1
|
Kim HR, Kim SH, Le HD, Kim JK, Her M. The complete genome sequence of quail coronavirus identified in disease surveillance on quail farms in South Korea. Poult Sci 2025; 104:105007. [PMID: 40088533 PMCID: PMC11957520 DOI: 10.1016/j.psj.2025.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Avian carcasses collected from 103 flocks on 14 quail farms in Korea between 2022 and 2023 were diagnosed with viral diseases (22 flocks), bacterial disease (58 flocks), parasitic diseases (28 flocks) and non-infectious diseases (60 flocks). The only viral disease identified was viral enteritis in quails that showed pathological lesions in duodenum and appeared to be caused by quail coronavirus (QcoV) through viral metagenomics and RT-PCR assay. Two complete genomes of QCoV from samples diagnosed as viral enteritis were obtained using amplicon-based whole genome sequencing. The two QcoVs were gammacoronavirus, but were distinct from other avian coronaviruses. The spike genes of QCoV have 86.2 ∼ 87.1 % identity with that of American turkey coronavirus, but other gene sequences of QcoV was found to be similar to those of Korean infectious bronchitis virus. Genetic analysis based on the complete genomic sequences found QCoVs had a genetic structure similar to avian coronaviruses, yet it seems to be a unique pathogen specific to quail. This is the first report about the complete genome and genetic analysis of QCoV and the result of disease surveillance in quail in South Korea.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea.
| | - So-Hyeon Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Hoang Duc Le
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jae-Kyeom Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Moon Her
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
2
|
The Ring-Necked Pheasant (Phasianus colchicus) Industry within the United Kingdom and the Threat Posed by Mycoplasma gallisepticum: A Review. Vet Sci 2022; 9:vetsci9080391. [PMID: 36006306 PMCID: PMC9413133 DOI: 10.3390/vetsci9080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In ring-necked pheasants (Phasianus colchicus), Mycoplasma gallisepticum (MG) infection is frequently associated with infectious sinusitis. This condition causes swelling of the infraorbital sinuses, upper respiratory distress, depression and variable levels of mortality, and is considered one of the most important clinical and economic diseases of pheasants. This review provides a brief overview of the structure of the UK pheasant industry, with reference to the various stages within the supply chain, common diseases and challenges facing the industry. The current understanding of MG transmission, prevalence, clinical expression, diagnosis and control strategies in pheasants is subsequently summarised. In addition, this review aims to assess the current gaps in knowledge relating specifically to MG in pheasants, with reference and extrapolation where appropriate to data gathered from other species. This review will be of particular interest to clinicians in the field when planning MG control or treatment strategies in pheasants. It may also be of academic interest as it provides a summary of poorly studied areas. Abstract In ring-necked pheasants (Phasianus colchicus), Mycoplasma gallisepticum (MG) infection is frequently associated with infectious sinusitis. This condition causes swelling of the infraorbital sinuses, upper respiratory distress, depression and variable levels of mortality, and is considered one of the most important clinical and economic diseases of pheasants. This review provides a brief overview of the structure of the UK pheasant industry, with reference to the various stages within the supply chain, common diseases and challenges facing the industry. The current understanding of MG transmission, prevalence, clinical expression, diagnosis and control strategies in pheasants is subsequently summarised. In addition, this review aims to assess the current gaps in knowledge relating specifically to MG in pheasants, with reference and extrapolation where appropriate to data gathered from other species.
Collapse
|
3
|
Disease surveillance in England and Wales, June 2022. Vet Rec 2022; 191:20-24. [PMID: 35802077 DOI: 10.1002/vetr.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Kim HR, Jang I, Kim SH, Kwon YK. Viral Metagenomic Analysis of Japanese Quail ( Coturnix japonica) with Enteritis in the Republic of Korea. Avian Dis 2021; 65:40-45. [PMID: 34339120 DOI: 10.1637/aviandiseases-d-20-00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 11/05/2022]
Abstract
We performed viral metagenomics analysis of Japanese quail affected with enteritis to elucidate the viral etiology. Metagenomics generated 21,066,442 sequence reads via high-throughput sequencing, with a mean length of 136 nt. Enrichment in viral sequences suggested that at least three viruses were present in quail samples. Coronavirus and picornavirus were identified and are known as pathogens causing quail enteritis that match the observed morphology. Abundant reads of coronavirus from quail samples yielded four fragment sequences exhibiting six genomes of avian coronavirus. Sequence analysis showed that this quail coronavirus was related to turkey coronavirus and chicken infectious bronchitis virus. Quail picornavirus 8177 bp in size was identified and was similar to the QPV1/HUN/01 virus detected in quails without clinical symptoms in Hungary with 84.6% nucleotide and 94.6% amino acid identity. Our results are useful for understanding the genetic diversity of quail viruses. Further studies must be performed to determine whether quail coronavirus and quail picornavirus are pathogens of the digestive tract of quails.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea,
| | - Il Jang
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Si-Hyeon Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Yong-Kuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
5
|
Gethöffer F, Curland N, Voigt U, Woelfing B, Ludwig T, Heffels-Redmann U, Hafez HM, Lierz M, Siebert U. Seroprevalences of specific antibodies against avian pathogens in free-ranging ring-necked pheasants (Phasianus colchicus) in Northwestern Germany. PLoS One 2021; 16:e0255434. [PMID: 34347834 PMCID: PMC8336876 DOI: 10.1371/journal.pone.0255434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/06/2021] [Indexed: 11/19/2022] Open
