1
|
Plichta J, Panek M. Role of the TGF-β cytokine and its gene polymorphisms in asthma etiopathogenesis. FRONTIERS IN ALLERGY 2025; 6:1529071. [PMID: 39949968 PMCID: PMC11821632 DOI: 10.3389/falgy.2025.1529071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Transforming growth factor beta (TGF-β) is a pluripotent cytokine expressed by all cells of the human body which plays important roles in maintaining homeostasis and allowing for proper individual development. Disturbances in TGF-β signaling contribute to the development of many diseases and disorders, including cancer and organ fibrosis. One of the diseases with the best-characterized correlation between TGF-β action and etiopathogenesis is asthma. Asthma is the most common chronic inflammatory disease of the lower and upper respiratory tract, characterized by bronchial hyperresponsiveness to a number of environmental factors, leading to bronchospasm and reversible limitation of expiratory flow. TGF-β, in particular TGF-β1, is a key factor in the etiopathogenesis of asthma. TGF-β1 concentration in bronchoalveolar lavage fluid samples is elevated in atopic asthma, and TGF-β expression is increased in asthmatic bronchial samples. The expression of all TGF-β isoforms is affected by a number of single nucleotide polymorphisms found in the genes encoding these cytokines. Some of the SNPs that alter the level of TGF-β expression may be associated with the occurrence and severity of symptoms of asthma and other diseases. The TGF-β gene polymorphisms, which are the subject of this paper, are potential diagnostic factors. If properly used, these polymorphisms can facilitate the early and precise diagnosis of asthma, allowing for the introduction of appropriate therapy and reduction of asthma exacerbation frequency.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
2
|
Derakhshan T, Hollers E, Perniss A, Ryan T, McGill A, Hacker J, Bergmark RW, Bhattacharyya N, Lee SE, Maxfield AZ, Roditi RE, Bankova L, Buchheit KM, Laidlaw TM, Boyce JA, Dwyer DF. Human intraepithelial mast cell differentiation and effector function are directed by TGF-β signaling. J Clin Invest 2025; 135:e174981. [PMID: 39744949 PMCID: PMC11684804 DOI: 10.1172/jci174981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mast cells (MCs) expressing a distinctive protease phenotype (MCTs) selectively expand within the epithelium of human mucosal tissues during type 2 (T2) inflammation. While MCTs are phenotypically distinct from subepithelial MCs (MCTCs), signals driving human MCT differentiation and this subset's contribution to inflammation remain unexplored. Here, we have identified TGF-β as a key driver of the MCT transcriptome in nasal polyps. We found that short-term TGF-β signaling alters MC cell surface receptor expression and partially recapitulated the in vivo MCT transcriptome, while TGF-β signaling during MC differentiation upregulated a larger number of MCT-associated transcripts. TGF-β inhibited the hallmark MCTC proteases chymase and cathepsin G at both the transcript and protein level, allowing selective in vitro differentiation of MCTs for functional study. We identified discrete differences in effector phenotype between in vitro-derived MCTs and MCTCs, with MCTs exhibiting enhanced proinflammatory lipid mediator generation and a distinct cytokine, chemokine, and growth factor production profile in response to both innate and adaptive stimuli, recapitulating functional features of their tissue-associated counterpart MC subsets. Thus, our findings support a role for TGF-β in promoting human MCT differentiation and identified a discrete contribution of this cell type to T2 inflammation.
Collapse
Affiliation(s)
- Tahereh Derakhshan
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Eleanor Hollers
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alex Perniss
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alanna McGill
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jonathan Hacker
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Regan W. Bergmark
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Neil Bhattacharyya
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Stella E. Lee
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alice Z. Maxfield
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Rachel E. Roditi
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lora Bankova
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kathleen M. Buchheit
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Tanya M. Laidlaw
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel F. Dwyer
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Zhu C, Weng Q, Gao S, Li F, Li Z, Wu Y, Wu Y, Li M, Zhao Y, Han Y, Lu W, Qin Z, Yu F, Lou J, Ying S, Shen H, Chen Z, Li W. TGF-β signaling promotes eosinophil activation in inflammatory responses. Cell Death Dis 2024; 15:637. [PMID: 39214980 PMCID: PMC11364686 DOI: 10.1038/s41419-024-07029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Eosinophils, traditionally associated with allergic phenomena, play a pivotal role in inflammatory responses. Despite accumulating evidence suggesting their pro-inflammatory function upon activation, the underlying mechanisms governing eosinophil activation remain incompletely characterized. In this study, we investigate the local activation of pulmonary and colon eosinophils within the inflammatory microenvironment. Leveraging transcriptional sequencing, we identify TGF-β as a putative regulator of eosinophil activation, leading to the secretion of granule proteins, including peroxidase. Genetic deletion of TGF-β receptors on eosinophils resulted in the inhibition of peroxidase synthesis, affirming the significance of TGF-β signaling in eosinophil activation. Using models of HDM-induced asthma and DSS-induced colitis, we demonstrate the indispensability of TGF-β-driven eosinophil activation in both disease contexts. Notably, while TGF-β signaling did not significantly influence asthmatic inflammation, its knockout conferred protection against experimental colitis. This study delineates a distinct pattern of eosinophil activation within inflammatory responses, highlighting the pivotal role of TGF-β signaling in regulating eosinophil behavior. These findings deepen our comprehension of eosinophil-related pathophysiology and may pave the way for targeted therapeutic approaches in allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenwei Gao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinling Han
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weina Lu
- Surgery Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongnan Qin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiafei Lou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- State Key Lab for Respiratory Diseases, Guangzhou, Guangdong, China.
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Luo J, Chen W, Liu W, Jiang S, Ye Y, Shrimanker R, Hynes G, Klenerman P, Pavord ID, Xue L. IL-5 antagonism reverses priming and activation of eosinophils in severe eosinophilic asthma. Mucosal Immunol 2024; 17:524-536. [PMID: 38493955 PMCID: PMC11649845 DOI: 10.1016/j.mucimm.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Eosinophils are key effector cells mediating airway inflammation and exacerbation in patients with severe eosinophilic asthma. They are present in increased numbers and activation states in the airway mucosa and lumen. Interleukin-5 (IL-5) is the key eosinophil growth factor that is thought to play a role in eosinophil priming and activation. However, the mechanism of these effects is still not fully understood. The anti-IL-5 antibody mepolizumab reduces eosinophil counts in the airway modestly but has a large beneficial effect on the frequency of exacerbations of severe eosinophilic asthma, suggesting that reduction in eosinophil priming and activation is of central mechanistic importance. In this study, we used the therapeutic effect of mepolizumab and single-cell ribonucleic acid sequencing to investigate the mechanism of eosinophil priming and activation by IL-5. We demonstrated that IL-5 is a dominant driver of eosinophil priming and plays multifaceted roles in eosinophil function. It enhances eosinophil responses to other stimulators of migration, survival, and activation by activating phosphatidylinositol-3-kinases, extracellular signal-regulated kinases, and p38 mitogen-activated protein kinases signaling pathways. It also enhances the pro-fibrotic roles of eosinophils in airway remodeling via transforming growth factor-β pathway. These findings provide a mechanistic understanding of eosinophil priming in severe eosinophilic asthma and the therapeutic effect of anti-IL-5 approaches in the disease.
Collapse
Affiliation(s)
- Jian Luo
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.
| | - Wentao Chen
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Wei Liu
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Division of Pulmonary Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Jiang
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan Ye
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Rahul Shrimanker
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Gareth Hynes
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit and Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Ian D Pavord
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Luzheng Xue
- Respiratory Medicine Unit and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Menzella F, Munari S, Corsi L, Tonin S, Cestaro W, Ballarin A, Floriani A, Dartora C, Senna G. Tezepelumab: patient selection and place in therapy in severe asthma. J Int Med Res 2024; 52:3000605241246740. [PMID: 38676539 PMCID: PMC11056094 DOI: 10.1177/03000605241246740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Asthma is a disease characterised by heterogeneous and multifaceted airway inflammation. Despite the availability of effective treatments, a substantial percentage of patients with the type 2 (T2)-high, but mainly the T2-low, phenotype complain of persistent symptoms, airflow limitation, and poor response to treatments. Currently available biologicals target T2 cytokines, but no monoclonal antibodies or other specific therapeutic options are available for non-T2 asthma. However, targeted therapy against alarmins is radically changing this perspective. The development of alarmin-targeted therapies, of which tezepelumab (TZP) is the first example, may offer broad action on inflammatory pathways as well as an enhanced therapeutic effect on epithelial dysfunction. In this regard, TZP demonstrated positive results not only in patients with severe T2 asthma but also those with non-allergic, non-eosinophilic disease. Therefore, it is necessary to identify clinical features of patients who can benefit from an upstream targeted therapy such as anti-thymic stromal lymphopoietin. The aims of this narrative review are to understand the role of alarmins in asthma pathogenesis and epithelial dysfunction, examine the rationale underlying the indication of TZP treatment in severe asthma, summarise the results of clinical studies, and recognise the specific characteristics of patients potentially eligible for TZP treatment.
