1
|
Sasse SK, Dahlin A, Sanford L, Gruca MA, Gupta A, Gally F, Wu AC, Iribarren C, Dowell RD, Weiss ST, Gerber AN. Enhancer RNA transcription pinpoints functional genetic variants linked to asthma. Nat Commun 2025; 16:2750. [PMID: 40164603 PMCID: PMC11958640 DOI: 10.1038/s41467-025-57693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bidirectional enhancer RNA (eRNA) transcription is a widespread response to environmental signals and glucocorticoids. We investigated whether single nucleotide polymorphisms (SNPs) within dynamically regulated eRNA-transcribing regions contribute to genetic variation in asthma. Through applying multivariate regression modeling with permutation-based significance thresholding to a large clinical cohort, we identified novel associations between asthma and 35 SNPs located in eRNA-transcribing regions implicated in regulating cellular processes relevant to asthma, including rs258760 (mean allele frequency = 0.34, asthma odds ratio = 0.95; P = 5.04E-03). We show that rs258760 disrupts an active aryl hydrocarbon receptor (AHR) response element linked to transcriptional regulation of the glucocorticoid receptor gene by AHR ligands, which are commonly found in combusted air pollution. The role of rs258760 as a protective variant for asthma was independently validated using UK Biobank data. Our findings establish eRNA signatures as a tool for discovery of functional genetic variants and define a novel association between air pollution, glucocorticoid signaling and asthma.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynn Sanford
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Arnav Gupta
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Fabienne Gally
- Department of Medicine, University of Colorado, Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos Iribarren
- Kaiser Permanente Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
- Computer Science, University of Colorado, Boulder, CO, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, CO, USA.
- Department of Medicine, University of Colorado, Aurora, CO, USA.
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
2
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
3
|
Zhu J, Edwards MR, Message SD, Stanciu LA, Johnston SL, Jeffery PK. Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production. Pharmaceuticals (Basel) 2024; 17:1554. [PMID: 39598462 PMCID: PMC11597196 DOI: 10.3390/ph17111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cilomilast, a phosphodiesterase-4 (PDE4) selective inhibitor, has anti-inflammatory effects in vitro and in vivo and reduces COPD exacerbations. We tested the hypothesis that cilomilast inhibits virus-induced airway epithelial intercellular adhesion molecule-1 (ICAM-1) expression and inflammatory cytokine/chemoattractants, IL-6, CXCL8, and CCL5 production in vitro. Methods: BEAS-2B bronchial epithelial cells were incubated with 0.5-2 MOI (multiplicity of infection-infectious units/cell) of rhinovirus 16 (RV16). Then, 0.1-10 μM cilomilast or 10 nM dexamethasone, as inhibition control, were added pre- or post-1 h RV16 infection. Supernatant and cells were sampled at 8, 24, 48, and 72 h after infection. Cell surface ICAM-1 expression was detected by immunogold labelling and visualised by high-resolution scanning electron microscopy (HR-SEM), while IL-6, CXCL8, and CCL5 protein release and mRNA expression were measured using an ELISA and RT-PCR. Results: Cilomilast significantly decreased RV16-induced ICAM-1 expression to approximately 45% (p < 0.01). CXCL8 protein/mRNA production was reduced by about 41% (p < 0.05), whereas IL-6 protein/mRNA production was increased to between 41-81% (p < 0.001). There was a trend to reduction by cilomilast of RV16-induced CCL5. Conclusions: Cilomilast has differential effects on RV16-induced ICAM-1 and interleukins, inhibiting virus-induced ICAM-1 expression and CXCL8 while increasing IL-6 production. These in vitro effects may help to explain the beneficial actions of this PDE4 inhibitor in vivo.
Collapse
Affiliation(s)
- Jie Zhu
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Michael R. Edwards
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Simon D. Message
- Thoracic Medicine, Gloucestershire Hospitals NHS Foundation Trust, Alexandra House, Sandford Road, Cheltenham GL53 7AN, UK;
| | - Luminita A. Stanciu
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Sebastian L. Johnston
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| | - Peter K. Jeffery
- Airway Disease, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK or (J.Z.); (M.R.E.); (S.L.J.)
| |
Collapse
|
4
|
Hosoki K, Govindhan A, Knight JM, Sur S. Allosteric inhibition of CXCR1 and CXCR2 abrogates Th2/Th17-associated Allergic Lung Inflammation in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593638. [PMID: 38798651 PMCID: PMC11118468 DOI: 10.1101/2024.05.13.593638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background IL4, IL5, IL13, and IL17-producing CD4 T helper 2 (Th2)-cells and IL17-producing CD4 T helper 17 (Th17)-cells contribute to chronic eosinophilic and neutrophilic airway inflammation in asthma and allergic airway inflammation. Chemokines and their receptors are upregulated in Th2/Th17-mediated inflammation. However, the ability of CXCR1 and CXCR2 modulate Th2 and Th17-cell-mediated allergic lung inflammation has not been reported. Methods Mice sensitized and challenged with cat dander extract (CDE) mount a vigorous Th2-Th17-mediated allergic lung inflammation. Allosteric inhibitor of CXCR1 and CXCR2, ladarixin was orally administered in this model. The ability of ladarixin to modulate allergen-challenge induced recruitment of CXCR1 and CXCR2-expressing Th2 and Th17-cells and allergic lung inflammation were examined. Results Allergen challenge in sensitized mice increased mRNA expression levels of Il4, Il5, Il13, Il6, Il1β, Tgfβ1, Il17, Il23, Gata3, and Rorc , and induced allergic lung inflammation characterized by recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils. Allosteric inhibition of CXCR1 and CXCR2 vigorously blocked each of these pro-inflammatory effects of allergen challenge. CXCL chemokines induced a CXCR1 and CXCR2-dependent proliferation of IL4, IL5, IL13, and IL17 expressing T-cells. Conclusion Allosteric inhibition of CXCR1 and CXCR2 abrogates blocks recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils in this mouse model of allergic lung inflammation. We suggest that the ability of allosteric inhibition of CXCR1 and CXCR2 to abrogate Th2 and Th17-mediated allergic inflammation should be investigated in humans.
Collapse
|
5
|
Lee S, Kim S, Lee TJ, Lim JH, Woo CH. miR-616-3p alleviates inflammatory response by targeting C-X-C motif chemokine ligand 5. Biochem Biophys Res Commun 2024; 691:149335. [PMID: 38042032 DOI: 10.1016/j.bbrc.2023.149335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
C/EBP homologous protein (CHOP) is a key regulator in ER stress-mediated signaling pathway via PERK-dependent unfolded protein response. It has been known that microRNA-616 (miR-616) is produced from the intron of the human DDIT3 gene encoding CHOP and increased by ER stress. However, the role of miR-616 and its targets are not fully addressed yet. Here we try to identify a novel target of miR-616 in human lung epithelial cells. Microarray analysis showed that CXCL5 is the most downregulated gene by miR-616 overexpression in A549 cells. We also found that CXCL5 mRNA and protein levels were significantly reduced by miR-616 mimic in the presence or absence of TNFα, while anti-miR-616 enhanced CXCL5 expression. In addition, miR-616-3p targeting sequence in 3'UTR of CXCL5 was confirmed by luciferase reporter assay suggesting that miR-616-3p directly binds to 3'UTR of CXCL5 and inhibits CXCL5 expression. Finally, we confirmed that conditioned medium from A549 cells treated with TNFα or Streptococcus pneumoniae lysates increased intra-alveolar neutrophil infiltration in a mouse model of pulmonary inflammation, while this induction was significantly reduced in a conditioned medium from cells transfected with miR-616-3p. These results suggest that miR-616-3p can alleviate CXCL5-induced pulmonary inflammatory response via targeting 3'UTR of CXCL5 gene.
Collapse
Affiliation(s)
- Suyeon Lee
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Suji Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 197 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, 25 Magokdong-ro 2-gil, Seoul, 07804, Republic of Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
6
|
Casella B, Farmer JP, Nesheva DN, Williams HEL, Charlton SJ, Holliday ND, Laughton CA, Mistry SN. Design, Synthesis, and Application of Fluorescent Ligands Targeting the Intracellular Allosteric Binding Site of the CXC Chemokine Receptor 2. J Med Chem 2023; 66:12911-12930. [PMID: 37523859 PMCID: PMC10544029 DOI: 10.1021/acs.jmedchem.3c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/02/2023]
Abstract
The inhibition of CXC chemokine receptor 2 (CXCR2), a key inflammatory mediator, is a potential strategy in the treatment of several pulmonary diseases and cancers. The complexity of endogenous chemokine interaction with the orthosteric binding site has led to the development of CXCR2 negative allosteric modulators (NAMs) targeting an intracellular pocket near the G protein binding site. Our understanding of NAM binding and mode of action has been limited by the availability of suitable tracer ligands for competition studies, allowing direct ligand binding measurements. Here, we report the rational design, synthesis, and pharmacological evaluation of a series of fluorescent NAMs, based on navarixin (2), which display high affinity and preferential binding for CXCR2 over CXCR1. We demonstrate their application in fluorescence imaging and NanoBRET binding assays, in whole cells or membranes, capable of kinetic and equilibrium analysis of NAM binding, providing a platform to screen for alternative chemophores targeting these receptors.