Abstract
Infectious diseases in captive pheasants (Phasianus colchicus) are well known, but there is a lack of knowledge about occurrence and distribution of pathogens in free-ranging pheasants in Germany. We investigated 604 sera from hunted pheasants and 152 sera from wild caught pheasants between 2011 to 2015, with the aim to determine the prevalence of specific antibodies against different viruses: Avian influenza virus (AIV) of subtypes H5, H7, H9, paramyxovirus type 1 (PMV-1), avian encephalomyelitis virus (AEV), infectious bursitis disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), avian metapneumovirus (aMPV) and Salmonella sp., Mycoplasma synoviae (MS) and Mycoplasma gallisepticum (MG). In addition, 178 caeca were investigated for Histomonas meleagridis. The study reveals an ongoing circulation of IBV in the wild pheasant population during the study. Also high seroprevalences of specific antibodies against aMPV depending on the area and a strong increase in prevalence of IBDV antibodies in sera of pheasants in Lower Saxony were detected. ILTV antibody prevalences differed between areas and AEV antibody detection differed between years significantly, whereas specific antibodies against PMV-1 could not be detected and antibodies against AIV-H5, -H7 and -H9 and Mycoplasma spp. were detected in very few cases.
Collapse
Affiliation(s)
- Friederike Gethöffer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nele Curland
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrich Voigt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Benno Woelfing
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tobias Ludwig
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ursula Heffels-Redmann
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig Universität Giessen, Giessen, Germany
| | | | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig Universität Giessen, Giessen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Replication and vaccine protection of multiple infectious bronchitis virus strains in pheasants (Phasianus colchicus). INFECTION GENETICS AND EVOLUTION 2021; 93:104980. [PMID: 34182190 DOI: 10.1016/j.meegid.2021.104980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
This study demonstrates that infectious bronchitis virus (IBV) strain M41, which is pathogenic for chickens, is nonpathogenic for pheasants. However, M41 replicated in the respiratory tracts of most inoculated pheasants and the virus was shed from their respiratory tracts in the early stages of infection (4 and 8 dpc). Similarly, the attenuated IBV H120 vaccine strain also replicated and the virus was shed from their respiratory tracts of most inoculated pheasants, whereas the pheasant coronavirus (PhCoV) I0623/17 replicated in the respiratory tracts of all challenged pheasants, which then shed virus for a long period of time. Strain M41 also replicated in selected tissues of the inoculated pheasants, including the lung, kidney, proventriculus, and cecal tonsil, although the viral titers were very low. Therefore, it was important to establish whether the H120 vaccine, which has a limited replication capacity in pheasants, induces a protective immune response to both "homologous" M41 and "heterologous" I0623/17 challenge. Vaccination with H120 induced humoral responses, and the replication of M41 was reduced or restricted in the tissues of the H120-vaccinated pheasants compared with its replication in unvaccinated birds. This implies that partial protection was conferred on pheasants by vaccination with the H120 vaccine. Prolonged viral replication and a large number of birds shedding virus into the respiratory tract were also observed in the unvaccinated pheasants after inoculation with M41. However, only limited protection against challenge with PhCoV I0623/17 was conferred on pheasants vaccinated with H120, largely because the replication of H120 in pheasants was limited, thus, limiting the immune responses induced by it. The low amino acid identity of the S1 subunit of the S proteins of H120 and I0623/17 might also account, at least in part, for the poor cross-protective immunity induced by H120. These results suggest that further work is required to rationally design vaccines that confer effective protection against PhCoV infection in commercial pheasant stocks.
Collapse
|
7
|
Zappulli V, Ferro S, Bonsembiante F, Brocca G, Calore A, Cavicchioli L, Centelleghe C, Corazzola G, De Vreese S, Gelain ME, Mazzariol S, Moccia V, Rensi N, Sammarco A, Torrigiani F, Verin R, Castagnaro M. Pathology of Coronavirus Infections: A Review of Lesions in Animals in the One-Health Perspective. Animals (Basel) 2020; 10:E2377. [PMID: 33322366 PMCID: PMC7764021 DOI: 10.3390/ani10122377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are worldwide distributed RNA-viruses affecting several species, including humans, and causing a broad spectrum of diseases. Historically, they have not been considered a severe threat to public health until two outbreaks of COVs-related atypical human pneumonia derived from animal hosts appeared in 2002 and in 2012. The concern related to CoVs infection dramatically rose after the COVID-19 global outbreak, for which a spill-over from wild animals is also most likely. In light of this CoV zoonotic risk, and their ability to adapt to new species and dramatically spread, it appears pivotal to understand the pathophysiology and mechanisms of tissue injury of known CoVs within the "One-Health" concept. This review specifically describes all CoVs diseases in animals, schematically representing the tissue damage and summarizing the major lesions in an attempt to compare and put them in relation, also with human infections. Some information on pathogenesis and genetic diversity is also included. Investigating the lesions and distribution of CoVs can be crucial to understand and monitor the evolution of these viruses as well as of other pathogens and to further deepen the pathogenesis and transmission of this disease to help public health preventive measures and therapies.