Collapse
Affiliation(s)
- Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Sara Munari
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Silvia Tonin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Walter Cestaro
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Andrea Ballarin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Ariel Floriani
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Cristina Dartora
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona & AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
6
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Jesenak M, Durdik P, Oppova D, Franova S, Diamant Z, Golebski K, Banovcin P, Vojtkova J, Novakova E. Dysfunctional mucociliary clearance in asthma and airway remodeling - New insights into an old topic. Respir Med 2023; 218:107372. [PMID: 37516275 DOI: 10.1016/j.rmed.2023.107372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Bronchial asthma is a heterogeneous respiratory condition characterized by chronic airway inflammation, airway hyperresponsiveness and airway structural changes (known as remodeling). The clinical symptoms can be evoked by (non)specific triggers, and their intensity varies over time. In the past, treatment was mainly focusing on symptoms' alleviation; in contrast modern treatment strategies target the underlying inflammation, even during asymptomatic periods. Components of airway remodeling include epithelial cell shedding and dysfunction, goblet cell hyperplasia, subepithelial matrix protein deposition, fibrosis, neoangiogenesis, airway smooth muscle cell hypertrophy and hyperplasia. Among the other important, and frequently forgotten aspects of airway remodeling, also loss of epithelial barrier integrity, immune defects in anti-infectious defence and mucociliary clearance (MCC) dysfunction should be pointed out. Mucociliary clearance represents one of the most important defence airway mechanisms. Several studies in asthmatics demonstrated various dysfunctions in MCC - e.g., ciliated cells displaying intracellular disorientation, abnormal cilia and cytoplasmic blebs. Moreover, excessive mucus production and persistent cough are one of the well-recognized features of severe asthma and are also associated with defects in MCC. Damaged airway epithelium and impaired function of the ciliary cells leads to MCC dysfunction resulting in higher susceptibility to infection and inflammation. Therefore, new strategies aimed on restoring the remodeling changes and MCC dysfunction could present a new therapeutic approach for the management of asthma and other chronic respiratory diseases.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia; Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia; Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
| | - Peter Durdik
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Dasa Oppova
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic; Department of Clinical Pharmacy & Pharmacology, University in Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Banovcin
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Jarmila Vojtkova
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia.
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
8
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
9
|
Ghedin E, Huang YJ. Oral Microbiota and Pediatric Asthma Phenotype: A New Window for Biomarkers? Am J Respir Crit Care Med 2023; 208:119-121. [PMID: 37276885 PMCID: PMC10395501 DOI: 10.1164/rccm.202305-0856ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023] Open
Affiliation(s)
- Elodie Ghedin
- National Institute of Allergy and Infectious Diseases National Institutes of Health Bethesda, Maryland
| | - Yvonne J Huang
- Department of Internal Medicine and Department of Microbiology and Immunology University of Michigan Ann Arbor, Michigan
| |
Collapse
|
10
|
Abdel-Aziz MI, Thorsen J, Hashimoto S, Vijverberg SJH, Neerincx AH, Brinkman P, van Aalderen W, Stokholm J, Rasmussen MA, Roggenbuck-Wedemeyer M, Vissing NH, Mortensen MS, Brejnrod AD, Fleming LJ, Murray CS, Fowler SJ, Frey U, Bush A, Singer F, Hedlin G, Nordlund B, Shaw DE, Chung KF, Adcock IM, Djukanovic R, Auffray C, Bansal AT, Sousa AR, Wagers SS, Chawes BL, Bønnelykke K, Sørensen SJ, Kraneveld AD, Sterk PJ, Roberts G, Bisgaard H, Maitland-van der Zee AH. Oropharyngeal Microbiota Clusters in Children with Asthma or Wheeze Associate with Allergy, Blood Transcriptomic Immune Pathways, and Exacerbation Risk. Am J Respir Crit Care Med 2023; 208:142-154. [PMID: 37163754 DOI: 10.1164/rccm.202211-2107oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis β-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-β (transforming growth factor-β) (highest in the Veillonella cluster) and Wnt/β-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, and
| | - Simone Hashimoto
- Department of Pulmonary Medicine and
- Department of Paediatric Pulmonary Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Susanne J H Vijverberg
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Anne H Neerincx
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Wim van Aalderen
- Department of Paediatric Pulmonary Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Morten Arendt Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Michael Roggenbuck-Wedemeyer
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novozymes, Bagsvaerd, Denmark
| | - Nadja H Vissing
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
| | - Martin Steen Mortensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Asker Daniel Brejnrod
- Section of Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Florian Singer
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gunilla Hedlin
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Björn Nordlund
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Dominick E Shaw
- National Institute for Health and Care Research Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ratko Djukanovic
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Aruna T Bansal
- Acclarogen Ltd., St. John's Innovation Centre, Cambridge, United Kingdom
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | | | - Bo Lund Chawes
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, and
| | - Klaus Bønnelykke
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, and
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Peter J Sterk
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Graham Roberts
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine and
- Department of Paediatric Pulmonary Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Maneechotesuwan K, Wongsurakiat P, Assawabhumi J, Kasetsinsombat K, Wongkajornsilp A. Involvement of Transforming Growth Factor-β-Associated Kinase 1 in Fixed Airway Obstruction in Asthmatic Patients with Longer Disease Duration Independent on Airway Eosinophilia. J Asthma Allergy 2023; 16:343-354. [PMID: 37038432 PMCID: PMC10082578 DOI: 10.2147/jaa.s403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
Objective Transforming growth factor-β-associated kinase 1 (TAK1) mediates non-canonical TGF-β signalling by promoting adhesive, migratory, proliferative and contractile responses of fibroblasts to TGF-β1. However, TAK1 expression status in asthmatic patients with or without fixed airway obstruction (FAO) is unknown. Patients and Methods A total of 60 adult asthmatics with FAO were recruited and compared to 43 those without FAO (nFAO). TGF-β1 concentrations, and total TAK1 and phosphorylated TAK1 (p-TAK1) levels were determined in sputum supernatants, cytospin, and whole cell lysate by ELISA, immunocytochemistry, and Western blot analysis, respectively, in asthmatics with and without FAO. Results Asthmatic patients with FAO had much greater sputum TGF-β1 concentrations than those without FAO. This was independent of airway eosinophilia as there was no significant difference in TGF-β1 levels between high and low eosinophil counts within FAO and nFAO groups. In contrast, patients with FAO in the presence of sputum eosinophilia had greater expression of TAK1 and p-TAK1 than those without sputum eosinophilia (P=0.0032 and P=0.0061, respectively). The Western Blot data of total TAK1 and p-TAK1 were consistent with the immunocytochemistry, showing upregulation in all sputum cell types (neutrophils, eosinophils, macrophages, lymphocytes and airway epithelial cells). In addition, total TAK1 expression negatively correlated with pre- and post-bronchodilator FEV1/FVC ratio. Conclusion TAK1 may play a key role in asthmatic patients with fixed airway obstruction, which was independent of eosinophilic airway inflammation. The interruption of TAK1 might have favourable clinical impact.
Collapse
Affiliation(s)
- Kittipong Maneechotesuwan
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Correspondence: Kittipong Maneechotesuwan, Division of Respiratory Diseases and Tuberculosis, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Street, Bangkok, 10700, Thailand, Tel +662 419 7757, Fax +662 419 7760, Email
| | - Phunsup Wongsurakiat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jirawat Assawabhumi
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanda Kasetsinsombat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Ham J, Kim J, Ko YG, Kim HY. The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:361-378. [PMID: 35837821 PMCID: PMC9293600 DOI: 10.4168/aair.2022.14.4.361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/13/2023]
Abstract
Asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis are representative chronic respiratory diseases (CRDs). Although they differ in terms of disease presentation, they are all thought to arise from unresolved inflammation. Neutrophils are not only the first responders to acute inflammation, but they also help resolve the inflammation. Notably, emerging clinical studies show that CRDs are associated with systemic and local elevation of neutrophils. Moreover, murine studies suggest that airway-infiltrating neutrophils not only help initiate airway inflammation but also prolong the inflammation. Given this background, this review describes neutrophil-mediated immune responses in CRDs and summarizes the completed, ongoing, and potential clinical trials that test the therapeutic value of targeting neutrophils in CRDs. The review also clarifies the importance of understanding how neutrophils interact with other immune cells and how these interactions contribute to chronic inflammation in specific CRDs. This information may help identify future therapeutic strategies for CRDs.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Young Gyun Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
14
|
Panek MG, Karbownik MS, Górski KM, Koćwin M, Kardas G, Marynowski M, Kuna P. New insights into the regulation of TGF-β/Smad and MPK signaling pathway gene expressions by nasal allergen and methacholine challenge test in asthma. Clin Transl Allergy 2022; 12:e12172. [PMID: 35800124 PMCID: PMC9250282 DOI: 10.1002/clt2.12172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Asthma is a heterogeneous chronic inflammatory disease of the bronchi, the course of which is significantly influenced by extrinsic factors (specific and non-specific). Methods The aim of this study was to evaluate the effect of these factors represented by nasal allergen challenge (specific factors) and methacholine challenge test (non-specific) on changes in mRNA expression of genes encoding the TGF-β (TGF-β1 and TGF-β3)‒Smad (mitogen-activated protein kinase 1/3 [MPK1/3], Smad1/3/6/7) signaling pathway in asthmatic patients. Results Seventy-five subjects were included in the study, of whom 27 were applied an intranasal allergen provocation and 48 a methacholine provocation. There were 9 men and 18 women in the intranasal provocation group, and 17 men and 31 women in the methacholine test group. We found that both examined the types of challenges contributed to changes in the relative expression of genes of the TGF-β (TGF-β1 and TGF-β3)‒Smad (MPK1/3, Smad1/3/6/7) signaling pathway in asthmatic patients. A decrease was noted for MAPK1, MAPK3, Smad3, Smad6, and Smad7 genes and an increase of up to 2.5 times for TGF-β1 gene. Conclusions Our experiment allows us to conclude that the change in the mRNA expression of the TGF-β1-MPK1/3 and Smad3/6/7 genes occurs after an intranasal allergen and bronchial methacholine challenge.
