1
|
Liu M, Gao C, Li J, Zhang Y, Gao R, Yang C, Zhang J. The association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and pulmonary function: evidence from NHANES 2007-2012. Front Nutr 2025; 12:1534958. [PMID: 40177182 PMCID: PMC11961415 DOI: 10.3389/fnut.2025.1534958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Background This research aims to explore the potential association between lung function and the ratio of non-high-density lipoprotein cholesterol (NHL) to high-density lipoprotein cholesterol (NHHR). Previous research has shown that lipid metabolism imbalance is closely linked to cardiovascular disease, however, there is a lack of information regarding its impact on lung function. Methods This research used information from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2007 to 2012, including a large-scale sample of 9,498 adults aged 20 years and older. A cross-sectional study employing multivariable regression models was aimed at examining the relevance between NHHR and indicators of lung function (FEV1, FVC, and FEV1/FVC). Adjustments were made for a wide range of confounding factors, encompassing race, gender, age, BMI, smoking status, physical activity, diabetes, alcohol consumption, and education level. Data analysis included categorizing NHHR into quartiles and using trend tests to evaluate dose-response relationships between NHHR quartiles and lung function. Sensitivity analyses were conducted by excluding participants with asthma and COPD to ensure the reliability of the results. Results The results manifested a significant correlation between decreased FEV1 and FVC values and elevated NHHR, most notably within the highest quartile of NHHR (Q4), where the association was most pronounced. Additionally, trend test results indicated a significant linear negative correlation between NHHR and both FEV1 and FVC. However, the correlation between FEV1/FVC and NHHR showed a nonlinear U-shaped pattern. Suggesting differential impacts of NHHR on various lung function indicators. The findings' robustness was shown by sensitivity analysis, which revealed that even after omitting people with asthma and COPD, the negative correlation between NHHR and FEV1 and FVC remained significant. Conclusion This research emphasizes the significance of tracking lipid levels in evaluating respiratory health and offers early evidence in favor of NHHR as a probable biomarker for respiratory function. Further longitudinal research has occasion to prove the causal relationship between NHHR and lung function and to explore its underlying biological mechanisms.
Collapse
Affiliation(s)
- Miaoyan Liu
- Department of Respiratory Medicine, Chest Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Chaofeng Gao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinggeng Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yibo Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Rui Gao
- Graduate Work Department, Xi'an Medical University, Xi'an, China
| | - Chaoting Yang
- Graduate Work Department, Xi'an Medical University, Xi'an, China
| | - Jian Zhang
- Department of Respiratory Medicine, Chest Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| |
Collapse
|
2
|
Oh JH, Song JW. Current perspectives on interstitial lung abnormalities. Korean J Intern Med 2025; 40:208-218. [PMID: 40102709 PMCID: PMC11938663 DOI: 10.3904/kjim.2024.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 03/20/2025] Open
Abstract
Interstitial lung abnormalities (ILAs) are early indicators of interstitial lung disease, often identified incidentally via computed tomography of the chest. This review explores the diagnostic criteria for ILAs as outlined by the Fleischner Society, highlights associated risk factors, examines their impact on patient outcomes, and discusses management strategies. The prevalence of ILAs varies significantly, ranging from 3% to 17% across populations. Key risk factors include advanced age, smoking status, and underlying genetic predispositions. Recent advancements in imaging analysis, particularly through automated quantitative systems, have enhanced the accuracy of ILA detection. Although often subtle in presentation, ILAs hold clinical significance due to their associations with impaired lung function, progressive fibrosis, and increased mortality. Therefore, monitoring and management plans should be individualized to the risk profile of patients. Further studies are needed to refine ILA diagnostic criteria, enhance our understanding of their clinical implications, and establish optimal timing for therapeutic interventions.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul,
Korea
| | - Jin Woo Song
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
3
|
Chen R, Zhong G, Ji T, Xu Q, Liu H, Xu Q, Chen L, Dai J. Serum cholesterol levels predict the survival in patients with idiopathic pulmonary fibrosis: A long-term follow up study. Respir Med 2025; 237:107937. [PMID: 39743155 DOI: 10.1016/j.rmed.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/03/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The relationship between serum lipid with idiopathic pulmonary fibrosis (IPF) required to be explored. We aim to evaluate the association of serum lipid levels with mortality in patients with IPF. MATERIALS AND METHODS This retrospective study included IPF patients with more than three years follow-up. We collected baseline demographics information, forced vital capacity (FVC)% predicted, carbon monoxide diffusion capacity (DLCO)% predicted, gender-age-physiology (GAP) index, and serum lipid levels, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C). We evaluate the relationship between the serum lipid levels and the disease severity, and the mortality in IPF. RESULTS This study enrolled 146 patients, with the three-year survival rate of 71.23 %. The median follow-up time was 46.5 months. There was no significant difference in baseline lipid levels between the survival and non-survival group. TG levels were positively correlated with DLCO% predicted (r = 0.189, p = 0.022) and negatively correlated with GAP index (r = -0.186, p = 0.025). After adjusting for GAP index, smoking history, body mass index and the use of antifibrotic and lipid-lowering drug, lower TC levels (HR: 0.74, 95 % CI: 0.58-0.94, p = 0.013) were identified as an independent risk factor for mortality. CONCLUSION This study demonstrated that lower TC levels were associated with increased mortality in IPF. More investigations are required to explore the role of lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guanning Zhong
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Ji
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingqing Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lulu Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Li J, Qian X, Ding G, Zhang Y. Association between sleep duration and lung function among U.S. adults. BMC Public Health 2024; 24:3530. [PMID: 39696278 DOI: 10.1186/s12889-024-21024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sleep's impact on the human immune system and inflammatory responses makes it a potential risk factor for lung function impairment. However, the relationship between sleep duration and lung function impairment in middle-aged and young adults has been rarely investigated. METHODS A total of 9,284 aged 20-64 years were categorized into four groups according to sleep duration (≤ 6 h, 7 h, 8 h, and ≥ 9 h), with 7 h as the reference, by using the U.S. NHANES data, 2007-2012. Forced expiratory volume in the 1 s (FEV1), forced vital capacity (FVC), FEV1 to FVC (FEV1/FVC) ratio, peak expiratory flow (PEF), and forced expiratory flow at 25-75% (FEF25 - 75%) were measured by spirometry. Restrictive impairment was defined as baseline FVC < 80% predicted and obstructive impairment as FEV1/FVC < 0.70. Generalized linear regression and logistic regression were performed to estimate the associations between sleep duration and lung function. RESULTS Compared with 7 h of sleep duration, shorter and longer sleep duration were associated with decreases in FEV1 (≤ 6 h: β=-0.010, 95% CI=-0.014 to -0.006; 8 h: β=-0.005, 95% CI=-0.009 to -0.001), FVC (≤ 6 h: β=-0.018, 95% CI=-0.014 to -0.007; 8 h: β=-0.005, 95% CI=-0.009 to -0.002), and PEF (≤ 6 h: β=-0.006, 95% CI=-0.010 to -0.002; 8 h: β=-0.007, 95% CI=-0.011 to -0.002; ≥ 9 h: β=-0.012, 95% CI=-0.020 to -0.004). Similarly, shorter (≤ 6 h: OR = 1.346, 95% CI = 1.065 to 1.700) and longer (≥ 9 h: OR = 1.827, 95% CI = 1.236 to 2.700) sleep duration were associated with increased risks of restrictive impairment. Moreover, the aforementioned associations were more pronounced among male participants. CONCLUSIONS Compared with 7 h of sleep duration, shorter and longer sleep duration were associated with impaired lung function among adults aged 20-64 years, and these associations were stronger among males.