Collapse
Affiliation(s)
- Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, 35020 Padua, Italy
| | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Calore
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Giorgia Corazzola
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Steffen De Vreese
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Laboratory of Applied Bioacoustics, Technical University of Catalunya, BarcelonaTech, Vilanova i la Geltrù, 08800 Barcelona, Spain
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Nicolò Rensi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| |
Collapse
|
8
|
Abstract
This focus article has been prepared by David Welchman, veterinary lead of the APHA Avian Expert Group, and Anna Brzozowska of the APHA Surveillance Intelligence Unit.
Collapse
|
9
|
Han Z, Liwen X, Ren M, Sheng J, Ma T, Sun J, Zhao Y, Liu S. Genetic, antigenic and pathogenic characterization of avian coronaviruses isolated from pheasants (Phasianus colchicus) in China. Vet Microbiol 2019; 240:108513. [PMID: 31902509 PMCID: PMC7117390 DOI: 10.1016/j.vetmic.2019.108513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Two pheasant coronaviruses (PhCoVs) were isolated in 2017 in China. The two PhCoVs were genetically similar to IBV. Pathogenicity, replication, and shedding of PhCoV were obvious different when infected chickens and pheasants. PhCoVs isolated from different outbreaks may have evolved independently from IBVs by adaption in pheasants.
Two viruses were isolated in 2017 from commercial pheasants with severe clinical signs and mortality in Shandong and Anhui provinces, China, respectively. We examined the pathogenic effects of the viruses in chicken embryos and the size and morphology of the virus particles, performed phylogenetic analysis based on the S1 gene and complete genomic sequences, and examined the antibody responses against infectious bronchitis virus (IBV). The results suggested that the viruses I0623/17 and I0710/17 were avian coronaviruses and were identified as pheasant coronaviruses (PhCoV), with greatest similarity to IBV. Further investigations of the antigenicity, complete genome organization, substitutions in multiple genes, and viral pathogenicity, replication, and shedding in chickens and pheasants showed obvious differences between PhCoV and IBV in terms of antigenicity, and viral pathogenicity, replication, and shedding in chickens and pheasants. The close genetic relationship, but obvious differences between PhCoVs and IBVs suggested the IBVs could be the ancestors of PhCoVs, and that PhCoVs isolated from different outbreaks may have evolved independently from IBVs circulating in the specific region by adaption in pheasants. This hypothesis was supported by analysis of the S1 gene fragments of the two PhCoVs isolated in the current study, as well as PhCoVs isolated in the UK and selected IBV strains. Such analyses indicated different evolution patterns and different tissue tropisms between PhCoVs isolated in different outbreaks. Further studies are needed to confirm this hypothesis by studying the complete genomic sequences of PhCoVs from different outbreaks and the pathogenicity of IBVs in pheasants to compare and clarify the relationships between PhCoVs and IBVs.
Collapse
Affiliation(s)
- Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Xu Liwen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Mengting Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Jie Sheng
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Tianxin Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| |
Collapse
|
10
|
Madden JR, Hall A, Whiteside MA. Why do many pheasants released in the UK die, and how can we best reduce their natural mortality? EUR J WILDLIFE RES 2018; 64:40. [PMID: 32214945 PMCID: PMC7088407 DOI: 10.1007/s10344-018-1199-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 01/26/2023]
Abstract
Around 60% of pheasants released for shooting in the UK, an estimated 21 million birds, do not end up at their intended fate: being shot. This constitutes wastage, raising economic, environmental and ethical questions. We review what is known of the fates of released pheasants and consider why they do not directly contribute to the numbers harvested. We focus on four main explanations: predation, disease, starvation and dispersal, and highlight other important causes of mortality. For each explanation, we attempt to attribute levels of loss and identify timings or conditions when such losses may be heaviest. We review factors that exacerbate losses and methods available to mitigate them. Opportunities for amelioration may arise at all stages of the rearing and release of pheasants and involve changes to the conditions under which eggs are produced, the way young pheasants are reared or the management of the environment into which they are released. We found few studies investigating impacts of post-release management techniques on pheasant survival outside of the breeding season within a UK context. We found that a number of less commonly deployed practices focusing on early-life, pre-release management may improve survival. Given the scale of pheasant releasing in the UK, even improvements in survival of 1% would mean that ~ 350,000 fewer birds die of natural causes. Complementing current post-release management with proven novel pre-release management interventions could reduce the number of pheasants required for release, whilst maintaining current shooting levels. Lowering release numbers would lower financial costs, benefit the environment and reduce some ethical concerns over the release and shooting of reared pheasants.