Collapse
Affiliation(s)
- Michał Gabriel Panek
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| | | | | | - Marcelina Koćwin
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| | - Grzegorz Kardas
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| | - Mateusz Marynowski
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and AllergyMedical University of LodzLodzPoland
| |
Collapse
|
15
|
Bantulà M, Tubita V, Roca-Ferrer J, Mullol J, Valero A, Bobolea I, Pascal M, de Hollanda A, Vidal J, Picado C, Arismendi E. Differences in Inflammatory Cytokine Profile in Obesity-Associated Asthma: Effects of Weight Loss. J Clin Med 2022; 11:jcm11133782. [PMID: 35807067 PMCID: PMC9267201 DOI: 10.3390/jcm11133782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity and asthma are associated with systemic inflammation maintained by mediators released by adipose tissue and lung. This study investigated the inflammatory serum mediator profile in obese subjects (O) (n = 35), non-obese asthma (NOA) patients (n = 14), obese asthmatics (OA) (n = 21) and healthy controls (HC) (n = 33). The effect of weight loss after bariatric surgery (BS) was examined in 10 OA and 31 O subjects. We analyzed serum markers including leptin, adiponectin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, ST2, IL-5, IL-9, and IL-18. Compared with HC subjects, the O group showed increased levels of leptin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, and ST2; the OA group presented increased levels of MCP-1, ezrin, YKL-40, and IL-18, and the NOA group had increased levels of ezrin, YKL-40, IL-5, and IL-18. The higher adiponectin/leptin ratio in NOA with respect to OA subjects was the only significant difference between the two groups. IL-9 was the only cytokine with significantly higher levels in OA with respect to O subjects. TNFR2, ezrin, MCP-1, and IL-18 concentrations significantly decreased in O subjects after BS. O, OA, and NOA showed distinct patterns of systemic inflammation. Leptin and adiponectin are regulated in asthma by obesity-dependent and -independent mechanisms. Combination of asthma and obesity does not result in significant additive effects on circulating cytokine levels.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Correspondence: ; Tel.: +34-932275400
| | - Valeria Tubita
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
| | - Jordi Roca-Ferrer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Valero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Irina Bobolea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Mariona Pascal
- Immunology Department, CDB, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain;
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Josep Vidal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red en Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - César Picado
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
16
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Janulaityte I, Januskevicius A, Rimkunas A, Palacionyte J, Vitkauskiene A, Malakauskas K. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. [PMID: 35456903 PMCID: PMC9031271 DOI: 10.3390/ijms23084086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
18
|
Mirzaei Y, Savari Z, Yazdani-Nafchi F, Salehi-Vanani N, Fallahi E, Pirayesh A, Zahmati M, Anjomshoa M, Bageri N, Sabzevary-Ghahfarokhi M, Shirzad H, Zamani MA. The expression analysis of IL-6, IL-18, IL-21, IL-23, and TGF-β mRNA in the nasal mucosa of patients with Allergic rhinitis. Afr Health Sci 2022; 22:630-640. [PMID: 36032502 PMCID: PMC9382521 DOI: 10.4314/ahs.v22i1.73] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The profile of inflammatory and suppressing cytokines is important to contribute to the disruption of TH1/TH2 balance in Allergic rhinitis (AR). Objective This study aimed to assess the expression levels of IL-6, IL-18, IL-21, IL-23, and TGF-β in nasal biopsies in AR patients and evaluate its correlation with the severity of AR. Material and method The study included 30 patients with mild persistent allergic rhinitis (MPAR), patients with moderate-to-severe (M/S) PAR, and 30 healthy individuals. The biopsies of nasal inferior turbinate mucosa were collected from each participant. The expression of IL-6, IL-18, IL-21, IL-23, and TGF-β was evaluated by the quantitative real-time polymerase chain reaction. The degree of eosinophil infiltration into the nasal mucosa, blood eosinophils, and total serum IgE level were also measured. Result The expression of IL-6, IL-18, and IL-23 in patients with AR significantly increased compared to the control group. Conversely, the gene expression of the TGF-β declined in the M/S PAR group rather than the AR- group. The data did not show a significant difference in the expression of the IL-21 gene between AR+ and AR- groups. Conclusion We suggested that inflammatory cytokines including IL-6, IL-18, and IL-23 may be involved in the severity of AR and associated with markers of inflammation.
Collapse
Affiliation(s)
- Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center, Soran University, Soran, Kurdistan Region, Iraq
| | - Zohreh Savari
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Shahrekord Branch
| | - Farshad Yazdani-Nafchi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Salehi-Vanani
- The Clinical Biochemistry Research Center, Basic Health Science Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elnaz Fallahi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ashkan Pirayesh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadali Zahmati
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Anjomshoa
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bageri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Milad Sabzevary-Ghahfarokhi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohamad Ali Zamani
- Department of Otorhinolaryngology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
19
|
Guo X, Sunil C, Adeyanju O, Parker A, Huang S, Ikebe M, Tucker TA, Idell S, Qian G. PD-L1 mediates lung fibroblast to myofibroblast transition through Smad3 and β-catenin signaling pathways. Sci Rep 2022; 12:3053. [PMID: 35197539 PMCID: PMC8866514 DOI: 10.1038/s41598-022-07044-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed death ligand-1 (PD-L1) is an immune checkpoint protein that has been linked with idiopathic pulmonary fibrosis (IPF) and fibroblast to myofibroblast transition (FMT). However, it remains largely unclear how PD-L1 mediates this process. We found significantly increased PD-L1 in the lungs of idiopathic pulmonary fibrosis patients and mice with pulmonary fibrosis induced by bleomycin and TGF-β. In primary human lung fibroblasts (HLFs), TGF-β induced PD-L1 expression that is dependent on both Smad3 and p38 pathways. PD-L1 knockdown using siRNA significantly attenuated TGF-β-induced expression of myofibroblast markers α-SMA, collagen-1, and fibronectin in normal and IPF HLFs. Further, we found that PD-L1 interacts with Smad3, and TGF-β induces their interaction. Interestingly, PD-L1 knockdown reduced α-SMA reporter activity induced by TGF-β in HLFs, suggesting that PD-L1 might act as a co-factor of Smad3 to promote target gene expression. TGF-β treatment also phosphorylates GSK3β and upregulates β-catenin protein levels. Inhibiting β-catenin signaling with the pharmaceutical inhibitor ICG001 significantly attenuated TGF-β-induced FMT. PD-L1 knockdown also attenuated TGF-β-induced GSK3β phosphorylation/inhibition and β-catenin upregulation, implicating GSK3β/β-catenin signaling in PD-L1-mediated FMT. Collectively, our findings demonstrate that fibroblast PD-L1 may promote pulmonary fibrosis through both Smad3 and β-catenin signaling and may represent a novel interventional target for IPF.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA
| | - Christudas Sunil
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA
| | - Oluwaseun Adeyanju
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA
| | - Andrew Parker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA
| | - Steven Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine at the University of Michigan, Ann Arbor, USA
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA
- The Texas Lung Injury Institute, Tyler, TX, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA
- The Texas Lung Injury Institute, Tyler, TX, USA
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA.
| |
Collapse
|
20
|
Woo J, Koziol-White C, Panettieri R, Jude J. TGF-β: The missing link in obesity-associated airway diseases? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100016. [PMID: 34909651 PMCID: PMC8663968 DOI: 10.1016/j.crphar.2021.100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Obesity is emerging as a global public health epidemic. The co-morbidities associated with obesity significantly contribute to reduced quality of life, mortality, and global healthcare burden. Compared to other asthma comorbidities, obesity prominently engenders susceptibility to inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), contributes to greater disease severity and evokes insensitivity to current therapies. Unlike in other metabolic diseases associated with obesity, the mechanistic link between obesity and airway diseases is only poorly defined. Transforming growth factor-β (TGF-β) is a pleiotropic inflammatory cytokine belonging to a family of growth factors with pivotal roles in asthma. In this review, we summarize the role of TGF-β in major obesity-associated co-morbidities to shed light on mechanisms of the diseases. Literature evidence shows that TGF-β mechanistically links many co-morbidities with obesity through its profibrotic, remodeling, and proinflammatory functions. We posit that TGF-β plays a similar mechanistic role in obesity-associated inflammatory airway diseases such as asthma and COPD. Concerning the role of TGF-β on metabolic effects of obesity, we posit that TGF-β has a similar mechanistic role in obesity-associated inflammatory airway diseases in interplay with different comorbidities such as hypertension, metabolic diseases like type 2 diabetes, and cardiomyopathies. Future studies in TGF-β-dependent mechanisms in obesity-associated inflammatory airway diseases will advance our understanding of obesity-induced asthma and help find novel therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Joanna Woo
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| |
Collapse
|
21
|
Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-β/Smad2/3 pathway intensification and antifibrotic TGF-β/Smad1/5/(8)9 pathway impairment. Sci Rep 2020; 10:16492. [PMID: 33020537 PMCID: PMC7536388 DOI: 10.1038/s41598-020-73473-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-β1-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-β1-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-β/Smad2/3 and the antifibrotic TGF-β/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-β-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-β1 was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-β/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-β/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-β/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.