Collapse
Affiliation(s)
- Bianca
Maria Casella
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - James P. Farmer
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Desislava N. Nesheva
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Huw E. L. Williams
- School
of Chemistry, University of Nottingham Biodiscovery
Institute, Nottingham NG7 2RD, UK
| | - Steven J. Charlton
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- OMass
Therapeutics Ltd., Oxford OX4 2GX, UK
| | - Nicholas D. Holliday
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Excellerate
Bioscience Ltd., Biocity, University of
Nottingham, Nottingham NG1 1GF, UK
| | - Charles A. Laughton
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - Shailesh N. Mistry
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| |
Collapse
|
7
|
Ha JG, Cho HJ. Unraveling the Role of Epithelial Cells in the Development of Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:14229. [PMID: 37762530 PMCID: PMC10531804 DOI: 10.3390/ijms241814229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The pathophysiology of CRS is multifactorial and complex yet needs to be completed. Recent evidence emphasizes the crucial part played by epithelial cells in the development of CRS. The epithelial cells act as physical barriers and play crucial roles in host defense, including initiating and shaping innate and adaptive immune responses. This review aims to present a comprehensive understanding of the significance of nasal epithelial cells in CRS. New research suggests that epithelial dysfunction plays a role in developing CRS through multiple mechanisms. This refers to issues with a weakened barrier function, disrupted mucociliary clearance, and irregular immune responses. When the epithelial barrier is compromised, it can lead to the passage of pathogens and allergens, triggering inflammation in the body. Furthermore, impaired mucociliary clearance can accumulate pathogens and secretions of inflammatory mediators, promoting chronic inflammation. Epithelial cells can release cytokines and chemokines, which attract and activate immune cells. This can result in an imbalanced immune response that continues to cause inflammation. The interaction between nasal epithelial cells and various immune cells leads to the production of cytokines and chemokines, which can either increase or decrease inflammation. By comprehending the role of epithelial cells in CRS, we can enhance our understanding of the disease's pathogenesis and explore new therapeutics.
Collapse
Affiliation(s)
- Jong-Gyun Ha
- Department of Otorhinolaryngology—Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea;
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Zhang C, Xu H, Netto KG, Sokulsky LA, Miao Y, Mo Z, Meng Y, Du Y, Wu C, Han L, Zhang L, Liu C, Zhang G, Li F, Yang M. Inhibition of γ-glutamyl transferase suppresses airway hyperresponsiveness and airway inflammation in a mouse model of steroid resistant asthma exacerbation. Front Immunol 2023; 14:1132939. [PMID: 37377967 PMCID: PMC10292800 DOI: 10.3389/fimmu.2023.1132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Despite recent advances, there are limited treatments available for acute asthma exacerbations. Here, we investigated the therapeutic potential of GGsTop, a γ-glutamyl transferase inhibitor, on the disease with a murine model of asthma exacerbation. Methods GGsTop was administered to mice that received lipopolysaccharide (LPS) and ovalbumin (OVA) challenges. Airway hyperresponsiveness (AHR), lung histology, mucus hypersecretion, and collagen deposition were analyzed to evaluate the hallmark features of asthma exacerbation. The level of proinflammatory cytokines and glutathione were determined with/without GGsTop. The transcription profiles were also examined. Results GGsTop attenuates hallmark features of the disease with a murine model of LPS and OVA driven asthma exacerbation. Airway hyperresponsiveness (AHR), mucus hypersecretion, collagen deposition, and expression of inflammatory cytokines were dramatically inhibited by GGsTop treatment. Additionally, GGsTop restored the level of glutathione. Using RNA-sequencing and pathway analysis, we demonstrated that the activation of LPS/NFκB signaling pathway in airway was downregulated by GGsTop. Interestingly, further analysis revealed that GGsTop significantly inhibited not only IFNγ responses but also the expression of glucocorticoid-associated molecules, implicating that GGsTop profoundly attenuates inflammatory pathways. Conclusions Our study suggests that GGsTop is a viable treatment for asthma exacerbation by broadly inhibiting the activation of multiple inflammatory pathways.
Collapse
Affiliation(s)
- Cancan Zhang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huisha Xu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keilah G. Netto
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Leon A. Sokulsky
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yiyan Miao
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Mo
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Meng
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Du
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chengyong Wu
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liyou Han
- Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, Japan
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguang Li
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Academy of Medical Sciences & Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
9
|
Wang R, Zeng M, Zhang B, Zhang Q, Jia J, Cao B, Liu M, Guo P, Zhang Y, Zheng X, Feng W. β-Sitosterol inhibits ovalbumin-induced asthma-related inflammation by regulating dendritic cells. Immunopharmacol Immunotoxicol 2022; 44:1013-1021. [PMID: 35850599 DOI: 10.1080/08923973.2022.2102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To investigate the effects of β-sitosterol (B-SIT) and the underlying mechanisms of action in an ovalbumin-induced rat model of asthma. METHODS The pathological and morphological changes in lung and tracheal tissues were observed by H&E, PAS, and Masson's staining. The levels of IgE, TNF-α, and IFN-γ in the bronchoalveolar lavage fluid (BALF) and those of IL-6, TGF-β1, and IL-10 in serum were measured by ELISA. The relative expression levels of IL-5, IL-13, IL-21, CD11c, CD80, and CD86 mRNA in lung tissue were examined by RT-qPCR. Flow cytometry was performed to assess the levels of immune cells, including macrophages and neutrophils in spleen tissue and Th cells, Tc cells, NK cells, and DCs in peripheral blood. The protein expression levels of CD68, MPO, CD11c, CD80, and CD86 were detected by western blotting or immunohistochemistry. RESULTS B-SIT improved the injury in OVA-induced pathology, decreased the levels of inflammatory factors of IgE, TNF-α, IL-6, TGF-β1, IL-5, IL-13, and IL-21 and increased the levels of IFN-γ and IL-10. In addition, B-SIT decreased the number of macrophages and neutrophils and the relative expression levels of CD68 and MPO in the spleen. Moreover, B-SIT increased the number of Th cells, Tc cells, NK cells, and DCs in peripheral blood and upregulated the levels of CD11c, CD80, and CD86 in the spleen and lung. CONCLUSION B-SIT improved symptoms in a rat model of asthma likely via the inhibition of inflammation by regulating dendritic cells.
Collapse
Affiliation(s)
- Ru Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Bing Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuhan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
10
|
Single-cell RNA transcriptomic analysis identifies Creb5 and CD11b-DCs as regulator of asthma exacerbations. Mucosal Immunol 2022; 15:1363-1374. [PMID: 36038770 PMCID: PMC9705253 DOI: 10.1038/s41385-022-00556-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immune responses that result in asthma exacerbation are associated with allergen or viral exposure. Identification of common immune factors will be beneficial for the development of uniformed targeted therapy. We employed a House Dust Mite (HDM) mouse model of asthma and challenged allergic HDM mice with allergens (HDM, cockroach extract (CRE)) or respiratory syncytial virus (RSV). Purified lung immune cells underwent high-dimensional single-cell RNA deep sequencing (scRNA-seq) to generate an RNA transcriptome. Gene silencing with siRNA was employed to confirm the efficacy of scRNA-seq analysis. scRNA-seq UMAP analysis portrayed an array of cell markers within individual immune clusters. SCENIC R analysis showed an increase in regulon number and activity in CD11b- DC cells. Analysis of conserved regulon factors further identified Creb5 as a shared regulon between the exacerbation groups. Creb5 siRNAs attenuated HDM, CRE or RSV-induced asthma exacerbation. scRNA-seq multidimensional analysis of immune clusters identified gene pathways that were conserved between the exacerbation groups. We propose that these analyses provide a strong framework that could be used to identify specific therapeutic targets in multifaceted pathologies.
Collapse
|
11
|
Semaphorin3E/plexinD1 Axis in Asthma: What We Know So Far! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:205-213. [PMID: 34019271 DOI: 10.1007/978-3-030-68748-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Semaphorin3E belongs to the large family of semaphorin proteins. Semaphorin3E was initially identified as axon guidance cues in the neural system. It is universally expressed beyond the nervous system and contributes to regulating essential cell functions such as cell migration, proliferation, and adhesion. Binding of semaphorin3E to its receptor, plexinD1, triggers diverse signaling pathways involved in the pathogenesis of various diseases from cancer to autoimmune and allergic disorders. Here, we highlight the novel findings on the role of semaphorin3E in airway biology. In particular, we highlight our recent findings on the function and potential mechanisms by which semaphorin3E and its receptor, plexinD1, impact airway inflammation, airway hyperresponsiveness, and remodeling in the context of asthma.
Collapse
|
12
|
Maxwell AJ, Ding J, You Y, Dong Z, Chehade H, Alvero A, Mor Y, Draghici S, Mor G. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol 2021; 109:35-47. [PMID: 33242368 PMCID: PMC7753679 DOI: 10.1002/jlb.4covr0920-552rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to hundreds of thousands of deaths and billions of dollars in economic damage. The immune response elicited from this virus is poorly understood. An alarming number of cases have arisen where COVID-19 patients develop complications on top of the symptoms already associated with SARS, such as thrombosis, injuries of vascular system, kidney, and liver, as well as Kawasaki disease. In this review, a bioinformatics approach was used to elucidate the immune response triggered by SARS-CoV-2 infection in primary human lung epithelial and transformed human lung alveolar. Additionally, examined the potential mechanism behind several complications that have been associated with COVID-19 and determined that a specific cytokine storm is leading to excessive neutrophil recruitment. These neutrophils are directly leading to thrombosis, organ damage, and complement activation via neutrophil extracellular trap release.
Collapse
Affiliation(s)
- Anthony J Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Zhong Dong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Ayesha Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yechiel Mor
- Department of Internal Medicine Wayne State University, Detroit, Michigan, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
13
|
Sokulsky LA, Garcia-Netto K, Nguyen TH, Girkin JLN, Collison A, Mattes J, Kaiko G, Liu C, Bartlett NW, Yang M, Foster PS. A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2 Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. THE JOURNAL OF IMMUNOLOGY 2020; 205:2468-2478. [PMID: 32948685 DOI: 10.4049/jimmunol.1901350] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/22/2020] [Indexed: 11/19/2022]
Abstract
Rhinovirus (RV) infections in asthmatic patients are often associated with asthma exacerbation, characterized by worsened airways hyperreactivity and increased immune cell infiltration to the airways. The C-X-C chemokines, CXCL3 and CXCL5, regulate neutrophil trafficking to the lung via CXCR2, and their expression in the asthmatic lung is associated with steroid-insensitive type 2 inflammatory signatures. Currently, the role of CXCL3 and CXCL5 in regulating neutrophilic and type 2 responses in viral-induced asthma exacerbation is unknown. Inhibition of CXCL3 or CXCL5 with silencing RNAs in a mouse model of RV-induced exacerbation of asthma attenuated the accumulation of CXCR2+ neutrophils, eosinophils, and innate lymphoid cells in the lung and decreased production of type 2 regulatory factors IL-25, IL-33, IL-5, IL-13, CCL11, and CCL24. Suppression of inflammation was associated with decreased airways hyperreactivity, mucus hypersecretion, and collagen deposition. Similar results were obtained by employing RC-3095, which has been shown to bind to CXCR2, or by depletion of neutrophils. Our data demonstrate that CXCL3 and CXCL5 may be critical in the perpetuation of RV-induced exacerbation of asthma through the recruitment of CXCR2-positive neutrophils and by promoting type 2 inflammation. Targeting the CXCL3/CXCL5/CXCR2 axis may provide a new therapeutic approach to attenuating RV-induced exacerbations of asthma.
