1
|
Sousa J, Martins LC, Moura J, Pereira A, Vasconcelos B, Ferro G, Vasconcelos P, Quaresma J. Endoplasmic Reticulum Stress in Tuberculosis: Molecular Bases and Pathophysiological Implications in the Immunopathogenesis of the Disease. Int J Mol Sci 2025; 26:4522. [PMID: 40429667 PMCID: PMC12111063 DOI: 10.3390/ijms26104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe pulmonary disease with high mortality, particularly in low-income countries. Early diagnosis and timely treatment, including both intensive and maintenance phases, are critical for controlling the disease and preventing its transmission. In Brazil, where TB incidence remains high, thousands of new cases are reported annually. Transmission occurs primarily through airborne droplets expelled by infected individuals. The immune response involves various cell types, such as lymphocytes and macrophages, which form granulomas to limit the spread of the bacillus. Upon entering the lungs, Mtb is phagocytosed by immune cells, where it evades destruction by blocking phagolysosome formation and inhibiting phagosome acidification. In response, the immune system forms granulomas that contain the infection, although these can become reactivated if immune function deteriorates. Mtb also interferes with host cellular organelles, particularly the endoplasmic reticulum (ER) and mitochondria, inducing cellular stress and apoptosis, which aids in its survival. Key Mtb-secreted proteins, such as BAG2 and CdhM, modulate autophagy and apoptosis pathways, influencing pathogen survival within immune cells. A deeper understanding of these molecular mechanisms, particularly the role of ER stress and its impact on immune responses, is essential for developing novel therapeutic strategies for TB prevention and treatment.
Collapse
Affiliation(s)
- Jorge Sousa
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
| | - Lívia Caricio Martins
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
| | - Julia Moura
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Amanda Pereira
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | | | - Gustavo Ferro
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Pedro Vasconcelos
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Juarez Quaresma
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| |
Collapse
|
2
|
Lian E, Belardinelli JM, De K, Pandurangan AP, Angala SK, Palčeková Z, Grzegorzewicz AE, Bryant JM, Blundell TL, Parkhill J, Floto RA, Wheat WH, Jackson M. Cell envelope polysaccharide modifications alter the surface properties and interactions of Mycobacterium abscessus with innate immune cells in a morphotype-dependent manner. mBio 2025; 16:e0032225. [PMID: 40084888 PMCID: PMC11980365 DOI: 10.1128/mbio.00322-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Mycobacterium abscessus is one of the leading causes of pulmonary infections caused by non-tuberculous mycobacteria. The ability of M. abscessus to establish a chronic infection in the lung relies on a series of adaptive mutations impacting, in part, global regulators and cell envelope biosynthetic enzymes. One of the genes under strong evolutionary pressure during host adaptation is ubiA, which participates in the elaboration of the arabinan domains of two major cell envelope polysaccharides: arabinogalactan (AG) and lipoarabinomannan (LAM). We here show that patient-derived UbiA mutations not only cause alterations in the AG, LAM, and mycolic acid contents of M. abscessus but also tend to render the bacterium more prone to forming biofilms while evading uptake by innate immune cells and enhancing their pro-inflammatory properties. The fact that the effects of UbiA mutations on the physiology and pathogenicity of M. abscessus were impacted by the rough or smooth morphotype of the strain suggests that the timing of their selection relative to morphotype switching may be key to their ability to promote chronic persistence in the host.IMPORTANCEMultidrug-resistant pulmonary infections caused by Mycobacterium abscessus and subspecies are increasing in the U.S.A. and globally. Little is known of the mechanisms of pathogenicity of these microorganisms. We have identified single-nucleotide polymorphisms (SNPs) in a gene involved in the biosynthesis of two major cell envelope polysaccharides, arabinogalactan and lipoarabinomannan, in lung-adapted isolates from 13 patients. Introduction of these individual SNPs in a reference M. abscessus strain allowed us to study their impact on the physiology of the bacterium and its interactions with immune cells. The significance of our work is in identifying some of the mechanisms used by M. abscessus to colonize and persist in the human lung, which will facilitate the early detection of potentially more virulent clinical isolates and lead to new therapeutic strategies. Our findings may further have broader biomedical impacts, as the ubiA gene is conserved in other tuberculous and non-tuberculous mycobacterial pathogens.