Collapse
|
22
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
TGF- β3 Induces Autophagic Activity by Increasing ROS Generation in a NOX4-Dependent Pathway. Mediators Inflamm 2019; 2019:3153240. [PMID: 32082074 PMCID: PMC7012255 DOI: 10.1155/2019/3153240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Higher concentrations of reactive oxygen species (ROS) have been associated with epithelial cell damage, cell shedding, and airway hyperresponsiveness. Previous studies have indicated that transforming growth factor-beta (TGF-β) mediates ROS production and NADPH oxidase (NOX) activity. In our previous study, we also observed that TGF-β3 increases mucus secretion in airway epithelial cells in an autophagy-dependent fashion. Although it is well known that the relationship between ROS and autophagy is cell context-dependent, the exact mechanism of action remains unclear. The following study examined whether ROS act as upstream of autophagy activation in response to TGF-β3 induction. Using an allergic inflammation mouse model induced by house dust mite (HDM), we observed elevated lung amounts of TGF-β3 accompanied by increased ROS levels. And we found that ROS levels were elevated and NOX4 expression was increased in TGF-β3-induced epithelial cells, while the lack of NOX4 in the epithelial cells could reduce ROS generation and autophagy-dependent MUC5AC expression treated with TGF-β3. Furthermore, our studies demonstrated that the Smad2/3 pathway was involved in TGF-β3-induced ROS generation by promoting NOX4 expression. The inhibition of ROS generation by N-Acetyl-L-cysteine (NAC) resulted in a decrease in mucus expression and autophagy activity in vivo as well as in vitro. Finally, TGF-β3-neutralizing antibody significantly reduced the ROS generation, mucus expression, and autophagy activity and also decreased the phosphorylation of Smad2 and Smad3. Taken together, the obtained results revealed that persistent TGF-β3 activation increased ROS levels in a NOX4-dependent pathway and subsequently induced autophagy as well as MUC5AC expression in the epithelial cells.
Collapse
|
24
|
Li M, Keenan CR, Lopez-Campos G, Mangum JE, Chen Q, Prodanovic D, Xia YC, Langenbach SY, Harris T, Hofferek V, Reid GE, Stewart AG. A Non-canonical Pathway with Potential for Safer Modulation of Transforming Growth Factor-β1 in Steroid-Resistant Airway Diseases. iScience 2019; 12:232-246. [PMID: 30711747 PMCID: PMC6360516 DOI: 10.1016/j.isci.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired therapeutic responses to anti-inflammatory glucocorticoids (GC) in chronic respiratory diseases are partly attributable to interleukins and transforming growth factor β1 (TGF-β1). However, previous efforts to prevent induction of GC insensitivity by targeting established canonical and non-canonical TGF-β1 pathways have been unsuccessful. Here we elucidate a TGF-β1 signaling pathway modulating GC activity that involves LIM domain kinase 2-mediated phosphorylation of cofilin1. Severe, steroid-resistant asthmatic airway epithelium showed increased levels of immunoreactive phospho-cofilin1. Phospho-cofilin1 was implicated in the activation of phospholipase D (PLD) to generate the effector(s) (lyso)phosphatidic acid, which mimics the TGF-β1-induced GC insensitivity. TGF-β1 induction of the nuclear hormone receptor corepressor, SMRT (NCOR2), was dependent on cofilin1 and PLD activities. Depletion of SMRT prevented GC insensitivity. This pathway for GC insensitivity offers several promising drug targets that potentially enable a safer approach to the modulation of TGF-β1 in chronic inflammatory diseases than is afforded by global TGF-β1 inhibition. TGF-β1 extensively impairs GC activity Phospho-cofilin1 is a key link in TGF-β1 signaling cascade subserving GC insensitivity Phospho-cofilin1-activated phospholipase D (PLD) reduces GC activity SMRT induction downstream of PLD mediates TGF-β1 impairment of GC activity
Collapse
Affiliation(s)
- Meina Li
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christine R Keenan
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guillermo Lopez-Campos
- Health and Biomedical Informatics Centre, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Experimental Medicine, Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Jonathan E Mangum
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Qianyu Chen
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Danica Prodanovic
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yuxiu C Xia
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shenna Y Langenbach
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Trudi Harris
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Vinzenz Hofferek
- Max Plank Institute of Molecular Plant Physiology, Potsdam, Germany; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute. University of Melbourne, Parkville, VIC 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre for Personalised Therapeutics Technologies, Parkville, VIC, Australia.
| |
Collapse
|
25
|
Yasuda M, Harada N, Harada S, Ishimori A, Katsura Y, Itoigawa Y, Matsuno K, Makino F, Ito J, Ono J, Tobino K, Akiba H, Atsuta R, Izuhara K, Takahashi K. Characterization of tenascin-C as a novel biomarker for asthma: utility of tenascin-C in combination with periostin or immunoglobulin E. Allergy Asthma Clin Immunol 2018; 14:72. [PMID: 30473714 PMCID: PMC6241046 DOI: 10.1186/s13223-018-0300-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Extracellular matrix proteins tenascin-C (TNC) and periostin, which were identified as T-helper cell type 2 cytokine-induced genes in human bronchial epithelial cells, accumulate in the airway basement membrane of asthmatic patients. Although serum periostin has been accepted as a type 2 biomarker, serum TNC has not been evaluated as a systemic biomarker in asthma. Therefore, the objective of this study was to evaluate whether serum TNC can serve as a novel biomarker for asthma. Methods We evaluated 126 adult patients with mild to severe asthma. Serum TNC, periostin, and total IgE concentrations were quantified using enzyme-linked immunosorbent assays. Results Serum TNC levels were significantly higher in patients with severe asthma and high serum total IgE levels. Patients with both high serum TNC (> 37.16 ng/mL) and high serum periostin (> 95 ng/mL) levels (n = 20) or patients with both high serum TNC and high serum total IgE (> 100 IU/mL) levels (n = 36) presented higher disease severity and more severe airflow limitation than patients in other subpopulations. Conclusions To our knowledge, this is the first study to show that serum TNC levels in asthmatic patients are associated with clinical features of asthma and that the combination of serum TNC and periostin levels or combination of serum TNC and total IgE levels were more useful for asthma than each single marker, suggesting that serum TNC can serve as a novel biomarker for asthma. Electronic supplementary material The online version of this article (10.1186/s13223-018-0300-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mina Yasuda
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan.,2Department of Respiratory Medicine, Iizuka Hospital, Fukuoka, Japan
| | - Norihiro Harada
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan.,3Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.,4Atopy (Allergy) Research Center, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Harada
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan.,4Atopy (Allergy) Research Center, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Ayako Ishimori
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan
| | - Yoko Katsura
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan
| | - Yukinari Itoigawa
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan
| | - Kei Matsuno
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan.,3Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Fumihiko Makino
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan
| | - Jun Ito
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan.,3Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Junya Ono
- Shino-Test Corporation, Sagamihara, Japan
| | - Kazunori Tobino
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan.,2Department of Respiratory Medicine, Iizuka Hospital, Fukuoka, Japan
| | - Hisaya Akiba
- 6Department of Immunology, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Ryo Atsuta
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan
| | - Kenji Izuhara
- 7Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kazuhisa Takahashi
- 1Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431 Japan.,3Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-3961. [PMID: 30101406 PMCID: PMC6182337 DOI: 10.1007/s00018-018-2899-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
27
|
James RG, Reeves SR, Barrow KA, White MP, Glukhova VA, Haghighi C, Seyoum D, Debley JS. Deficient Follistatin-like 3 Secretion by Asthmatic Airway Epithelium Impairs Fibroblast Regulation and Fibroblast-to-Myofibroblast Transition. Am J Respir Cell Mol Biol 2018; 59:104-113. [PMID: 29394092 PMCID: PMC6039878 DOI: 10.1165/rcmb.2017-0025oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 01/03/2023] Open
Abstract
Bronchial epithelial cells (BECs) from healthy children inhibit human lung fibroblast (HLF) expression of collagen and fibroblast-to-myofibroblast transition (FMT), whereas asthmatic BECs do so less effectively, suggesting that diminished epithelial-derived regulatory factors contribute to airway remodeling. Preliminary data demonstrated that secretion of the activin A inhibitor follistatin-like 3 (FSTL3) by healthy BECs was greater than that by asthmatic BECs. We sought to determine the relative secretion of FSTL3 and activin A by asthmatic and healthy BECs, and whether FSTL3 inhibits FMT. To quantify the abundance of the total proteome FSTL3 and activin A in supernatants of differentiated BEC cultures from healthy children and children with asthma, we performed mass spectrometry and ELISA. HLFs were cocultured with primary BECs and then HLF expression of collagen I and α-smooth muscle actin (α-SMA) was quantified by qPCR, and FMT was quantified by flow cytometry. Loss-of-function studies were conducted using lentivirus-delivered shRNA. Using mass spectrometry and ELISA results from larger cohorts, we found that FSTL3 concentrations were greater in media conditioned by healthy BECs compared with asthmatic BECs (4,012 vs. 2,553 pg/ml; P = 0.002), and in media conditioned by asthmatic BECs from children with normal lung function relative to those with airflow obstruction (FEV1/FVC ratio < 0.8; n = 9; 3,026 vs. 1,922 pg/ml; P = 0.04). shRNA depletion of FSTL3 in BECs (n = 8) increased HLF collagen I expression by 92% (P = 0.001) and α-SMA expression by 88% (P = 0.02), and increased FMT by flow cytometry in cocultured HLFs, whereas shRNA depletion of activin A (n = 6) resulted in decreased α-SMA (22%; P = 0.01) expression and decreased FMT. Together, these results indicate that deficient FSTL3 expression by asthmatic BECs impairs epithelial regulation of HLFs and FMT.