Collapse
Affiliation(s)
- Leon A Sokulsky
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Keilah Garcia-Netto
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Jason L N Girkin
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Adam Collison
- Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia.,Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, The University of Newcastle, Callaghan 2308, Australia
| | - Joerg Mattes
- Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia.,Priority Research Centre GrowUpWell, Experimental and Translational Respiratory Medicine Group, The University of Newcastle, Callaghan 2308, Australia.,Paediatric Respiratory and Sleep Medicine Department, Newcastle Children's Hospital, Kaleidoscope, New Lambton Heights 2305, Australia; and
| | - Gerard Kaiko
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha 410083, Hunan, China
| | - Nathan W Bartlett
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia; .,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan 2308, New South Wales, Australia; .,Hunter Medical Research Institute, New Lambton Heights 2305, New South Wales, Australia
| |
Collapse
|
14
|
Martin MJ, Beasley R, Harrison TW. Towards a personalised treatment approach for asthma attacks. Thorax 2020; 75:1119-1129. [PMID: 32839286 DOI: 10.1136/thoraxjnl-2020-214692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022]
Abstract
Asthma attacks (exacerbations) are common, accounting for over 90 000 UK hospital admissions per annum. They kill nearly 1500 people per year in the UK, have significant associated direct and indirect costs and lead to accelerated and permanent loss of lung function. The recognition of asthma as a heterogeneous condition with multiple phenotypes has revolutionised the approach to the long-term management of the condition, with greater emphasis on personalised treatment and the introduction of the treatable traits concept. In contrast asthma attacks are poorly defined and understood and our treatment approach consists of bronchodilators and systemic corticosteroids. This review aims to explore the current limitations in the description, assessment and management of asthma attacks. We will outline the risk factors for attacks, strategies to modify this risk and describe the recognised characteristics of attacks as a first step towards the development of an approach for phenotyping and personalising the treatment of these critically important events. By doing this, we hope to gradually improve asthma attack treatment and reduce the adverse effects associated with recurrent courses of corticosteroids.
Collapse
Affiliation(s)
- Matthew J Martin
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Tim W Harrison
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
15
|
Kuo CH, Lee MS, Kuo HF, Lin YC, Hung CH. Azithromycin suppresses Th1- and Th2-related chemokines IP-10/MDC in human monocytic cell line. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:872-879. [PMID: 31759853 DOI: 10.1016/j.jmii.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cytokines and chemokines play critical roles in the pathogenesis of asthma. Azithromycin, a macrolides, is frequently used in asthmatic children with lower respiratory tract infection and is reported having anti-inflammatory and immunomodulatory effects. However, the effects of azithromycin on the expression of TNF-α, Th1- and Th2-related chemokines, and neutrophil chemoattractant are unknown. We investigated the in vitro effects of azithromycin on the expression of TNF-α, Th1-related chemokine interferon-γ-inducible protein-10 (IP-10/CXCL10), Th2-related chemokine macrophage-derived chemokine (MDC/CCL22) and neutrophil chemoattractant growth-related oncogene-α (GRO-α/CXCL1) in THP-1 cells as a model for human monocytes. METHODS THP-1 cells were pretreated with various concentrations of azithromycin before Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) stimulation. TNF-α, IP-10, MDC and GRO-α were measured by ELISA. Intracellular signaling was investigated by pathway inhibitors and Western blot. RESULT Azithromycin suppressed MDC and IP-10 expression in LPS-stimulated THP-1 cells. However, azithromycin had no effect LPS-induced TNF-α and GRO-α expression. Western blotting revealed that azithromycin suppressed LPS-induced phosphorylation of mitogen-activated protein kinase (MAPK)-JNK and ERK expression, and also suppressed LPS-induced phosphorylation of nuclear factor (NF) κB-p65 expression. CONCLUSION Azithromycin suppressed LPS-induced MDC expression via the MAPK-JNK and the NFκB-p65 pathway. Azithromycin also suppressed LPS-induced IP-10 via the MAPK-JNK/ERK and the NFκB-p65 pathway. Azithromycin may benefit asthmatic patients by suppressing chemokines expression.
Collapse
Affiliation(s)
- Chang-Hung Kuo
- Ta-Kuo Clinic, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Min-Sheng Lee
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Yi-Ching Lin
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
17
|
Baltieri L, Cazzo E, de Souza AL, Alegre SM, de Paula Vieira R, Antunes E, de Mello GC, Claudio Martins L, Chaim EA. Influence of weight loss on pulmonary function and levels of adipokines among asthmatic individuals with obesity: One-year follow-up. Respir Med 2018; 145:48-56. [PMID: 30509716 DOI: 10.1016/j.rmed.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Individuals with obesity are more likely to develop asthma, but the exact mechanism is still uncertain and several hypotheses have been raised, such as the release of inflammatory mediators secreted by adipose tissue. OBJECTIVE To assess the effects of weight loss in patients submitted to bariatric surgery on pulmonary and systemic inflammation. METHOD The study evaluated patients undergoing bariatric surgery (Roux-en-Y gastric bypass) with the diagnosis of asthma, except smokers. The patients were evaluated at the time of entry into a preoperative weight loss group (T1), just before bariatric surgery (T2), six months after surgery (T3), and 12 months after surgery (T4). The following were measured: anthropometric data, dosage of systemic inflammatory markers by means of blood collection, pulmonary inflammatory markers obtained by induced sputum collection, pulmonary function parameters, and asthma activity assessed by a Asthma Control Test (ACT) questionnaire. RESULTS Nineteen patients participated in the study. There were significant reductions in the systemic levels of interleukin (IL)-8 (p = 0.002), C-reactive protein (CRP) (p = 0.003), leptin (p = 0.001) and tumor necrosis factor (TNF)-α (p = 0.007), and significant increase in the systemic levels of IL-6 (p = 0.004) over time and adiponectin in T2 (p = 0.025). In regards to pulmonary inflammation, there were significant reductions in the sputum levels of TNF-α (p < 0.001). There was no significant improvement of the pulmonary function parameters (p > 0.05) and significant improvement in asthma activity scores (p < 0.0001). CONCLUSION Weight loss was associated with significant changes in the systemic and pulmonary inflammatory profiles of individuals with asthma, leading to a better asthma control as a result of an increase in some anti-inflammatory mediators and a reduction of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Letícia Baltieri
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
| | - Everton Cazzo
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Aglecio Luiz de Souza
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Sarah Monte Alegre
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodolfo de Paula Vieira
- Universidade Brasil, Post-graduation Program in Bioengineering and in Biomedical Engineering, Federal University of Sao Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Glaucia Coelho de Mello
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Luiz Claudio Martins
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Zalocusky KA, Kan MJ, Hu Z, Dunn P, Thomson E, Wiser J, Bhattacharya S, Butte AJ. The 10,000 Immunomes Project: Building a Resource for Human Immunology. Cell Rep 2018; 25:513-522.e3. [PMID: 30304689 PMCID: PMC6263160 DOI: 10.1016/j.celrep.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
There is increasing appreciation that the immune system plays critical roles not only in the traditional domains of infection and inflammation but also in many areas of biology, including tumorigenesis, metabolism, and even neurobiology. However, one of the major barriers for understanding human immunological mechanisms is that immune assays have not been reproducibly characterized for a sufficiently large and diverse healthy human cohort. Here, we present the 10,000 Immunomes Project (10KIP), a framework for growing a diverse human immunology reference, from ImmPort, a publicly available resource of subject-level immunology data. Although some measurement types are sparse in the presently deposited ImmPort database, the extant data allow for a diversity of robust comparisons. Using 10KIP, we describe variations in serum cytokines and leukocytes by age, race, and sex; define a baseline cell-cytokine network; and describe immunologic changes in pregnancy. All data in the resource are available for visualization and download at http://10kimmunomes.org/.