Collapse
Affiliation(s)
- Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG UK
| | - Andrew Hall
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG UK
| |
Collapse
|
11
|
Curland N, Gethöffer F, van Neer A, Ziegler L, Heffels-Redmann U, Lierz M, Baumgärtner W, Wohlsein P, Völker I, Lapp S, Bello A, Pfankuche VM, Braune S, Runge M, Moss A, Rautenschlein S, Jung A, Teske L, Strube C, Schulz J, Bodewes R, Osterhaus ADME, Siebert U. Investigation into diseases in free-ranging ring-necked pheasants ( Phasianus colchicus) in northwestern Germany during population decline with special reference to infectious pathogens. EUR J WILDLIFE RES 2018; 64:12. [PMID: 32214944 PMCID: PMC7087779 DOI: 10.1007/s10344-018-1173-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/06/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Abstract
The population of ring-necked pheasants (Phasianus colchicus) is decreasing all over Germany since the years 2008/2009. Besides impacts of habitat changes caused by current rates of land conversion, climatic influences or predators, a contribution of infectious pathogens needs also to be considered. Infectious and non-infectious diseases in free-living populations of ring-necked pheasants have been scarcely investigated so far. In the present study, carcasses of 258 deceased free-ranging pheasants of different age groups, predominantly adult pheasants, collected over a period of 4 years in the states of Lower Saxony, North Rhine–Westphalia and Schleswig-Holstein, were examined pathomorphologically, parasitologically, virologically and bacteriologically, with a focus set on infectious pathogens. A periocular and perinasal dermatitis of unknown origin was present in 62.3% of the pheasants. Additional alterations included protozoal cysts in the skeletal musculature (19.0%), hepatitis (21.7%), enteritis (18.7%), gastritis (12.6%), and pneumonia (11.7%). In single cases, neoplasms (2.6%) and mycobacteriosis (1.7%) occurred. Further findings included identification of coronaviral DNA from trachea or caecal tonsils (16.8%), siadenoviral DNA (7.6%), avian metapneumoviral RNA (6.6%), and infectious bursal disease viral RNA (3.7%). Polymerase chain reaction (PCR) on herpesvirus, avian influenza virus (AIV), paramyxovirus type 1 (PMV-1), avian encephalomyelitis virus (AEV), and chlamydia were negative. Based on the present results, there is no indication of a specific pathogen as a sole cause for population decline in adult pheasants. However, an infectious disease can still not be completely excluded as it may only affect reproduction effectivity or a certain age group of pheasants (e.g., chicks) which were not presented in the study.
Collapse
Affiliation(s)
- N Curland
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - F Gethöffer
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - A van Neer
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - L Ziegler
- 2Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Strasse 91, 35321 Giessen, Germany
| | - U Heffels-Redmann
- 2Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Strasse 91, 35321 Giessen, Germany
| | - M Lierz
- 2Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Strasse 91, 35321 Giessen, Germany
| | - W Baumgärtner
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - P Wohlsein
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - I Völker
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - S Lapp
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - A Bello
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - V M Pfankuche
- 3Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - S Braune
- 4Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany
| | - M Runge
- 4Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173 Hannover, Germany
| | - A Moss
- 5Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Philosophenweg 38, 26121 Oldenburg, Germany
| | - S Rautenschlein
- 6Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - A Jung
- 6Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - L Teske
- 6Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - C Strube
- 7Institute for Parasitology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - J Schulz
- 8Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - R Bodewes
- Department of Viroscience, Erasmus MC, P.O. Box 2040, Ee1726, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- 10Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - U Siebert
- 1Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
12
|
DECLINE OF GAME BIRDS (PHASIANUS COLCHICUS AND PERDIX PERDIX) IN BAVARIA: A SURVEY ON PATHOGENIC BACTERIA, PARASITES, PESTICIDE RESIDUES, AND INFLUENCE OF SET-ASIDE LAND AND MAIZE CULTIVATION. J Zoo Wildl Med 2017; 48:18-30. [PMID: 28363041 DOI: 10.1638/2014-0126.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to a Europe-wide decline of grey partridge ( Perdix perdix ) and pheasant ( Phasianus colchicus ) populations, this study was conducted focusing on the county of Bavaria, south Germany. The aim was to assess the health status of game birds and identify possible causes of decline. For this purpose 203 pheasants and 11 partridges were examined during the 2011 hunting season. Pathologic examinations were conducted including examinations for parasites and bacteria. Due to public health significance, a screening for Salmonella sp., as well as real-time polymerase chain reaction examinations for Campylobacter sp. and Mycobacterium avium ssp. avium, were done. Because pesticides and land-usage can possibly influence bird numbers, the birds were screened for environmental toxin residues, including neonicotinoid insecticides, and land-usage data were correlated with the hunting bags. The result was a very-strong positive correlation of set-aside areas and a less-strong negative correlation of maize cultivation acreage. More than 90% of the birds had a good health status; only individuals showed pathologic alterations. For example, avian tuberculosis was found in two pheasants and a severe capillariosis in two partridges. A possible role of female reproductive disorders has to be confirmed in further investigations. In conclusion, results suggest the decrease of set-aside areas could be a possible reason for decline.