Collapse
Affiliation(s)
- Jingyang Li
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaoqian Qian
- Renal Division, Department of Internal Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Ouyang X, Qian Y, Tan Y, Shen Q, Zhang Q, Song M, Shi J, Peng H. The prognostic role of high-density lipoprotein cholesterol/C-reactive protein ratio in idiopathic pulmonary fibrosis. QJM 2024; 117:858-865. [PMID: 39078215 PMCID: PMC11760493 DOI: 10.1093/qjmed/hcae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The prognosis of idiopathic pulmonary fibrosis (IPF) patients is highly heterogeneous. Abnormalities in lipids and their metabolism play an important role in the development of IPF. AIM To investigate the value of lipid parameters, C-reactive protein (CRP) and high-density lipoprotein cholesterol/C-reactive protein (HDL-C/CRP) ratio levels in the prognosis of IPF patients. DESIGN An observational cohort study. METHODS We collected baseline data of non-IPF controls and IPF patients, and IPF patients were followed up for 4 years. All-cause death or lung transplantation and IPF-related death were the outcome events. Receiver operating characteristic curves and Cox proportional hazards models were used to analyze the predictive effect of lipid parameters, CRP and HDL-C/CRP ratio on the prognosis of IPF patients. RESULTS IPF patients had lower HDL-C, HDL-C/CRP ratio and higher CRP compared to non-IPF controls. IPF patients who died or underwent lung transplantation were older and had worse pulmonary function, lower HDL-C, HDL-C/CRP ratio and higher CRP compared with surviving patients. HDL-C/CRP ratio was better than HDL-C and CRP in predicting all-cause death or lung transplantation. IPF patients with low HDL-C/CRP ratio had shorter survival times. The HDL-C/CRP ratio and diffusing capacity for carbon monoxide(DLCO)% of predicted were independent protective factors for all-cause death or lung transplantation and IPF-related death in IPF patients, while age and gender-age-physiology (GAP) Stage ≥ 2 (HR = 4.927) were independent risk factors for all-cause death or lung transplantation. Age > 65 years (HR = 3.533) was an independent risk factor for IPF-related death. CONCLUSION HDL-C/CRP ratio was a valid predictor of clinical outcomes in IPF patients, including all-cause death or lung transplantation and IPF-related death.
Collapse
Affiliation(s)
- X Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Y Qian
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Y Tan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Q Shen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Q Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - M Song
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - J Shi
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - H Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Oh JH, Chae G, Song JW. Blood lipid profiles as a prognostic biomarker in idiopathic pulmonary fibrosis. Respir Res 2024; 25:285. [PMID: 39026259 PMCID: PMC11264581 DOI: 10.1186/s12931-024-02905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Dysregulation of lipid metabolism is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the association between the blood lipid profiles and the prognosis of IPF is not well defined. We aimed to identify the impacts of lipid profiles on prognosis in patients with IPF. METHODS Clinical data of 371 patients with IPF (145 and 226 in the derivation and validation cohorts, respectively), including serum lipid profiles (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A-I [Apo A-I], and apolipoprotein B), were retrospectively collected. The association with mortality was analyzed using the Cox proportional hazard model. RESULTS In the derivation cohort, the mean age was 67.5 years, 86.2% were men, and 30.3% died during the follow-up (median: 18.0 months). Non-survivors showed lower lung function and greater gender-age-physiology scores than survivors. Among the serum lipid profiles, the levels of triglyceride and Apo A-I were significantly lower in non-survivors than in survivors. In the multivariate Cox analysis, low Apo A-I levels (< 140 mg/dL) were independently associated with the risk of mortality (hazard ratio 3.910, 95% confidence interval 1.170-13.069; P = 0.027), when adjusted for smoking history, body mass index, GAP score, and antifibrotic agent use. In both derivation and validation cohorts, patients with low Apo A-I levels (< 140 mg/dL) had worse survival (median survival: [derivation] 34.0 months vs. not reached, P = 0.003; [validation] 40.0 vs. 53.0 months, P = 0.027) than those with high Apo A-I levels in the Kaplan-Meier survival analysis. CONCLUSIONS Our results indicate that low serum Apo A-1 levels are an independent predictor of mortality in patients with IPF, suggesting the utility of serum Apo A-I as a prognostic biomarker in IPF.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Ganghee Chae
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jin Woo Song
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpagu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
8
|
Oh JH, Kim GHJ, Song JW. Interstitial lung abnormality evaluated by an automated quantification system: prevalence and progression rate. Respir Res 2024; 25:78. [PMID: 38321467 PMCID: PMC10848490 DOI: 10.1186/s12931-024-02715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Despite the importance of recognizing interstitial lung abnormalities, screening methods using computer-based quantitative analysis are not well developed, and studies on the subject with an Asian population are rare. We aimed to identify the prevalence and progression rate of interstitial lung abnormality evaluated by an automated quantification system in the Korean population. METHODS A total of 2,890 healthy participants in a health screening program (mean age: 49 years, men: 79.5%) with serial chest computed tomography images obtained at least 5 years apart were included. Quantitative lung fibrosis scores were measured on the chest images by an automated quantification system. Interstitial lung abnormalities were defined as a score ≥ 3, and progression as any score increased above baseline. RESULTS Interstitial lung abnormalities were identified in 251 participants (8.6%), who were older and had a higher body mass index. The prevalence increased with age. Quantification of the follow-up images (median interval: 6.5 years) showed that 23.5% (59/251) of participants initially diagnosed with interstitial lung abnormality exhibited progression, and 11% had developed abnormalities (290/2639). Older age, higher body mass index, and higher erythrocyte sedimentation rate were independent risk factors for progression or development. The interstitial lung abnormality group had worse survival on follow-up (5-year mortality: 3.4% vs. 1.5%; P = 0.010). CONCLUSIONS Interstitial lung abnormality could be identified in one-tenth of the participants, and a quarter of them showed progression. Older age, higher body mass index and higher erythrocyte sedimentation rate increased the risk of development or progression of interstitial lung abnormality.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Grace Hyun J Kim
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jin Woo Song
- Department of Pulmonology and Critical Care Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 88, Olympic-Ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
9
|
Caminati A, Zompatori M, Fuccillo N, Sonaglioni A, Elia D, Cassandro R, Trevisan R, Rispoli A, Pelosi G, Harari S. Coronary artery calcium score is a prognostic factor for mortality in idiopathic pulmonary fibrosis. Minerva Med 2023; 114:815-824. [PMID: 35671002 DOI: 10.23736/s0026-4806.22.08018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cardiovascular diseases are frequent in idiopathic pulmonary fibrosis (IPF) and impact on survival. We investigated the association of coronary artery calcium (CAC) score at IPF diagnosis and during mid-term follow-up, with adverse cardiovascular events and all-cause mortality. METHODS Consecutive patients with IPF were retrospectively analyzed. Demographic data, smoking history, comorbidities and pulmonary function tests (PFTs) were recorded. All patients had at least two chest high resolution computed tomography (HRCT) performed 2 years apart. The total CAC score and visual fibrotic score were calculated, and all clinically significant cardiovascular events and deaths were reported. RESULTS The population consisted of 79 patients (57 males, mean age: 74.4±7.6 years); 67% of patients had a history of smoking, 48% of hypertension, 37% of dyslipidemia and 22.8% of diabetes. The visual score was 21.28±7.99% at T0 and 26.54±9.34% at T1, respectively (T1-T0 5.26±6.13%, P<0.001). CAC score at T0 and at T1 was 537.93±839.94 and 759.98±1027.6, respectively (T1-T0 224.66±406.87, P<0.001). Mean follow-up time was 2.47±1.1 years. On multivariate analysis, male sex (HR=3.58, 95% CI: 1.14-11.2) and CAC score at T0 (HR=1.04, 95% CI: 1.01-1.07) correlated with mortality and cardiovascular events. CAC score at T0≥405 showed 82% sensitivity and 100% specificity for predicting mortality and adverse cardiovascular events. CONCLUSIONS IPF patients with a CAC score at diagnosis ≥405 have a poor prognosis over a mid-term follow-up. A higher CAC score is associated with mortality and cardiovascular events.
