1
|
Scudese E, Marshall AG, Vue Z, Exil V, Rodriguez BI, Demirci M, Vang L, López EG, Neikirk K, Shao B, Le H, Stephens D, Hall DD, Rostami R, Rodman T, Kabugi K, Shao JQ, Mungai M, AshShareef ST, Hicsasmaz I, Manus S, Wanjalla CN, Whiteside A, Dasari R, Williams CR, Damo SM, Gaddy JA, Glancy B, Dantas EHM, Kinder A, Kadam A, Tomar D, Scartoni F, Baffi M, McReynolds MR, Phillips MA, Cooper A, Murray SA, Quintana AM, Wandira N, Ochayi OM, Ameka M, Kirabo A, Masenga SK, Harris C, Oliver A, Martin P, Gaye A, Korolkova O, Sharma V, Mobley BC, Katti P, Hinton A. 3D Mitochondrial Structure in Aging Human Skeletal Muscle: Insights Into MFN-2-Mediated Changes. Aging Cell 2025:e70054. [PMID: 40285369 DOI: 10.1111/acel.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/29/2025] Open
Abstract
Age-related skeletal muscle atrophy, known as sarcopenia, is characterized by loss of muscle mass, strength, endurance, and oxidative capacity. Although exercise has been shown to mitigate sarcopenia, the underlying governing mechanisms are poorly understood. Mitochondrial dysfunction is implicated in aging and sarcopenia; however, few studies explore how mitochondrial structure contributes to this dysfunction. In this study, we sought to understand how aging impacts mitochondrial three-dimensional (3D) structure and its regulators in skeletal muscle. We hypothesized that aging leads to remodeling of mitochondrial 3D architecture permissive to dysfunction and is ameliorated by exercise. Using serial block-face scanning electron microscopy (SBF-SEM) and Amira software, mitochondrial 3D reconstructions from patient biopsies were generated and analyzed. Across five human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria are less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved, as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
Collapse
Affiliation(s)
- Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Benjamin I Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Edgar Garza López
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Duane D Hall
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Celestine N Wanjalla
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Revathi Dasari
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, AP, India
| | - Clintoria R Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
| | - Jennifer A Gaddy
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- NIAMS, NIH, Bethesda, MD, USA
| | - Estélio Henrique Martin Dantas
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Doctor's Degree Program in Nursing and Biosciences - PpgEnfBio, Federal University of the State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
- Laboratory of Human Motricity Biosciences - LABIMH, Federal University of the State of Rio de Janeiro - UNIRIO, RJ, Brazil
- Brazilian Paralympic Academy - APB, Brazil
- Doctor's Degree Program in Health and Environment - PSA, Tiradentes University - UNIT, Aracaju, SE, Brazil
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Fabiana Scartoni
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Matheus Baffi
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nelson Wandira
- Institute of Health Sciences Busoga University, Iganga, Uganda
| | - Okwute M Ochayi
- Department of Human Physiology, Baze University, Abuja, Nigeria
| | - Magdalene Ameka
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sepiso K Masenga
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Chanel Harris
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Pamela Martin
- Department of Biomedical Sciences, Meharry Medical College, Nashville, US
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, Meharry Medical College, Nashville, TN, USA
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Vineeta Sharma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Prasanna Katti
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, AP, India
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Garcia-Roves PM, Alvarez-Luis J, Cutanda-Tesouro S. The role of skeletal muscle respiratory capacity in exercise performance. Free Radic Biol Med 2025; 229:474-484. [PMID: 39755219 DOI: 10.1016/j.freeradbiomed.2024.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/16/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
The connection between the respiratory capacity of skeletal muscle mitochondria and athletic performance is widely acknowledged in contemporary research. Building on a solid foundation of prior studies, current research has fostered an environment where scientists can effectively demonstrate how a tailored regimen of exercise intensity, duration, and frequency significantly boosts mitochondrial function within skeletal muscles. The range of exercise modalities is broad, spanning from endurance and high-intensity interval training to resistance-based exercises, allowing for an in-depth exploration of effective strategies to enhance mitochondrial respiratory capacity-a key factor in improving exercise performance, in other words offering a better skeletal muscle capacity to cope with exercise demands. By identifying optimal training strategies, individuals can significantly improve their performance, leading to better outcomes in their fitness and athletic endeavours. This review provides the prevailing insights on skeletal muscle mitochondrial respiratory capacity and its role in exercise performance, covering essential instrumental and methodological aspects, findings from animal studies, potential sex differences, a review of existing human studies, and considerations for future research directions.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain; Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut D'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Jorge Alvarez-Luis
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain
| | | |
Collapse
|
3
|
Acheson J, Joanisse S, Sale C, Hodson N. Recycle, repair, recover: the role of autophagy in modulating skeletal muscle repair and post-exercise recovery. Biosci Rep 2025; 45:1-30. [PMID: 39670455 DOI: 10.1042/bsr20240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The mechanisms that underpin this remodeling are believed to be a combination of cellular processes including ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell proliferation/differentiation. A relatively understudied system that has the potential to be a significant contributing mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new organelles and cellular structures. This review summarizes our current understanding of the autophagolysosomal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models of how this system may interact with other processes involved in skeletal muscle remodeling and provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.