Collapse
Affiliation(s)
- Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kavita De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Arun Prasad Pandurangan
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Trumpington, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Shiva K. Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anna E. Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Tom L. Blundell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Trumpington, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R. Andres Floto
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Trumpington, Cambridge, UK
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Yabaji SM, Lata S, Tseng AE, Araveti PB, Lo M, Gavrish I, O’Connell AK, Gertje HP, Belkina AC, Thurman CE, Kiyokawa H, Kotton D, Tan S, Endsley JJ, Bishai WR, Crossland N, Kobzik L, Kramnik I. Aberrant macrophage activation and maladaptive lung repair promote tuberculosis progression uniquely in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.17.562695. [PMID: 40093068 PMCID: PMC11908135 DOI: 10.1101/2023.10.17.562695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pulmonary tuberculosis (PTB) represents 85% of the disease burden caused by Mycobacterium tuberculosis (Mtb) and promotes aerosol transmission infecting about a quarter of people globally. Most Mtb infections are effectively limited within primary granulomatous lesions. Containment failures lead to hematogenous spread and the formation of post-primary destructive PTB lesions. Factors that favor Mtb survival and replication in the lungs after hematogenous spread despite systemic immunity represent appealing targets for host-directed TB therapies, but are currently unknown. We developed a novel mouse model that mimics progression of chronic post-primary PTB in humans: wherein PTB lesions form after hematogenous spread from a remote primary lesion in immunocompetent but TB-susceptible B6.Sst1S mice. The B6.Sst1S mice developed PTB lesions featuring granulomatous pneumonia, bronchogenic expansion and broncho-occlusion closely resembling post-primary PTB in humans. Using spatial transcriptomic and fluorescent multiplexed immunochemistry, we demonstrated the expansion of myeloid cell populations with the appearance of alternatively activated macrophages, dissolution of initial lymphoid follicles, and accumulation of de-differentiated lung epithelial cells in the advanced PTB lesions. To determine whether lung parenchymal cells or lung oxygenation were necessary for the pulmonary TB progression, we implanted lung and spleen fragments subcutaneously to serve as potential targets for hematogenous spread. The lung (but not spleen) implants displayed characteristic organized granulomas with necrosis and Mtb replication demonstrating that deleterious interactions of aberrantly activated macrophages with the inflammation-injured lung resident cells, and possibly hypoxia, not oxygenation, are critical determinants of PTB progression in immunocompetent hosts. Necrotic TB lesions also developed in subcutaneous implants of human lung tissue in mice with human immune system after respiratory infection. These animal models may serve to further dissect the lung-specific mechanisms of host susceptibility to virulent Mtb and for testing therapeutic interventions targeting these mechanisms.
Collapse
Affiliation(s)
- Shivraj M. Yabaji
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Suruchi Lata
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Anna E. Tseng
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | | | - Ming Lo
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Igor Gavrish
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Aoife K O’Connell
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Hans P Gertje
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Anna C. Belkina
- The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| | - Colleen E Thurman
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
| | - Hirofumi Kiyokawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Janice J. Endsley
- Departments of Microbiology & Immunology and Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William R Bishai
- Center for Tuberculosis Research School of Medicine, John Hopkins University Baltimore, Maryland
| | - Nicholas Crossland
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
- The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | | | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University
- Pulmonary Center, The Department of Medicine, Boston University Chobanian & Aveedisian School of Medicine
| |
Collapse
|
4
|
Jain M, Vyas R. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis. Crit Rev Biotechnol 2025:1-19. [PMID: 39880585 DOI: 10.1080/07388551.2024.2449367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 09/14/2024] [Indexed: 01/31/2025]
Abstract
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (M.tb) emphasizes the critical requirement for novel potent drugs. The M.tb demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of M.tb that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host. M.tb is an exceptionally triumphant pathogen, primarily due to its adeptness in developing defense mechanisms against stressful situations. The recent advances emphasize the significance of M.tb stress sensors, including chaperones, proteases, transcription factors, riboswitches, inteins, etc., employed in responding to a spectrum of physiological stresses imposed by the host, encompassing surface stress, host immune responses, osmotic stress, oxidative and nitrosative stresses, cell envelope stress, environmental stress, reductive stress, and drug pressure. These sensors act as silent defenders orchestrating adaptive strategies, with limited comprehensive information in current literature, necessitating a focused review. The M.tb strategies utilizing these stress sensors to mitigate the impact of traumatic conditions demand attention to neutralize this pathogen effectively. Moreover, the intricacies of these stress sensors provide potential targets to design an effective TB drug using structure-based drug design against this formidable global health threat.