Collapse
Affiliation(s)
- Antonella Caminati
- Unit of Pneumology and Semi-Intensive Respiratory Therapy, Section of Respiratory Pathophysiology and Pulmonary Hemodynamics, IRCCS MultiMedica, Milan, Italy -
| | - Maurizio Zompatori
- Department of Diagnostic Imaging, IRCCS MultiMedica, Milan, Italy
- DIMES Department, University of Bologna, Bologna, Italy
| | - Nicoletta Fuccillo
- Unit of Pneumology and Semi-Intensive Respiratory Therapy, Section of Respiratory Pathophysiology and Pulmonary Hemodynamics, IRCCS MultiMedica, Milan, Italy
| | | | - Davide Elia
- Unit of Pneumology and Semi-Intensive Respiratory Therapy, Section of Respiratory Pathophysiology and Pulmonary Hemodynamics, IRCCS MultiMedica, Milan, Italy
| | - Roberto Cassandro
- Unit of Pneumology and Semi-Intensive Respiratory Therapy, Section of Respiratory Pathophysiology and Pulmonary Hemodynamics, IRCCS MultiMedica, Milan, Italy
| | - Roberta Trevisan
- Department of Diagnostic Imaging, IRCCS MultiMedica, Milan, Italy
| | - Anna Rispoli
- Department of Diagnostic Imaging, IRCCS MultiMedica, Milan, Italy
| | - Giuseppe Pelosi
- Intercompany Service of Pathological Anatomy, Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Sergio Harari
- Unit of Pneumology and Semi-Intensive Respiratory Therapy, Section of Respiratory Pathophysiology and Pulmonary Hemodynamics, IRCCS MultiMedica, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Lee C, Cha Y, Bae SH, Kim YS. Association between serum high-density lipoprotein cholesterol and lung function in adults: three cross-sectional studies from US and Korea National Health and Nutrition Examination Survey. BMJ Open Respir Res 2023; 10:e001792. [PMID: 37940356 PMCID: PMC10632896 DOI: 10.1136/bmjresp-2023-001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Cholesterol is an irreplaceable nutrient in pulmonary metabolism; however, studies on high-density lipoprotein cholesterol (HDL-C) levels have shown conflicting results regarding lung function. Therefore, we investigated the association between lung function and HDL-C levels in three cross-sectional studies conducted in the USA and South Korea. METHODS US National Health and Nutrition Examination Survey (NHANES) III, US NHANES 2007-2012, and Korea National Health and Nutrition Examination Survey (KNHANES) IV-VII performed spirometry and met the American Thoracic Society recommendations. Multiple linear regression models were used to determine the relationship between serum lipid levels and lung function. The models were adjusted for age, sex, household income, body mass index, smoking pack year, use of lipid-lowering medication and race. Serum HDL-C levels were classified into three groups to assess the dose-response relationship according to the guideline from the National Cholesterol Education Program-Adult Treatment Panel III. RESULTS The adult participants of the KNHANES (n=31 288), NHANES III (n=12 182) and NHANES 2007-2012 (n=9122) were analysed. Multivariate linear regression analysis of the serum cholesterol profiles revealed that only serum HDL-C was associated with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) in all three studies. A 1 SD increase in the HDL-C level increased the percent predicted FVC by 0.5%-1.5% p, and the per cent predicted FEV1 by 0.5%-1.7% p. In terms of HDL-C levels, correlations between the HDL-C groups and the per cent predicted FVC and FEV1 showed dose-response relationships. Compared with the normal group, high HDL-C levels increased FVC by 0.75%-1.79% p and FEV1 by 0.55%-1.90% p, while low levels led to 0.74%-2.19% p and 0.86%-2.68% p reductions in FVC and FEV1, respectively. Subgroup analyses revealed weaker associations in females from KNHANES and NHANES III. CONCLUSION In the three nationwide cross-sectional studies, high HDL-C levels were associated with improved FVC and FEV1. However, future studies are needed to confirm this correlation and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chanho Lee
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngjae Cha
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Soo Han Bae
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
12
|
Caminati A, Meloni F, Fujita M. Editorial: Idiopathic pulmonary fibrosis: epidemiology, prognosis and treatment. Front Med (Lausanne) 2023; 10:1195263. [PMID: 37324135 PMCID: PMC10267469 DOI: 10.3389/fmed.2023.1195263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Federica Meloni
- University of Pavia & Fondazione IRCCS Policlinico San Matteo, UOS Transplant Center, Pavia, Italy
| | - Masaki Fujita
- Department of Respiratory Medicine, Fukuota University Hospital, Fukuoka, Japan
| |
Collapse
|
13
|
Brillet PY, Tran Ba S, Nunes H. How does the MESA Lung Study sharpen blurry edges in interstitial lung abnormalities? Eur Respir J 2023; 61:2300397. [PMID: 37290811 DOI: 10.1183/13993003.00397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Pierre-Yves Brillet
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Stéphane Tran Ba
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Hilario Nunes
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Pneumologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| |
Collapse
|
14
|
Seenak P, Kumphune S, Prasitsak T, Nernpermpisooth N, Malakul W. Atorvastatin and ezetimibe protect against hypercholesterolemia-induced lung oxidative stress, inflammation, and fibrosis in rats. Front Med (Lausanne) 2022; 9:1039707. [PMID: 37082028 PMCID: PMC10111198 DOI: 10.3389/fmed.2022.1039707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BackgroundHypercholesterolemia is a major risk factor for interstitial lung disease (ILD). Atorvastatin and ezetimibe are antilipemic drugs that have pleiotropic effects. However, their effects on pulmonary fibrosis prevention and the mechanisms underlying hypercholesterolemia have not been fully investigated. This study aimed to evaluate the individual effects of atorvastatin and ezetimibe on lung inflammation and fibrosis in high-cholesterol diet (HCD)-fed rats.Materials and methodsMale Sprague-Dawley rats were divided into four groups — standard diet (S), standard diet + 1% cholesterol (SC), standard diet + 1% cholesterol with 30 mg/kg/day atorvastatin (SCA), and standard diet + 1% cholesterol with 10 mg/kg/day ezetimibe (SCE). At the end of an 8-week dietary schedule, serum lipid parameters and the levels of lung oxidative stress, inflammatory cytokines, and fibrotic mediators were determined.ResultsAtorvastatin and ezetimibe treatment remarkably reduced serum lipid profiles with reversed pulmonary histological alterations, in addition to reducing the levels of lung oxidative stress, inflammation, and fibrosis in hypercholesterolemic rats.ConclusionAtorvastatin and ezetimibe treatment showed a protective effect against hypercholesterolemia-induced pulmonary fibrosis in rats. This information appears potentially useful in the prevention of PF in a hypercholesterolemia model; however, further rigorous investigations are needed to prove their clinical utility on antifibrosis.