Collapse
Affiliation(s)
- Jordan Acheson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Sophie Joanisse
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Nathan Hodson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Li X, Zhao X, Qin Z, Li J, Sun B, Liu L. Regulation of calcium homeostasis in endoplasmic reticulum-mitochondria crosstalk: implications for skeletal muscle atrophy. Cell Commun Signal 2025; 23:17. [PMID: 39789595 PMCID: PMC11721261 DOI: 10.1186/s12964-024-02014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction. The sarcoendoplasmic reticulum calcium ATPase (SERCA) pump plays a key role in recapturing calcium, enabling the muscle to return to a relaxed state. A pivotal aspect of calcium homeostasis involves the dynamic interaction between mitochondria and the ER. This interaction includes local calcium signaling facilitated by RYRs and a "quasi-synaptic" mechanism formed by the IP3R-Grp75-VDAC/MCU axis, allowing rapid calcium uptake by mitochondria with minimal interference at the cytoplasmic level. Disruption of calcium transport can lead to mitochondrial calcium overload, triggering the opening of the mitochondrial permeability transition pore and subsequent release of reactive oxygen species and cytochrome C, ultimately resulting in muscle damage and atrophy. This review explores the complex relationship between the ER and mitochondria and how these organelles regulate calcium levels in skeletal muscle, aiming to provide valuable perspectives for future research on the pathogenesis of muscle diseases and the development of prevention strategies.
Collapse
Affiliation(s)
- Xuexin Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xin Zhao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zhengshan Qin
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jie Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Bowen Sun
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
5
|
Ye X, Liu R, Qiao Z, Chai X, Wang Y. Integrative profiling of metabolome and transcriptome of skeletal muscle after acute exercise intervention in mice. Front Physiol 2023; 14:1273342. [PMID: 37869715 PMCID: PMC10587468 DOI: 10.3389/fphys.2023.1273342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
This study aims to explore the molecular regulatory mechanisms of acute exercise in the skeletal muscle of mice. Male C57BL/6 mice were randomly assigned to the control group, and the exercise group, which were sacrificed immediately after an acute bout of exercise. The study was conducted to investigate the metabolic and transcriptional profiling in the quadriceps muscles of mice. The results demonstrated the identification of 34 differentially expressed metabolites (DEMs), with 28 upregulated and 6 downregulated, between the two groups. Metabolic pathway analysis revealed that these DEMs were primarily enriched in several, including the citrate cycle, propanoate metabolism, and lysine degradation pathways. In addition, the results showed a total of 245 differentially expressed genes (DEGs), with 155 genes upregulated and 90 genes downregulated. KEGG analysis indicated that these DEGs were mainly enriched in various pathways such as ubiquitin mediated proteolysis and FoxO signaling pathway. Furthermore, the analysis revealed significant enrichment of DEMs and DEGs in signaling pathways such as protein digestion and absorption, ferroptosis signaling pathway. In summary, the identified multiple metabolic pathways and signaling pathways were involved in the exercise-induced physiological regulation of skeletal muscle, such as the TCA cycle, oxidative phosphorylation, protein digestion and absorption, the FoxO signaling pathway, ubiquitin mediated proteolysis, ferroptosis signaling pathway, and the upregulation of KLF-15, FoxO1, MAFbx, and MuRF1 expression could play a critical role in enhancing skeletal muscle proteolysis.