Collapse
Affiliation(s)
- Manya Jain
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| | - Rajan Vyas
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
6
|
Barclay AM, Ninaber DK, Limpens RWL, Walburg KV, Bárcena M, Hiemstra PS, Ottenhoff TH, van der Does AM, Joosten SA. Mycobacteria develop biofilms on airway epithelial cells and promote mucosal barrier disruption. iScience 2024; 27:111063. [PMID: 39502292 PMCID: PMC11536035 DOI: 10.1016/j.isci.2024.111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Tuberculosis displays several features commonly linked to biofilm-associated infections, including recurrence of infection and resistance to antibiotic treatment. The respiratory epithelium represents the first line of defense against pathogens such as Mycobacterium tuberculosis (Mtb). Here, we use an air-liquid interface model of human primary bronchial epithelial cells (PBEC) to explore the capability of four species of mycobacteria (Mtb, M. bovis (BCG), M. avium, and M. smegmatis) to form biofilms on airway epithelial cells. Mtb, BCG, and M. smegmatis consistently formed biofilms with extracellular matrixes on PBEC cultures. Biofilms varied in biomass, matrix polysaccharide content, and bacterial metabolic activity between species. Exposure of PBEC to mycobacteria caused the disruption of the epithelial barrier and was accompanied by mostly apical non-apoptotic cell death. Structural analysis revealed pore-like structures in 7-day biofilms. Taken together, mycobacteria can form biofilms on human airway epithelial cells, and long-term infection negatively affects barrier function and promotes cell death.
Collapse
Affiliation(s)
- Amy M. Barclay
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis K. Ninaber
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald W.A. L. Limpens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kimberley V. Walburg
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Montserrat Bárcena
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom H.M. Ottenhoff
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A. Joosten
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Qiu X, Zhong P, Yue L, Li C, Yun Z, Si G, Li M, Chen Z, Tan Y, Bao P. Spatial transcriptomic sequencing reveals immune microenvironment features of Mycobacterium tuberculosis granulomas in lung and omentum. Theranostics 2024; 14:6185-6201. [PMID: 39431015 PMCID: PMC11488093 DOI: 10.7150/thno.99038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
Granulomas are a key pathological feature of tuberculosis (TB), characterized by cell heterogeneity, spatial composition, and cellular interactions, which play crucial roles in granuloma progression and host prognosis. This study aims to analyze the transcriptome profiles of cell populations based on their spatial location and to understand the core transcriptome characteristics of granuloma formation and development. Methods In this study, we collected four clinical biopsy samples including Mycobacterium tuberculosis (Mtb) infected lung (MTB-L) and omentum tissues (MTB-O), as well as two lung and omentum biopsies from non-TB patients. The tissues were analyzed by spatial transcriptomics to create a spatial atlas. Utilizing cell enrichment scores and intercellular communication analysis, we investigated the transcriptome signatures of cell populations in various spatial regions and identified genes that may play a decisive role in the formation of pulmonary and omental tuberculosis granulomas. To validate our major findings, an in vitro TB model based on organoid-macrophage co-culture was established. Results Spatial transcriptomics mapped the cell composition and spatial distribution characteristics of tuberculosis granulomas in lung and omental tissues infected with Mtb. The characteristics and evolutionary relationships of major cell populations in granulomas reveal a shift in the immune microenvironment: from a predominance of B cells and fibroblasts in pulmonary granulomas to a predominance of myeloid cells and fibroblasts in omental granulomas. Furthermore, our data identified key differentially expressed genes across cell clusters and regions, showing that upregulation of collagen genes is a common feature of granulomas. Using an organoid-macrophage co-culture model, we demonstrated the notable efficacy of Thrombospondin-1 (THBS1) in reducing protein expression levels related to extracellular matrix remodeling. Conclusion These results provide insights into the pathogenesis and development of tuberculosis, enhancing our understanding of the composition and interactions of tuberculosis granuloma cells from a spatial perspective, and pave the way for novel adjuvant treatments for tuberculosis.