Collapse
Affiliation(s)
- Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
| | - Thanit Prasitsak
- Department of Oral Biology, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
- *Correspondence: Wachirawadee Malakul, ; orcid.org/0000-0002-1677-2086
| |
Collapse
|
15
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
16
|
Kim JS, Dashti HS, Huang T, Cade BE, Podolanczuk AJ, O’Hearn DJ, Hoffman EA, Wang H, Blaikley J, Barr RG, Redline S. Associations of sleep duration and sleep-wake rhythm with lung parenchymal abnormalities on computed tomography: The MESA study. J Sleep Res 2022; 31:e13475. [PMID: 34498326 PMCID: PMC8891036 DOI: 10.1111/jsr.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Impairment of the circadian rhythm promotes lung inflammation and fibrosis in pre-clinical models. We aimed to examine whether short and/or long sleep duration and other markers of sleep-wake patterns are associated with a greater burden of lung parenchymal abnormalities on computed tomography among adults. We cross-sectionally examined associations of sleep duration captured by actigraphy with interstitial lung abnormalities (n = 1111) and high attenuation areas (n = 1416) on computed tomography scan in the Multi-Ethnic Study of Atherosclerosis at Exam 5 (2010-2013). We adjusted for potential confounders in logistic and linear regression models for interstitial lung abnormalities and high attenuation area, respectively. High attenuation area models were also adjusted for study site, lung volume imaged, radiation dose and stratified by body mass index. Secondary exposures were self-reported sleep duration, sleep fragmentation index, sleep midpoint and chronotype. The mean age of those with longer sleep duration (≥ 8 hr) was 70 years and the prevalence of interstitial lung abnormalities was 14%. Increasing actigraphy-based sleep duration among participants with ≥ 8 hr of sleep was associated with a higher adjusted odds of interstitial lung abnormalities (odds ratio of 2.66 per 1-hr increment, 95% confidence interval 1.42-4.99). Longer sleep duration and higher sleep fragmentation index were associated with greater high attenuation area on computed tomography among participants with a body mass index < 25 kg m-2 (p-value for interaction < 0.02). Self-reported sleep duration, later sleep midpoint and evening chronotype were not associated with outcomes. Actigraphy-based longer sleep duration and sleep fragmentation were associated with a greater burden of lung abnormalities on computed tomography scan.
Collapse
Affiliation(s)
- John S. Kim
- Department of Medicine, University of Virginia School of
Medicine, Charlottesville, VA, USA
- Department of Medicine, Columbia University Irving Medical
Center, New York, NY, USA
| | - Hassan S. Dashti
- Center for Genomic Medicine and Department of Anesthesia,
Critical Care, and Pain Medicine, Center for Genomic Medicine, Massachusetts General
Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad
Institute, Cambridge, MA, USA
| | - Tianyi Huang
- Channing Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
| | - Brian E. Cade
- Program in Medical and Population Genetics, Broad
Institute, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
- Division of Sleep and Circadian Disorders, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Weill
Cornell Medical Center, New York, NY, USA
| | - Daniel J. O’Hearn
- Department of Medicine, University of Virginia School of
Medicine, Charlottesville, VA, USA
| | - Eric A. Hoffman
- Departments of Radiology, Medicine, and Biomedical
Engineering, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Heming Wang
- Program in Medical and Population Genetics, Broad
Institute, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
- Division of Sleep and Circadian Disorders, Brigham and
Women’s Hospital, Boston, MA, USA
| | - John Blaikley
- Faculty of Biology, Medicine and Health, The University
of Manchester, Manchester, United Kingdom
- Manchester University National Health Service Foundation
Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - R. Graham Barr
- Department of Medicine, Columbia University Irving Medical
Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public
Health, New York, NY, USA
| | - Susan Redline
- Channing Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine,
Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
17
|
Axelsson GT, Gudmundsson G. Interstitial lung abnormalities - current knowledge and future directions. Eur Clin Respir J 2021; 8:1994178. [PMID: 34745461 PMCID: PMC8567914 DOI: 10.1080/20018525.2021.1994178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Efforts to grasp the significance of radiologic changes similar to interstitial lung disease (ILD) in undiagnosed individuals have intensified in the recent decade. The term interstitial lung abnormalities (ILA) is an emerging definition of such changes, defined by visual examination of computed tomography scans. Substantial insights have been made in the origins and clinical consequences of these changes, as well as automated measures of early lung fibrosis, which will likely lead to increased recognition of early fibrotic lung changes among clinicians and researchers alike. Interstitial lung abnormalities have an estimated prevalence of 7–10% in elderly populations. They correlate with many ILD risk factors, both epidemiologic and genetic. Additionally, histopathological similarities with IPF exist in those with ILA. While no established blood biomarker of ILA exists, several have been suggested. Distinct imaging patterns indicating advanced fibrosis correlate with worse clinical outcomes. ILA are also linked with adverse clinical outcomes such as increased mortality and risk of lung cancer. Progression of ILA has been noted in a significant portion of those with ILA and is associated with many of the same features as ILD, including advanced fibrosis. Those with ILA progression are at risk of accelerated FVC decline and increased mortality. Radiologic changes resembling ILD have also been attained by automated measures. Such measures associate with some, but not all the same factors as ILA. ILA and similar radiologic changes are in many ways analogous to ILD and likely represent a precursor of ILD in some cases. While warranting an evaluation for ILD, they are associated with poor clinical outcomes beyond possible ILD development and thus are by themselves a significant finding. Among the present objectives of this field are the stratification of patients with regards to progression and the discovery of biomarkers with predictive value for clinical outcomes.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