Collapse
Affiliation(s)
- Xing Ye
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China
| | - Renyi Liu
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaocui Chai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Hody S, Warren BE, Votion DM, Rogister B, Lemieux H. Eccentric Exercise Causes Specific Adjustment in Pyruvate Oxidation by Mitochondria. Med Sci Sports Exerc 2022; 54:1300-1308. [PMID: 35320143 DOI: 10.1249/mss.0000000000002920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The impact of eccentric exercise on mitochondrial function has only been poorly investigated and remains unclear. This study aimed to identify the changes in skeletal muscle mitochondrial respiration, specifically triggered by a single bout of eccentric treadmill exercise. METHODS Male adult mice were randomly divided into eccentric (ECC; downhill running), concentric (CON; uphill running), and unexercised control groups ( n = 5/group). Running groups performed 18 bouts of 5 min at 20 cm·s -1 on an inclined treadmill (±15° to 20°). Mice were sacrificed 48 h after exercise for blood and quadriceps muscles collection. Deep proximal (red) and superficial distal (white) muscle portions were used for high-resolution respirometric measurements. RESULTS Plasma creatine kinase activity was significantly higher in the ECC compared with CON group, reflecting exercise-induced muscle damage ( P < 0.01). The ECC exercise induced a significant decrease in oxidative phosphorylation capacity in both quadriceps femoris parts ( P = 0.032 in proximal portion, P = 0.010 in distal portion) in comparison with the CON group. This observation was only made for the nicotinamide adenine dinucleotide (NADH) pathway using pyruvate + malate as substrates. When expressed as a flux control ratio, indicating a change related to mitochondrial quality rather than quantity, this change seemed more prominent in distal compared with proximal portion of quadriceps muscle. No significant difference between groups was found for the NADH pathway with glutamate or glutamate + malate as substrates, for the succinate pathway or for fatty acid oxidation. CONCLUSIONS Our data suggest that ECC exercise specifically affects pyruvate mitochondrial transport and/or oxidation 48 h after exercise, and this alteration mainly concerns the distal white muscle portion. This study provides new perspectives to improve our understanding of the mitochondrial adaptation associated with ECC exercise.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liège, BELGIUM
| | - Blair E Warren
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, CANADA
| | - Dominique-Marie Votion
- Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, BELGIUM
| | | | | |
Collapse
|
7
|
Hyatt JK. MOTS-c increases in skeletal muscle following long-term physical activity and improves acute exercise performance after a single dose. Physiol Rep 2022; 10:e15377. [PMID: 35808870 PMCID: PMC9270643 DOI: 10.14814/phy2.15377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle adapts to aerobic exercise training, in part, through fast-to-slow phenotypic shifts and an expansion of mitochondrial networks. Recent research suggests that the local and systemic benefits of exercise training also may be modulated by the mitochondrial-derived peptide, MOTS-c. Using a combination of acute and chronic exercise challenges, the goal of the present study was to characterize the interrelationship between MOTS-c and exercise. Compared to sedentary controls, 4-8 weeks of voluntary running increased MOTS-c protein expression ~1.5-5-fold in rodent plantaris, medial gastrocnemius, and tibialis anterior muscles and is sustained for 4-6 weeks of detraining. This MOTS-c increase coincides with elevations in mtDNA reflecting an expansion of the mitochondrial genome to aerobic training. In a second experiment, a single dose (15 mg/kg) of MOTS-c administered to untrained mice improved total running time (12% increase) and distance (15% increase) during an acute exercise test. In a final experiment, MOTS-c protein translocated from the cytoplasm into the nucleus in two of six mouse soleus muscles 1 h following a 90-min downhill running challenge; no nuclear translocation was observed in the plantaris muscles from the same animals. These findings indicate that MOTS-c protein accumulates within trained skeletal muscle likely through a concomitant increase in mtDNA. Furthermore, these data suggest that the systemic benefits of exercise are, in part, mediated by an expansion of the skeletal muscle-derived MOTS-c protein pool. The benefits of training may persist into a period of inactivity (e.g., detraining) resulting from a sustained increase in intramuscular MOTS-c proteins levels.
