1
|
Ely IA, Phillips BE, Smith K, Wilkinson DJ, Piasecki M, Breen L, Larsen MS, Atherton PJ. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin Nutr 2023; 42:1849-1865. [PMID: 37625315 DOI: 10.1016/j.clnu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (∼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing ∼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK.
| |
Collapse
|
2
|
Abdulla H, Phillips B, Wilkinson D, Gates A, Limb M, Jandova T, Bass J, Lewis J, Williams J, Smith K, Idris I, Atherton P. Effects of GLP-1 Infusion Upon Whole-body Glucose Uptake and Skeletal Muscle Perfusion During Fed-state in Older Men. J Clin Endocrinol Metab 2023; 108:971-978. [PMID: 36260533 PMCID: PMC9999358 DOI: 10.1210/clinem/dgac613] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Ageing skeletal muscles become both insulin resistant and atrophic. The hormone glucagon-like peptide 1 (GLP-1) facilitates postprandial glucose uptake as well as augmenting muscle perfusion, independent of insulin action. We thus hypothesized exogenous GLP-1 infusions would enhance muscle perfusion and positively affect glucose metabolism during fed-state clamps in older people. METHODS Eight men (71 ± 1 years) were studied in a randomized crossover trial. Basal blood samples were taken before postprandial (fed-state) insulin and glucose clamps, accompanied by amino acid infusions, for 3 hours. Reflecting this, following insertions of peripheral and femoral vessels cannulae and baseline measurements, peripheral IV infusions of octreotide, insulin (Actrapid), 20% glucose, and mixed amino acids; Vamin 14-EF with or without a femoral arterial GLP-1 infusion were started. GLP-1, insulin, and C-peptide were measured by ELISA. Muscle microvascular blood flow was assessed via contrast enhanced ultrasound. Whole-body glucose handling was assayed by assessing glucose infusion rate parameters. RESULTS Skeletal muscle microvascular blood flow significantly increased in response to GLP-1 vs feeding alone (5.0 ± 2.1 vs 1.9 ± 0.7 fold-change from basal, respectively; P = 0.008), while also increasing whole-body glucose uptake (area under the curve 16.9 ± 1.7 vs 11.4 ± 1.8 mg/kg-1/180 minutes-1, P = 0.02 ± GLP, respectively). CONCLUSIONS The beneficial effects of GLP-1 on whole-body glycemic control are evident with insulin clamped at fed-state levels. GLP-1 further enhances the effects of insulin on whole-body glucose uptake in older men, underlining its role as a therapeutic target. The effects of GLP-1 in enhancing microvascular flow likely also affects other glucose-regulatory organs, reflected by greater whole-body glucose uptake.
Collapse
Affiliation(s)
- Haitham Abdulla
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
- Diabetes and Endocrinology Centre, University Hospitals Birmingham NHS Foundation Trust, Heartlands Hospitals, Birmingham B9 5SS, UK
| | - Bethan Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
- NIHR, Nottingham BRC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Daniel Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
- NIHR, Nottingham BRC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Amanda Gates
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Marie Limb
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Tereza Jandova
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague 6, Czech Republic
| | - Joseph Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Johnathan Lewis
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - John Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre of Metabolism, Ageing and Physiology (COMAP), Academic Unit of Injury, Recovery and Inflammation Sciences (IRIS), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
- NIHR, Nottingham BRC, University of Nottingham, Nottingham NG7 2UH, UK
- Department of Anaesthesia, University Hospitals Derby and Burton NHS Foundation Trust, Derby DE22 3NE, UK
| | | | | | - Philip Atherton
- Correspondence: Philip J. Atherton, PhD, University of Nottingham School of Medicine, Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
3
|
Simpson EJ, Mendis B, Dunlop M, Schroeter H, Kwik-Uribe C, Macdonald IA. Cocoa Flavanol Supplementation and the Effect on Insulin Resistance in Females Who Are Overweight or Obese: A Randomized, Placebo-Controlled Trial. Nutrients 2023; 15:565. [PMID: 36771271 PMCID: PMC9921219 DOI: 10.3390/nu15030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