18
|
Kim JS, Anderson MR, Bernstein EJ, Oelsner EC, Raghu G, Noth I, Tsai MY, Salvatore M, Austin JHM, Hoffman EA, Barr RG, Podolanczuk AJ. Associations of D-Dimer with Computed Tomographic Lung Abnormalities, Serum Biomarkers of Lung Injury, and Forced Vital Capacity: MESA Lung Study. Ann Am Thorac Soc 2021; 18:1839-1848. [PMID: 33861685 PMCID: PMC8641831 DOI: 10.1513/annalsats.202012-1557oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Rationale: The coagulation cascade may play a role in the pathogenesis of interstitial lung disease through increased production of thrombin and fibrin deposition. Whether circulating coagulation cascade factors are linked to lung inflammation and scarring among community-dwelling adults is unknown. Objectives: To test the hypothesis that higher baseline D-dimer concentrations are associated with markers of early lung injury and scarring. Methods: Using the MESA (Multi-Ethnic Study of Atherosclerosis) cohort (n = 6,814), we examined associations of baseline D-dimer concentrations with high attenuation areas from examination 1 (2000-2002; n = 6,184) and interstitial lung abnormalities from examination 5 computed tomographic (CT) scans (2010-2012; n = 2,227), and serum MMP-7 (matrix metalloproteinase-7) and SP-A (surfactant protein-A) from examination 1 (n = 1,098). We examined longitudinal change in forced vital capacity (FVC) from examinations 3-6 (2004-2018, n = 3,562). We used linear logistic regression and linear mixed models to examine associations and adjust for potential confounders. Results: The mean (standard deviation) age of the cohort was 62 (10) years, and the D-dimer concentration was 0.35 (0.69) ug/ml. For every 10% increase in D-dimer concentration, there was an increase in high attenuation area percentage of 0.27 (95% confidence interval (CI), 0.08-0.47) after adjustment for covariates. Associations were stronger among those older than 65 years (P values for interaction < 0.001). A 10% increase in D-dimer concentration was associated with an odds ratio of 1.05 for interstitial lung abnormalities (95% CI, 0.99-1.11). Higher D-dimer concentrations were associated with higher serum MMP-7 and a faster decline in FVC. D-dimer was not associated with SP-A. Conclusions: Higher D-dimer concentrations were associated with a greater burden of lung parenchymal abnormalities detected on CT scan, MMP-7, and FVC decline among community-dwelling adults.
Collapse
Affiliation(s)
- John S. Kim
- Department of Medicine, University of Virginia, Charlottesville, Virginia
- Department of Medicine
| | | | | | | | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, Washington
| | - Imre Noth
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Eric A. Hoffman
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - R. Graham Barr
- Department of Medicine
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - Anna J. Podolanczuk
- Department of Medicine
- Department of Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
19
|
Liu Q, Zhang H, Han B, Jiang H, Chung KF, Li F. Interstitial lung abnormalities: What do we know and how do we manage? Expert Rev Respir Med 2021; 15:1551-1561. [PMID: 34689661 DOI: 10.1080/17476348.2021.1997598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Interstitial lung abnormalities (ILAs), which refer to mild or subtle nongravity-dependent interstitial changes, may be neglected by some clinicians due to many reasons, such as lack of diagnostic criteria for ILAs and absence of available treatments and surveillance strategies. However, without intervention, some ILAs may progress to interstitial lung disease (ILD). This review summarizes our current knowledge of this condition and ways of diagnosing it together with current management. We hope that this will lead to better recognition of ILAs. AREAS COVERED We reviewed the literature on PubMed between 2008 and 2020 focusing on prevalence, etiology, symptoms, diagnostic biomarkers, clinical associations, and management of ILAs. EXPERT OPINION Timely diagnosis with close monitoring of ILAs and appropriate intervention should be recognized as the management approach to ILAs. Research into ILAs should continue to improve its management.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Baohui Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Handong Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, P.R. China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, P.R. China
| |
Collapse
|
20
|
Barochia AV, Kaler M, Weir N, Gordon EM, Figueroa DM, Yao X, WoldeHanna ML, Sampson M, Remaley AT, Grant G, Barnett SD, Nathan SD, Levine SJ. Serum levels of small HDL particles are negatively correlated with death or lung transplantation in an observational study of idiopathic pulmonary fibrosis. Eur Respir J 2021; 58:13993003.04053-2020. [PMID: 34289973 DOI: 10.1183/13993003.04053-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/13/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Serum lipoproteins, such as high density lipoproteins (HDL), may influence disease severity in idiopathic pulmonary fibrosis (IPF). Here, we investigated associations between serum lipids and lipoproteins and clinical endpoints in IPF. METHODS Clinical data and serum lipids were analyzed from a discovery cohort (59 IPF subjects, 56 healthy volunteers) and validated using an independent, multicenter cohort (207 IPF subjects) from the Pulmonary Fibrosis Foundation registry. Associations between lipids and clinical endpoints (FVC, forced vital capacity; 6MWD, 6 min walk distance; GAP (Gender Age Physiology) index; death or lung transplantation) were examined using Pearson's correlation and multivariable analyses. RESULTS Serum concentrations of small HDL particles (S-HDLPNMR), measured by nuclear magnetic resonance (NMR) spectroscopy, correlated negatively with the GAP index in the discovery cohort of IPF subjects. The negative correlation of S-HDLPNMR with GAP index was confirmed in the validation cohort of IPF subjects. Higher levels of S-HDLPNMR were associated with lower odds of death or its competing outcome, lung transplantation (OR of 0.9 for each 1 μmol·L-1 increase in S-HDLPNMR, p<0.05), at 1, 2, and 3 years from study entry in a combined cohort of all IPF subjects. CONCLUSIONS Higher serum levels of S-HDLPNMR are negatively correlated with the GAP index, as well as with lower observed mortality or lung transplantation in IPF subjects. These findings support the hypothesis that S-HDLPNMR may modify mortality risk in patients with IPF.