Collapse
|
8
|
Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training. Sci Rep 2021; 11:23930. [PMID: 34907264 PMCID: PMC8671437 DOI: 10.1038/s41598-021-03393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.
Collapse
|
9
|
Marques-Aleixo I, Beleza J, Sampaio A, Stevanović J, Coxito P, Gonçalves I, Ascensão A, Magalhães J. Preventive and Therapeutic Potential of Physical Exercise in Neurodegenerative Diseases. Antioxid Redox Signal 2021; 34:674-693. [PMID: 32159378 DOI: 10.1089/ars.2020.8075] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: The prevalence and incidence of age-related neurodegenerative diseases (NDDs) tend to increase along with the enhanced average of the world life expectancy. NDDs are a major cause of morbidity and disability, affecting the health care, social and economic systems with a significant impact. Critical Issues and Recent Advances: Despite the worldwide burden of NDDs and the ongoing research efforts to increase the underlying molecular mechanisms involved in NDD pathophysiologies, pharmacological therapies have been presenting merely narrow benefits. On the contrary, absent of detrimental side effects but growing merits, regular physical exercise (PE) has been considered a prone pleiotropic nonpharmacological alternative able to modulate brain structure and function, thereby stimulating a healthier and "fitness" neurological phenotype. Future Directions: This review summarizes the state of the art of some peripheral and central-related mechanisms that underlie the impact of PE on brain plasticity as well as its relevance for the prevention and/or treatment of NDDs. Nevertheless, further studies are needed to better clarify the molecular signaling pathways associated with muscle contractions-related myokines release and its plausible positive effects in the brain. In addition, particular focus of research should address the role of PE in the modulation of mitochondrial metabolism and oxidative stress in the context of NDDs.
Collapse
Affiliation(s)
- Inês Marques-Aleixo
- Faculty of Psychology, Education and Sports, Lusofona University of Porto, Porto, Portugal.,Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Jorge Beleza
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Arnaldina Sampaio
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Jelena Stevanović
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | | | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Center in Physical Activity Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADEUP), Porto, Portugal
| |
Collapse
|
10
|
Qualls AE, Southern WM, Call JA. Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review. Am J Physiol Cell Physiol 2021; 320:C681-C688. [PMID: 33566726 DOI: 10.1152/ajpcell.00462.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle mitochondria are highly adaptable, highly dynamic organelles that maintain the functional integrity of the muscle fiber by providing ATP for contraction and cellular homeostasis (e.g., Na+/K+ ATPase). Emerging as early modulators of inflammation, mitochondria sense and respond to cellular stress. Mitochondria communicate with the environment, in part, by release of physical signals called mitochondrial-derived damage-associated molecular patterns (mito-DAMPs) and deviation from routine function (e.g., reduced ATP production, Ca2+ overload). When skeletal muscle is compromised, mitochondria contribute to an acute inflammatory response necessary for myofibril regeneration; however, exhaustive signaling associated with altered or reduced mitochondrial function can be detrimental to muscle outcomes. Here, we describe changes in mitochondrial content, structure, and function following skeletal muscle injury and disuse and highlight the influence of mitochondria-cytokine crosstalk on muscle regeneration and recovery. Although the appropriate therapeutic modulation following muscle stressors remains unknown, retrospective gene expression analysis reveals that interleukin-6 (IL-6), interleukin-1β (IL-1β), chemokine C-X-C motif ligand 1 (CXCL1), and monocyte chemoattractant protein 1 (MCP-1) are significantly upregulated following three unique muscle injuries. These cytokines modulate mitochondrial function and execute bona fide pleiotropic roles that can aid functional recovery of muscle, however, when aberrant, chronically disrupt healing partly by exacerbating mitochondrial dysfunction. Multidisciplinary efforts to delineate the opposing regulatory roles of inflammatory cytokines in the muscle mitochondrial environment are required to modulate regenerative behavior following skeletal muscle injury or disuse. Future therapeutic directions to consider include quenching or limited release of mito-DAMPs and cytokines present in cytosol or circulation.