Collapse
Affiliation(s)
- Richard G. James
- Department of Pediatrics
- Department of Pharmacology, and
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Stephen R. Reeves
- Division of Pulmonary Medicine, Seattle Children’s Hospital, University of Washington, Seattle, Washington; and
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Kaitlyn A. Barrow
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Maria P. White
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Veronika A. Glukhova
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Candace Haghighi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Dana Seyoum
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| | - Jason S. Debley
- Division of Pulmonary Medicine, Seattle Children’s Hospital, University of Washington, Seattle, Washington; and
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington
| |
Collapse
|
28
|
Safer approaches to therapeutic modulation of TGF-β signaling for respiratory disease. Pharmacol Ther 2018; 187:98-113. [PMID: 29462659 DOI: 10.1016/j.pharmthera.2018.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transforming growth factor (TGF)-β cytokines play a central role in development and progression of chronic respiratory diseases. TGF-β overexpression in chronic inflammation, remodeling, fibrotic process and susceptibility to viral infection is established in the most prevalent chronic respiratory diseases including asthma, COPD, lung cancer and idiopathic pulmonary fibrosis. Despite the overwhelming burden of respiratory diseases in the world, new pharmacological therapies have been limited in impact. Although TGF-β inhibition as a therapeutic strategy carries great expectations, the constraints in avoiding compromising the beneficial pleiotropic effects of TGF-β, including the anti-proliferative and immune suppressive effects, have limited the development of effective pharmacological modulators. In this review, we focus on the pathways subserving deleterious and beneficial TGF-β effects to identify strategies for selective modulation of more distal signaling pathways that may result in agents with improved safety/efficacy profiles. Adverse effects of TGF-β inhibitors in respiratory clinical trials are comprehensively reviewed, including those of the marketed TGF-β modulators, pirfenidone and nintedanib. Precise modulation of TGF-β signaling may result in new safer therapies for chronic respiratory diseases.
Collapse
|
29
|
Uwaezuoke SN, Ayuk AC, Eze JN. Severe bronchial asthma in children: a review of novel biomarkers used as predictors of the disease. J Asthma Allergy 2018; 11:11-18. [PMID: 29398922 PMCID: PMC5774744 DOI: 10.2147/jaa.s149577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Severe asthma or therapy-resistant asthma in children is a heterogeneous disease that affects all age-groups. Given its heterogeneity, precision in diagnosis and treatment has become imperative, in order to achieve better outcomes. If one is thus able to identify specific patient phenotypes and endotypes using the appropriate biomarkers, it will assist in providing the patient with more personalized and appropriate treatment. However, there appears to be a huge diagnostic gap in severe asthma, as there is no single test yet that accurately determines disease phenotype. In this paper, we review the published literature on some of these biomarkers and their possible role in bridging this diagnostic gap. We also highlight the cellular and molecular mechanisms involved in severe asthma, in order to show the basis for the novel biomarkers. Some markers useful for monitoring therapy and assessing airway remodeling in the disease are also discussed. A review of the literature was conducted with PubMed to gather baseline data on the subject. The literature search extended to articles published within the last 40 years. Although biomarkers specific to different severe asthma phenotypes have been identified, progress in their utility remains slow, because of several disease mechanisms, the variation of biomarkers at different levels of inflammation, changes in relying on one test over time (eg, from sputum eosinophilia to blood eosinophilia), and the degree of invasive tests required to collect biomarkers, which limits their applicability in clinical settings. In conclusion, several biomarkers remain useful in recognizing various asthma phenotypes. However, due to disease heterogeneity, identification and utilization of ideal and defined biomarkers in severe asthma are still inconclusive. The development of novel serum/sputum-based biomarker panels with enhanced sensitivity and specificity may lead to prompt diagnosis of the disease in the future.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Adaeze C Ayuk
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Joy N Eze
- Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| |
Collapse
|
30
|
Shaifta Y, MacKay CE, Irechukwu N, O'Brien KA, Wright DB, Ward JPT, Knock GA. Transforming growth factor-β enhances Rho-kinase activity and contraction in airway smooth muscle via the nucleotide exchange factor ARHGEF1. J Physiol 2017; 596:47-66. [PMID: 29071730 PMCID: PMC5746525 DOI: 10.1113/jp275033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/19/2017] [Indexed: 01/16/2023] Open
Abstract
Key points Transforming growth‐factor‐β (TGF‐β) and RhoA/Rho‐kinase are independently implicated in the airway hyper‐responsiveness associated with asthma, but how these proteins interact is not fully understood. We examined the effects of pre‐treatment with TGF‐β on expression and activity of RhoA, Rho‐kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin‐induced contraction, in airway smooth muscle. TGF‐β enhanced bradykinin‐induced RhoA translocation, Rho‐kinase‐dependent phosphorylation and contraction, but partially suppressed bradykinin‐induced RhoA activity (RhoA‐GTP content). TGF‐β enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF‐β on RhoA and Rho‐kinase activity and contraction, respectively. ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin‐sensitized mice. ARHGEF1 is a key TGF‐β target gene, an important regulator of Rho‐kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper‐responsiveness.
Abstract Transforming growth factor‐β (TGF‐β), RhoA/Rho‐kinase and Src‐family kinases (SrcFK) have independently been implicated in airway hyper‐responsiveness, but how they interact to regulate airway smooth muscle contractility is not fully understood. We found that TGF‐β pre‐treatment enhanced acute contractile responses to bradykinin (BK) in isolated rat bronchioles, and inhibitors of RhoGEFs (Y16) and Rho‐kinase (Y27632), but not the SrcFK inhibitor PP2, prevented this enhancement. In cultured human airway smooth muscle cells (hASMCs), TGF‐β pre‐treatment enhanced the protein expression of the Rho guanine nucleotide exchange factor ARHGEF1, MLC20, MYPT‐1 and the actin‐severing protein cofilin, but not of RhoA, ROCK2 or c‐Src. In hASMCs, acute treatment with BK triggered subcellular translocation of ARHGEF1 and RhoA and enhanced auto‐phosphorylation of SrcFK and phosphorylation of MYPT1 and MLC20, but induced de‐phosphorylation of cofilin. TGF‐β pre‐treatment amplified the effects of BK on RhoA translocation and MYPT1/MLC20 phosphorylation, but suppressed the effects of BK on RhoA‐GTP content, SrcFK auto‐phosphorylation and cofilin de‐phosphorylation. In hASMCs, an ARHGEF1 small interfering RNA suppressed the effects of BK and TGF‐β on RhoA‐GTP content, RhoA translocation and MYPT1 and MLC20 phosphorylation, but minimally influenced the effects of TGF‐β on cofilin expression and phosphorylation. ARHGEF1 expression was also enhanced in ASMCs of asthmatic patients and in lungs of ovalbumin‐sensitized mice. Our data indicate that TGF‐β enhances BK‐induced contraction, RhoA translocation and Rho‐kinase activity in airway smooth muscle largely via ARHGEF1, but independently of SrcFK and total RhoA‐GTP content. A role for smooth muscle ARHGEF1 in asthmatic airway hyper‐responsiveness is worthy of further investigation. Transforming growth‐factor‐β (TGF‐β) and RhoA/Rho‐kinase are independently implicated in the airway hyper‐responsiveness associated with asthma, but how these proteins interact is not fully understood. We examined the effects of pre‐treatment with TGF‐β on expression and activity of RhoA, Rho‐kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin‐induced contraction, in airway smooth muscle. TGF‐β enhanced bradykinin‐induced RhoA translocation, Rho‐kinase‐dependent phosphorylation and contraction, but partially suppressed bradykinin‐induced RhoA activity (RhoA‐GTP content). TGF‐β enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF‐β on RhoA and Rho‐kinase activity and contraction, respectively. ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin‐sensitized mice. ARHGEF1 is a key TGF‐β target gene, an important regulator of Rho‐kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper‐responsiveness.
Collapse
Affiliation(s)
- Yasin Shaifta
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Charles E MacKay
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Nneka Irechukwu
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Katie A O'Brien
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - David B Wright
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Greg A Knock
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| |
Collapse
|
31
|
McBrien CN, Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne) 2017; 4:93. [PMID: 28713812 PMCID: PMC5491677 DOI: 10.3389/fmed.2017.00093] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
This review will describe the structure and function of the eosinophil. The roles of several relevant cell surface molecules and receptors will be discussed. We will also explore the systemic and local processes triggering eosinophil differentiation, maturation, and migration to the lungs in asthma, as well as the cytokine-mediated pathways that result in eosinophil activation and degranulation, i.e., the release of multiple pro-inflammatory substances from eosinophil-specific granules, including cationic proteins, cytokines, chemokines growth factors, and enzymes. We will discuss the current understanding of the roles that eosinophils play in key asthma processes such as airway hyperresponsiveness, mucus hypersecretion, and airway remodeling, in addition to the evidence relating to eosinophil–pathogen interactions within the lungs.
Collapse
Affiliation(s)
| | - Andrew Menzies-Gow
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
32
|
|
33
|
Wight TN, Frevert CW, Debley JS, Reeves SR, Parks WC, Ziegler SF. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol 2017; 312:1-14. [PMID: 28077237 PMCID: PMC5290208 DOI: 10.1016/j.cellimm.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
During inflammation, leukocytes influx into lung compartments and interact with extracellular matrix (ECM). Two ECM components, versican and hyaluronan, increase in a range of lung diseases. The interaction of leukocytes with these ECM components controls leukocyte retention and accumulation, proliferation, migration, differentiation, and activation as part of the inflammatory phase of lung disease. In addition, bronchial epithelial cells from asthmatic children co-cultured with human lung fibroblasts generate an ECM that is adherent for monocytes/macrophages. Macrophages are present in both early and late lung inflammation. Matrix metalloproteinase 10 (MMP10) is induced in alveolar macrophages with injury and infection and modulates macrophage phenotype and their ability to degrade collagenous ECM components. Collectively, studies outlined in this review highlight the importance of specific ECM components in the regulation of inflammatory events in lung disease. The widespread involvement of these ECM components in the pathogenesis of lung inflammation make them attractive candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
34
|
Lambrecht BN, Persson EK, Hammad H. Myeloid Cells in Asthma. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0053-2016. [PMID: 28102118 PMCID: PMC11687443 DOI: 10.1128/microbiolspec.mchd-0053-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways, and not surprisingly, many myeloid cells play a crucial role in pathogenesis. Antigen-presenting dendritic cells are the first to recognize the allergens, pollutants, and viruses that are implicated in asthma pathogenesis, and subsequently initiate the adaptive immune response by migrating to lymph nodes. Eosinophils are the hallmark of type 2 inflammation, releasing toxic compounds in the airways and contributing to airway remodeling. Mast cells and basophils control both the early- and late-phase allergic response and contribute to alterations in smooth muscle reactivity. Finally, relatively little is known about neutrophils and macrophages in this disease. Although many of these myeloid cells respond well to treatment with inhaled steroids, there is now an increasing armamentarium of targeted biologicals that can specifically eliminate only one myeloid cell population, like eosinophils. It is only with those new tools that we will be able to fully understand the role of myeloid cells in chronic asthma in humans.