Collapse
Affiliation(s)
- Xiaochen Qiu
- The Eighth Medical Center, Chinese PLA General Hospital, 100039, Beijing, China
- Senior Department of General Surgery, Chinese PLA General Hospital, Beijing, 100093, China
| | - Pengfei Zhong
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Liang Yue
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chaofan Li
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Zhimin Yun
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guangqian Si
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Mengfan Li
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Zhi Chen
- The Eighth Medical Center, Chinese PLA General Hospital, 100039, Beijing, China
- Senior Department of Tuberculosis, Chinese PLA General Hospital, Beijing, 100093, China
| | - Yingxia Tan
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Pengtao Bao
- The Eighth Medical Center, Chinese PLA General Hospital, 100039, Beijing, China
- Senior Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100093, China
| |
Collapse
|
8
|
Sinha V, Singh A, Singh A, Saraswati SSK, Rana AK, Kalra K, Natarajan K. Potassium ion channel Kir2.1 negatively regulates protective responses to Mycobacterium bovis BCG. J Leukoc Biol 2024; 116:644-656. [PMID: 38489665 DOI: 10.1093/jleuko/qiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tuberculosis caused by the pathogen Mycobacterium tuberculosis leads to increased mortality and morbidity worldwide. The prevalence of highly drug-resistant strains has reinforced the need for greater understanding of host-pathogen interactions at the cellular and molecular levels. Our previous work demonstrated critical roles of calcium ion channels in regulating protective responses to mycobacteria. In this report, we deciphered the roles of inwardly rectifying K+ ion channel Kir2.1 in epithelial cells. Data showed that infection of epithelial cells (and macrophages) increases the surface expression of Kir2.1. This increased expression of Kir2.1 results in higher intracellular mycobacterial survival, as either inhibiting or knocking down Kir2.1 results in mounting of a higher oxidative burst leading to a significant attenuation of mycobacterial survival. Further, inhibiting Kir2.1 also led to increased expression of T cell costimulatory molecules accompanied with increased activation of MAP kinases and transcription factors nuclear factor κB and phosphorylated CREB. Furthermore, inhibiting Kir2.1 induced increased autophagy and apoptosis that could also contribute to decreased bacterial survival. Interestingly, an increased association of heat shock protein 70 kDa with Kir2.1 was observed. These results showed that mycobacteria modulate the expression and function of Kir2.1 in epithelial cells to its advantage.
Collapse
Affiliation(s)
- Vishal Sinha
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Akshita Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Shakuntala Surender Kumar Saraswati
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Ankush Kumar Rana
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Kanika Kalra
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, University Enclave, Delhi 110007, India
| |
Collapse
|
9
|
Kim SY, Choi JA, Choi S, Kim KK, Song CH, Kim EM. Advances in an In Vitro Tuberculosis Infection Model Using Human Lung Organoids for Host-Directed Therapies. PLoS Pathog 2024; 20:e1012295. [PMID: 39052544 PMCID: PMC11271890 DOI: 10.1371/journal.ppat.1012295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis (M.tb) has led to the development of novel anti-tuberculosis (anti-TB) drugs. Common methods for testing the efficacy of new drugs, including two-dimensional cell culture models or animal models, have several limitations. Therefore, an appropriate model representative of the human organism is required. Here, we developed an M.tb infection model using human lung organoids (hLOs) and demonstrated that M.tb H37Rv can infect lung epithelial cells and human macrophages (hMφs) in hLOs. This novel M.tb infection model can be cultured long-term and split several times while maintaining a similar number of M.tb H37Rv inside the hLOs. Anti-TB drugs reduced the intracellular survival of M.tb in hLOs. Notably, M.tb growth in hLOs was effectively suppressed at each passage by rifampicin and bedaquiline. Furthermore, a reduction in inflammatory cytokine production and intracellular survival of M.tb were observed upon knockdown of MFN2 and HERPUD1 (host-directed therapeutic targets for TB) in our M.tb H37Rv-infected hLO model. Thus, the incorporation of hMφs and M.tb into hLOs provides a powerful strategy for generating an M.tb infection model. This model can effectively reflect host-pathogen interactions and be utilized to test the efficacy of anti-TB drugs and host-directed therapies.
Collapse
Affiliation(s)
- Seung-Yeon Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University Daejeon, Republic of Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Seri Choi
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kee K. Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University Daejeon, Republic of Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Datta M, Via LE, Dartois V, Weiner DM, Zimmerman M, Kaya F, Walker AM, Fleegle JD, Raplee ID, McNinch C, Zarodniuk M, Kamoun WS, Yue C, Kumar AS, Subudhi S, Xu L, Barry CE, Jain RK. Normalizing granuloma vasculature and matrix improves drug delivery and reduces bacterial burden in tuberculosis-infected rabbits. Proc Natl Acad Sci U S A 2024; 121:e2321336121. [PMID: 38530888 PMCID: PMC10998582 DOI: 10.1073/pnas.2321336121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - April M Walker
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Joel D Fleegle
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Isaac D Raplee
- Bioinformatics and Computational Bioscience Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Walid S Kamoun
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Changli Yue
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Sonu Subudhi
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
11
|
Schorey JS, Vecchio J, McManus WR, Ongalo J, Webber K. Activation of host nucleic acid sensors by Mycobacterium: good for us or good for them? Crit Rev Microbiol 2024; 50:224-240. [PMID: 38153209 PMCID: PMC10985831 DOI: 10.1080/1040841x.2023.2294904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Although the importance of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sensors in controlling viral infection is well established, their role in promoting an effective immune response to pathogens other than viruses is less clear. This is particularly true for infections with mycobacteria, as studies point to both protective and detrimental roles for activation of nucleic acid sensors in controlling a mycobacterial infection. Some of the contradiction likely stems from the use of different model systems and different mycobacterial species/strains as well as from which nucleic acid sensors were studied and what downstream effectors were evaluated. In this review, we will describe the different nucleic acid sensors that have been studied in the context of mycobacterial infections, and how the different studies compare. We conclude with a section on how nucleic acid sensor agonists have been used therapeutically and what further information is needed to enhance their potential as therapeutic agents.