Collapse
|
13
|
Schock A, Garcia-Rueda C, Byas R, Nuñez A, Baigent S. Severe outbreak of Marek's disease in crested partridges (Rollulus rouloul). Vet Rec 2016; 179:443-444. [DOI: 10.1136/vr.i5768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alex Schock
- APHA Lasswade; Pentland Science Park Bush Lane Penicuik EH10 4AR
| | | | - Richard Byas
- Sandhill Veterinary Services; 14 Long Street Topcliffe YO7 3RW
| | | | | |
Collapse
|
14
|
Yu K, Deng S, Wang H, Zhang Y, Chen X, Wang K, Hu R, Lian Z, Li N. Small interfering RNA expression inhibits avian infectious bronchitis virus replication and inflammatory response. Antivir Ther 2016; 21:469-479. [PMID: 26835751 DOI: 10.3851/imp3027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/09/2022]
Abstract
BACKGROUND Avian infectious bronchitis virus (IBV) is a major cause of poor weight gain and mortality among chicks. METHODS A lentivirus vector was used to generate transgenic chickens expressing small interfering RNA (siRNA) targeting the M protein of IBV. Offspring of generation 0 (G0) were screened to identify G1 transgenic chickens (Tg). Monocytes from G1 Tg were stimulated with IBV in vitro. RESULTS Monocytes producing siRNA efficiently inhibit IBV replication. Expression of inflammatory cytokines, Mx protein and nitric oxide levels were lower in early IBV infection in Tg. In vivo experiments show that siRNA expression inhibits IBV replication, significantly decreases mortality and increases weight gain. Inflammatory responses and oxidative damage were significantly decreased, yielding minimal tissue injury. The inflammatory responses indicate that the cellular immune response is most effective during the initial stage, while the humoral immune response is more significant in later stages of infection. CONCLUSIONS Small interfering RNA expression inhibits avian IBV replication and inflammatory response.
Collapse
Affiliation(s)
- Kun Yu
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai Wang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Zhang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuehui Chen
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejun Wang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rui Hu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Li
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Matheson SM, Donbavand J, Sandilands V, Pennycott T, Turner SP. An ethological approach to determining housing requirements of gamebirds in raised laying units. Appl Anim Behav Sci 2015. [DOI: 10.1016/j.applanim.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Gethings OJ, Sage RB, Leather SR. Spatio-temporal factors influencing the occurrence of Syngamus trachea within release pens in the South West of England. Vet Parasitol 2014; 207:64-71. [PMID: 25497159 DOI: 10.1016/j.vetpar.2014.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 11/16/2022]
Abstract
Syngamus trachea is a pathogenic tracheal nematode that causes syngamiasis in wild and game birds, especially when birds are managed at high densities. Despite its pathogenic nature, very little is known about its epidemiology and relationship with ambient temperature and humidity. The spatial and temporal modelling of disease was undertaken on two pheasant estates within the South West of England from April 2014 to August 2014. Significant differences between the mean numbers of eggs per gram of soil were identified between pens at both site 1 and site 2 but did not differ significantly between sites. Egg abundance was significantly associated with soil moisture content, with greater egg survival between years in pens with higher average volumetric soil moisture content. Previous years stocking density and pen age were also associated with greater egg survival between years with more eggs being recovered in pens with greater stocking densities, and pens that had been sited longer. The greatest model to explain the variation in the numbers of eggs per gram of soil per pen was a combination of soil moisture content, stocking density and pen age. Larval recovery differed significantly between sites. Larval abundance was significantly and positively associated with temperature and relative humidity at site 1. Similarly, temperature and humidity were also positively and significantly associated with larval abundance at site 2. Rainfall did not influence larval recovery at either site 1 or site 2. The model with the greatest ability to explain larval abundance at both sites, was a combination of temperature, humidity and rainfall. Infection status (positive faecal egg counts) was significantly and positively associated with larval abundance at both sites, but rainfall was only positively associated at site 1. Temperature and humidity were positively associated with infection status at site 2, but not at site 1. The present study highlights the influence of climatic variables on both egg survival and larval abundance, and could therefore be used to develop more targeted treatment strategies around periods of higher disease risk. The frequent use of release pens is a clear factor in the epidemiology of syngamiasis, and it is recommended that pens be rested and/or rotated in order to reduce infection pressure in subsequent flocks.