There is interest in the impact that dietary interventions can have on preventing the transition from insulin resistance to type 2 diabetes, including a suggestion that the bioactive components of cocoa may enhance fasting insulin sensitivity. However, a role for cocoa flavanols (CF) in reducing insulin resistance in the insulin-stimulated state, an important risk factor for cardiovascular disease, is unresolved. This study investigated whether CF consumption improved whole-body insulin-mediated glucose uptake ('M') in females with overweight/obesity, using a randomized, double-blinded, placebo-controlled, parallel-group design. Thirty-two premenopausal females (19-49 years; 27-35 kg·m-2) with elevated HOMA-IR (HOMA-IR >1.5) supplemented their habitual diet with two servings/day of a high-flavanol cocoa drink (HFC; 609 mg CF/serving; n = 16) or low-flavanol cocoa drink (LFC; 13 mg CF/serving; n = 16) for 4 weeks. Assessment of HOMA-IR and 'M' during a 3-h, 60 mIU insulin·m-2·min-1 euglycemic clamp was performed before and after the intervention. Data are the mean (SD). Changes to HOMA-IR (HFC -0.003 (0.57); LFC -0.0402 (0.86)) and 'M' (HFC 0.99 (7.62); LFC -1.32 (4.88) µmol·kg-1·min-1) after the intervention were not different between groups. Four weeks' consumption of ~1.2 g CF/day did not improve indices of fasting insulin sensitivity or insulin-mediated glucose uptake. A recommendation for dietary supplementation with cocoa flavanols to improve glycemic control is therefore not established.
Collapse
Affiliation(s)
- Elizabeth J. Simpson
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- National Institute for Health and Care Research (NIHR), Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Buddhike Mendis
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- National Institute for Health and Care Research (NIHR), Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Mandy Dunlop
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- National Institute for Health and Care Research (NIHR), Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hagen Schroeter
- Department of Nutrition, University of California, One Shields Avenue, 3150E Meyer Hall, Davis, CA 95616, USA
| | | | - Ian A. Macdonald
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- National Institute for Health and Care Research (NIHR), Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
4
|
Din USU, Sian TS, Deane CS, Smith K, Gates A, Lund JN, Williams JP, Rueda R, Pereira SL, Atherton PJ, Phillips BE. Green Tea Extract Concurrent with an Oral Nutritional Supplement Acutely Enhances Muscle Microvascular Blood Flow without Altering Leg Glucose Uptake in Healthy Older Adults. Nutrients 2021; 13:nu13113895. [PMID: 34836149 PMCID: PMC8619110 DOI: 10.3390/nu13113895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Postprandial macro- and microvascular blood flow and metabolic dysfunction manifest with advancing age, so vascular transmuting interventions are desirable. In this randomised, single-blind, placebo-controlled, crossover trial, we investigated the impact of the acute administration of green tea extract (GTE; containing ~500 mg epigallocatechin-3-gallate) versus placebo (CON), alongside an oral nutritional supplement (ONS), on muscle macro- and microvascular, cerebral macrovascular (via ultrasound) and leg glucose/insulin metabolic responses (via arterialised/venous blood samples) in twelve healthy older adults (42% male, 74 ± 1 y). GTE increased m. vastus lateralis microvascular blood volume (MBV) at 180 and 240 min after ONS (baseline: 1.0 vs. 180 min: 1.11 ± 0.02 vs. 240 min: 1.08 ± 0.04, both p < 0.005), with MBV significantly higher than CON at 180 min (p < 0.05). Neither the ONS nor the GTE impacted m. tibialis anterior perfusion (p > 0.05). Leg blood flow and vascular conductance increased, and vascular resistance decreased similarly in both conditions (p < 0.05). Small non-significant increases in brachial artery flow-mediated dilation were observed in the GTE only and middle cerebral artery blood flow did not change in response to GTE or CON (p > 0.05). Glucose uptake increased with the GTE only (0 min: 0.03 ± 0.01 vs. 35 min: 0.11 ± 0.02 mmol/min/leg, p = 0.007); however, glucose area under the curve and insulin kinetics were similar between conditions (p > 0.05). Acute GTE supplementation enhances MBV beyond the effects of an oral mixed meal, but this improved perfusion does not translate to increased leg muscle glucose uptake in healthy older adults.