Collapse
Affiliation(s)
- Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Nargues Weir
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA.,Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Debbie M Figueroa
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Merte Lemma WoldeHanna
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | | | - Alan T Remaley
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | - Scott D Barnett
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
21
|
Kim HB, Kim A, Kim Y, Kim GT, Ahn E, So MW, Sohn DH, Lee SG. Associations of serum monocyte-to-high-density lipoprotein cholesterol ratio with digital ulcers and skin fibrosis in patients with systemic sclerosis. Scand J Rheumatol 2020; 50:231-238. [PMID: 33243053 DOI: 10.1080/03009742.2020.1837237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: To investigate the relationship between the monocyte-to-high-density lipoprotein cholesterol ratio (MHR) and clinical manifestations in patients with systemic sclerosis (SSc).Method: This was a cross-sectional analysis of a cohort study comprising 111 female SSc patients recruited from a tertiary care rheumatology centre. We also assessed 222 age-matched female healthy controls. Serum MHR was measured in all study participants. Digital ulcer (DU) was defined as an active or healed ulceration, and the magnitude of skin fibrosis was determined according to the modified Rodnan skin score (mRSS).Results: The mean age and median disease duration in patients with SSc were 56.3 years and 98 months, respectively. The MHR in SSc patients was significantly higher than that in controls. DU was found in 35 patients (31.5%) with SSc (active in 12 and healed in 23), and the median mRSS was 8. SSc patients with DU had a significantly higher median MHR than those without (11.43 vs 7.62, p < 0.001), and MHR significantly positively correlated with mRSS (ρ = 0.289, p = 0.002). Multivariable logistic regression revealed that an elevated MHR was independently associated with increased risk of DU (odds ratio = 1.21; 95% confidence interval = 1.07-1.35; p = 0.002). In the multivariable linear regression analysis, higher MHR showed a significant association with increased log-transformed mRSS (unstandardized β = 0.052, p = 0.003).Conclusion: Our findings suggest that the MHR could be serve as a potential biomarker of the risk of DU and advanced skin fibrosis in patients with SSc.
Collapse
Affiliation(s)
- H-B Kim
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - A Kim
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Y Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - G-T Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - E Ahn
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - M W So
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - D H Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - S-G Lee
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
22
|
Angiotensin Receptor Blockers and Subclinical Interstitial Lung Disease: The MESA Study. Ann Am Thorac Soc 2020; 16:1451-1453. [PMID: 31365837 DOI: 10.1513/annalsats.201903-198rl] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
23
|
Choi B, Kawut SM, Raghu G, Hoffman E, Tracy R, Madahar P, Bernstein EJ, Barr RG, Lederer DJ, Podolanczuk A. Regional distribution of high-attenuation areas on chest computed tomography in the Multi-Ethnic Study of Atherosclerosis. ERJ Open Res 2020; 6:00115-2019. [PMID: 32154292 PMCID: PMC7049731 DOI: 10.1183/23120541.00115-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
High-attenuation areas (HAA) are a computed tomography-based quantitative measure of subclinical interstitial lung disease (ILD). We aimed to validate HAA in lung regions that are less subject to artefacts, such as extravascular lung water or dependent atelectasis. We examined the associations of HAA within six lung regions (basilar, non-basilar, peel, core, basilar peel, basilar core) with serum biomarkers of lung remodelling, forced vital capacity (FVC), visually-assessed interstitial lung abnormalities (ILA), and all-cause and ILD-specific mortality. We performed cross-sectional and longitudinal analyses of participants in the Multi-Ethnic Study of Atherosclerosis, a prospective cohort of 6814 adults aged 45–84 years without known cardiovascular disease who underwent cardiac computed tomography. Median regional HAA ranged from 3.8% in the peel to 4.8% in the basilar core. Doubling of regional HAA was associated with greater serum matrix metalloproteinase-7 (range 3.8% to 10.3%; p≤0.01), higher odds of ILA (OR 1.42 to 2.20; p≤0.03), and a higher risk of all-cause mortality (hazard ratio 1.20 to 1.47; p≤0.001). Doubling of regional HAA was associated with greater serum interleukin-6 (4.9% to 10.3%; p≤0.005) and higher risk of ILD-specific mortality (hazard ratio 3.30 to 3.98; p<0.001), except in the basilar core. Doubling of regional HAA was associated with lower FVC in the non-basilar, core and basilar core (113 mL to 186 mL; p<0.001). Associations of HAA with lung remodelling biomarkers, ILA risk and all-cause mortality were consistent across all regions of the lung, including dependent areas where atelectasis may be present. These findings support the validity of HAA as a measure of pathologic subclinical ILD. Evenwhen found in small regions of the lungs, high-attenuation areas, a CT-based quantitative measure of subclinical ILD, are associated with biomarkers of lung remodelling, risk of interstitial lung abnormalities and all-cause mortalityhttp://bit.ly/36psfin
Collapse
Affiliation(s)
- Bina Choi
- Columbia University Medical Center, New York, NY, USA
| | - Steven M Kawut
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ganesh Raghu
- University of Washington Medical Center, Seattle, WA, USA
| | - Eric Hoffman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | - R Graham Barr
- Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
24
|
Kim JS, Anderson MR, Podolanczuk AJ, Kawut SM, Allison MA, Raghu G, Hinckley-Stuckovsky K, Hoffman EA, Tracy RP, Barr RG, Lederer DJ, Giles JT. Associations of Serum Adipokines With Subclinical Interstitial Lung Disease Among Community-Dwelling Adults: The Multi-Ethnic Study of Atherosclerosis (MESA). Chest 2020; 157:580-589. [PMID: 31678306 PMCID: PMC7078588 DOI: 10.1016/j.chest.2019.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/03/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Adipokines have inflammatory and fibrotic properties that may be critical in interstitial lung disease (ILD). We examined associations of serum adipokine levels with CT imaging-based measures of subclinical ILD and lung function among community-dwelling adults. METHODS A subset of the original Multi-Ethnic Study of Atherosclerosis cohort (n = 1,968) had adiponectin, leptin, and resistin measured during follow-up visits (2002-2005). We used regression models to examine associations of adiponectin, leptin, and resistin levels with (1) high-attenuation areas (HAAs) from CT scans (2004-2005, n = 1,144), (2) interstitial lung abnormalities (ILAs) from CT scans (2010-2012, n = 872), and (3) FVC from spirometry (2004-2006, n = 1,446). We used -(1/HAA2), which we denoted with H, to model HAA as our outcome to meet model assumptions. RESULTS Higher adiponectin was associated with lower HAA on CT imaging among adults with a BMI ≥ 25 kg/m2 (P for BMI interaction = .07). Leptin was more strongly associated with ILA among never smokers compared with ever smokers (P for smoking interaction = .004). For every 1-SD increment of log-transformed leptin, the percent predicted FVC was 3.8% lower (95% CI, -5.0 to -2.5). Higher serum resistin levels were associated with greater HAA on CT in a fully adjusted model. For every 1-SD increment of log-transformed resistin there was an increase in H of 14.8 (95% CI, 3.4-26.3). CONCLUSIONS Higher adiponectin levels were associated with lower HAA on CT imaging among adults with a higher BMI. Higher leptin and resistin levels were associated with lower FVC and greater HAA, respectively.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA.