Collapse
Affiliation(s)
- O J Gethings
- Department of Crop and Environment Sciences, Harper Adams University, Edgmond, Newport TF10 8NB, UK.
| | - R B Sage
- Game & Wildlife Conservation Trust, Burgate Manor, Fordingbridge SP6 1EF, UK
| | - S R Leather
- Department of Crop and Environment Sciences, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| |
Collapse
|
17
|
Cavanagh D. A nomenclature for avian coronavirus isolates and the question of species status. Avian Pathol 2012; 30:109-15. [PMID: 19184884 DOI: 10.1080/03079450120044506] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Currently, there is no agreed naming system for isolates of infectious bronchitis virus (IBV), whose host is the domestic fowl (Gallus gallus domesticus). A uniform, informative system for naming IBV isolates would be very helpful. Furthermore, the desirability of a single naming system has become more important with the recent discoveries that coronaviruses with genome organizations and gene sequences very similar to those of IBV have been isolated from turkeys (Meleagris gallopavo) and pheasants (Phasianus colchicus). To date, no genetic features have been found that are unique to turkey isolates and to pheasant isolates that would permit unequivocal differentiation from IBVs. Should the avian coronaviruses from turkeys, pheasants and other birds each be considered as distinct coronavirus species? Or should avian coronaviruses that have gene sequences similar to those of IBV be treated as host-range variants of IBV or, more objectively, as host-range variants of a species that might be called avian coronavirus (ACoV)? Clearly, the topic of avian coronavirus species differentiation requires debate. For the moment, a naming system for avian coronavirus isolates is overdue. Increasingly, papers will include data of coronaviruses isolated from more than one species of bird. It is desirable to have a nomenclature for avian coronaviruses that indicates the host species of origin. Furthermore, it would be helpful if the name of an isolate included the country/region of origin, an isolate number and the year of isolation. The names of avian paramyxovirus (APMV) and avian influenza virus (AIV) isolates have long since contained this information; I suggest that we adopt a similar convention for isolates of avian coronaviruses. For example, the D274 isolate of IBV could be named chicken/Netherlands/D274/78. Representatives of avian coronaviruses from turkey and pheasant would include turkey/United States(Nc)/NC95/95 and pheasant/UK/750/83. Two upper case letters would be used to denote country of isolation, whereas one upper and one lower case letter would be used to indicate state or province, e.g. Nc, North Carolina. The full-length names could be abbreviated, when desired, similar to the convention used for AIV isolates, e.g. chNL78, tyUS(Nc)95 and phUK83. If the serotype of an isolate has been clearly established, this might be included in the name at end, like the serotype designation of AIVs, e.g. chicken/China/NRZ/91 (Mass.) for the Chinese isolate of the Massachusetts serotype. This suggested naming system for isolates is essentially neutral with regard to whether viruses from different bird species should be considered as different coronavirus species or simply as variants of just one avian coronavirus species. In my opinion an informative nomenclature for avian coronavirus isolates is required now, to improve communication, and need not be delayed until a decision on the definition of coronavirus species has been made.
Collapse
Affiliation(s)
- D Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| |
Collapse
|
18
|
Forrester CA, Bradbury JM, Dare CM, Domangue RJ, Windsor H, Tasker JB, Mockett APA. Mycoplasma gallisepticumin pheasants and the efficacy of tylvalosin to treat the disease. Avian Pathol 2011; 40:581-6. [DOI: 10.1080/03079457.2011.618822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Deeming DC, Hodges HR, Cooper JJ. Effect of sight barriers in pens of breeding ring-necked pheasants (Phasianus colchicus): I. Behaviour and welfare. Br Poult Sci 2011; 52:403-14. [PMID: 21919567 DOI: 10.1080/00071668.2011.590796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The study investigated the effects of providing sight barriers in breeding pens on pheasant mortality, feather damage and behaviour. 2. Data were collected from 11 conventional pens (control) and 11 pens with additional sight barriers (barrier) over the course of a ten week breeding season. Each pen contained 8 males and 56 females at the beginning of the season. 3. There was a higher rate of mortality in males (6 x 25%) than females (2 x 11%) that was unaffected by treatment. 4. Feather damage increased over the breeding season and both male and female pheasants showed better feather condition in the pens with barriers at the end of the season. 5. The pheasants spent most of their time walking or standing. Providing barriers increased perching, but reduced preening. 6. The provision of sight barriers had no effect on the incidence of courtship and mating, but did reduce aggressive interactions such as pecking and chasing. 7. The study provides baseline data on the behaviour of breeding pheasants under these husbandry conditions, and suggests that barriers may improve pheasant welfare by reducing potentially harmful aggressive interactions, without affecting activity patterns or reproductive behaviour.