Collapse
Affiliation(s)
- Jeffery S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joseph Vecchio
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - William R. McManus
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua Ongalo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Kylie Webber
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
12
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
13
|
Purev E, Bahmed K, Kosmider B. Alveolar Organoids in Lung Disease Modeling. Biomolecules 2024; 14:115. [PMID: 38254715 PMCID: PMC10813493 DOI: 10.3390/biom14010115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
Suman SK, Chandrasekaran N, Priya Doss CG. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments. Clin Microbiol Rev 2023; 36:e0008823. [PMID: 38032192 PMCID: PMC10732062 DOI: 10.1128/cmr.00088-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) is a major global health problem and the second most prevalent infectious killer after COVID-19. It is caused by Mycobacterium tuberculosis (Mtb) and has become increasingly challenging to treat due to drug resistance. The World Health Organization declared TB a global health emergency in 1993. Drug resistance in TB is driven by mutations in the bacterial genome that can be influenced by prolonged drug exposure and poor patient adherence. The development of drug-resistant forms of TB, such as multidrug resistant, extensively drug resistant, and totally drug resistant, poses significant therapeutic challenges. Researchers are exploring new drugs and novel drug delivery systems, such as nanotechnology-based therapies, to combat drug resistance. Nanodrug delivery offers targeted and precise drug delivery, improves treatment efficacy, and reduces adverse effects. Along with nanoscale drug delivery, a new generation of antibiotics with potent therapeutic efficacy, drug repurposing, and new treatment regimens (combinations) that can tackle the problem of drug resistance in a shorter duration could be promising therapies in clinical settings. However, the clinical translation of nanomedicines faces challenges such as safety, large-scale production, regulatory frameworks, and intellectual property issues. In this review, we present the current status, most recent findings, challenges, and limiting barriers to the use of emulsions and nanoparticles against drug-resistant TB.
Collapse
Affiliation(s)
- Simpal Kumar Suman
- School of Bio Sciences & Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nano Biotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C. George Priya Doss
- Laboratory for Integrative Genomics, Department of Integrative Biology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
16
|
Song B, Peng Y, Zheng Y, Zhu Y, Liu W, Wang K, Cui Z, Song B. Role of single-cell ferroptosis regulation in intercellular communication and skin cutaneous melanoma progression and immunotherapy. Cancer Immunol Immunother 2023; 72:3523-3541. [PMID: 37638981 PMCID: PMC10991472 DOI: 10.1007/s00262-023-03504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The involvement of ferroptosis in the pathogenesis and progression of various cancers has been well established. However, limited studies have investigated the role of ferroptosis-mediated tumor microenvironment (TME) in skin cutaneous melanoma (SKCM). METHODS By leveraging single-cell RNA sequencing data, the nonnegative matrix factorization (NMF) approach was employed to comprehensively characterize and identify distinct gene signatures within ferroptosis-associated TME cell clusters. Prognostic and treatment response analyses were conducted using both bulk datasets and external cancer cohort to evaluate the clinical implications of TME clusters. RESULTS This NMF-based analysis successfully delineated fibroblasts, macrophages, T cells, and B cells into multiple clusters, enabling the identification of unique gene expression patterns and the annotation of distinct TME clusters. Furthermore, pseudotime trajectories, enrichment analysis, cellular communication analysis, and gene regulatory network analysis collectively demonstrated significant intercellular communication between key TME cell clusters, thereby influencing tumor cell development through diverse mechanisms. Importantly, our bulk RNA-seq analysis revealed the prognostic significance of ferroptosis-mediated TME cell clusters in SKCM patients. Moreover, our analysis of immune checkpoint blockade highlighted the crucial role of TME cell clusters in tumor immunotherapy, facilitating the discovery of potential immunotherapeutic targets. CONCLUSIONS In conclusion, this pioneering study employing NMF-based analysis unravels the intricate cellular communication mediated by ferroptosis within the TME and its profound implications for the pathogenesis and progression of SKCM. We provide compelling evidence for the prognostic value of ferroptosis-regulated TME cell clusters in SKCM, as well as their potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yixuan Peng