Collapse
Affiliation(s)
- Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Emma K Persson
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
35
|
Abstract
Vδ2Vγ9 T cells are the dominant γδ T-cell subset in human peripheral blood. Vδ2 T cells recognize pyrophosphate molecules derived from microbes or tumor cells; hence, they play a role in antimicrobial and antitumor immunity. TGF-β, together with IL-15, induces a regulatory phenotype in Vδ2 T cells, characterized by forkhead box protein P3 (FoxP3) expression and suppressive activity on CD4 T-cell activation. We performed a genome-wide transcriptome analysis and found that the same conditions (TGF-β plus IL-15) strongly enhanced the expression of additional genes in Vδ2 T cells, including IKAROS family zinc finger 4 (IKZF4; Eos), integrin subunit alpha E (ITGAE; CD103/αEβ7), and IL9 This up-regulation was associated with potent IL-9 production as revealed by flow cytometry and multiplex analysis of cell culture supernatants. In contrast to CD4 and CD8 αβ T cells, γδ T cells did not require IL-4 for induction of intracellular IL-9 expression. Upon antigen restimulation of Vδ2 T cells expanded in vitro in the presence of TGF-β and IL-15, IL-9 was the most abundant among 16 analyzed cytokines and chemokines. IL-9 is a pleiotropic cytokine involved in various (patho)physiological conditions, including allergy and tumor defense, where it can promote antitumor immunity. Given the conspicuous sensitivity of many different tumors to Vδ2 T-cell-mediated killing, the conditions defined here for strong induction of IL-9 might be relevant for the development of Vδ2 T-cell-based immunotherapy.
Collapse
|
36
|
Hardy CL, Rolland JM, O'Hehir RE. The immunoregulatory and fibrotic roles of activin A in allergic asthma. Clin Exp Allergy 2016; 45:1510-22. [PMID: 25962695 PMCID: PMC4687413 DOI: 10.1111/cea.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activin A, a member of the TGF-β superfamily of cytokines, was originally identified as an inducer of follicle stimulating hormone release, but has since been ascribed roles in normal physiological processes, as an immunoregulatory cytokine and as a driver of fibrosis. In the last 10–15 years, it has also become abundantly clear that activin A plays an important role in the regulation of asthmatic inflammation and airway remodelling. This review provides a brief introduction to the activin A/TGF-β superfamily, focussing on the regulation of receptors and signalling pathways. We examine the contradictory evidence for generalized pro- vs. anti-inflammatory effects of activin A in inflammation, before appraising its role in asthmatic inflammation and airway remodelling specifically by evaluating data from both murine models and clinical studies. We identify key issues to be addressed, paving the way for safe exploitation of modulation of activin A function for treatment of allergic asthma and other inflammatory lung diseases.
Collapse
Affiliation(s)
- C L Hardy
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - J M Rolland
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - R E O'Hehir
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| |
Collapse
|
37
|
Panek M, Jonakowski M, Zioło J, Wieteska Ł, Małachowska B, Pietras T, Szemraj J, Kuna P. A novel approach to understanding the role of polymorphic forms of the NR3C1 and TGF-β1 genes in the modulation of the expression of IL-5 and IL-15 mRNA in asthmatic inflammation. Mol Med Rep 2016; 13:4879-87. [PMID: 27081784 DOI: 10.3892/mmr.2016.5104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to identify polymorphic forms of the nuclear receptor subfamily 3, group C, member 1 (NR3C1) and transforming growth factor β1 (TGF-β1) genes and evaluate their impact on the expression levels of interleukin (IL)-5 and IL‑15 in asthma. The study was conducted on a control group consisting of 91 people (54 women and 37 men). The patient group consisted of 130 participants (86 women and 44 men). Genotyping was performed by polymerase chain reaction‑restriction fragment length polymorphism (PCR‑RFLP) and PCR‑high resolution melting (HRM) methods. Interleukin expression was measured by reverse transcription‑quantitative polymerase chain reaction. The frequency of the polymorphic forms in the analyzed group were observed to be: Tth111I (rs10052957) controls AA 0.0440, AG 0.5714, GG 0.3846, patients AA 0.1538/AG 0.4692, GG 0.3769; ER22/23EK (rs6189 /rs6190) controls AG 0.0556, GG 0.9444, patients AG 0.0385, GG 0.9615; N363S (rs6195) controls AA 0.6444, AG 0.2667, GG 0.0889, patients AA 0.7846, AG 0.1385, GG 0.0769; BclI (rs41423247) controls CC 0.0879, CG 0.5604, GG 0.3516, patients CC 0.1008, CG 0.5736, GG 0.3256; C‑509T (rs1800469) controls TT 0.0805, CT 0.6322, CC 0.2874, patients TT 0.1102, CT 0.5669, CC 0.3228. The results indicated that the C‑509T single nucleotide polymorphism (SNP) of the TGF-β1 gene contributed to an increase in the IL‑5 mRNA expression levels. The GG genotype of the N363S SNP of the NR3C1 gene was observed to result in an increase in the expression levels of IL‑15. The present study indicated that the selected SNPs of the NR3C1 and TGF‑β1 genes demonstrate a regulatory effect on the expression of IL‑5 and IL‑15. Therefore, genetic variation affects inflammation in asthma and the clinical course of the disease.
Collapse
Affiliation(s)
- Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz 90‑153, Poland
| | - Mateusz Jonakowski
- Students Research Group, The Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz 90‑153, Poland
| | - Jan Zioło
- Students Research Group, The Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz 90‑153, Poland
| | - Łukasz Wieteska
- Department of Medical Biochemistry, Medical University of Lodz, Lodz 92‑215, Poland
| | - Beata Małachowska
- Department of Pediatrics, Oncology, Hematology and Diabetology of Medical University of Lodz, Lodz 91‑738, Poland
| | - Tadeusz Pietras
- Department of Pneumology and Allergology, Medical University of Lodz, Lodz 90‑153, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz 92‑215, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz 90‑153, Poland
| |
Collapse
|
38
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
39
|
Samitas K, Poulos N, Semitekolou M, Morianos I, Tousa S, Economidou E, Robinson DS, Kariyawasam HH, Zervas E, Corrigan CJ, Ying S, Xanthou G, Gaga M. Activin-A is overexpressed in severe asthma and is implicated in angiogenic processes. Eur Respir J 2016; 47:769-82. [PMID: 26869672 DOI: 10.1183/13993003.00437-2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023]
Abstract
Activin-A is a pleiotropic cytokine that regulates allergic inflammation. Its role in the regulation of angiogenesis, a key feature of airways remodelling in asthma, remains unexplored. Our objective was to investigate the expression of activin-A in asthma and its effects on angiogenesis in vitro.Expression of soluble/immunoreactive activin-A and its receptors was measured in serum, bronchoalveolar lavage fluid (BALF) and endobronchial biopsies from 16 healthy controls, 19 patients with mild/moderate asthma and 22 severely asthmatic patients. In vitro effects of activin-A on baseline and vascular endothelial growth factor (VEGF)-induced human endothelial cell angiogenesis, signalling and cytokine release were compared with BALF concentrations of these cytokines in vivo.Activin-A expression was significantly elevated in serum, BALF and bronchial tissue of the asthmatics, while expression of its protein receptors was reduced. In vitro, activin-A suppressed VEGF-induced endothelial cell proliferation and angiogenesis, inducing autocrine production of anti-angiogenic soluble VEGF receptor (R)1 and interleukin (IL)-18, while reducing production of pro-angiogenic VEGFR2 and IL-17. In parallel, BALF concentrations of soluble VEGFR1 and IL-18 were significantly reduced in severe asthmatics in vivo and inversely correlated with angiogenesis.Activin-A is overexpressed and has anti-angiogenic effects in vitro that are not propagated in vivo, where reduced basal expression of its receptors is observed particularly in severe asthma.