Collapse
Affiliation(s)
- Ushnah S. U. Din
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Tanvir S. Sian
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Colleen S. Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Amanda Gates
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Jonathan N. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - John P. Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ricardo Rueda
- Research and Development, Abbott Nutrition, 18004 Granada, Spain;
| | | | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| |
Collapse
|
5
|
Herrod PJJ, Atherton PJ, Smith K, Williams JP, Lund JN, Phillips BE. Six weeks of high-intensity interval training enhances contractile activity induced vascular reactivity and skeletal muscle perfusion in older adults. GeroScience 2021; 43:2667-2678. [PMID: 34562202 PMCID: PMC8602610 DOI: 10.1007/s11357-021-00463-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/18/2021] [Indexed: 11/28/2022] Open
Abstract
Impairments in muscle microvascular function are associated with the pathogenesis of sarcopenia and cardiovascular disease. High-intensity interval training (HIIT) is an intervention by which a myriad of beneficial skeletal muscle/cardiovascular adaptations have been reported across age, including capillarisation and improved endothelial function. Herein, we hypothesised that HIIT would enhance muscle microvascular blood flow and vascular reactivity to acute contractile activity in older adults, reflecting HIIT-induced vascular remodelling. In a randomised controlled-trial, twenty-five healthy older adults aged 65–85 years (mean BMI 27.0) were randomised to 6-week HIIT or a no-intervention control period of an equal duration. Measures of microvascular responses to a single bout of muscle contractions (i.e. knee extensions) were made in the m. vastus lateralis using contrast-enhanced ultrasound during a continuous intravenous infusion of Sonovue™ contrast agent, before and after the intervention period, with concomitant assessments of cardiorespiratory fitness and resting blood pressure. HIIT led to improvements in anaerobic threshold (13.2 ± 3.4 vs. 15.3 ± 3.8 ml/kg/min, P < 0.001), dynamic exercise capacity (145 ± 60 vs. 159 ± 59 W, P < 0.001) and resting (systolic) blood pressure (142 ± 15 vs. 133 ± 11 mmHg, P < 0.01). Notably, HIIT elicited significant increases in microvascular blood flow responses to acute contractile activity (1.8 ± 0.63 vs. 2.3 ± 0.8 (arbitrary contrast units (AU), P < 0.01)), with no change in any of these parameters observed in the control group. Six weeks HIIT improves skeletal muscle microvascular responsiveness to acute contractile activity in the form of active hyperaemia-induced by a single bout of resistance exercise. These findings likely reflect reports of enhanced large vessel distensibility, improved endothelial function, and muscle capillarisation following HIIT. Moreover, our findings illustrate that HIIT may be effective in mitigating deleterious alterations in muscle microvascular mediated aspects of sarcopenia.
Collapse
Affiliation(s)
- Philip J J Herrod
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK.,NIHR Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.,Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - Philip J Atherton
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK.,NIHR Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - Kenneth Smith
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK.,NIHR Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John P Williams
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK.,NIHR Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.,Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - Jonathan N Lund
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK.,NIHR Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.,Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - Bethan E Phillips
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK. .,NIHR Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
6
|
Sian TS, Din USU, Deane CS, Smith K, Gates A, Lund JN, Williams JP, Rueda R, Pereira SL, Phillips BE, Atherton PJ. Cocoa Flavanols Adjuvant to an Oral Nutritional Supplement Acutely Enhances Nutritive Flow in Skeletal Muscle without Altering Leg Glucose Uptake Kinetics in Older Adults. Nutrients 2021; 13:nu13051646. [PMID: 34068170 PMCID: PMC8152976 DOI: 10.3390/nu13051646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Ageing is associated with postprandial muscle vascular and metabolic dysfunction, suggesting vascular modifying interventions may be of benefit. Reflecting this, we investigated the impact of acute cocoa flavanol (450-500 mg) intake (versus placebo control) on vascular (via ultrasound) and glucose/insulin metabolic responses (via arterialised/venous blood samples and ELISA) to an oral nutritional supplement (ONS) in twelve healthy older adults (50% male, 72 ± 4 years), in a crossover design study. The cocoa condition displayed significant increases in m. vastus lateralis microvascular blood volume (MBV) in response to feeding at 180 and 240-min after ONS consumption (baseline: 1.00 vs. 180 min: 1.09 ± 0.03, p = 0.05; 240 min: 1.13 ± 0.04, p = 0.002), with MBV at these timepoints significantly higher than in the control condition (p < 0.05). In addition, there was a trend (p = 0.058) for MBV in m. tibialis anterior to increase in response to ONS in the cocoa condition only. Leg blood flow and vascular conductance increased, and vascular resistance decreased in response to ONS (p < 0.05), but these responses were not different between conditions (p > 0.05). Similarly, glucose uptake and insulin increased in response to ONS (p < 0.05) comparably between conditions (p > 0.05). Thus, acute cocoa flavanol supplementation can potentiate oral feeding-induced increases in MBV in older adults, but this improvement does not relay to muscle glucose uptake.