Collapse
Affiliation(s)
- D C Deeming
- Department of Biological Sciences, University of Lincoln, Lincoln, UK.
| | | | | |
Collapse
|
20
|
Gomaa MH, Yoo D, Ojkic D, Barta JR. Infection with a pathogenic turkey coronavirus isolate negatively affects growth performance and intestinal morphology of young turkey poults in Canada. Avian Pathol 2010; 38:279-86. [PMID: 19937512 DOI: 10.1080/03079450903055389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Turkey coronavirus (TCoV) is an important viral pathogen causing diarrhoea of young turkey poults that is associated with sizeable economic losses for the turkey industry. Using a field isolate that was found to be free from turkey astrovirus and avian reovirus we were able to reproduce the clinical disease associated with TCoV. Clinical signs and weight gain of poults during experimental infections were compared with age-matched, uninfected controls. Poults infected at 2 days of age had 100% morbidity and 10% mortality, and birds infected at 28 days of age showed 75% morbidity and no mortality. Diarrhoea was consistently seen in infected poults at 2 to 3 days post infection (d.p.i.) with a duration of about 3 to 5 days. Mean body weights of birds infected at 2 or 28 days of age were significantly reduced compared with uninfected birds by 7 d.p.i. and remained significantly lower for the duration of the study. At 44 days of age, poults infected at 2 or 28 days of age weighed only 68.1% or 77.7%, respectively, compared with uninfected turkeys of the same age on the same diet, a mean difference in body weights of 683 or 477g, respectively. Infected birds had profound villus atrophy with some compensatory crypt hyperplasia at 5 to 7 d.p.i. Villus heights in the duodenum were significantly reduced at 7 d.p.i. We were able to reproduce enteric disease using only a pathogenic field isolate (MG10) of TCoV that negatively affected growth performance and intestinal morphology of young turkey poults.
Collapse
Affiliation(s)
- M H Gomaa
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh, Egypt
| | | | | | | |
Collapse
|
21
|
Gomaa MH, Yoo D, Ojkic D, Barta JR. Virus shedding and serum antibody responses during experimental turkey coronavirus infections in young turkey poults. Avian Pathol 2009; 38:181-6. [PMID: 19322719 DOI: 10.1080/03079450902751863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The course of turkey coronavirus (TCoV) infection in young turkey poults was examined using a field isolate (TCoV-MG10) from a diarrhoeal disease outbreak on a commercial turkey farm in Ontario, Canada. Two-day-old and 28-day-old poults were inoculated orally with TCoV-MG10 to examine the effect of age on viral shedding and serum antibody responses to the virus. The presence of coronavirus particles measuring 105.8+/-21.8 nm in the cloacal contents was confirmed using transmission electron microscopy. The pattern of cloacal TCoV shedding was examined by reverse-transcription polymerase chain reaction amplification of the nucleocapsid gene fragment. TCoV serum antibody responses were assessed with two recently developed TCoV enzyme-linked immunosorbent assays that used TCoV nucleocapsid and S1 polypeptides as coating antigens. Poults were found equally susceptible to TCoV infection at 2 days of age and at 4 weeks of age, and turkeys of either age shed virus in their faeces starting as early as 1 day post-inoculation and up to 17 days post-inoculation. Poults infected at 2 days of age were immunologically protected against subsequent challenge at 20 days post-inoculation. The protection was associated with measurable serum antibody responses to both the nucleocapsid and S1 structural proteins of TCoV that were detectable as early as 1 week post-infection.
Collapse
Affiliation(s)
- M H Gomaa
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Circella E, Camarda A, Martella V, Bruni G, Lavazza A, Buonavoglia C. Coronavirus associated with an enteric syndrome on a quail farm. Avian Pathol 2007; 36:251-8. [PMID: 17497340 DOI: 10.1080/03079450701344738] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An enteric syndrome was observed in quail (Coturnix coturnix) semi-intensively reared for restocking in Apulia (southern Italy). The birds showed depression, severe diarrhoea, dehydration and reduced growth. Mortality occurred particularly in young birds. At necropsy the prominent lesion was enteritis. A coronavirus was detected by electron microscopy and reverse transcriptase-polymerase chain reaction in the faeces and in the intestinal content of the dead quails. The virus could not be cultivated in chicken embryos. By sequence analyses of a fragment (409 nucleotides) of region 1b of the polymerase gene, the quail coronavirus displayed <or=93% nucleotide identity to avian coronaviruses (group 3 coronaviruses)--whereas by analysis of the S1 portion of the spike protein-encoding gene, the quail coronavirus displayed 16% to 18% amino acid identity with infectious bronchitis virus, and 79% to 81% identity with turkey coronavirus. Altogether, the findings suggest the existence of a novel coronavirus genetically related to turkey coronavirus.
Collapse
Affiliation(s)
- Elena Circella
- Dipartimento di Sanità e Benessere degli Animali, Università degli Studi di Bari, S.P. Casamassima Km 3, Facoltà di Medicina Veterinaria, Valenzano, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for the emergence of new coronavirus diseases in domestic birds, from both avian and mammalian sources. Modest sequence conservation within gene 1 has enabled the design of oligonucleotide primers for use in diagnostic reverse transcriptase-polymerase chain reactions, which will be useful for the detection of new coronaviruses.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK.