Collapse
Affiliation(s)
- Konstantinos Samitas
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece These authors contributed equally
| | - Nikolaos Poulos
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece These authors contributed equally
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece These authors contributed equally
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Tousa
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Erasmia Economidou
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Douglas S Robinson
- Medical Research Council and Asthma UK Centre for Mechanisms of Allergic Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Harsha H Kariyawasam
- Medical Research Council and Asthma UK Centre for Mechanisms of Allergic Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK Department of Allergy and Medical Rhinology, Royal National Throat, Nose and Ear Hospital, University College, London, UK
| | - Eleftherios Zervas
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Christopher J Corrigan
- Department of Asthma, Allergy and Respiratory Science, King's College London School of Medicine, London, UK
| | - Sun Ying
- Department of Asthma, Allergy and Respiratory Science, King's College London School of Medicine, London, UK
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece Both authors contributed equally
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece Both authors contributed equally
| |
Collapse
|
40
|
Tirado-Rodriguez B, Baay-Guzman G, Hernandez-Pando R, Antonio-Andres G, Vega MI, Rocha-Zavaleta L, Bonifaz LC, Huerta-Yepez S. Inhibition of tumor progression during allergic airway inflammation in a murine model: significant role of TGF-β. Cancer Immunol Immunother 2015; 64:1205-1214. [PMID: 26076663 PMCID: PMC4540764 DOI: 10.1007/s00262-015-1722-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/23/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION TGF-β is an important mediator of pulmonary allergic inflammation, and it has been recently reported to be a potential inhibitor of lung tumor progression. The correlation between cancer and allergic inflammatory diseases remains controversial. Thus, the aim of the present study was to evaluate the effects of pulmonary allergic inflammation and in particular the role of TGF-β on cancer progression. METHODS Cancer cells were implanted in a BALB/c mice model of allergic airway inflammation, and tumor growth was measured. Apoptosis was evaluated by TUNEL assay, and TGF-β was measured by ELISA. Expression of proliferating cell nuclear antigen, TGF-β, TGF-β receptors I and II, phospho-Smad2 and phospho-Smad4 was evaluated by immunohistochemistry and quantified using digital pathology. The effect of a TGF-β activity inhibitor and recombinant TGF-β on tumor growth was analyzed. The effect of exogenous TGF-β on cell proliferation and apoptosis was evaluated in vitro. RESULTS Mice with allergic airway inflammation exhibited decreased tumor volumes due to cell proliferation inhibition and increased apoptosis. TGF-β was increased in the sera and tumor tissues of allergic mice. TGF-β activity inhibition increased tumor progression in allergic mice by enhancing proliferation and decreasing apoptosis of tumor cells. The administration of TGF-β resulted in reduced tumor growth. CONCLUSION This study is the first to establish an inverse relationship between allergic airway inflammation and tumor progression. This effect appears to be mediated by TGF-β, which is overexpressed in tumor cells during pulmonary allergic inflammation. This study indicates that TGF-β is a potential target for antitumor therapy.
Collapse
Affiliation(s)
- Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez No 262, Col. Doctores, Delegación Cuauhtémoc, C.P. 06720 Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Guillermina Baay-Guzman
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez No 262, Col. Doctores, Delegación Cuauhtémoc, C.P. 06720 Mexico City, Mexico
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Science and Nutrition, Salvador Zubiran (INCNSZ), Mexico City, Mexico
| | - Gabriela Antonio-Andres
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez No 262, Col. Doctores, Delegación Cuauhtémoc, C.P. 06720 Mexico City, Mexico
| | - Mario I. Vega
- Oncology Research Unit, Oncology Hospital, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biologia Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Laura C. Bonifaz
- Unidad e Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores, Delegación Cuauhtémoc, C.P. 06720 Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez No 262, Col. Doctores, Delegación Cuauhtémoc, C.P. 06720 Mexico City, Mexico
| |
Collapse
|
41
|
Abstract
Asthma remains a major health problem with significant morbidity, mortality and economic costs. In asthma, airway remodelling, which refers to all the microscopic structural changes seen in the airway tissue, has been recognised for many decades and remains one of the defining characteristics of the disease; however, it is still poorly understood. The detrimental pathophysiological consequences of some features of remodelling, like increased airway smooth muscle mass and subepithelial fibrosis, are well documented. However, whether targeting these by therapy would be beneficial is unknown. Although the prevailing thinking is that remodelling is an abnormal response to persistent airway inflammation, recent evidence, especially from studies of remodelling in asthmatic children, suggests that the two processes occur in parallel. The effects of asthma therapy on airway remodelling have not been studied extensively due to the challenges of obtaining airway tissue in the context of clinical trials. Corticosteroids remain the cornerstone of asthma therapy, and their effects on remodelling have been better studied than other drugs. Bronchial thermoplasty is the only asthma therapy to primarily target remodelling, although how it results in the apparent clinical benefits seen is not exactly clear. In this article we discuss the mechanisms of airway remodelling in asthma and review the effects of conventional and novel asthma therapies on the process.
Collapse
Affiliation(s)
- Rachid Berair
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP, UK
| | | |
Collapse
|
42
|
Fischer KD, Agrawal DK. Vitamin D regulating TGF-β induced epithelial-mesenchymal transition. Respir Res 2014; 15:146. [PMID: 25413472 PMCID: PMC4245846 DOI: 10.1186/s12931-014-0146-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
Background Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. A critical regulator of fibrosis, transforming growth factor β (TGF-β), can induce airway remodeling in epithelial cells through induction of epithelial-mesenchymal transition (EMT). Vitamin D has immunomodulatory functions, however, its effect on controlling subepithelial fibrosis is not known. Methods Human bronchial epithelial cells (BEAS-2B) were exposed to calcitriol followed by stimulation with TGF-β1 or TGF-β2. The protein expression and mRNA transcripts for E-cadherin, Snail, vimentin, and N-cadherin were analyzed by Western blot and qPCR. An invasion assay and scratch wound assay were performed to identify the migratory properties of the cells following treatments. Results TGF-β1 decreased E-cadherin expression and increased protein expression and mRNA transcripts of Snail, vimentin, and N-cadherin together with increased cell invasion and migration. TGF-β2 elicited migratory response similar to TGF-β1 but induced the expression of EMT markers differently from that by TGF-β1. Calcitriol attenuated TGF-β1- and TGF-β2-induced cell motility. Also, calcitriol inhibited the expression of EMT markers in TGF-β1-treated epithelial cells with less effect on TGF-β2. Conclusions These data suggest that calcitriol inhibits both migration and invasion induced by TGF-β1 and TGF-β2 in human airway epithelial cells. However, the regulatory effect of vitamin D in epithelial-mesenchymal transition was more effective to TGF-β1-induced changes. Thus, calcitriol could be a potential therapeutic agent in the prevention and management of subepithelial fibrosis and airway remodeling.
Collapse
Affiliation(s)
- Kimberly D Fischer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA.
| | - Devendra K Agrawal
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA. .,Center for Clinical and Translational Science Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
43
|
Ghane Zadeh F, Mirzamani MS, Halabiyan R, Mahmoodzadeh Hosseini H, Imani Fooladi AA, Foroutan Koudehi M, Nourani MR. The effects of sulfur mustard on expression of TGF-βs variants in lung epithelial cell line. J Recept Signal Transduct Res 2014; 35:284-8. [PMID: 25366589 DOI: 10.3109/10799893.2014.975251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfur mustard (SM) is a blister-forming agent and can cause damages in various momentous human organs. Previous studies have demonstrated that chemical and mechanical injuries of epithelial cells cause to give rise the secretion of TGF-β1 and TGF-β2. These cytokines play a key role in respiratory remodeling due to SM. In this study, we investigated the impact of SM on the expression level of TGF-β isoforms and their receptors in vitro using reverse transcriptase polymerase chain reaction and western blotting. Our finding revealed the significant increase at concentrations of 25 μl/ml SM for 30 min and 60 min and also 100 μl/ml for 60 min for TGF-β1, 25, 50 and 100 μl/ml SM for 30 min for TGF-βr1 and after exposing with 100 μl/ml SM for both 30 and 60 min for TGF-β2 (p < 0.05). Data from western blotting showed the increase of TGF-β1 expression at the level of protein as the same pattern as the mRNA level. In vitro short-time exposure of fibroblast to SM can induce the expression of TGF-β1, TGF-β2 and TGF-βR1 denoting that over-expression of TGF-β isoforms and their receptors leads to differentiation and collagen production, causing in airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Faezeh Ghane Zadeh
- a Division of Genomics , Systems Biology Institute, Chemical Injury Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran and
| | - Monireh Sadat Mirzamani
- a Division of Genomics , Systems Biology Institute, Chemical Injury Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran and
| | - Raheleh Halabiyan
- b Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | - Abbas Ali Imani Fooladi
- b Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Masoumeh Foroutan Koudehi
- a Division of Genomics , Systems Biology Institute, Chemical Injury Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran and
| | - Mohammad Reza Nourani
- a Division of Genomics , Systems Biology Institute, Chemical Injury Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran and
| |
Collapse
|
44
|
Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor β and severe asthma: a perfect storm. Respir Med 2014; 108:1409-23. [PMID: 25240764 DOI: 10.1016/j.rmed.2014.08.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory airway disease involving complex interplay between resident and infiltrative cells, which in turn are regulated by a wide range of host mediators. Identifying useful biomarkers correlating with clinical symptoms and degree of airway obstruction remain important to effective future asthma treatments. Transforming growth factor β (TGF-β) is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling within the asthmatic lung. Its role however, as a therapeutic target remains controversial. The aim of this review is to highlight its role in severe asthma including interactions with adaptive T-helper cells, cytokines and differentiation through regulatory T-cells. Associations between TGF-β and eosinophils will be addressed and the effects of genetic polymorphisms of the TGF-β1 gene explored in the context of asthma. We highlight TGF-β1 as a potential future therapeutic target in severe asthma including its importance in identifying emerging clinical phenotypes in asthmatic subjects who may be suitable for individualized therapy through TGF-β modulation.