Collapse
Affiliation(s)
- Tanvir S Sian
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ushnah S. U. Din
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Colleen S. Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Amanda Gates
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Jonathan N. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - John P. Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ricardo Rueda
- Research and Development, Abbott Nutrition, 18004 Granada, Spain;
| | | | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (B.E.P.); (P.J.A.)
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (T.S.S.); (U.S.U.D.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (B.E.P.); (P.J.A.)
| |
Collapse
|
7
|
Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD + and SIRT1. Sci Rep 2020; 10:20184. [PMID: 33214614 PMCID: PMC7678835 DOI: 10.1038/s41598-020-76564-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.
Collapse
|
8
|
Dietary protein, exercise, ageing and physical inactivity: interactive influences on skeletal muscle proteostasis. Proc Nutr Soc 2020; 80:106-117. [PMID: 33023679 DOI: 10.1017/s0029665120007879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary protein is a pre-requisite for the maintenance of skeletal muscle mass; stimulating increases in muscle protein synthesis (MPS), via essential amino acids (EAA), and attenuating muscle protein breakdown, via insulin. Muscles are receptive to the anabolic effects of dietary protein, and in particular the EAA leucine, for only a short period (i.e. about 2-3 h) in the rested state. Thereafter, MPS exhibits tachyphylaxis despite continued EAA availability and sustained mechanistic target of rapamycin complex 1 signalling. Other notable characteristics of this 'muscle full' phenomenon include: (i) it cannot be overcome by proximal intake of additional nutrient signals/substrates regulating MPS; meaning a refractory period exists before a next stimulation is possible, (ii) it is refractory to pharmacological/nutraceutical enhancement of muscle blood flow and thus is not induced by muscle hypo-perfusion, (iii) it manifests independently of whether protein intake occurs in a bolus or intermittent feeding pattern, and (iv) it does not appear to be dependent on protein dose per se. Instead, the main factor associated with altering muscle full is physical activity. For instance, when coupled to protein intake, resistance exercise delays the muscle full set-point to permit additional use of available EAA for MPS to promote muscle remodelling/growth. In contrast, ageing is associated with blunted MPS responses to protein/exercise (anabolic resistance), while physical inactivity (e.g. immobilisation) induces a premature muscle full, promoting muscle atrophy. It is crucial that in catabolic scenarios, anabolic strategies are sought to mitigate muscle decline. This review highlights regulatory protein turnover interactions by dietary protein, exercise, ageing and physical inactivity.
Collapse
|
9
|
The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020; 12:nu12082434. [PMID: 32823615 PMCID: PMC7468851 DOI: 10.3390/nu12082434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Fish protein represents one of the most widely consumed dietary protein sources by humans. The processing of material from the fishing industry generates substantial unexploited waste products, many of which possess high biological value. Protein hydrolysates, such as fish protein hydrolysates (FPH), containing predominantly di- and tripeptides, are more readily absorbed than free amino acids and intact protein. Furthermore, in animal models, FPH have been shown to possess numerous beneficial properties for cardiovascular, neurological, intestinal, renal, and immune health. Ageing is associated with the loss of skeletal muscle mass and function, as well as increased oxidative stress, compromised vascularisation, neurological derangements, and immunosenescence. Thus, there appears to be a potential application for FPH in older persons as a high-quality protein source that may also confer additional health benefits. Despite this, there remains a dearth of information concerning the impact of FPH on health outcomes in humans. The limited evidence from human interventional trials suggests that FPH may hold promise for supporting optimal body composition and maintaining gut integrity. FPH also provide a high-quality source of dietary protein without negatively impacting on subjective appetite perceptions or regulatory hormones. Further studies are needed to assess the impact and utility of FPH on skeletal muscle health in older persons, ideally comparing FPH to ‘established’ protein sources or a non-bioactive, nitrogen-matched control. In particular, the effects of acute and chronic FPH consumption on post-exercise aminoacidaemia, skeletal muscle protein synthesis, and intramyocellular anabolic signalling in older adults are worthy of investigation. FPH may represent beneficial and sustainable alternative sources of high-quality protein to support skeletal muscle health and anabolism in ageing, without compromising appetite and subsequent energy intake.