| |
Collapse
|
24
|
Welchman DDB, Bradbury JM, Cavanagh D, Aebischer NJ. Infectious agents associated with respiratory disease in pheasants. Vet Rec 2002; 150:658-64. [PMID: 12054135 DOI: 10.1136/vr.150.21.658] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In a case-control study of the infectious agents associated with natural outbreaks of respiratory disease in pheasants, 28 batches of birds from sites affected by disease and eight batches of birds from unaffected sites were examined by six veterinary laboratories in England, Wales and Scotland, and tested for mycoplasmas, other bacteria and viruses. Sinusitis was the commonest sign of disease and was associated with Mycoplasma gallisepticum as detected by PCR in the trachea (P < 0.05) and conjunctiva (P < 0.01). Sinusitis was also associated with pasteurella cultured from the sinus (P < 0.05), antibody to avian pneumovirus (APV) (P < 0.01) and avian coronaviruses as detected by reverse-transcriptase PCR (P < 0.05); there was no association between disease and APV as detected by PCR. Avian coronaviruses were the most common infectious agents detected. They were genetically close to infectious bronchitis virus (IBV) but differed in their gene sequence from all the serotypes of IBV previously identified in domestic fowl, and serological tests with six known IBV types showed little cross reactivity. Mycoplasma species other than M gallisepticum were cultured in 18 batches of pheasants but, with the exception of Mycoplasma gallinaceum, were not associated with disease.
Collapse
Affiliation(s)
- D de B Welchman
- Veterinary Laboratories Agency, Itchen Abbas, Winchester, Hampshire
| | | | | | | |
Collapse
|
25
|
Deeming DC, Wadland D. Influence of mating sex ratio in commercial pheasant flocks on bird health and the production, fertility, and hatchability of eggs. Br Poult Sci 2002; 43:16-23. [PMID: 12003332 DOI: 10.1080/00071660120109836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The effects of two mating ratios (8:1 and 12:1 females:males) on bird health, egg production and quality, fertility (employing macroscopic and microscopic techniques) and hatchability were examined for pheasants (Phasianus colchinus) on a commercial game farm, to provide a baseline data set for production of pheasants under specific conditions. 2. Mating ratio did not significantly affect mortality or pathology of breeding birds. 3. Egg production was significantly higher for the 8:1 mating ratio over the first 5 weeks of the trial but this difference disappeared during the second half of the trial. 4. Incidence of rejected eggs increased as the season progressed, mainly due to poor shell quality, but it was not significantly affected by mating ratio. 5. Fertility of eggs produced from birds under an 8:1 mating ratio was consistently and significantly 4% higher than fertility of eggs from the 12:1 mating ratio. The incidence of eggs showing no sign of mating (no sperm) was twice as high for the 12:1 pens (13.7% of the sample). There was good agreement between macroscopic and microscopic examination of fertility in eggs. Higher fertility in the 8:1 pens appeared to be related to a higher proportion of the females being recruited and mated. 6. Hatchability was significantly improved by adopting an 8:1 mating ratio, presumably due to the higher fertility of the eggs. Candling of the eggs improved hatchability but only for the 12:1 pens probably because more clear eggs were removed from the tray.
Collapse
Affiliation(s)
- D C Deeming
- Hatchery Consulting & Research, Welton, Lincoln, England, UK.
| | | |
Collapse
|
26
|
Cavanagh D, Mawditt K, Welchman DDB, Britton P, Gough RE. Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol 2002; 31:81-93. [PMID: 12425795 DOI: 10.1080/03079450120106651] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reverse-transcriptase polymerase chain reactions (RT-PCRs) were used to examine RNA extracted from mouth/nasal swabs from pheasants exhibiting signs of respiratory disease. The oligonucleotides used were based on sequences of infectious bronchitis virus (IBV), the coronavirus of domestic fowl. A RT-PCR for the highly conserved region II of the 3' untranslated region of the IBV genome detected a coronavirus in swabs from 18/21 estates. Sequence identity with the corresponding region of IBVs and coronaviruses from turkeys was > 95%. A RT-PCR for part of the S1 region of the spike protein gene was positive with 13/21 of the samples. Sequence analysis of the RT-PCR products derived from nine of the pheasant viruses revealed that some of the viruses differed from each other by approximately 24%, similar to the degree of difference exhibited by different serotypes of IBV. Further analysis of the genome of one of the viruses revealed that it contained genes 3 and 5 that are typical of IBV but absent in both the transmissible gastroenteritis virus and murine hepatitis virus groups of mammalian coronaviruses. The nucleotide sequences of genes 3 and 5 of the pheasant virus had a similar degree of identity (approximately 90%) with those of coronaviruses from turkeys and chickens, as is observed when different serotypes of IBV are compared. This work: (a) confirms that coronaviruses are present in pheasants (indeed, commonly present in pheasants with respiratory disease); (b) demonstrates that their genomes are IBV-like in their organization; and (c) shows that there is sequence heterogeneity within the group of pheasant coronaviruses, especially within the spike protein gene. Furthermore, the gene sequences of the pheasant viruses differed from those of IBV to similar extents as the sequence of one serotype of IBV differs from another. On the genetic evidence to date, there is a remarkably high degree of genetic similarity between the coronaviruses of chickens, turkeys and pheasants.
Collapse
Affiliation(s)
- D Cavanagh
- Institute for Animal Health, Compton Laboratory, Newbury, RG20 7NN, UK.
| | | | | | | | | |
Collapse
|