Collapse
Affiliation(s)
- Anita E Qualls
- Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - W Michael Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
11
|
Touron J, Costes F, Coudeyre E, Perrault H, Richard R. Aerobic Metabolic Adaptations in Endurance Eccentric Exercise and Training: From Whole Body to Mitochondria. Front Physiol 2021; 11:596351. [PMID: 33584331 PMCID: PMC7873519 DOI: 10.3389/fphys.2020.596351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
A characteristic feature of eccentric as compared with concentric exercise is the ability to generate greater mechanical loads for lower cardiopulmonary demands. Current evidence concurs to show that eccentric training translates into considerable gains in muscle mass and strength. Less is known, however, regarding its impact on oxygen transport and on factors to be considered for optimizing its prescription and monitoring. This article reviews the existing evidence for endurance eccentric exercise effects on the components of the oxygen transport system from systemic to mitochondria in both humans and animals. In the studies reviewed, specially designed cycle-ergometers or downhill treadmill running were used to generate eccentric contractions. Observations to date indicate that overall, the aerobic demand associated with the eccentric training load was too low to significantly increase peak maximal oxygen consumption. By extension, it can be inferred that the very high eccentric power output that would have been required to solicit a metabolic demand sufficient to enhance peak aerobic power could not be tolerated or sustained by participants. The impact of endurance eccentric training on peripheral flow distribution remains largely undocumented. Given the high damage susceptibility of eccentric exercise, the extent to which skeletal muscle oxygen utilization adaptations would be seen depends on the balance of adverse and positive signals on mitochondrial integrity. The article examines the protection provided by repeated bouts of acute eccentric exercise and reports on the impact of eccentric cycling and downhill running training programs on markers of mitochondrial function and of mitochondrial biogenesis using mostly from animal studies. The summary of findings does not reveal an impact of training on skeletal muscle mitochondrial respiration nor on selected mitochondrial messenger RNA transcripts. The implications of observations to date are discussed within future perspectives for advancing research on endurance eccentric exercise physiological impacts and using a combined eccentric and concentric exercise approach to optimize functional capacity.
Collapse
Affiliation(s)
- Julianne Touron
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Costes
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Emmanuel Coudeyre
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine Physique et de Réadaptation, CHU Gabriel Montpied/CHU Louise Michel, Clermont-Ferrand, France
| | - Hélène Perrault
- Respiratory Division, McGill University Health Center, Montreal, QC, Canada
| | - Ruddy Richard
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
- Unité d’Exploration en Nutrition (UEN), CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
12
|
Miller VJ, LaFountain RA, Barnhart E, Sapper TS, Short J, Arnold WD, Hyde PN, Crabtree CD, Kackley ML, Kraemer WJ, Villamena FA, Volek JS. A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. Am J Physiol Endocrinol Metab 2020; 319:E995-E1007. [PMID: 32985255 DOI: 10.1152/ajpendo.00305.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Animal data indicate that ketogenic diets are associated with improved mitochondrial function, but human data are lacking. We aimed to characterize skeletal muscle mitochondrial changes in response to a ketogenic diet combined with exercise training in healthy individuals. Twenty-nine physically active adults completed a 12-wk supervised exercise program after self-selection into a ketogenic diet (KD, n = 15) group or maintenance of their habitual mixed diet (MD, n = 14). Measures of metabolic health and muscle biopsies (vastus lateralis) were obtained before and after the intervention. Mitochondria were isolated from muscle and studied after exposure to carbohydrate (pyruvate), fat (palmitoyl-l-carnitine), and ketone (β-hydroxybutyrate+acetoacetate) substrates. Compared with MD, the KD resulted in increased whole body resting fat oxidation (P < 0.001) and decreased fasting insulin (P = 0.019), insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), P = 0.022], and visceral fat (P < 0.001). The KD altered mitochondrial function as evidenced by increases in mitochondrial respiratory control ratio (19%, P = 0.009), ATP production (36%, P = 0.028), and ATP/H2O2 (36%, P = 0.033) with the fat-based substrate. ATP production with the ketone-based substrate was four to eight times lower than with other substrates, indicating minimal oxidation. The KD resulted in a small decrease in muscle glycogen (14%, P = 0.035) and an increase in muscle triglyceride (81%, P = 0.006). These results expand our understanding of human adaptation to a ketogenic diet combined with exercise. In conjunction with weight loss, we observed altered skeletal muscle mitochondrial function and efficiency, an effect that may contribute to the therapeutic use of ketogenic diets in various clinical conditions, especially those associated with insulin resistance.