| | | | - Anna J Podolanczuk
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Steven M Kawut
- Department of Medicine and the Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew A Allison
- Department of Family and Preventative Medicine, University of California San Diego, San Diego, CA
| | - Ganesh Raghu
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Eric A Hoffman
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Russell P Tracy
- Departments of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY; Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, NY; Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - Jon T Giles
- Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
25
|
Sanchez TR, Oelsner EC, Lederer DJ, Lo Cascio CM, Jones MR, Grau-Perez M, Francesconi KA, Goessler W, Perzanowski MS, Barr RG, Navas-Acien A. Rice Consumption and Subclinical Lung Disease in US Adults: Observational Evidence From the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 2019; 188:1655-1665. [PMID: 31145426 DOI: 10.1093/aje/kwz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/17/2023] Open
Abstract
Rice accumulates arsenic, an established lung toxicant. Little is known about the association of rice consumption with arsenic-related health effects, particularly interstitial lung disease. Between 2000 and 2002, 6,814 white, black, Hispanic, and Chinese adults from 6 US cities were enrolled in the Multi-Ethnic Study of Atherosclerosis. We included 2,250 participants who had spirometry data, 2,557 with full-lung computed tomography (CT) scans, and 5,710 with cardiac CT scans. Rice consumption and 310 participants with urinary arsenic were assessed at baseline. Spirometry and full-lung CT-derived measures of total lung capacity and high attenuation area (HAA), and interstitial lung abnormalities were measured at examination 5. Cardiac CT-derived HAA was measured at 1-3 visits. Twelve percent of participants reported eating at least 1 serving of rice daily. Comparing data between that group with those who ate less than 1 serving weekly, the mean difference for forced vital capacity was -102 (95% confidence interval (CI): -198, -7) mL, and for forced expiratory volume in 1 second was -90 (95% CI: -170, -11) mL after adjustment for demographics, anthropometrics, dietary factors, and smoking. The cross-sectional adjusted percent difference for total lung capacity was -1.33% (95% CI: -4.29, 1.72) and for cardiac-based HAA was 3.66% (95% CI: 1.22, 6.15). Sensitivity analyses for urinary arsenic were consistent with rice findings. Daily rice consumption was associated with reduced lung function and greater cardiac-based HAA.
Collapse
|
26
|
Sivakumar P, Thompson JR, Ammar R, Porteous M, McCoubrey C, Cantu E, Ravi K, Zhang Y, Luo Y, Streltsov D, Beers MF, Jarai G, Christie JD. RNA sequencing of transplant-stage idiopathic pulmonary fibrosis lung reveals unique pathway regulation. ERJ Open Res 2019; 5:00117-2019. [PMID: 31423451 PMCID: PMC6689672 DOI: 10.1183/23120541.00117-2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/15/2019] [Indexed: 11/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the scarring of lung parenchyma resulting in the loss of lung function, remains a fatal disease with a significant unmet medical need. Patients with severe IPF often develop acute exacerbations resulting in the rapid deterioration of lung function, requiring transplantation. Understanding the pathophysiological mechanisms contributing to IPF is key to develop novel therapeutic approaches for end-stage disease. We report here RNA-sequencing analyses of lung tissues from a cohort of patients with transplant-stage IPF (n=36), compared with acute lung injury (ALI) (n=11) and nondisease controls (n=19), that reveal a robust gene expression signature unique to end-stage IPF. In addition to extracellular matrix remodelling pathways, we identified pathways associated with T-cell infiltration/activation, tumour development, and cholesterol homeostasis, as well as novel alternatively spliced transcripts that are differentially regulated in the advanced IPF lung versus ALI or nondisease controls. Additionally, we show a subset of genes that are correlated with percent predicted forced vital capacity and could reflect disease severity. Our results establish a robust transcriptomic fingerprint of an advanced IPF lung that is distinct from previously reported microarray signatures of moderate, stable or progressive IPF and identifies hitherto unknown candidate targets and pathways for therapeutic intervention in late-stage IPF as well as biomarkers to characterise disease progression and enable patient stratification.
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- Fibrosis Translational Research and Development, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - John Ryan Thompson
- Translational Bioinformatics, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - Ron Ammar
- Translational Bioinformatics, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - Mary Porteous
- Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Carly McCoubrey
- Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Edward Cantu
- Surgery Dept, University of Pennsylvania, Philadelphia PA, USA
| | - Kandasamy Ravi
- Integrated Genomics, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - Yan Zhang
- Integrated Genomics, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - Yi Luo
- Clinical Biomarkers, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - Denis Streltsov
- Fibrosis Translational Research and Development, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - Michael F Beers
- Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia PA, USA.,PENN Center for Pulmonary Biology, University of Pennsylvania, Philadelphia PA, USA
| | - Gabor Jarai
- Fibrosis Translational Research and Development, Bristol-Myers Squibb Research and Development, Princeton NJ, USA
| | - Jason D Christie
- Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia PA, USA.,PENN Center for Pulmonary Biology, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
27
|
Tsai MJ, Chang WA, Liao SH, Chang KF, Sheu CC, Kuo PL. The Effects of Epigallocatechin Gallate (EGCG) on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)-A Next-Generation Sequencing and Bioinformatic Approach. Int J Mol Sci 2019; 20:E1958. [PMID: 31013581 PMCID: PMC6514693 DOI: 10.3390/ijms20081958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disabling and lethal chronic progressive pulmonary disease. Epigallocatechin gallate (EGCG) is a polyphenol, which is the major biological component of green tea. The anti-oxidative, anti-inflammatory, and anti-fibrotic effects of EGCG have been shown in some studies, whereas its effects in altering gene expression in pulmonary fibroblasts have not been systematically investigated. This study aimed to explore the effect of EGCG on gene expression profiles in fibroblasts of IPF. The pulmonary fibroblasts from an IPF patient were treated with either EGCG or water, and the expression profiles of mRNAs and microRNAs were determined by next-generation sequencing (NGS) and analyzed with the bioinformatics approach. A total of 61 differentially expressed genes and 56 differentially expressed microRNAs were found in EGCG-treated IPF fibroblasts. Gene ontology analyses revealed that the differentially expressed genes were mainly involved in the biosynthetic and metabolic processes of cholesterol. In addition, five potential altered microRNA-mRNA interactions were found, including hsa-miR-939-5p-PLXNA4, hsa-miR-3918-CTIF, hsa-miR-4768-5p-PDE5A, hsa-miR-1273g-3p-VPS53, and hsa-miR-1972-PCSK9. In summary, differentially expressed genes and microRNAs in response to EGCG treatment in IPF fibroblasts were identified in the current study. Our findings provide a scientific basis to evaluate the potential benefits of EGCG in IPF treatment, and warrant future studies to understand the role of molecular pathways underlying cholesterol homeostasis in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ssu-Hui Liao
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | | | - Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
28
|
Mamazhakypov A, Schermuly RT, Schaefer L, Wygrecka M. Lipids - two sides of the same coin in lung fibrosis. Cell Signal 2019; 60:65-80. [PMID: 30998969 DOI: 10.1016/j.cellsig.2019.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive extracellular matrix deposition in the lung parenchyma leading to the destruction of lung structure, respiratory failure and premature death. Recent studies revealed that the pathogenesis of IPF is associated with alterations in the synthesis and the activity of lipids, lipid regulating proteins and cell membrane lipid transporters and receptors in different lung cells. Furthermore, deregulated lipid metabolism was found to contribute to the profibrotic phenotypes of lung fibroblasts and alveolar epithelial cells. Consequently, several pharmacological agents, targeting lipids, lipid mediators, and lipoprotein receptors, was successfully tested in the animal models of lung fibrosis and entered early phase clinical trials. In this review, we highlight new therapeutic options to counteract disturbed lipid hemostasis in the maladaptive lung remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Liliana Schaefer
- Goethe University School of Medicine, Frankfurt am Main, Germany.