Collapse
|
10
|
Wilkinson DJ, Rodriguez-Blanco G, Dunn WB, Phillips BE, Williams JP, Greenhaff PL, Smith K, Gallagher IJ, Atherton PJ. Untargeted metabolomics for uncovering biological markers of human skeletal muscle ageing. Aging (Albany NY) 2020; 12:12517-12533. [PMID: 32580166 PMCID: PMC7377844 DOI: 10.18632/aging.103513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Ageing compromises skeletal muscle mass and function through poorly defined molecular aetiology. Here we have used untargeted metabolomics using UHPLC-MS to profile muscle tissue from young (n=10, 25±4y), middle aged (n=18, 50±4y) and older (n=18, 70±3y) men and women (50:50). Random Forest was used to prioritise metabolite features most informative in stratifying older age, with potential biological context examined using the prize-collecting Steiner forest algorithm embedded in the PIUMet software, to identify metabolic pathways likely perturbed in ageing. This approach was able to filter a large dataset of several thousand metabolites down to subnetworks of age important metabolites. Identified networks included the common age-associated metabolites such as androgens, (poly)amines/amino acids and lipid metabolites, in addition to some potentially novel ageing related markers such as dihydrothymine and imidazolone-5-proprionic acid. The present study reveals that this approach is a potentially useful tool to identify processes underlying human tissue ageing, and could therefore be utilised in future studies to investigate the links between age predictive metabolites and common biomarkers linked to health and disease across age.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Giovanny Rodriguez-Blanco
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK.,Beatson Institute for Cancer Research, Glasgow, UK
| | - Warwick B Dunn
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - John P Williams
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Iain J Gallagher
- University of Stirling, Faculty of Health Sciences and Sport, Stirling, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
11
|
Marshall RN, Smeuninx B, Morgan PT, Breen L. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients. Nutrients 2020; 12:nu12051533. [PMID: 32466126 PMCID: PMC7284346 DOI: 10.3390/nu12051533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Preserving skeletal muscle mass and functional capacity is essential for healthy ageing. Transient periods of disuse and/or inactivity in combination with sub-optimal dietary intake have been shown to accelerate the age-related loss of muscle mass and strength, predisposing to disability and metabolic disease. Mechanisms underlying disuse and/or inactivity-related muscle deterioration in the older adults, whilst multifaceted, ultimately manifest in an imbalance between rates of muscle protein synthesis and breakdown, resulting in net muscle loss. To date, the most potent intervention to mitigate disuse-induced muscle deterioration is mechanical loading in the form of resistance exercise. However, the feasibility of older individuals performing resistance exercise during disuse and inactivity has been questioned, particularly as illness and injury may affect adherence and safety, as well as accessibility to appropriate equipment and physical therapists. Therefore, optimising nutritional intake during disuse events, through the introduction of protein-rich whole-foods, isolated proteins and nutrient compounds with purported pro-anabolic and anti-catabolic properties could offset impairments in muscle protein turnover and, ultimately, the degree of muscle atrophy and recovery upon re-ambulation. The current review therefore aims to provide an overview of nutritional countermeasures to disuse atrophy and anabolic resistance in older individuals.