Collapse
Affiliation(s)
- Vincent J Miller
- OSU Interdisciplinary PhD Program in Nutrition, Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | | | - Emily Barnhart
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Teryn S Sapper
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Jay Short
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - W David Arnold
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Parker N Hyde
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | | | - Madison L Kackley
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio
| | - Jeff S Volek
- OSU Interdisciplinary PhD Program in Nutrition, Department of Human Sciences, The Ohio State University, Columbus, Ohio
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Barreto RV, de Lima LCR, Denadai BS. Moving forward with backward pedaling: a review on eccentric cycling. Eur J Appl Physiol 2020; 121:381-407. [PMID: 33180156 DOI: 10.1007/s00421-020-04548-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE There is a profound gap in the understanding of the eccentric cycling intensity continuum, which prevents accurate exercise prescription based on desired physiological responses. This may underestimate the applicability of eccentric cycling for different training purposes. Thus, we aimed to summarize recent research findings and screen for possible new approaches in the prescription and investigation of eccentric cycling. METHOD A search for the most relevant and state-of-the-art literature on eccentric cycling was conducted on the PubMed database. Literature from reference lists was also included when relevant. RESULTS Transversal studies present comparisons between physiological responses to eccentric and concentric cycling, performed at the same absolute power output or metabolic load. Longitudinal studies evaluate responses to eccentric cycling training by comparing them with concentric cycling and resistance training outcomes. Only one study investigated maximal eccentric cycling capacity and there are no investigations on physiological thresholds and/or exercise intensity domains during eccentric cycling. No study investigated different protocols of eccentric cycling training and the chronic effects of different load configurations. CONCLUSION Describing physiological responses to eccentric cycling based on its maximal exercise capacity may be a better way to understand it. The available evidence indicates that clinical populations may benefit from improvements in aerobic power/capacity, exercise tolerance, strength and muscle mass, while healthy and trained individuals may require different eccentric cycling training approaches to benefit from similar improvements. There is limited evidence regarding the mechanisms of acute physiological and chronic adaptive responses to eccentric cycling.
Collapse
Affiliation(s)
- Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil
| | | | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
14
|
Saovieng S, Wu J, Huang CY, Kao CL, Higgins MF, Chuanchaiyakul R, Kuo CH. Deep Ocean Minerals Minimize Eccentric Exercise-Induced Inflammatory Response of Rat Skeletal Muscle. Front Physiol 2018; 9:1351. [PMID: 30323766 PMCID: PMC6172318 DOI: 10.3389/fphys.2018.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Background: We have previously shown an accelerated recovery from muscle fatigue in men challenged by prolonged exercise after oral deep ocean minerals (DOM) supplementation. Here, we hypothesized a decrease in eccentric exercise-induced muscle inflammation in rats regularly consuming DOM-containing drinks (hardness 600 mg/L and fructose 11%). Methods: Forty-seven male Sprague Dawley rats were randomized into 4 groups: Control (C, N = 12), Fructose (F, N = 12), Fructose+Exercise (FE, N = 12), and Fructose+Exercise+DOM (FED, N = 11). Since fructose is a commonly used ingredient in beverages, 11% of fructose was added as a vehicle of the study. Soleus muscles of rats were analyzed 24 h after an acute bout of downhill running following 9 weeks of DOM supplementation. Results: Leukocyte infiltration and TNF-α mRNA of muscle in the FE group were 5 times and 4 times greater the F group, respectively, (P < 0.05). Both markers in the FED group were significantly lower than those in the FE group (P < 0.05). IL-10 mRNA of muscle in the F group was >eight fold greater than the C group (P < 0.05). The reduced glutathione (GSH) of muscle in the F group was 34% lower than that in the C group (P < 0.05). However, GSH levels were similar for the C and FED groups. Conclusion: Prolonged fructose supplementation modulates inflammatory balance of rat skeletal muscle. The results of the study suggest that DOM can minimize eccentric exercise-induced inflammatory cytokine responses in rat skeletal muscle.