Collapse
Affiliation(s)
- Mazen Al-Alawi
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Tidi Hassan
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
45
|
Tirado-Rodriguez B, Ortega E, Segura-Medina P, Huerta-Yepez S. TGF- β: an important mediator of allergic disease and a molecule with dual activity in cancer development. J Immunol Res 2014; 2014:318481. [PMID: 25110717 PMCID: PMC4071855 DOI: 10.1155/2014/318481] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor- β (TGF- β ) superfamily is a family of structurally related proteins that includes TGF- β , activins/inhibins, and bone morphogenic proteins (BMPs). Members of the TGF- β superfamily regulate cellular functions such as proliferation, apoptosis, differentiation, and migration and thus play key roles in organismal development. TGF- β is involved in several human diseases, including autoimmune disorders and vascular diseases. Activation of the TGF- β receptor induces phosphorylation of serine/threonine residues and triggers phosphorylation of intracellular effectors (Smads). Once activated, Smad proteins translocate to the nucleus and induce transcription of their target genes, regulating various processes and cellular functions. Recently, there has been an attempt to correlate the effect of TGF- β with various pathological entities such as allergic diseases and cancer, yielding a new area of research known as "allergooncology," which investigates the mechanisms by which allergic diseases may influence the progression of certain cancers. This knowledge could generate new therapeutic strategies aimed at correcting the pathologies in which TGF- β is involved. Here, we review recent studies that suggest an important role for TGF- β in both allergic disease and cancer progression.
Collapse
Affiliation(s)
- Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, SS, Dr. Márquez No. 162, Colonia Doctores, Delegación Cuauhtémoc, 06720 México, DF, Mexico
| | - Enrique Ortega
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Avenida Universidad No. 3000, Delegación Coyoacán, 04510 México, DF, Mexico
| | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, 14080 México, DF, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, SS, Dr. Márquez No. 162, Colonia Doctores, Delegación Cuauhtémoc, 06720 México, DF, Mexico
| |
Collapse
|
46
|
Reeves SR, Kolstad T, Lien TY, Elliott M, Ziegler SF, Wight TN, Debley JS. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol 2014; 134:663-670.e1. [PMID: 24875618 DOI: 10.1016/j.jaci.2014.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/06/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Airway remodeling might explain lung function decline among asthmatic children. Extracellular matrix (ECM) deposition by human lung fibroblasts (HLFs) is implicated in airway remodeling. Airway epithelial cell (AEC) signaling might regulate HLF ECM expression. OBJECTIVES We sought to determine whether AECs from asthmatic children differentially regulate HLF expression of ECM constituents. METHODS Primary AECs were obtained from well-characterized atopic asthmatic (n = 10) and healthy (n = 10) children intubated during anesthesia for an elective surgical procedure. AECs were differentiated at an air-liquid interface for 3 weeks and then cocultured with HLFs from a healthy child for 96 hours. Collagen I (COL1A1), collagen III (COL3A1), hyaluronan synthase (HAS) 2, and fibronectin expression by HLFs and prostaglandin E2 synthase (PGE2S) expression by AECs were assessed by using RT-PCR. TGF-β1 and TGF-β2 concentrations in media were measured by using ELISA. RESULTS COL1A1 and COL3A1 expression by HLFs cocultured with AECs from asthmatic patients was greater than that by HLFs cocultured with AECs from healthy subjects (2.2-fold, P < .02; 10.8-fold, P < .02). HAS2 expression by HLFs cocultured with AECs from asthmatic patients was 2.5-fold higher than that by HLFs cocultured with AECs from healthy subjects (P < .002). Fibronectin expression by HLFs cocultured with AECs from asthmatic patients was significantly greater than that by HLFs alone. TGF-β2 activity was increased in cocultures of HLFs with AECs from asthmatic patients (P < .05), whereas PGES2 was downregulated in AEC-HLF cocultures (2.2-fold, P < .006). CONCLUSIONS HLFs cocultured with AECs from asthmatic patients showed differential expression of the ECM constituents COL1A1 and COL3A1 and HAS2 compared with HLFs cocultured with AECs from healthy subjects. These findings support a role for altered ECM production in asthmatic airway remodeling, possibly regulated by unbalanced AEC signaling.
Collapse
Affiliation(s)
- Stephen R Reeves
- Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Tessa Kolstad
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Tin-Yu Lien
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Molly Elliott
- Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | | | | | - Jason S Debley
- Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash.
| |
Collapse
|
47
|
ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma. Mediators Inflamm 2014; 2014:572025. [PMID: 24817794 PMCID: PMC4003756 DOI: 10.1155/2014/572025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/12/2014] [Indexed: 11/29/2022] Open
Abstract
Over the last few years, a significant progress has been made in understanding the role of a disintegrin and metalloproteinase 33 (ADAM33) in asthma. The previous observations for the association with asthma have been replicated in over 33 different population samples worldwide. We and others have performed association analysis and meta-analysis and provided further evidence that several polymorphisms in the ADAM33 are risk factors for asthma, especially in the Asian population. Further, several studies have suggested that alterations in epigenetic marks alter the patterns of DNA methylation of ADAM33 and result in potentially adverse biological effects. Finally, while the biological activities of ADAM33 are as yet unknown, ADAM33 may play a possible role in airway remodeling because of its high expression in epithelium, myo/fibroblasts, and airway smooth muscle cells (ASMCs) and its role in promoting angiogenesis and stimulating cell proliferation and differentiation. Thus, ADAM33 represents a promising target for asthma. However, further investigations are clearly needed to discover functional ADAM33 gene polymorphisms and the role of genetic/epigenetic factors in conferring genetic susceptibility to environmental exposure induced asthma as well as biological function in asthma. This, in turn, will unlock the possibility of ADAM33 as a target for asthma therapy.
Collapse
|
48
|
Gao P, Zhou Y, Xian L, Li C, Xu T, Plunkett B, Huang SK, Wan M, Cao X. Functional effects of TGF-β1 on mesenchymal stem cell mobilization in cockroach allergen-induced asthma. THE JOURNAL OF IMMUNOLOGY 2014; 192:4560-4570. [PMID: 24711618 DOI: 10.4049/jimmunol.1303461] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) have been suggested to participate in immune regulation and airway repair/remodeling. TGF-β1 is critical in the recruitment of stem/progenitor cells for tissue repair, remodeling, and cell differentiation. In this study, we sought to investigate the role of TGF-β1 in MSC migration in allergic asthma. We examined nestin expression (a marker for MSCs) and TGF-β1 signaling activation in airways in cockroach allergen extract (CRE)-induced mouse models. Compared with control mice, there were increased nestin(+) cells in airways and higher levels of active TGF-β1 in serum and p-Smad2/3 expression in lungs of CRE-treated mice. Increased activation of TGF-β1 signaling was also found in CRE-treated MSCs. We then assessed MSC migration induced by conditioned medium from CRE-challenged human epithelium in air/liquid interface culture in Transwell assays. MSC migration was stimulated by epithelial-conditioned medium, but was significantly inhibited by either TGF-β1-neutralizing Ab or TβR1 inhibitor. Intriguingly, increased migration of MSCs from blood and bone marrow to the airway was also observed after systemic injection of GFP(+) MSCs and from bone marrow of Nes-GFP mice following CRE challenge. Furthermore, TGF-β1-neutralizing Ab inhibited the CRE-induced MSC recruitment, but promoted airway inflammation. Finally, we investigated the role of MSCs in modulating CRE-induced T cell response and found that MSCs significantly inhibited CRE-induced inflammatory cytokine secretion (IL-4, IL-13, IL-17, and IFN-γ) by CD4(+) T cells. These results suggest that TGF-β1 may be a key promigratory factor in recruiting MSCs to the airways in mouse models of asthma.
Collapse
Affiliation(s)
- Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Zhou
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lingling Xian
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Changjun Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ting Xu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beverly Plunkett
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shau-Ku Huang
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National Health Research Institutes, Taiwan
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Aryl hydrocarbon receptor (AhR) modulates cockroach allergen-induced immune responses through active TGFβ1 release. Mediators Inflamm 2014; 2014:591479. [PMID: 24795504 PMCID: PMC3984807 DOI: 10.1155/2014/591479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Aryl hydrocarbon receptor (AhR), a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE) treated human lung fibroblasts (WI-38) was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1) in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.
Collapse
|
50
|
Li G, Fox J, Liu Z, Liu J, Gao GF, Jin Y, Gao H, Wu M. Lyn mitigates mouse airway remodeling by downregulating the TGF-β3 isoform in house dust mite models. THE JOURNAL OF IMMUNOLOGY 2013; 191:5359-70. [PMID: 24127553 DOI: 10.4049/jimmunol.1301596] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic airway remodeling is a serious consequence of asthma, which is caused by complex but largely unknown mechanisms. Despite versatile functions, the role of Lyn in chronic airway remodeling remains undefined. Using Lyn(-/-) mice, we show that continual exposure (for 8 wk) of house dust mite extracts induced a severe phenotype of chronic airway remodeling, including exacerbated mucus production, collagen deposition, dysregulated cytokine secretion, and elevated inflammation. Strikingly, a significant increase in TGF-β3 rather than TGF-β1 was observed in Lyn(-/-) mouse lungs compared with lungs in wild-type mice. Furthermore, TGF-β3 neutralizing Abs not only inhibited the expression of STAT6 and Smad2/3 but also decreased phosphorylation of Smad2 and NF-κB in Lyn(-/-) mouse lungs. In addition, both recombinant and adenoviral TGF-β3 significantly promoted epithelial-to-mesenchymal transition and intensified collagen I production and MUC5AC expression. Further examination of chronic asthma patients showed that a decreased Lyn correlated with the severity of airway inflammation and mucus hypersecretion. Finally, Lyn may critically regulate airway remodeling by directly interacting with TGF-β3. Collectively, these findings revealed that Lyn regulates TGF-β3 isoform and modulates the development of airway remodeling, which may have therapeutic implications for severe chronic asthma.
Collapse
Affiliation(s)
- Guoping Li
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58203
| | | | | | | | | | | | | | | |
Collapse
|