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
- School of Basic Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yu Zheng
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
17
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
18
|
Lan B, Dong X, Yang Q, Luo Y, Wen H, Chen Z, Chen H. Exosomal MicroRNAs: An Emerging Important Regulator in Acute Lung Injury. ACS OMEGA 2023; 8:35523-35537. [PMID: 37810708 PMCID: PMC10551937 DOI: 10.1021/acsomega.3c04955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Acute lung injury (ALI) is a clinically life-threatening form of respiratory failure with a mortality of 30%-40%. Acute respiratory distress syndrome is the aggravated form of ALI. Exosomes are extracellular lipid vesicles ubiquitous in human biofluids with a diameter of 30-150 nm. They can serve as carriers to convey their internal cargo, particularly microRNA (miRNA), to the target cells involved in cellular communication. In disease states, the quantities of exosomes and the cargo generated by cells are altered. These exosomes subsequently function as autocrine or paracrine signals to nearby or distant cells, regulating various pathogenic processes. Moreover, exosomal miRNAs from multiple stem cells can provide therapeutic value for ALI by regulating different signaling pathways. In addition, changes in exosomal miRNAs of biofluids can serve as biomarkers for the early diagnosis of ALI. This study aimed to review the role of exosomal miRNAs produced by different sources participating in various pathological processes of ALI and explore their potential significance in the treatment and diagnosis.
Collapse
Affiliation(s)
- Bowen Lan
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xuanchi Dong
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Qi Yang
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Traditional Chinese Medicine, The Second
Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haiyun Wen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Zhe Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Hailong Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| |
Collapse
|
19
|
Shen X, Wu T, Ji X, Yang K, Wang L, Peng Y, Huang G, Shen H, Sha W. Mycobacterium tuberculosis infection depressed cytotoxic T cells activity owing to decreasing NKG2C and increasing NKG2A expression. Mol Immunol 2023; 162:133-142. [PMID: 37683324 DOI: 10.1016/j.molimm.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) play protective roles in immunity against tuberculosis (TB) infection by strongly inhibiting intracellular mycobacterial growth. In TB infection, the impairing mechanism of CTLs function remains unclear. In this study, we identified that the cytotoxic granule molecules expression levels of perforin (PRF) and granulysin (GNLY) in CD3+ and CD8+ CTL cells were significantly depressed in TB patients compared to those in healthy donors. The frequencies of T-CTLs, co-expressing granzyme B (GZMB), PRF and GNLY, were obviously decreased in TB patients. Moreover, NKG2C highly expressed in T-CTLs, was an effective activator of cytotoxic activity of CD3+ T cells. And, NKG2C+CD3+ T cells potently inhibited intracellular mycobacterial growth. The proportions of NKG2C+ cells in CD3+ and CD8+ T cells were dramatically decreased in TB patients. Contrarily, NKG2A, an inhibitor of T cells cytotoxic activities, was highly expressed in T-CTLs of CD3+ and CD8+ T cells in TB patients. Here, we successfully discovered that depressed CTLs activities in TB patients were attributed to low expression of cytotoxic granule molecules and high expression of inhibitory NKG2A receptor, suppression of agonist receptor NKG2C. Thus, NKG2 receptors were potential targets for immunotherapy of tuberculosis, especially for multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Xiaona Shen
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Tian Wu
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Xuejiao Ji
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Kunfeng Yang
- College of Marine Life Sciences, Ocean University of China, Shandong, China
| | - Lei Wang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Ying Peng
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.
| | - Guixian Huang
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Hongbo Shen
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.