Collapse
Affiliation(s)
- Suchada Saovieng
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jinfu Wu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chung-Lan Kao
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Matthew F Higgins
- Department of Life Sciences, University of Derby, Derby, United Kingdom
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Rizo-Roca D, Ríos-Kristjánsson JG, Núñez-Espinosa C, Santos-Alves E, Magalhães J, Ascensão A, Pagès T, Viscor G, Torrella JR. Modulation of mitochondrial biomarkers by intermittent hypobaric hypoxia and aerobic exercise after eccentric exercise in trained rats. Appl Physiol Nutr Metab 2017; 42:683-693. [PMID: 28177702 DOI: 10.1139/apnm-2016-0526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unaccustomed eccentric contractions induce muscle damage, calcium homeostasis disruption, and mitochondrial alterations. Since exercise and hypoxia are known to modulate mitochondrial function, we aimed to analyze the effects on eccentric exercise-induced muscle damage (EEIMD) in trained rats using 2 recovery protocols based on: (i) intermittent hypobaric hypoxia (IHH) and (ii) IHH followed by exercise. The expression of biomarkers related to mitochondrial biogenesis, dynamics, oxidative stress, and bioenergetics was evaluated. Soleus muscles were excised before (CTRL) and 1, 3, 7, and 14 days after an EEIMD protocol. The following treatments were applied 1 day after the EEIMD: passive normobaric recovery (PNR), 4 h daily exposure to passive IHH at 4000 m (PHR) or IHH exposure followed by aerobic exercise (AHR). Citrate synthase activity was reduced at 7 and 14 days after application of the EEIMD protocol. However, this reduction was attenuated in AHR rats at day 14. PGC-1α and Sirt3 and TOM20 levels had decreased after 1 and 3 days, but the AHR group exhibited increased expression of these proteins, as well as of Tfam, by the end of the protocol. Mfn2 greatly reduced during the first 72 h, but returned to basal levels passively. At day 14, AHR rats had higher levels of Mfn2, OPA1, and Drp1 than PNR animals. Both groups exposed to IHH showed a lower p66shc(ser36)/p66shc ratio than PNR animals, as well as higher complex IV subunit I and ANT levels. These results suggest that IHH positively modulates key mitochondrial aspects after EEIMD, especially when combined with aerobic exercise.
Collapse
Affiliation(s)
- David Rizo-Roca
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Juan Gabriel Ríos-Kristjánsson
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Cristian Núñez-Espinosa
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain.,b School of Medicine, University of Magallanes, Punta Arenas, Chile 621-0427
| | - Estela Santos-Alves
- c Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal 4200-450
| | - José Magalhães
- c Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal 4200-450
| | - António Ascensão
- c Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal 4200-450
| | - Teresa Pagès
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Ginés Viscor
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Joan Ramon Torrella
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| |
Collapse
|
16
|
Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning. Med Hypotheses 2016; 98:21-27. [PMID: 28012598 DOI: 10.1016/j.mehy.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/27/2023]
Abstract
Eccentric exercise training is effective for increasing muscle mass and strength, and improving insulin sensitivity and blood lipid profiles. However, potential muscle damage symptoms such as prolonged loss of muscle function and delayed onset of muscle soreness may restrict the use of eccentric exercise, especially in clinical populations. Therefore, strategies to reduce eccentric exercise-induced muscle damage (EIMD) are necessary, and an extensive number of scientific studies have tried to identify potential intervention modalities to perform eccentric exercises without adverse effects. The present paper is based on a narrative review of current literature, and provides a novel hypothesis by which an ischemic preconditioning (IPC) of the extremities may reduce EIMD. IPC consists of an intermittent application of short-time non-lethal ischemia to an extremity (e.g. using a tourniquet) followed by reperfusion and was discovered in clinical settings in an attempt to minimize inflammatory responses induced by ischemia and ischemia-reperfusion-injury (I/R-Injury) during surgery. The present hypothesis is based on morphological and biochemical similarities in the pathophysiology of skeletal muscle damage during clinical surgery and EIMD. Even though the primary origin of stress differs between I/R-Injury and EIMD, subsequent cellular alterations characterized by an intracellular accumulation of Ca2+, an increased production of reactive oxygen species or increased apoptotic signaling are essential elements for both. Moreover, the incipient immune response appears to be similar in I/R-Injury and EIMD, which is indicated by an infiltration of leukocytes into the damaged soft-tissue. Thus far, IPC is considered as a potential intervention strategy in the area of cardiovascular or orthopedic surgery and provides significant impact on soft-tissue protection and downregulation of undesired excessive inflammation induced by I/R-Injury. Based on the known major impact of IPC on skeletal muscle physiology and immunology, the present paper aims to illustrate the potential protective effects of IPC on EIMD by discussing possible underlying mechanisms.
