrell M, Olveira C, Gir�n R, Nieto R, Mart�nez-Garc�a M�. Prevalence and Factors Associated with Isolation of Aspergillus and Candida from Sputum in Patients with Non-Cystic Fibrosis Bronchiectasis. Respiration 2015; 89:396-403. [DOI: 10.1159/000381289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
|
46
|
Rapid Detection of Emerging Pathogens and Loss of Microbial Diversity Associated with Severe Lung Disease in Cystic Fibrosis. J Clin Microbiol 2015; 53:2022-9. [PMID: 25878338 DOI: 10.1128/jcm.00432-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022] Open
Abstract
Respiratory infection in cystic fibrosis (CF) is polymicrobial, but standard sputum microbiology does not account for the lung microbiome or detect changes in microbial diversity associated with disease. As a clinically applicable CF microbiome surveillance scheme, total sputum nucleic acids isolated by a standard high-throughput robotic method for accredited viral diagnosis were profiled for bacterial diversity using ribosomal intergenic spacer analysis (RISA) PCR. Conventional culture and RISA were performed on 200 paired sputum samples from 93 CF adults; pyrosequencing of the 16S rRNA gene was applied to 59 patients to systematically determine bacterial diversity. Compared to the microbiology data, RISA profiles clustered into two groups: the emerging nonfermenting Gram-negative organisms (eNFGN) and Pseudomonas groups. Patients who were culture positive for Burkholderia, Achromobacter, Stenotrophomonas, and Ralstonia clustered within the eNFGN group. Pseudomonas group RISA profiles were associated with Pseudomonas aeruginosa culture-positive patients. Sequence analysis confirmed the abundance of eNFGN genera and Pseudomonas within these respective groups. Low bacterial diversity was associated with severe lung disease (P < 0.001) and the presence of Burkholderia (P < 0.001). An absence of Streptococcus (P < 0.05) occurred in individuals with lung function in the lowest quartile. In summary, nucleic acids isolated from CF sputum can serve as a single template for both molecular virology and bacteriology, with a RISA PCR rapidly detecting the presence of dominant eNFGN pathogens or P. aeruginosa missed by culture (11% of cases). We provide guidance for how this straightforward CF microbiota profiling scheme may be adopted by clinical laboratories.
Collapse
|
47
|
Kirkby S, Hayes D, Ginn-Pease M, Gatz J, Wisely CE, Lind M, Elmaraghy C, Ryan-Wenger N, Sheikh SI. Identification of new bacterial and fungal pathogens on surveillance bronchoscopy prior to sinus surgery in patients with cystic fibrosis. Pediatr Pulmonol 2015; 50:137-43. [PMID: 24737627 DOI: 10.1002/ppul.23027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/10/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND Flexible fiberoptic bronchoscopy was performed prior to functional endoscopic sinus surgery (FESS) while under general anesthesia to collect bronchoalveolar lavage fluid (BALF) for lower respiratory tract cultures in patients with cystic fibrosis (CF). METHODS A retrospective chart review was performed on all CF patients who underwent combined FESS and bronchoscopy between January 2009 and October 2010. Along with demographic data, bacterial, fungal, and acid fast bacillus culture data from BALF was collected and compared to oropharyngeal swab and sputum cultures obtained over the year prior to FESS and bronchoscopy. RESULTS A total of 77 patients were enrolled with mean age 12.5 ± SD 6.5 (range 2-29) years. Mean FEV1 was 86% ±18.4 (range 33-128) % of predicted. Patients averaged 6.5 (range 1-13) sputum or OP cultures in the year prior to FESS. BALF cultures identified a new bacterial pathogen in 19% (n=15) of patients, which altered antibiotic regimen immediately in two patients and sub-acutely in five patients. BALF cultures identified a new fungal pathogen in 42% (n=32) of patients, which resulted in the addition of antifungal therapy in eight patients. BALF cultures did not identify previously undetected AFB culture positive patients. No significant differences were found between patients with and without new discoveries of bacterial or fungal pathogens with regards to key clinical demographic data, lung function parameters, healthcare utilization, or need for antibiotics over the year prior to FESS. There was no relationship between the total number of respiratory cultures obtained in the year prior to bronchoscopy and the identification of new bacterial or fungal pathogens. CONCLUSIONS Surveillance BALF cultures obtained prior to FESS identified bacterial and fungal pathogens not previously detected by sputum or OP swab cultures in a cohort of CF patients with chronic sinus disease. Moreover, the identification of these new pathogens altered clinical management in a small number of patients.
Collapse
Affiliation(s)
- Stephen Kirkby
- Section of Pulmonary Medicine, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Kolwijck E, van de Veerdonk FL. The potential impact of the pulmonary microbiome on immunopathogenesis of Aspergillus-related lung disease. Eur J Immunol 2014; 44:3156-65. [PMID: 25256637 DOI: 10.1002/eji.201344404] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/17/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
Aspergillosis is an infection or allergic response caused by fungi of the genus Aspergillus. The most common forms of aspergillosis are allergic bronchopulmonary aspergillosis, chronic pulmonary aspergillosis, and invasive pulmonary aspergillosis. Aspergillus also plays an important role in fungal sensitized asthma. Humans inhale Aspergillus spores every day and when the host is immunocompromised, Aspergillus spp. may cause severe pulmonary disease. There is increasing evidence that the microbiome plays a significant role in immune regulation, chronic inflammatory diseases, metabolism, and other physiological processes, including recovery from the effects of antibiotic treatment. Bacterial microbiome mediated resistance mechanisms probably play a major role in limiting fungal colonization of the lungs, and may therefore prevent humans from contracting Aspergillus-related diseases. In this perspective, we review this emerging area of research and discuss the role of the microbiome in aspergillosis, role of Aspergillus in the microbiome, and the influence of the microbiome on anti-Aspergillus host defense and its role in preventing aspergillosis.
Collapse
Affiliation(s)
- Eva Kolwijck
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
50
|
Touati K, Nguyen DNL, Delhaes L. The Airway Colonization by Opportunistic Filamentous Fungi in Patients with Cystic Fibrosis: Recent Updates. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0197-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|