Collapse
Affiliation(s)
- Kelly A Zalocusky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew J Kan
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Dunn
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Elizabeth Thomson
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Jeffrey Wiser
- Information Systems Health IT, Northrop Grumman, Rockville, MD 20850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Ma L, Xiao X, Ma Y, Wu H, Qiu S, Li J, Yang P, Liu Z. Effect of activation of Toll-like receptor 7 in the inhibition of allergic asthma on a mouse model. Am J Transl Res 2017; 9:2143-2152. [PMID: 28559967 PMCID: PMC5446499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/19/2016] [Indexed: 06/07/2023]
Abstract
Targeting Toll-like receptor 7 (TLR7) is known to have a potential therapeutic effect on experimental allergic asthma, but the exact mechanism is incompletely understood. To investigate the potential therapeutic effect of TLR7 agonist (TLR7a) a new versatile TLR7 agonist conjugated to Der f 1 was synthesized and evaluated in vivo here. It was confirmed that the course of airway hyperresponsiveness (AHR) and eosinophilia of the TLR7a vaccine-treated mice were limited. Levels of specific IgG1, IgG2a and IgE antibodies of these mice were changed obviously compared with that of the model mice. The expression of T helper 2 cytokine, interleukin (IL)-4, production in bronchoalveolar lavage fluid (BALF) and splenocytes were significantly decreased, while the levels of IFN-γ, IL-12 and IL-10 were increased after the treatment of TLR7a vaccine. In addition, Muc5 expression and goblet cells were significantly decreased in the lung tissue of asthma model mice treated with TLR7a plus Der f 1. These results suggest that the TLR7a-Der f 1 vaccine exhibits interesting therapeutic potency in suppressing allergic asthma and could be used a new agent in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Li Ma
- The State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen UniversityShenzhen 518116, China
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT HospitalShenzhen 518172, China
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen UniversityShenzhen 518116, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical CollegeGuangzhou 510006, China
| | - Yihe Ma
- The State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen UniversityShenzhen 518116, China
| | - Haiqiang Wu
- The State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen UniversityShenzhen 518116, China
| | - Shuqi Qiu
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT HospitalShenzhen 518172, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical CollegeGuangzhou 510006, China
| | - Pingchang Yang
- The State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen UniversityShenzhen 518116, China
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT HospitalShenzhen 518172, China
| | - Zhigang Liu
- The State Key Laboratory of Respiratory Disease for Allergy at Shengzhen University, School of Medicine, Shenzhen UniversityShenzhen 518116, China
| |
Collapse
|
20
|
Sverrild A, Kiilerich P, Brejnrod A, Pedersen R, Porsbjerg C, Bergqvist A, Erjefält JS, Kristiansen K, Backer V. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J Allergy Clin Immunol 2016; 140:407-417.e11. [PMID: 28042058 DOI: 10.1016/j.jaci.2016.10.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthmatic patients have higher microbiome diversity and an altered composition, with more Proteobacteria and less Bacteroidetes compared with healthy control subjects. Studies comparing airway inflammation and the airway microbiome are sparse, especially in subjects not receiving anti-inflammatory treatment. OBJECTIVE We sought to describe the relationship between the airway microbiome and patterns of airway inflammation in steroid-free patients with asthma and healthy control subjects. METHODS Bronchoalveolar lavage fluid was collected from 23 steroid-free nonsmoking patients with asthma and 10 healthy control subjects. Bacterial DNA was extracted from and subjected to Illumina MiSeq sequencing of the 16S rDNA V4 region. Eosinophils and neutrophils in the submucosa were quantified by means of immunohistochemical identification and computerized image analysis. Induced sputum was obtained, and airway hyperresponsiveness to mannitol and fraction of exhaled nitric oxide values were measured. Relationships between airway microbial diversity and composition and inflammatory profiles were analyzed. RESULTS In asthmatic patients airway microbial composition was associated with airway eosinophilia and AHR to mannitol but not airway neutrophilia. The overall composition of the airway microbiome of asthmatic patients with the lowest levels of eosinophils but not asthmatic patients with the highest levels of eosinophils deviated significantly from that of healthy subjects. Asthmatic patients with the lowest levels of eosinophils had an altered bacterial abundance profile, with more Neisseria, Bacteroides, and Rothia species and less Sphingomonas, Halomonas, and Aeribacillus species compared with asthmatic patients with more eosinophils and healthy control subjects. CONCLUSION The level of eosinophilic airway inflammation correlates with variations in the microbiome across asthmatic patients, whereas neutrophilic airway inflammation does not. This warrants further investigation on molecular pathways involved in both patients with eosinophilic and those with noneosinophilic asthma.
Collapse
Affiliation(s)
| | - Pia Kiilerich
- Department of Biology, University of Copenhagen, Denmark
| | - Asker Brejnrod
- Department of Biology, University of Copenhagen, Denmark
| | | | | | - Anders Bergqvist
- Respiratory Medicine and Allergology and Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas S Erjefält
- Respiratory Medicine and Allergology and Experimental Medical Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
21
|
Eng SS, DeFelice ML. The Role and Immunobiology of Eosinophils in the Respiratory System: a Comprehensive Review. Clin Rev Allergy Immunol 2016; 50:140-58. [PMID: 26797962 DOI: 10.1007/s12016-015-8526-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The eosinophil is a fully delineated granulocyte that disseminates throughout the bloodstream to end-organs after complete maturation in the bone marrow. While the presence of eosinophils is not uncommon even in healthy individuals, these granulocytes play a central role in inflammation and allergic processes. Normally appearing in smaller numbers, higher levels of eosinophils in the peripheral blood or certain tissues typically signal a pathologic process. Eosinophils confer a beneficial effect on the host by enhancing immunity against molds and viruses. However, tissue-specific elevation of eosinophils, particularly in the respiratory system, can cause a variety of short-term symptoms and may lead to long-term sequelae. Eosinophils often play a role in more commonly encountered disease processes, such as asthma and allergic responses in the upper respiratory tract. They are also integral in the pathology of less common diseases including eosinophilic pneumonia, allergic bronchopulmonary aspergillosis, hypersensitivity pneumonitis, and drug reaction with eosinophilia and systemic symptoms. They can be seen in neoplastic disorders or occupational exposures as well. The involvement of eosinophils in pulmonary disease processes can affect the method of diagnosis and the selection of treatment modalities. By analyzing the complex interaction between the eosinophil and its environment, which includes signaling molecules and tissues, different therapies have been discovered and created in order to target disease processes at a cellular level. Innovative treatments such as mepolizumab and benralizumab will be discussed. The purpose of this article is to further explore the topic of eosinophilic presence, activity, and pathology in the respiratory tract, as well as discuss current and future treatment options through a detailed literature review.
Collapse
Affiliation(s)
- Stephanie S Eng
- Thomas Jefferson University, Philadelphia, PA, USA
- Division of Allergy and Immunology, Nemours/AI duPont Hospital for Children, Wilmington, DE, USA
| | - Magee L DeFelice
- Thomas Jefferson University, Philadelphia, PA, USA.
- Division of Allergy and Immunology, Nemours/AI duPont Hospital for Children, Wilmington, DE, USA.
| |
Collapse
|
22
|
Wang M, Gao P, Wu X, Chen Y, Feng Y, Yang Q, Xu Y, Zhao J, Xie J. Impaired anti-inflammatory action of glucocorticoid in neutrophil from patients with steroid-resistant asthma. Respir Res 2016; 17:153. [PMID: 27852250 PMCID: PMC5112750 DOI: 10.1186/s12931-016-0462-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Steroid resistant (SR) asthma is characterized by persistent airway inflammation that fails to resolve despite treatment with high doses of corticosteroids. Furthermore, SR patient airways show increased numbers neutrophils, which are less responsive to glucocorticoid. The present study seeks to determine whether dexamethasone (DEX) has different effect on neutrophils from steroid sensitive (SS) asthmatics compared to SR asthmatics. METHODS Adults with asthma (n = 38) were classified as SR or SS based on changes in lung FEV1% following a one-month inhaled corticosteroid (ICS) treatment. Blood samples were collected from all patients during their first visit of the study. Neutrophils isolated from the blood were cultured with dexamethasone and/or atopic asthmatic serum for 18 h. The mRNA expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), a glucocorticoid transactivation target, and glucocorticoid-induced transcript 1 (GLCCI1), an early marker of glucocorticoid-induced apoptosis whose expression was associated with the response to inhaled glucocorticoids in asthma , was determined by real-time PCR, and ELISA was used to assess the pro-inflammatory cytokine IL-8 levels in the supernatant. Constitutive neutrophil apoptosis was detected by flow cytometry. RESULTS DEX significantly induced MKP-1 expression in both patients with SS and SR patients in a concentration-dependent manner, but greater induction was observed for SS patients at a low concentration (10-6 M). Asthmatic serum alone showed no MKP-1expression, and there was impaired induction of MKP-1 by DEX in SR asthma patients. The expression of GLCCI1 was not induced in neutrophils with DEX or DEX/atopic asthmatic serum combination. Greater inhibition of IL-8 production was observed in neutrophils from patients with SS asthma treated with DEX/atopic asthmatic serum combination compared with SR asthma patients, though DEX alone showed the same effect on neutrophils from SS and SR asthma patients. Meanwhile, DEX dependent inhibition of constitutive neutrophil apoptosis was similar between SS asthma and SR asthma patients. CONCLUSIONS DEX exerted different effects on neutrophils from patients with SS asthma and SR asthma, which may contribute to glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Meijia Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Gao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Wu
- Department of Respiratory, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuetao Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yikuan Feng
- Department Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
23
|
Todd CM, Salter BM, Murphy DM, Watson RM, Howie KJ, Milot J, Sadeh J, Boulet LP, O'Byrne PM, Gauvreau GM. The effects of a CXCR1/CXCR2 antagonist on neutrophil migration in mild atopic asthmatic subjects. Pulm Pharmacol Ther 2016; 41:34-39. [PMID: 27640067 DOI: 10.1016/j.pupt.2016.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neutrophils are effector cells recruited to airways in patients with asthma. Migration of neutrophils occurs predominantly through activation of the CXCR1 and CXCR2 receptors by CXC chemokines, including IL-8 and Gro-α. The dual CXCR1/CXCR2 antagonist SCH 527123 has been developed to target neutrophil migration to alleviate airway neutrophilia. This study investigated the effects of SCH 527123 on neutrophil levels within the bone marrow, peripheral blood and airways, and on isolated bone marrow and peripheral blood neutrophil migration from mild allergic asthmatics. METHODS Thirteen subjects with mild allergic asthma completed a double blind, placebo-controlled, multi-center crossover study and were randomized to daily dosing of 30 mg SCH 527123 and placebo for 8 days. Subjects provided bone marrow, peripheral blood and sputum samples pre-dosing and on the last day of dosing. Neutrophil numbers were quantified in all samples and chemotaxis assays were performed on neutrophils purified from bone marrow and peripheral blood. RESULTS Neutrophil numbers fell significantly in the peripheral blood and sputum following treatment with SCH 527123 compared to placebo treatment. No change in neutrophil numbers was observed in bone marrow. SCH 527123 reduced IL-8-induced migration of purified peripheral blood neutrophils (p < 0.05), but had limited effects on migration of neutrophils purified from bone marrow. CONCLUSIONS The results from this study demonstrate that oral administration of the dual CXCR1/CXCR2 antagonist SCH 527123 reduces neutrophil levels in the circulation and airways through inhibition of migration. There were no toxic effects of SCH 527123 on granulocytic progenitor cells in the bone marrow.