Collapse
|
17
|
Tranholm M, Kristensen AT, Broberg ML, Groth MP. Novel, high incidence exercise-induced muscle bleeding model in hemophilia B mice: rationale, development and prophylactic intervention. J Thromb Haemost 2015; 13:82-91. [PMID: 25370152 PMCID: PMC4309488 DOI: 10.1111/jth.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Muscle hematomas are the second most common complication of hemophilia and insufficient treatment may result in serious and even life-threatening complications. Hemophilic dogs and rats do experience spontaneous muscle bleeding, but currently, no experimental animal model is available specifically investigating spontaneous muscle bleeds in a hemophilic setting. AIM The objective of this study was to develop a model of spontaneous muscle bleeds in hemophilia B mice. We hypothesized that treadmill exercise would induce muscle bleeds in hemophilia B mice but not in normal non-hemophilic mice and that treatment with recombinant factor IX (rFIX) before treadmill exercise could prevent the occurrence of pathology. METHODS A total of 203 mice (123 F9-KO and 80 C57BL/6NTac) were included in three separate studies: (i) the model implementation study investigating the bleeding pattern in hemophilia B mice after treadmill exercise; (ii) a study evaluating the pharmacokinetics of recombinant FIX (rFIX) in hemophilia B mice and based on these data; (iii) the treatment study, which tested therapeutic intervention with rFIX. At termination of the treadmill studies the presence of bleeds was evaluated. RESULTS Treadmill exercise resulted in a high incidence of muscle bleeds in F9-KO mice but not in C57BL/6NTac mice. Treating hemophilia B mice with rFIX before treadmill exercise prevented muscle bleeds. CONCLUSION A novel model of muscle bleeds in hemophilia B mice, responsive to rFIX, has been developed.
Collapse
Affiliation(s)
| | - A T Kristensen
- Department of Veterinary Clinical and Animal Sciences, University of CopenhagenFrederiksberg, Denmark
| | | | - M P Groth
- Novo Nordisk A/SMåløv, Denmark
- Department of Veterinary Clinical and Animal Sciences, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
18
|
Faster $$\dot{V}{\text{O}}_{ 2}$$ V ˙ O 2 kinetics after eccentric contractions is explained by better matching of O2 delivery to O2 utilization. Eur J Appl Physiol 2014; 114:2169-81. [DOI: 10.1007/s00421-014-2937-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
19
|
Lomonosova YN, Shenkman BS, Kalamkarov GR, Kostrominova TY, Nemirovskaya TL. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats. PLoS One 2014; 9:e94448. [PMID: 24736629 PMCID: PMC3988069 DOI: 10.1371/journal.pone.0094448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/16/2014] [Indexed: 11/19/2022] Open
Abstract
Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.
Collapse
Affiliation(s)
| | | | | | - Tatiana Y. Kostrominova
- Department of Anatomy and Cell Biology, Indiana University School of Medicine-Northwest, Gary, Indiana, United States of America
| | - Tatyana L. Nemirovskaya
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Bio-Medical Problems, RAS, Moscow, Russia
| |
Collapse
|