| | - Wei Sha
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Barclay AM, Ninaber DK, van Veen S, Hiemstra PS, Ottenhoff THM, van der Does AM, Joosten SA. Airway epithelial cells mount an early response to mycobacterial infection. Front Cell Infect Microbiol 2023; 13:1253037. [PMID: 37822359 PMCID: PMC10562574 DOI: 10.3389/fcimb.2023.1253037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Lung epithelial cells represent the first line of host defence against foreign inhaled components, including respiratory pathogens. Their responses to these exposures may direct subsequent immune activation to these pathogens. The epithelial response to mycobacterial infections is not well characterized and may provide clues to why some mycobacterial infections are cleared, while others are persistent and pathogenic. We have utilized an air-liquid interface model of human primary bronchial epithelial cells (ALI-PBEC) to investigate the epithelial response to infection with a variety of mycobacteria: Mycobacterium tuberculosis (Mtb), M. bovis (BCG), M. avium, and M. smegmatis. Airway epithelial cells were found to be infected by all four species, albeit at low frequencies. The proportion of infected epithelial cells was lowest for Mtb and highest for M. avium. Differential gene expression analysis revealed a common epithelial host response to mycobacteria, including upregulation of BIRC3, S100A8 and DEFB4, and downregulation of BPIFB1 at 48 h post infection. Apical secretions contained predominantly pro-inflammatory cytokines, while basal secretions contained tissue growth factors and chemokines. Finally, we show that neutrophils were attracted to both apical and basal secretions of infected ALI-PBEC. Neutrophils were attracted in high numbers to apical secretions from PBEC infected with all mycobacteria, with the exception of secretions from M. avium-infected ALI-PBEC. Taken together, our results show that airway epithelial cells are differentially infected by mycobacteria, and react rapidly by upregulation of antimicrobials, and increased secretion of inflammatory cytokines and chemokines which directly attract neutrophils. Thus, the airway epithelium may be an important immunological component in controlling and regulating mycobacterial infections.
Collapse
Affiliation(s)
- Amy M. Barclay
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Dennis K. Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M. van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Jacobo-Delgado YM, Navarro-Tovar G, Rivas-Santiago B. [Potential use of liposomes in tuberculosis treatment]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:661-669. [PMID: 37769138 PMCID: PMC10599776 DOI: 10.5281/zenodo.8316467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/03/2023] [Indexed: 09/30/2023]
Abstract
Tuberculosis is among the infectious diseases with the highest mortality and morbidity worldwide, behind the COVID-19 pandemic. It can affect any organ, although the respiratory infection is the most common. The correct activation of the immune response eliminates or contain the bacteria; however, the active disease is progressive and must be treated under strict supervision. Treatment for tuberculosis is prolonged and consists of a combination of several antibiotics associated with a wide variety of adverse effects. These effects are the main cause of therapeutic abandonment, which facilitates the appearance of drug-resistant strains. Hence the importance of developing new therapeutic strategies to reduce the dose of the drug or its administration time. To achieve these objectives, the use of nano-vehicles, which are controlled and directed drug release systems, has been proposed. Specifically, liposomes are formulations that have advantages when administered by the respiratory route since they facilitate the reach of the respiratory mucosa and the lungs, which are the main organs affected by tuberculosis. This review analyzes the use of nano-vehicles as effective drug delivery systems and the formulations under study. Perspectives for the application of nanotechnology in the development of new pharmacological treatments for tuberculosis are also proposed.
Collapse
Affiliation(s)
- Yolanda Monserrath Jacobo-Delgado
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 1 “Dr. Emilio Varela Lujan”, Unidad de Investigación Biomédica de Zacatecas. Zacatecas, Zacatecas, México Instituto Mexicano del Seguro SocialMéxico
| | - Gabriela Navarro-Tovar
- Universidad Autónoma de San Luís Potosí, Facultad de Ciencias Químicas, Posgrado en Ciencias Farmacobiológicas. San Luis Potosí, San Luis Potosí, México>Universidad Autónoma de San Luís PotosíMéxico
| | - Bruno Rivas-Santiago
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 1 “Dr. Emilio Varela Lujan”, Unidad de Investigación Biomédica de Zacatecas. Zacatecas, Zacatecas, México Instituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
22
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
23
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
24
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
25
|
Adefisayo OO, Curtis ER, Smith CM. Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment. Infect Immun 2023; 91:e0043022. [PMID: 37249448 PMCID: PMC10269127 DOI: 10.1128/iai.00430-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the oldest and most successful pathogens in the world. Diverse selective pressures encountered within host cells have directed the evolution of unique phenotypic traits, resulting in the remarkable evolutionary success of this largely obligate pathogen. Despite centuries of study, the genetic repertoire utilized by Mtb to drive virulence and host immune evasion remains to be fully understood. Various genetic approaches have been and continue to be developed to tackle the challenges of functional gene annotation and validation in an intractable organism such as Mtb. In vitro and ex vivo systems remain the primary approaches to generate and confirm hypotheses that drive a general understanding of mycobacteria biology. However, it remains of great importance to characterize genetic requirements for successful infection within a host system as in vitro and ex vivo studies fail to fully replicate the complex microenvironment experienced by Mtb. In this review, we evaluate the employment of the mycobacterial genetic toolkit to probe the host-pathogen interface by surveying the current state of mycobacterial genetic studies within host systems, with a major focus on the murine model. Specifically, we discuss the different ways that these tools have been utilized to examine various aspects of infection, including bacterial survival/virulence, bacterial evasion of host immunity, and development of novel antibacterial/vaccine strategies.