Collapse
Affiliation(s)
| | | | - Desmond M Murphy
- McMaster University, Hamilton, ON, Canada; Cork University Hospital, Cork, Ireland
| | | | | | - Joanne Milot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | | | | | | | | |
Collapse
|
24
|
Aubier M, Thabut G, Hamidi F, Guillou N, Brard J, Dombret MC, Borensztajn K, Aitilalne B, Poirier I, Roland-Nicaise P, Taillé C, Pretolani M. Airway smooth muscle enlargement is associated with protease-activated receptor 2/ligand overexpression in patients with difficult-to-control severe asthma. J Allergy Clin Immunol 2016; 138:729-739.e11. [PMID: 27001157 DOI: 10.1016/j.jaci.2015.12.1332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/06/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Asthma is a complex disease with heterogeneous features of airway inflammation and remodeling. The increase in airway smooth muscle (ASM) mass is an essential component of airway remodeling in patients with severe asthma, yet the pathobiological mechanisms and clinical outcomes associated with ASM enlargement remain elusive. OBJECTIVE We sought to compare ASM area in control subjects and patients with mild-to-moderate or severe asthma and to identify specific clinical and pathobiological characteristics associated with ASM enlargement. METHODS Bronchial biopsy specimens from 12 control subjects, 24 patients with mild-to-moderate asthma, and 105 patients with severe asthma were analyzed for ASM area, basement membrane thickness, vessels, eosinophils, neutrophils, T lymphocytes, mast cells, and protease-activated receptor 2 (PAR-2). In parallel, the levels of several ASM mitogenic factors, including the PAR-2 ligands, mast cell tryptase, trypsin, tissue factor, and kallikrein (KLK) 5 and KLK14, were assessed in bronchoalveolar lavage fluid. Data were correlated with asthma severity and control both at inclusion and after 12 to 18 months of optimal management and therapy. RESULTS Analyses across ASM quartiles in patients with severe asthma demonstrated that patients with the highest ASM quartile (median value of ASM area, 26.3%) were younger (42.5 vs ≥50 years old in the other groups, P ≤ .04) and had lower asthma control after 1 year of optimal management (P ≤ .006). ASM enlargement occurred independently of features of airway inflammation and remodeling, whereas it was associated with PAR-2 overexpression and higher alveolar tryptase (P ≤ .02) and KLK14 (P ≤ .03) levels. CONCLUSION Increase in ASM mass, possibly involving aberrant expression and activation of PAR-2-mediated pathways, characterizes younger patients with severe asthma with poor asthma control.
Collapse
Affiliation(s)
- Michel Aubier
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Départment de Hématologie-Immunologie, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Gabriel Thabut
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie B, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Fatima Hamidi
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Noëlline Guillou
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Julien Brard
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Marie-Christine Dombret
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Départment de Hématologie-Immunologie, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Keren Borensztajn
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Brahim Aitilalne
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Centre d'Investigation Clinique, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Isabelle Poirier
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Pascale Roland-Nicaise
- Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France
| | - Camille Taillé
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Départment de Pneumologie A, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Départment de Hématologie-Immunologie, Groupement Hospitalier Universitaire Nord Bichat-Claude Bernard, Paris, France; Assistance Publique des Hopitaux de Paris, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France
| | - Marina Pretolani
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France; Université Paris Diderot, Faculté de Médecine, site Bichat, Paris, France; Laboratory of Excellence INFLAMEX, Université Sorbonne Paris-Cité, Paris, France; Département Hospitalo-Universitaire FIRE, Paris, France.
| |
Collapse
|
25
|
Glück J, Rymarczyk B, Rogala B. Chemokine receptors expression on CD3+ blood cells in bronchial asthma. Adv Med Sci 2016; 61:11-7. [PMID: 26342671 DOI: 10.1016/j.advms.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 05/06/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Chemokines and their receptors participate in pathomechanism of bronchial asthma. The aim of the study was to analyze the pattern of chemokine receptor expression on T cells in severe asthmatics and to compare to mild-to-moderate patients and controls. MATERIAL/METHODS Flow cytometric analysis of CXCR1, CXCR2, CXCR3, CCR3, CCR4, CCR5, CCR7, CCR8 expression on CD3(+)CD8(-) and CD3(+)CD8(+) cells was performed in patients with different severity of chronic asthma and in controls. RESULTS Percentages of CD3(+)CD8(+) cells expressing CXCR1 were significantly lower in severe asthmatic than in mild-to-moderate asthmatics and in controls. Percentages of CD3(+)CD8(+) cells expressing CCR7 were significantly lower in the severe asthma group than in control group. Percentages of CD3(+)CD8(-) cells expressing CXCR1, CXCR2 and CCR8 were significantly lower in the severe asthma group than in mild-to-moderate asthmatics and in controls. The number of cells CD3(+)CD8(-) and CD3(+)CD8(+) expressing of CXCR1 was significantly lower in the group of patients using more than 800μg of budesonide daily than in the group of patients using less than 400μg of budesonide. Percentages of CD3(+)CD8(-) cells expressing CXCR3, CCR4 and CCR5 were visibly higher (not significantly) in chronic mild-to-moderate asthma than in healthy controls and severe asthmatics. CONCLUSIONS These results may indicate impairment of some chemokine expression on T cells in severe asthma patients. Moreover participation of both chemokine receptors related to Th1 and Th2 responses in mild-to-moderate asthma and attenuation of these responses in severe asthma has been suggested.
Collapse
|
26
|
Kumar RK, Herbert C, Foster PS. Mouse models of acute exacerbations of allergic asthma. Respirology 2016; 21:842-9. [PMID: 26922049 DOI: 10.1111/resp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 01/23/2016] [Indexed: 12/24/2022]
Abstract
Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Paul S Foster
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
27
|
Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, Hoffmann HJ, Gibson P, Erjefält JS, Backer V. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation. Clin Exp Allergy 2016; 46:288-97. [DOI: 10.1111/cea.12609] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/16/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Affiliation(s)
- A. Sverrild
- University Hospital Bispebjerg; Copenhagen Denmark
| | - A. Bergqvist
- Respiratory Medicine and Allergology and Experimental Medical Science; Lund University; Lund Sweden
| | - K. J. Baines
- Centre for Asthma and Respiratory Disease; The University of Newcastle; Newcastle NSW Australia
| | - C. Porsbjerg
- University Hospital Bispebjerg; Copenhagen Denmark
| | - C. K. Andersson
- Respiratory Medicine and Allergology and Experimental Medical Science; Lund University; Lund Sweden
| | - S. F. Thomsen
- Department of Dermatology; Bispebjerg Hospital; Copenhagen Denmark
| | - H. J. Hoffmann
- Department of Pulmonary Medicine B; Institute for Clinical Medicine; Aarhus University; Aarhus Denmark
| | - P. Gibson
- Centre for Asthma and Respiratory Disease; The University of Newcastle; Newcastle NSW Australia
| | - J. S. Erjefält
- Respiratory Medicine and Allergology and Experimental Medical Science; Lund University; Lund Sweden
| | - V. Backer
- University Hospital Bispebjerg; Copenhagen Denmark
| |
Collapse
|
28
|
Stolarz AJ, Farris RA, Wiley CA, O'Brien CE, Price ET. Fenofibrate Attenuates Neutrophilic Inflammation in Airway Epithelia: Potential Drug Repurposing for Cystic Fibrosis. Clin Transl Sci 2015; 8:696-701. [PMID: 26258991 DOI: 10.1111/cts.12310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) lung disease is neutrophilic airway inflammation. Elevated neutrophil counts have been associated with decreased forced expiratory volume in 1 second and poor clinical measures in patients with CF. Interleukin 8 (IL-8), epithelial neutrophil activating protein 78 (ENA-78), tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) contribute to neutrophil activation and disease pathogenesis in the airways of patients with CF. Drugs that modify the production of these chemokines in the airways could potentially benefit CF patients. Thus, we determined the effects of fenofibrate on their production in cell populations obtained from the airways. Human small airway epithelial cells and CF bronchial epithelial cells were treated with IL-1β to induce inflammation. We cotreated the cells with fenofibrate at concentrations ranging from 10 to 50 μM to determine if this drug could attenuate the inflammation. IL-8, ENA-78, TNF-α, GM-CSF, and G-CSF production were measured from the cell culture supernates by ELISA. ANOVA statistical testing was conducted using SPSS 17.0. IL-1β increased the production of each of the chemokines by several fold. Fenofibrate reduced IL-1β induced production of each of these neutrophilic chemokines at the concentrations used. IL-1β increases the production of neutrophilic chemokines in airway epithelial cells. Cotreatment with fenofibrate blunts these processes. Fenofibrate should be explored as a therapeutic option to modulate the abundant neutrophilic inflammation observed in CF.
Collapse
Affiliation(s)
- Amanda J Stolarz
- Department of Pharmaceutical Sciences, University of Arkansas for Medical, Sciences College of Pharmacy, Little Rock, Arkansas, USA
| | - Ryan A Farris
- Department of Pharmaceutical Sciences, University of Arkansas for Medical, Sciences College of Pharmacy, Little Rock, Arkansas, USA
| | - Charla A Wiley
- Department of Pharmaceutical Sciences, University of Arkansas for Medical, Sciences College of Pharmacy, Little Rock, Arkansas, USA
| | - Catherine E O'Brien
- Department of Pharmacy Practice, University of Arkansas for Medical, Sciences College of Pharmacy, Little Rock, Arkansas, USA
| | - Elvin T Price
- Department of Pharmaceutical Sciences, University of Arkansas for Medical, Sciences College of Pharmacy, Little Rock, Arkansas, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review examines the association between airway neutrophilia and severe asthma, potential mechanisms, and the effect on asthma control of therapies directed at reducing airway neutrophil numbers or activity. RECENT FINDINGS The majority of studies that observe an association between airway neutrophilia and severe asthma are cross-sectional in nature, and the intensity of neutrophilia is low and may be a reflection of the age of the patients, effect of tobacco smoke exposure, or the high doses of corticosteroids used to treat their asthma. There may be a small proportion of patients who may have abnormal innate immune responses that may lead to airway neutrophilia. However, these neutrophils may not be any more activated than in patients with milder asthma. Novel strategies using small molecule antagonists against the interleukin-8 receptor, CXCR2, are able to reduce airway neutrophilia, and their clinical efficacies are being investigated. SUMMARY Although cross-sectional studies suggest that airway neutrophilia may be observed in some patients with severe asthma, it is not clearly established if this is a consequence of treatment with corticosteroids or if it contributes directly to asthma pathobiology and severity. New therapies such as anti-CXCR2 provide an opportunity to investigate the contribution of neutrophils to asthma severity.