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|
29
|
Kim SM, Zhao D, Podolanczuk AJ, Lutsey PL, Guallar E, Kawut SM, Barr RG, de Boer IH, Kestenbaum BR, Lederer DJ, Michos ED. Serum 25-Hydroxyvitamin D Concentrations Are Associated with Computed Tomography Markers of Subclinical Interstitial Lung Disease among Community-Dwelling Adults in the Multi-Ethnic Study of Atherosclerosis (MESA). J Nutr 2018; 148:1126-1134. [PMID: 29931068 PMCID: PMC6454444 DOI: 10.1093/jn/nxy066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/02/2018] [Accepted: 03/11/2018] [Indexed: 01/10/2023] Open
Abstract
Background Activated vitamin D has anti-inflammatory properties. 25-Hydroxyvitamin D [25(OH)D] deficiency might contribute to subclinical interstitial lung disease (ILD). Objective We examined associations between serum 25(OH)D concentrations and subclinical ILD among middle-aged to older adults who were free of cardiovascular disease at baseline. Methods We studied 6302 Multi-Ethnic Study of Atherosclerosis (MESA) participants who had baseline serum 25(OH)D concentrations and computed tomography (CT) imaging spanning ≤ 10 y. Baseline cardiac CT scans (2000-2002) included partial lung fields. Some participants had follow-up cardiac CT scans at exams 2-5 and a full-lung CT scan at exam 5 (2010-2012), with a mean ± SD of 2.1 ± 1.0 scans. Subclinical ILD was defined quantitatively as high-attenuation areas (HAAs) between -600 and -250 Hounsfield units. We assessed associations of 25(OH)D with adjusted HAA volumes and HAA progression. We also examined associations between baseline 25(OH)D and the presence of interstitial lung abnormalities (ILAs) assessed qualitatively (yes or no) from full-lung CT scans at exam 5. Models were adjusted for sociodemographic characteristics, lifestyle factors (including smoking), and lung volumes. Results The cohort's mean ± SD characteristics were 62.2 ± 10 y for age, 25.8 ± 10.9 ng/mL for 25(OH)D concentrations, and 28.3 ± 5.4 for body mass index (kg/m2); 53% were women, with 39% white, 27% black, 22% Hispanic, and 12% Chinese race/ethnicities. Thirty-three percent had replete (≥30 ng/mL), 35% intermediate (20 to <30 ng/mL), and 32% deficient (<20 ng/mL) 25(OH)D concentrations. Compared with those with replete concentrations, participants with 25(OH)D deficiency had greater adjusted HAA volume at baseline (2.7 cm3; 95% CI: 0.9, 4.5 cm3) and increased progression over a median of 4.3 y of follow-up (2.7 cm3; 95% CI: 0.9, 4.4 cm3) (P < 0.05). 25(OH)D deficiency was also associated with increased prevalence of ILAs 10 y later (OR: 1.5; 95% CI: 1.1, 2.2). Conclusions Vitamin D deficiency is independently associated with subclinical ILD and its progression, based on both increased HAAs and ILAs, in a community-based population. Further studies are needed to examine whether vitamin D repletion can prevent ILD or slow its progression. The MESA cohort design is registered at www.clinicaltrials.gov as NCT00005487.
Collapse
Affiliation(s)
- Samuel M Kim
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD
- Division of Cardiology, Weill Cornell Medicine, New York, NY
| | - Di Zhao
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Anna J Podolanczuk
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY
| | - Pamela L Lutsey
- Divisions of General Medicine, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Eliseo Guallar
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Steven M Kawut
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - R Graham Barr
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Ian H de Boer
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA
| | - Bryan R Kestenbaum
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA
| | - David J Lederer
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY
| | - Erin D Michos
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
30
|
Miller ER, Hunninghake GM. Malaria and the development of pulmonary fibrosis. Eur Respir J 2017; 50:50/6/1702030. [PMID: 29217609 DOI: 10.1183/13993003.02030-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Ezra R Miller
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary M Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA .,Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Adegunsoye A, Oldham JM, Chung JH, Montner SM, Lee C, Witt LJ, Stahlbaum D, Bermea RS, Chen LW, Hsu S, Husain AN, Noth I, Vij R, Strek ME, Churpek M. Phenotypic Clusters Predict Outcomes in a Longitudinal Interstitial Lung Disease Cohort. Chest 2017; 153:349-360. [PMID: 28964798 DOI: 10.1016/j.chest.2017.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The current interstitial lung disease (ILD) classification has overlapping clinical presentations and outcomes. Cluster analysis modeling is a valuable tool in identifying distinct clinical phenotypes in heterogeneous diseases. However, this approach has yet to be implemented in ILD. METHODS Using cluster analysis, novel ILD phenotypes were identified among subjects from a longitudinal ILD cohort, and outcomes were stratified according to phenotypic clusters compared with subgroups according to current American Thoracic Society/European Respiratory Society ILD classification criteria. RESULTS Among subjects with complete data for baseline variables (N = 770), four clusters were identified. Cluster 1 (ie, younger white obese female subjects) had the highest baseline FVC and diffusion capacity of the lung for carbon monoxide (Dlco). Cluster 2 (ie, younger African-American female subjects with elevated antinuclear antibody titers) had the lowest baseline FVC. Cluster 3 (ie, elderly white male smokers with coexistent emphysema) had intermediate FVC and Dlco. Cluster 4 (ie, elderly white male smokers with severe honeycombing) had the lowest baseline Dlco. Compared with classification according to ILD subgroup, stratification according to phenotypic clusters was associated with significant differences in monthly FVC decline (Cluster 4, -0.30% vs Cluster 2, 0.01%; P < .0001). Stratification by using clusters also independently predicted progression-free survival (P < .001) and transplant-free survival (P < .001). CONCLUSIONS Among adults with diverse chronic ILDs, cluster analysis using baseline characteristics identified four distinct clinical phenotypes that might better predict meaningful clinical outcomes than current ILD diagnostic criteria.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL.
| | - Justin M Oldham
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California at Davis, Davis, CA
| | | | | | - Cathryn Lee
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL
| | - Leah J Witt
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL
| | | | - Rene S Bermea
- Department of Medicine, University of Chicago, Chicago, IL
| | - Lena W Chen
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL
| | - Scully Hsu
- Department of Medicine, University of Chicago, Chicago, IL
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, IL
| | - Imre Noth
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL
| | - Rekha Vij
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL
| | - Mary E Strek
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL
| | - Matthew Churpek
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|