Collapse
Affiliation(s)
- Ryan N. Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-414-4109
| |
Collapse
|
12
|
Dvoretskiy S, Lieblein-Boff JC, Jonnalagadda S, Atherton PJ, Phillips BE, Pereira SL. Exploring the Association between Vascular Dysfunction and Skeletal Muscle Mass, Strength and Function in Healthy Adults: A Systematic Review. Nutrients 2020; 12:E715. [PMID: 32156061 PMCID: PMC7146456 DOI: 10.3390/nu12030715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023] Open
Abstract
Background: The prevalence of vascular dysfunction increases with advancing age, as does the loss of muscle mass, strength and function. This systematic review explores the association between vascular dysfunction and skeletal muscle health in healthy adults. Methods: EMBASE and MEDLINE were searched for cross-sectional and randomized controlled studies between January 2009 and April 2019, with 33 out of 1246 studies included based on predefined criteria. Assessments of muscular health included muscle mass, strength and function. Macrovascular function assessment included arterial stiffness (pulse wave velocity or augmentation index), carotid intima-media thickness, and flow-mediated dilation. Microvascular health assessment included capillary density or microvascular flow (contrast enhanced ultrasound). Results: All 33 studies demonstrated a significant association between vascular function and skeletal muscle health. Significant negative associations were reported between vascular dysfunction and -muscle strength (10 studies); -mass (9 studies); and -function (5 studies). Nine studies reported positive correlations between muscle mass and microvascular health. Conclusions: Multiple studies have revealed an association between vascular status and skeletal muscle health in healthy adults. This review points to the importance of screening for muscle health in adults with vascular dysfunction with a view to initiating early nutrition and exercise interventions to ameliorate functional decline over time.
Collapse
Affiliation(s)
- Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois, Urbana-Champaign, IL 61801, USA;
- Abbott Nutrition, Columbus, OH 43219, USA; (J.C.L.-B.); (S.J.)
| | | | | | - Philip J. Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.A.); (B.E.P.)
| | - Bethan E. Phillips
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.A.); (B.E.P.)
| | | |
Collapse
|
13
|
The Postprandial Appearance of Features of Cardiometabolic Risk: Acute Induction and Prevention by Nutrients and Other Dietary Substances. Nutrients 2019; 11:nu11091963. [PMID: 31438565 PMCID: PMC6770341 DOI: 10.3390/nu11091963] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to provide an overview of diets, food, and food components that affect postprandial inflammation, endothelial function, and oxidative stress, which are related to cardiometabolic risk. A high-energy meal, rich in saturated fat and sugars, induces the transient appearance of a series of metabolic, signaling and physiological dysregulations or dysfunctions, including oxidative stress, low-grade inflammation, and endothelial dysfunction, which are directly related to the amplitude of postprandial plasma triglycerides and glucose. Low-grade inflammation and endothelial dysfunction are also known to cluster together with insulin resistance, a third risk factor for cardiovascular diseases (CVD) and type-II diabetes, thus making a considerable contribution to cardiometabolic risk. Because of the marked relevance of the postprandial model to nutritional pathophysiology, many studies have investigated whether adding various nutrients and other substances to such a challenge meal might mitigate the onset of these adverse effects. Some foods (e.g., nuts, berries, and citrus), nutrients (e.g., l-arginine), and other substances (various polyphenols) have been widely studied. Reports of favorable effects in the postprandial state have concerned plasma markers for systemic or vascular pro-inflammatory conditions, the activation of inflammatory pathways in plasma monocytes, vascular endothelial function (mostly assessed using physiological criteria), and postprandial oxidative stress. Although the literature is fragmented, this topic warrants further study using multiple endpoints and markers to investigate whether the interesting candidates identified might prevent or limit the postprandial appearance of critical features of cardiometabolic risk.
Collapse
|
14
|
Crossland H, Pereira SL, Smith K, Phillips BE, Atherton PJ. Gene-based analysis of angiogenesis, mitochondrial and insulin-related pathways in skeletal muscle of older individuals following nutraceutical supplementation. J Funct Foods 2019; 56:216-223. [PMID: 31217823 PMCID: PMC6559337 DOI: 10.1016/j.jff.2019.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cocoa flavanols and fish oil omega-3 fatty acids are two bio-active nutrients that may improve muscle microvascular function, insulin sensitivity and mitochondrial function in older adults. We assessed changes in gene expression of these pathways in muscle from two nutritional intervention studies in older healthy volunteers: (i) 6-weeks daily fish oil supplementation in older females (3.4 g/d; age: 64.4 ± 0.8 y, BMI: 26.2 ± 0.7 kg/m2), and (ii) 7-day daily cocoa flavanol supplementation in older males (1050 mg/d; age: 70.1 ± 0.9 y, BMI: 25.7 ± 0.6 kg/m2). There was a main effect of 6-weeks fish oil supplementation on angiogenesis gene expression, with no overall changes in mitochondrial or insulin signaling genes. 7-day cocoa supplementation elicited changes in extracellular matrix (ECM) related genes. Thus, the effects of fish oil supplementation on vascular remodeling in skeletal muscle, and ECM remodeling with cocoa supplementation have emerged as areas for future study.