Collapse
|
30
|
Persson C, Uller L. Glucocorticoids induce the production of the chemoattractant CCL20 in airway epithelium. Eur Respir J 2015; 45:859-60. [PMID: 25726545 DOI: 10.1183/09031936.00179314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Carl Persson
- Dept of Clinical Pharmacology, Laboratory of Medicine, Lund University Hospital, Lund, Sweden
| | - Lena Uller
- Dept of Experimental Medical Science, Unit of Respiratory Immunopharmacology, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Clifford RL, Patel JK, John AE, Tatler AL, Mazengarb L, Brightling CE, Knox AJ. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET. Am J Physiol Lung Cell Mol Physiol 2015; 308:L962-72. [PMID: 25713319 PMCID: PMC4421784 DOI: 10.1152/ajplung.00021.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 01/03/2023] Open
Abstract
Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthmatic and asthmatic donors to further understand how CXCL8 is dysregulated in asthma. ASM cells from asthmatic donors had increased histone H3 acetylation, specifically histone H3K18 acetylation, and increased binding of histone acetyltransferase p300 compared with nonasthmatic donors but no differences in CXCL8 DNA methylation. The acetylation reader proteins Brd3 and Brd4 were bound to the CXCL8 promoter and Brd inhibitors inhibited CXCL8 secretion from ASM cells by disrupting Brd4 and RNA polymerase II binding to the CXCL8 promoter. Our results show a novel dysregulation of CXCL8 transcriptional regulation in asthma characterized by a promoter complex that is abnormal in ASM cells isolated from asthmatic donors and can be modulated by Brd inhibitors. Brd inhibitors may provide a new therapeutic strategy for steroid-resistant inflammation.
Collapse
Affiliation(s)
- Rachel L Clifford
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Jamie K Patel
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Alison E John
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Amanda L Tatler
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Lisa Mazengarb
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Christopher E Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Alan J Knox
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| |
Collapse
|
32
|
Admyre C, Axelsson LG, von Stein O, Zargari A. Immunomodulatory oligonucleotides inhibit neutrophil migration by decreasing the surface expression of interleukin-8 and leukotriene B4 receptors. Immunology 2015; 144:206-17. [PMID: 25100544 DOI: 10.1111/imm.12368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022] Open
Abstract
Neutrophils play important roles in many inflammatory diseases. The migration of neutrophils to the inflammatory site is tightly regulated by specific chemokines, of which interleukin-8 (IL-8) and leukotriene B4 (LTB4 ) constitute key mediators by binding to the surface receptors CXCR1/2 and BLT1, respectively. Oligonucleotides (ODN) containing CpG motifs mediate potent immunomodulatory effects through binding to Toll-like receptor 9. So far, knowledge on how ODN can affect neutrophil migration during inflammation is lacking. This study demonstrates that several novel CpG ODN significantly down-regulate the surface expression of CXCR1/2 and BLT1. In addition, the ODN significantly blocked IL-8-induced and LTB4 -induced neutrophil migration in vitro, as well as leucocyte migration in vivo demonstrated in mice by intravital microscopy and in a model of airway inflammation. The down-regulation of CXCR1 is rapid, occurring 15 min after ODN stimulation, and can be mediated through an endosomally independent mechanism. Inhibition of the IL-8 and LTB4 pathways may provide new opportunities of therapeutic intervention using ODN to reduce neutrophil infiltration during inflammation.
Collapse
|
33
|
Lever AR, Park H, Mulhern TJ, Jackson GR, Comolli JC, Borenstein JT, Hayden PJ, Prantil-Baun R. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model. Physiol Rep 2015; 3:3/4/e12334. [PMID: 25847914 PMCID: PMC4425952 DOI: 10.14814/phy2.12334] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner.
Collapse
Affiliation(s)
- Amanda R Lever
- Charles Stark Draper Laboratory, Cambridge, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rohde G, Message SD, Haas JJ, Kebadze T, Parker H, Laza-Stanca V, Khaitov MR, Kon OM, Stanciu LA, Mallia P, Edwards MR, Johnston SL. CXC chemokines and antimicrobial peptides in rhinovirus-induced experimental asthma exacerbations. Clin Exp Allergy 2015; 44:930-9. [PMID: 24673807 PMCID: PMC4403958 DOI: 10.1111/cea.12313] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 12/28/2022]
Abstract
RATIONALE Rhinoviruses (RVs) are the major triggers of asthma exacerbations. We have shown previously that lower respiratory tract symptoms, airflow obstruction, and neutrophilic airway inflammation were increased in experimental RV-induced asthma exacerbations. OBJECTIVES We hypothesized that neutrophil-related CXC chemokines and antimicrobial peptides are increased and related to clinical, virologic, and pathologic outcomes in RV-induced exacerbations of asthma. METHODS Protein levels of antimicrobial peptides (SLPI, HNP 1-3, elafin, and LL-37) and neutrophil chemokines (CXCL1/GRO-α, CXCL2/GRO-β, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2, and CXCL8/IL-8) were determined in bronchoalveolar lavage (BAL) fluid of 10 asthmatics and 15 normal controls taken before, at day four during and 6 weeks post-experimental infection. RESULTS BAL HNP 1-3 and Elafin were higher, CXCL7/NAP-2 was lower in asthmatics compared with controls at day 4 (P = 0.035, P = 0.048, and P = 0.025, respectively). BAL HNP 1-3 and CXCL8/IL-8 were increased during infection (P = 0.003 and P = 0.011, respectively). There was a trend to increased BAL neutrophils at day 4 compared with baseline (P = 0.076). BAL HNP 1-3 was positively correlated with BAL neutrophil numbers at day 4. There were no correlations between clinical parameters and HNP1-3 or IL-8 levels. CONCLUSIONS We propose that RV infection in asthma leads to increased release of CXCL8/IL-8, attracting neutrophils into the airways where they release HNP 1-3, which further enhances airway neutrophilia. Strategies to inhibit CXCL8/IL-8 may be useful in treatment of virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- G Rohde
- Department of Respiratory Medicine, National Heart and Lung Institute, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma & Centre for Respiratory Infection, Imperial College London, London, UK; Department of Respiratory Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lim HF, Nair P. Efficacy and safety of reslizumab in patients with moderate to severe eosinophilic asthma. Expert Rev Respir Med 2015; 9:135-42. [PMID: 25578680 DOI: 10.1586/17476348.2015.1000867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reslizumab, a neutralizing anti-IL-5 monoclonal antibody, is a promising adjunctive treatment for severe eosinophilic asthma. Monthly intravenous 3.0 mg/kg reslizumab had resulted in improvements in lung function and asthma control. It is well tolerated and common adverse events include headache, nasopharyngitis and upper respiratory tract infection. Rebound eosinophilia after cessation of reslizumab and attenuation of the treatment response with repeated dosing had been reported. Stringent selection of patients with a high eosinophil burden, who are poorly controlled despite moderate to high doses of inhaled corticosteroid, confers the most significant treatment response. Future trials should compare the dose, delivery platform, frequency of dosing and study combinations with other biologics, which will affect its maximal clinical efficacy.
Collapse
Affiliation(s)
- Hui Fang Lim
- Department of Medicine, Division of Respiratory and Critical Care Medicine, National University Health System, NUHS Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | | |
Collapse
|
36
|
Asthma "of horses and men"--how can equine heaves help us better understand human asthma immunopathology and its functional consequences? Mol Immunol 2014; 66:97-105. [PMID: 25547716 DOI: 10.1016/j.molimm.2014.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/30/2014] [Accepted: 12/07/2014] [Indexed: 12/20/2022]
Abstract
Animal models have been studied to unravel etiological, immunopathological, and genetic attributes leading to asthma. However, while experiments in which the disease is artificially induced have helped discovering biological and molecular pathways leading to allergic airway inflammation, their contribution to the understanding of the causality of the disease has been more limited. Horses naturally suffer from an asthma-like condition called "heaves" which presents sticking similarities with human asthma. It is characterized by reversible airway obstruction, airway neutrophilic inflammation, and a predominant Th2 immune response. This model allows one to investigate the role of neutrophils in asthma, which remains contentious, the regulation of chronic neutrophilic inflammation, and their possible implication in pulmonary allergic responses. Furthermore, the pulmonary remodeling features in heaves closely resemble those of human asthma, which makes this model unique to investigate the kinetics, reversibility, as well as the physiological consequences of tissue remodeling. In conclusion, heaves and asthma share common clinical presentation and also important immunological and tissue remodeling features. This makes heaves an ideal model for the discovery of novel pathways implicated in the asthmatic inflammation and associated tissue remodeling.
Collapse
|
37
|
Intranasal administration of recombinant TRAIL down-regulates CXCL-1/KC in an ovalbumin-induced airway inflammation murine model. PLoS One 2014; 9:e115387. [PMID: 25506835 PMCID: PMC4266651 DOI: 10.1371/journal.pone.0115387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/21/2014] [Indexed: 11/23/2022] Open
Abstract
Ovalbumin (OVA)-sensitized BALB/c mice were i.n. instilled with recombinant TNF-related apoptosis inducing ligand (TRAIL) 24 hours before OVA challenge. The total number of leukocytes and the levels of the chemokine CXCL-1/KC significantly increased in the bronchoalveolar lavage (BAL) fluids of allergic animals with respect to control littermates, but not in the BAL of mice i.n. pretreated with recombinant TRAIL before OVA challenge. In particular, TRAIL pretreatment significantly reduced the BAL percentage of both eosinophils and neutrophils. On the other hand, when TRAIL was administrated simultaneously to OVA challenge its effect on BAL infiltration was attenuated. Overall, the results show that the i.n. pretreatment with TRAIL down-modulated allergic airway inflammation.