Collapse
Affiliation(s)
| | - Erin R. Curtis
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Clare M. Smith
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Seya T, Shingai M, Kawakita T, Matsumoto M. Two Modes of Th1 Polarization Induced by Dendritic-Cell-Priming Adjuvant in Vaccination. Cells 2023; 12:1504. [PMID: 37296625 PMCID: PMC10252737 DOI: 10.3390/cells12111504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.
Collapse
Affiliation(s)
- Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| | - Masashi Shingai
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Division of Biologics Development, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Kawakita
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Misako Matsumoto
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| |
Collapse
|
27
|
Quan S, Zou T, Duan L, Tian X, Wang Y, Zhu Y, Fang M, Shi Y, Wan C, Sun L, Shen A. Clinical Characteristics of Pulmonary Tuberculosis in Children Tested by Xpert MTB/RIF Ultra. Pediatr Infect Dis J 2023; 42:389-395. [PMID: 36854100 DOI: 10.1097/inf.0000000000003866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND The Xpert MTB/rifampicin Ultra (Xpert Ultra) assay improves the early diagnosis of active tuberculosis (TB) in children. Clinical evaluation is paramount for the interpretation of any positive Xpert Ultra test, especially those with low quantities of DNA. METHODS In this study, 391 children with suspected TB who were tested with Xpert Ultra were enrolled. The clinical characteristics and Xpert Ultra results were further analyzed. RESULTS The sensitivity and specificity of Xpert Ultra were 45.0% (149/331) and 96.7% (58/60), respectively. Children with higher semiquantitative scales of Xpert Ultra showed higher percentages of a positive MTB culture, positive acid-fast bacilli staining, severe type of disease, fever, cough and expectoration, a higher white blood cell count and higher C-reactive protein concentrations (all P < 0.01). Among 44 children with an Xpert Ultra trace result, there were no differences in clinical characteristics between confirmed cases and unconfirmed TB cases. CONCLUSIONS The prevalence of trace is relatively high and can be considered positive in paucibacillary children. Clinical presentations are associated with bacterial load quantified by Xpert Ultra. The interpretation of Xpert Ultra trace results based on clinical information is important for the diagnosis of TB.
Collapse
Affiliation(s)
- Shuting Quan
- From the National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tingting Zou
- Department of Pediatrics Infectious Diseases, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Li Duan
- Department of Pediatrics Infectious Diseases, The No. 1 People's Hospital of Liangshan Yizu Autonomous Prefecture, Liangshan, China
| | - Xue Tian
- From the National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yacui Wang
- From the National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yu Zhu
- Department of Pediatrics Infectious Diseases, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Min Fang
- Department of Pediatrics Infectious Diseases, The No. 1 People's Hospital of Liangshan Yizu Autonomous Prefecture, Liangshan, China
| | - Yan Shi
- Department of Pediatrics Infectious Diseases, The No. 1 People's Hospital of Liangshan Yizu Autonomous Prefecture, Liangshan, China
| | - Chaomin Wan
- Department of Pediatrics Infectious Diseases, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Lin Sun
- From the National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Adong Shen
- From the National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
28
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
29
|
Barros BCSC, Almeida BR, Barros DTL, Toledo MS, Suzuki E. Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. J Fungi (Basel) 2022; 8:jof8060548. [PMID: 35736031 PMCID: PMC9225092 DOI: 10.3390/jof8060548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes. This review will focus on the response of respiratory epithelial cells to two human fungal pathogens that cause systemic mycoses: Aspergillus and Paracoccidioides. Some of the host epithelial cell receptors and signaling pathways, in addition to fungal adhesins or other molecules that are responsible for fungal adhesion, invasion, or induction of cytokine secretion will be addressed in this review.
Collapse
Affiliation(s)
- Bianca C. S. C. Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Bruna R. Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Debora T. L. Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Marcos S. Toledo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Leal Prado, São Paulo 04023-062, SP, Brazil;
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
- Correspondence:
| |
Collapse
|