Collapse
Affiliation(s)
- Hannah Crossland
- MRC-ARUK Centre for Musculoskeletal Ageing Research & NIHR Nottingham BRC, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, UK
| | | | - Kenneth Smith
- MRC-ARUK Centre for Musculoskeletal Ageing Research & NIHR Nottingham BRC, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, UK
| | - Bethan E. Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research & NIHR Nottingham BRC, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, UK
| | - Philip J. Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research & NIHR Nottingham BRC, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, UK
- Corresponding author at: MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK.
| |
Collapse
|
15
|
Chen X, Abbey S, Bharmal A, Harris S, Hudson E, Krinner L, Langan E, Maling A, Nijran J, Street H, Wooley C, Billeter R. Neurovascular structures in human vastus lateralis muscle and the ideal biopsy site. Scand J Med Sci Sports 2019; 29:504-514. [PMID: 30561846 DOI: 10.1111/sms.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
A density model of neurovascular structures was generated from 28 human vastus lateralis muscles isolated from embalmed cadavers. The intramuscular portion of arteries, veins, and nerves was dissected, traced on transparencies, and digitized before adjustment to an average muscle shape using Procrustes analysis to generate density distributions for the relative positions of these structures. The course of arteries, veins, and nerves was highly variable between individual muscles. Nevertheless, a zone of lower average neurovascular density was found between the tributaries from the lateral circumflex femoral and the deep femoral arteries. While the area with the lowest density was covered by the iliotibial tract and would therefore not be suitable for biopsies, another low-density area was located in the distal portion of vastus lateralis. This was just anterior to the iliotibial tract, in a zone that has been described as a good needle biopsy site. The reported complication rates of needle biopsies (0.1%-4%) are in the range of expectations when simulated based on this model. It is concluded that the optimal human vastus lateralis biopsy site is in the distal portion of the muscle, between ½ and ¾ of the length from the greater trochanter to the lateral epicondyle, just anterior to the iliotibial band.
Collapse
Affiliation(s)
- Xin Chen
- School of Computer Science, University of Nottingham, Nottingham, UK
| | - Steven Abbey
- UK Foundation Programme, University Hospital Coventry & Warwickshire, Coventry, UK
| | - Adam Bharmal
- UK Foundation Programme, University College of London Hospital, London, UK
| | - Sophie Harris
- South East Scotland Deanery, NHS Lothian, NHS Scotland, Edinburgh, UK
| | | | - Lisa Krinner
- Department of Public Health Sciences, College of Health and Human Services, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Emma Langan
- UK Foundation Programme, Royal Derby Hospital, Derbyshire, UK
| | - Alexandra Maling
- Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Jagdip Nijran
- Wexham Park Hospital, Frimley Health Foundation Trust UK, Wrexham, UK
| | - Hannah Street
- Wythenshawe Hospital, South Manchester NHS Trust, Wythenshave, UK
| | | | - Rudolf Billeter
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Wilkinson D, Piasecki M, Atherton P. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 2018; 47:123-132. [PMID: 30048806 PMCID: PMC6202460 DOI: 10.1016/j.arr.2018.07.005] [Citation(s) in RCA: 460] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Loss of muscle mass with age is due to atrophy and loss of individual muscle fibres. Anabolic resistance is fundamental in age-related fibre atrophy. Fibre loss is associated with denervation and remodelling of motor units. The plasticity of both factors should be considered in future research.