Collapse
|
38
|
Che JN, Nmorsi OPG, Nkot BP, Isaac C, Okonkwo BC. Chemokines responses to Plasmodium falciparum malaria and co-infections among rural Cameroonians. Parasitol Int 2014; 64:139-44. [PMID: 25462711 DOI: 10.1016/j.parint.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Malaria remains the major cause of disease morbidity and mortality in sub-Saharan Africa with complex immune responses associated with disease outcomes. Symptoms associated with severe malaria have generally shown chemokine upregulation but little is known of responses to uncomplicated malaria. Eight villages in central Cameroon of 1045 volunteers were screened. Among these, malaria-positive individuals with some healthy controls were selected for chemokine analysis using Enzyme-Linked Immunosorbent Assay (ELISA) kits. Depressed serum levels of CXCL5 and raised CCL28 were observed in malarial positives when compared with healthy controls. The mean concentration of CXCL11 was higher in symptomatic than asymptomatic group, while CCL28 was lower in symptomatic individuals. Lower chemokine levels were associated with symptoms of uncomplicated malaria except for CXCL11 which was upregulated among fever-positive group. The mean CXCL5 level was higher in malaria sole infection than co-infections with HIV and Loa loa. Also, there was a raised mean level of malaria+HIV co-infection for CXCL9. This study hypothesises a situation where depressed chemokines in the face of clinical presentations could indicate an attempt by the immune system in preventing a progression process from uncomplicated to complicated outcomes with CXCL11 being identified as possible biomarker for malarial fever.
Collapse
Affiliation(s)
- Jane Nchangnwi Che
- Tropical Disease Research Unit, Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria; Centre for the Diagnosis and Control of Tropical Disease, Nkolbisson, Yaounde, Cameroon
| | | | - Baleguel Pierre Nkot
- Centre for the Diagnosis and Control of Tropical Disease, Nkolbisson, Yaounde, Cameroon
| | - Clement Isaac
- Tropical Disease Research Unit, Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | | |
Collapse
|
39
|
Zhu J, Message SD, Qiu Y, Mallia P, Kebadze T, Contoli M, Ward CK, Barnathan ES, Mascelli MA, Kon OM, Papi A, Stanciu LA, Jeffery PK, Johnston SL. Airway inflammation and illness severity in response to experimental rhinovirus infection in asthma. Chest 2014; 145:1219-1229. [PMID: 24457412 PMCID: PMC4042510 DOI: 10.1378/chest.13-1567] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The nature of bronchial mucosal inflammation and its physiologic and clinical significance in rhinovirus-induced asthma exacerbations is unclear. We investigated bronchial mucosal inflammatory response and its association with physiologic and clinical outcomes in an experimental model of rhinovirus-induced asthma exacerbations. Methods: We used immunohistochemistry methods to detect phenotypes of inflammatory cells infiltrating the bronchial mucosa before and after experimental rhinovirus infection in 10 subjects with asthma and 15 normal subjects. Results: Compared with baseline, rhinovirus infection significantly increased the number of epithelial (P = .005) and subepithelial (P = .017) neutrophils in subjects with asthma only and subepithelial CD68+ macrophages in both subjects with asthma (P = .009) and normal subjects (P = .018) but more so in those with asthma (P = .021). Numbers of CD45+, CD68+, and CD20+ cells; neutrophils; and eosinophils at day 4 postinfection were positively associated with virus load (r = 0.50-0.72, P = .016-0.03). At acute infection in subjects with asthma, CD4+ cells correlated with chest symptom scores (r = 0.69, P = .029), the fall in the 10% fall in FEV1 (PC10) correlated with neutrophils (r = −0.89, P = .029), the PC10 correlated inversely with CD4+ (r = −0.67, P = .023) and CD8+ cells (r = −0.65, P = .03), the 20% fall in FEV1 was inversely associated with CD20+ cells (r = −0.65, P = .03), and higher epithelial CD8+ cell counts were significantly associated with a greater maximum fall in FEV1 (r = −0.72, P = .03), whereas higher subepithelial mast cell counts were significantly associated with a lower maximum percent fall in peak expiratory flow (r = 0.8, P = .024). Conclusions: In subjects with asthma, rhinovirus infection induces bronchial mucosal neutrophilia and more severe monocyte/macrophage infiltration than in normal subjects. Airway neutrophils, eosinophils, and T and B lymphocytes during infection are related to virus load and physiologic and clinical severity, whereas mast cells are related to greater lung function.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Respiratory Medicine; National Heart and Lung Institute, Imperial College London, London, England
| | - Simon D Message
- Department of Respiratory Medicine; Imperial College Healthcare NHS Trust, London, England
| | - Yusheng Qiu
- National Heart and Lung Institute, Imperial College London, London, England
| | - Patrick Mallia
- Department of Respiratory Medicine; Imperial College Healthcare NHS Trust, London, England
| | | | - Marco Contoli
- Department of Respiratory Medicine; Imperial College Healthcare NHS Trust, London, England; Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | | | | | | | - Onn M Kon
- Imperial College Healthcare NHS Trust, London, England
| | - Alberto Papi
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | | | - Peter K Jeffery
- National Heart and Lung Institute, Imperial College London, London, England
| | - Sebastian L Johnston
- Department of Respiratory Medicine; Imperial College Healthcare NHS Trust, London, England.
| |
Collapse
|
40
|
Hsieh CC, Kuo CH, Kuo HF, Chen YS, Wang SL, Chao D, Lee MS, Hung CH. Sesamin suppresses macrophage-derived chemokine expression in human monocytes via epigenetic regulation. Food Funct 2014; 5:2494-500. [PMID: 25117529 DOI: 10.1039/c4fo00322e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chemokines play important roles in the pathogenesis of asthmatic inflammation. Sesamin, a class of phytoestrogen isolated from sesame seed Sesamum indicum, is recently regarded as an anti-inflammatory agent. However, the effects of sesamin on asthma-related chemokines are unknown. To this end, we investigated the effects of sesamin on the expression interferon-γ-inducible protein-10 (IP-10/CXCL10), macrophage-derived chemokine (MDC/CCL22), growth-related oncogene-α (GRO-α/CXCL1) and tumor necrosis factor (TNF)-α in human monocytes. METHODS Cells were pretreated with sesamin before lipopolysaccharide (LPS) stimulation. IP-10, MDC, GRO-α and TNF-α were measured by ELISA. Involved receptors and intracellular signaling were investigated by receptor antagonists, pathway inhibitors, western blotting and chromatin immunoprecipitation. RESULTS Sesamin suppressed LPS-induced MDC in THP-1 and human primary monocytes. Sesamin suppressed LPS-induced IP-10 in THP-1 cells, but not human primary monocytes. Sesamin had no effects on LPS-induced GRO-α and TNF-α expression in THP-1 and human primary monocytes. The suppressive effect of sesamin on MDC was reversed by the estrogen receptor (ER) and peroxisomal proliferator-activated receptor (PPAR)-α antagonists. Sesamin suppressed LPS-induced phosphorylation of mitogen-activated protein kinase (MAPK)-p38 and nuclear factor kappa B (NFκB)-p65. Sesamin suppressed histone H3/H4 acetylation in the MDC promoter region. CONCLUSION Sesamin suppressed LPS-induced MDC expression via the ER, the PPAR-α, the MAPK-p38 pathway, the NFκB-p65 pathway and the epigenetic regulation. Sesamin may have therapeutic potential in preventing and treating asthma.
Collapse
Affiliation(s)
- Chong-Chao Hsieh
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tian BP, Zhou HB, Xia LX, Shen HH, Ying S. Balance of apoptotic cell death and survival in allergic diseases. Microbes Infect 2014; 16:811-21. [PMID: 25111826 DOI: 10.1016/j.micinf.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/28/2022]
Abstract
Allergic diseases result from over-reaction of the immune system in response to exogenous allergens, where inflammatory cells have constantly extended longevity and contribute to an on-going immune response in allergic tissues. Here, we review disequilibrium in the death and survival of epithelial cells and inflammatory cells in the pathological processes of asthma, atopic dermatitis, and other allergic diseases.
Collapse
Affiliation(s)
- Bao-Ping Tian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China
| | - Hong-Bin Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China
| | - Li-Xia Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510120, China.
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Site of National Clinical Research Center for Respiratory Disease, Hangzhou, Zhejiang 310058, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
42
|
Kumar RK, Foster PS, Rosenberg HF. Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. J Leukoc Biol 2014; 96:391-6. [PMID: 24904000 DOI: 10.1189/jlb.3ri0314-129r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exacerbations of asthma are most commonly triggered by viral infections, which amplify allergic inflammation. Cytokines released by virus-infected AECs may be important in driving this response. This review focuses on accumulating evidence in support of a role for epithelial cytokines, including IL-33, IL-25, and TSLP, as well as their targets, type 2 innate lymphoid cells (ILC2s), in the pathogenesis of virus-induced asthma exacerbations. Production and release of these cytokines lead to recruitment and activation of ILC2s, which secrete mediators, including IL-5 and IL-13, which augment allergic inflammation. However, little information is currently available about the induction of these responses by the respiratory viruses that are strongly associated with exacerbations of asthma, such as rhinoviruses. Further human studies, as well as improved animal experimental models, are needed to investigate appropriately the pathogenetic mechanisms in virus-induced exacerbations of asthma, including the role of ILCs.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, University of New South Wales, Sydney, Australia;
| | - Paul S Foster
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Callaghan, Australia; and
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Persson C, Uller L. Theirs but to die and do: primary lysis of eosinophils and free eosinophil granules in asthma. Am J Respir Crit Care Med 2014; 189:628-33. [PMID: 24512466 DOI: 10.1164/rccm.201311-2069oe] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carl Persson
- 1 Department of Clinical Pharmacology, Laboratory Medicine, Lund University Hospital, Lund, Sweden; and
| | | |
Collapse
|
44
|
Resolvin E1 promotes resolution of inflammation in a mouse model of an acute exacerbation of allergic asthma. Clin Sci (Lond) 2014; 126:805-14. [PMID: 24344649 DOI: 10.1042/cs20130623] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endogenous mediators, such as RvE1 (resolvin E1), promote resolution of an inflammatory response and have potential as novel therapeutic agents. In the present study, we investigated the activity of RvE1 in a model of an acute exacerbation of chronic allergic asthma in mice. Animals sensitized to OVA (ovalbumin) received controlled low-level challenge with aerosolized antigen for 4 weeks, followed by a single moderate-level challenge to simulate an allergen-induced exacerbation of asthmatic inflammation. Induction of an exacerbation was associated with rapid recruitment of neutrophils, lymphocytes and eosinophils, together with increased levels of Th2 and pro-inflammatory cytokines. When administered before the final moderate-level challenge, RvE1 had only a modest effect on airway inflammation. To assess its effects when administered after induction of an exacerbation, we first characterized the cellular and molecular events associated with spontaneous resolution of airway inflammation over the following 96 h. Subsequently, we showed that administration of RvE1 at 2 and 8 h after the final challenge accelerated this process significantly. Specifically, RvE1 promoted a decline in the number of inflammatory cells, concentration of cytokines in lavage fluid and expression of mRNA for cytokines by macrophages, confirming its pro-resolution activity. In vitro, RvE1 had no apparent effect on lymphocytes, but suppressed significantly cytokine production by pulmonary macrophages, with evidence of down-regulation of the nuclear translocation of NF-κB (nuclear factor κB) p65 in these cells. The present study provides novel evidence that RvE1 can facilitate resolution of airway inflammation in a clinically relevant model of an acute exacerbation of asthma, possibly via its effects on activated pulmonary macrophages.
Collapse
|
45
|
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014; 10:593-619. [DOI: 10.1586/1744666x.2014.894886] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
A role for mitogen kinase kinase 3 in pulmonary inflammation validated from a proteomic approach. Pulm Pharmacol Ther 2014; 27:156-63. [PMID: 24480516 DOI: 10.1016/j.pupt.2014.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
Abstract
Proteomics is a powerful tool to ascertain which proteins are differentially expressed in the context of disease. We have used this approach on inflammatory cells obtained from patients with asthma to ascertain whether novel drugs targets could be illuminated and to investigate the role of any such target in a range of in vitro and in vivo models of inflammation. A proteomic study was undertaken using peripheral blood mononuclear cells from mild asthmatic subjects compared with healthy subjects. The analysis revealed an increased expression of the intracellular kinase, mitogen activated protein kinase (MKK3), and the function of this protein was investigated further in preclinical models of inflammation using MKK3 knockout mice. We describe a 3.65 fold increase in the expression of MKK3 in CD8(+) T lymphocytes obtained from subjects with asthma compared with healthy subjects using a proteomic approach which we have confirmed in CD8(+), but not in CD4(+) T lymphocytes or human bronchial epithelial cells from asthmatic patients using a Western blot technique. In wild type mice, bacterial lipopolysaccharide (LPS) caused a significant increase in MKK3 expression and significantly reduced airway neutrophilia in MKK3(-/-) mice (median, 25, 75% percentile; wild/LPS; 5.3 (0.7-9.9) × 10(5) cells/mL vs MKK3(-/-)/LPS; 0 (0-1.9) × 10(5) cells/mL, P < 0.05). In contrast, eosinophilia in sensitized wild type mice challenged with allergen (0.5 (0.16-0.65) × 10(5) cells/mL) was significantly increased in MKK3(-/-) mice (2.2 (0.9-3.5) × 10(5) cells/mL, P < 0.05). Our results suggest that asthma is associated with MKK3 over-expression in CD8(+) cells. We have also demonstrated that MKK3 may be critical for airway neutrophilia, but not eosinophilia, suggesting that this may be a target worthy of further consideration in the context of diseases associated with neutrophil activation such as severe asthma and COPD.
Collapse
|
47
|
Mizutani N, Nabe T, Yoshino S. IL-17A promotes the exacerbation of IL-33-induced airway hyperresponsiveness by enhancing neutrophilic inflammation via CXCR2 signaling in mice. THE JOURNAL OF IMMUNOLOGY 2014; 192:1372-84. [PMID: 24446518 DOI: 10.4049/jimmunol.1301538] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neutrophilic airway inflammation is a hallmark of patients with severe asthma. Although we have reported that both IL-33 and IL-17A contributed to IgE-mediated neutrophilic inflammation in mice, the relationship remains unclear. In this article, we examined how IL-17A modifies IL-33-induced neutrophilic inflammation and airway hyperresponsiveness (AHR). IL-33 was intratracheally administered to BALB/c mice on days 0-2; furthermore, on day 7, the effect of the combination of IL-33 and IL-17A was evaluated. Compared with IL-33 or IL-17A alone, the combination exacerbated neutrophilic inflammation and AHR, associated with more increased levels of lung glutamic acid-leucine-arginine(+) CXC chemokines, including CXCL1, CXCL2, and CXCL5, and infiltration by alveolar macrophages expressing CXCR2. Treatment with anti-CXCR2 mAb or depletion of alveolar macrophages repressed neutrophilic inflammation and AHR; in addition, depletion of neutrophils suppressed AHR. These findings prompted us to examine the role of CXCR2 in IgE-sensitized mice; a single treatment with anti-CXCR2 mAb in the seventh Ag challenge inhibited late-phase airway obstruction, AHR, and neutrophilic inflammation. In addition to inhibition, multiple treatments during the fourth to seventh challenge attenuated early-phase airway obstruction, eosinophilic inflammation, and goblet cell hyperplasia associated with the reduction of Th2 cytokine production, including IL-4, IL-5, and IL-13. Collectively, IL-33 cooperated with IL-17A to exacerbate AHR by enhancing neutrophilic inflammation via CXCR2 signaling; furthermore, CXCR2 signaling derived Th2 responses. We thus suggest the underlying mechanisms of IL-33 and IL-17A in allergic asthma and CXCR2 as potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Higashinada, Kobe 658-8558, Japan
| | | | | |
Collapse
|
48
|
Morton R, Eid N. From Childhood Asthma to Chronic Obstructive Pulmonary Disease: Evidence Supporting a Disease Continuum. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2013; 26:168-174. [PMID: 35923041 DOI: 10.1089/ped.2013.0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, we analyze the available evidence showing a link between asthma and chronic obstructive pulmonary disease (COPD). Many features (epidemiologic, physiologic, and histologic) overlap between these two conditions. Both environmental cigarette smoke exposure and early lung development are risk factors for the development of asthma and COPD. However, recent studies suggest that up to 25% of COPD cases were nonsmokers. Asthma during early childhood, independent of smoking history, may be an independent risk factor for the later development of COPD. One explanation for this phenomenon suggests that early small airway dysfunction (including chronic airway inflammation and airway remodeling) can lead to permanent impairment in lung physiology. Several reasons why control of airway inflammation is difficult in some patients are explored. Finally, we examine the available evidence suggesting overlapping histologic features in both asthma and COPD.
Collapse
Affiliation(s)
- Ronald Morton
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Nemr Eid
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
49
|
Besnard AG, Struyf S, Guabiraba R, Fauconnier L, Rouxel N, Proost P, Uyttenhove C, Van Snick J, Couillin I, Ryffel B. CXCL6 antibody neutralization prevents lung inflammation and fibrosis in mice in the bleomycin model. J Leukoc Biol 2013; 94:1317-23. [PMID: 23975892 DOI: 10.1189/jlb.0313140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IPF is a chronic, progressive pulmonary disease, leading to respiratory failure. In search of mechanisms of IPF, we used the bleomycin-induced lung-injury model in mice, which causes acute inflammation that may progress to chronic lung inflammation and fibrosis. Here, we asked whether CXCL6/GCP-2, a member of the CXC chemokine superfamily, may be involved in IPF development. First, we reported an increase of CXCL6 levels in BALF from patients with IPF, as well as in the lung of mice, 24 h after bleomycin administration. To investigate whether CXCL6 played a role in experimental bleomycin-induced pulmonary fibrosis, we treated mice with an anti-mCXCL6 mAb that has been shown to inhibit neutrophil chemotaxis in vitro. CXCL6 antibody blockade attenuated acute inflammation with a reduced pulmonary neutrophil influx, IL-1β, CXCL1, and TIMP-1 production. In the later phase (14 days after bleomycin exposure), lymphocyte recruitment and fibrosis markers, such as collagen and TIMP-1, were diminished, as well as collagen deposition and fibrotic lesion the lung. Therefore, the data suggest that CXCL6 contributes to experimental pulmonary fibrosis, and CXCL6 inhibition might be used to reduce lung toxicity associated with bleomycin treatment.
Collapse
Affiliation(s)
- Anne-Gaëlle Besnard
- 1.UMR 7355 Molecular and Experimental Immunology and Neurogenetics, 3B rue de la Férollerie, 45071 Orléans Cedex 2, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fogli LK, Sundrud MS, Goel S, Bajwa S, Jensen K, Derudder E, Sun A, Coffre M, Uyttenhove C, Van Snick J, Schmidt-Supprian M, Rao A, Grunig G, Durbin J, Casola S, Casola SS, Rajewsky K, Koralov SB. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. THE JOURNAL OF IMMUNOLOGY 2013; 191:3100-11. [PMID: 23966625 DOI: 10.4049/jimmunol.1301360] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Th17 cells are a proinflammatory subset of effector T cells that have been implicated in the pathogenesis of asthma. Their production of the cytokine IL-17 is known to induce local recruitment of neutrophils, but the direct impact of IL-17 on the lung epithelium is poorly understood. In this study, we describe a novel mouse model of spontaneous IL-17-driven lung inflammation that exhibits many similarities to asthma in humans. We have found that STAT3 hyperactivity in T lymphocytes causes an expansion of Th17 cells, which home preferentially to the lungs. IL-17 secretion then leads to neutrophil infiltration and lung epithelial changes, in turn leading to a chronic inflammatory state with increased mucus production and decreased lung function. We used this model to investigate the effects of IL-17 activity on airway epithelium and identified CXCL5 and MIP-2 as important factors in neutrophil recruitment. The neutralization of IL-17 greatly reduces pulmonary neutrophilia, underscoring a key role for IL-17 in promoting chronic airway inflammation. These findings emphasize the role of IL-17 in mediating neutrophil-driven pulmonary inflammation and highlight a new mouse model that may be used for the development of novel therapies targeting Th17 cells in asthma and other chronic pulmonary diseases.
Collapse
Affiliation(s)
- Laura K Fogli
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|