Age-related loss of skeletal muscle mass and function, sarcopenia, is associated with physical frailty and increased risk of morbidity (chronic diseases), in addition to all-cause mortality. The loss of muscle mass occurs incipiently from middle-age (∼1%/year), and in severe instances can lead to a loss of ∼50% by the 8–9th decade of life. This review will focus on muscle deterioration with ageing and highlight the two underpinning mechanisms regulating declines in muscle mass and function: muscle fibre atrophy and muscle fibre loss (hypoplasia) – and their measurement. The mechanisms of muscle fibre atrophy in humans relate to imbalances in muscle protein synthesis (MPS) and breakdown (MPB); however, since there is limited evidence for basal alterations in muscle protein turnover, it would appear that “anabolic resistance” to fundamental environmental cues regulating diurnal muscle homeostasis (namely physical activity and nutrition), underlie age-related catabolic perturbations in muscle proteostasis. While the ‘upstream’ drivers of the desensitization of aged muscle to anabolic stimuli are poorly defined, they most likely relate to impaired efficiency of the conversion of nutritional/exercise stimuli into signalling impacting mRNA translation and proteolysis. Additionally, loss of muscle fibres has been shown in cadaveric studies using anatomical fibre counts, and from iEMG studies demonstrating motor unit loss, albeit with few molecular investigations of this in humans. We suggest that defining countermeasures against sarcopenia requires improved understandings of the co-ordinated regulation of muscle fibre atrophy and fibre loss, which are likely to be inextricably linked.
Collapse
|
17
|
Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ. "Nutraceuticals" in relation to human skeletal muscle and exercise. Am J Physiol Endocrinol Metab 2017; 312:E282-E299. [PMID: 28143855 PMCID: PMC5406990 DOI: 10.1152/ajpendo.00230.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine.
Collapse
Affiliation(s)
- Colleen S Deane
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- Faculty of Health and Social Science, Bournemouth University, Bournemouth, United Kingdom; and
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel J Wilkinson
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Bethan E Phillips
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Kenneth Smith
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy Etheridge
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Philip J Atherton
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research and Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom;
| |
Collapse
|
18
|
Kouw IWK, Cermak NM, Burd NA, Churchward-Venne TA, Senden JM, Gijsen AP, van Loon LJC. Sodium nitrate co-ingestion with protein does not augment postprandial muscle protein synthesis rates in older, type 2 diabetes patients. Am J Physiol Endocrinol Metab 2016; 311:E325-34. [PMID: 27221118 DOI: 10.1152/ajpendo.00122.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/19/2016] [Indexed: 12/24/2022]
Abstract
The age-related anabolic resistance to protein ingestion is suggested to be associated with impairments in insulin-mediated capillary recruitment and postprandial muscle tissue perfusion. The present study investigated whether dietary nitrate co-ingestion with protein improves muscle protein synthesis in older, type 2 diabetes patients. Twenty-four men with type 2 diabetes (72 ± 1 yr, 26.7 ± 1.4 m/kg(2) body mass index, 7.3 ± 0.4% HbA1C) received a primed continuous infusion of l-[ring-(2)H5]phenylalanine and l-[1-(13)C]leucine and ingested 20 g of intrinsically l-[1-(13)C]phenylalanine- and l-[1-(13)C]leucine-labeled protein with (PRONO3) or without (PRO) sodium nitrate (0.15 mmol/kg). Blood and muscle samples were collected to assess protein digestion and absorption kinetics and postprandial muscle protein synthesis rates. Upon protein ingestion, exogenous phenylalanine appearance rates increased in both groups (P < 0.001), resulting in 55 ± 2% and 53 ± 2% of dietary protein-derived amino acids becoming available in the circulation over the 5h postprandial period in the PRO and PRONO3 groups, respectively. Postprandial myofibrillar protein synthesis rates based on l-[ring-(2)H5]phenylalanine did not differ between groups (0.025 ± 0.004 and 0.021 ± 0.007%/h over 0-2 h and 0.032 ± 0.004 and 0.030 ± 0.003%/h over 2-5 h in PRO and PRONO3, respectively, P = 0.7). No differences in incorporation of dietary protein-derived l-[1-(13)C]phenylalanine into de novo myofibrillar protein were observed at 5 h (0.016 ± 0.002 and 0.014 ± 0.002 mole percent excess in PRO and PRONO3, respectively, P = 0.8). Dietary nitrate co-ingestion with protein does not modulate protein digestion and absorption kinetics, nor does it further increase postprandial muscle protein synthesis rates or the incorporation of dietary protein-derived amino acids into de novo myofibrillar protein in older, type 2 diabetes patients.
Collapse
Affiliation(s)
- Imre W K Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naomi M Cermak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicholas A Burd
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tyler A Churchward-Venne
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Annemarie P Gijsen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|