1
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Naito T, Yang H, Koh DHZ, Mahajan D, Lu L, Saheki Y. Regulation of cellular cholesterol distribution via non-vesicular lipid transport at ER-Golgi contact sites. Nat Commun 2023; 14:5867. [PMID: 37735529 PMCID: PMC10514280 DOI: 10.1038/s41467-023-41213-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal distribution of cellular cholesterol is associated with numerous diseases, including cardiovascular and neurodegenerative diseases. Regulated transport of cholesterol is critical for maintaining its proper distribution in the cell, yet the underlying mechanisms remain unclear. Here, we show that lipid transfer proteins, namely ORP9, OSBP, and GRAMD1s/Asters (GRAMD1a/GRAMD1b/GRAMD1c), control non-vesicular cholesterol transport at points of contact between the ER and the trans-Golgi network (TGN), thereby maintaining cellular cholesterol distribution. ORP9 localizes to the TGN via interaction between its tandem α-helices and ORP10/ORP11. ORP9 extracts PI4P from the TGN to prevent its overaccumulation and suppresses OSBP-mediated PI4P-driven cholesterol transport to the Golgi. By contrast, GRAMD1s transport excess cholesterol from the Golgi to the ER, thereby preventing its build-up. Cells lacking ORP9 exhibit accumulation of cholesterol at the Golgi, which is further enhanced by additional depletion of GRAMD1s with major accumulation in the plasma membrane. This is accompanied by chronic activation of the SREBP-2 signalling pathway. Our findings reveal the importance of regulated lipid transport at ER-Golgi contacts for maintaining cellular cholesterol distribution and homeostasis.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Haoning Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
3
|
Yue X, Kong Y, Zhang Y, Sun M, Liu S, Wu Z, Gao L, Liang X, Ma C. SREBF2-STARD4 axis confers sorafenib resistance in hepatocellular carcinoma by regulating mitochondrial cholesterol homeostasis. Cancer Sci 2022; 114:477-489. [PMID: 35642354 PMCID: PMC9899602 DOI: 10.1111/cas.15449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023] Open
Abstract
Sorafenib resistance limits its survival benefit for treatment of hepatocellular carcinoma (HCC). Cholesterol metabolism is dysregulated in HCC, and its role in sorafenib resistance of HCC has not been fully elucidated. Aiming to elucidate this, in vitro and in vivo sorafenib resistant models were established. Sterol regulatory element binding transcription factor 2 (SREBF2), the key regulator of cholesterol metabolism, was activated in sorafenib resistant HepG2 and Huh7 cells. Knockdown of SREBF2 resensitized sorafenib resistant cells and xenografts tumors to sorafenib. Further study showed that SREBF2 positively correlated with StAR related lipid transfer domain containing 4 (STARD4) in our sorafenib resistant models and publicly available datasets. STARD4, mediating cholesterol trafficking, not only promoted proliferation and migration of HepG2 and Huh7 cells, but also increased sorafenib resistance in liver cancer. Mechanically, SREBF2 promoted expression of STARD4 by directly binding to its promoter region, leading to increased mitochondrial cholesterol levels and inhibition of mitochondrial cytochrome c release. Importantly, knockdown of SREBF2 or STARD4 decreased mitochondrial cholesterol levels and increased mitochondrial cytochrome c release, respectively. Moreover, overexpression of STARD4 reversed the effect of SREBF2 knockdown on mitochondrial cytochrome c release and sorafenib resistance. In conclusion, SREBF2 promotes STARD4 transcription, which in turn contributes to mitochondrial cholesterol transport and sorafenib resistance in HCC. Therefore, targeting the SREBF2-STARD4 axis would be beneficial to a subset of HCC patients with sorafenib resistance.
Collapse
Affiliation(s)
- Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Youzi Kong
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Min Sun
- Department of Hernia and Abdominal Wall Surgery, General Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Shuyue Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of MedicineShandong UniversityJinanChina
| |
Collapse
|
4
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Morgan MB, Ross J, Ellwanger J, Phrommala RM, Youngblood H, Qualley D, Williams J. Sea Anemones Responding to Sex Hormones, Oxybenzone, and Benzyl Butyl Phthalate: Transcriptional Profiling and in Silico Modelling Provide Clues to Decipher Endocrine Disruption in Cnidarians. Front Genet 2022; 12:793306. [PMID: 35087572 PMCID: PMC8787064 DOI: 10.3389/fgene.2021.793306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023] Open
Abstract
Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - James Ross
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Ellwanger
- Department of Biology, Berry College, Mount Berry, GA, United States
| | | | - Hannah Youngblood
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| |
Collapse
|
6
|
Kothandapani A, Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. Distinctive functioning of STARD1 in the fetal Leydig cells compared to adult Leydig and adrenal cells. Impact of Hedgehog signaling via the primary cilium. Mol Cell Endocrinol 2021; 531:111265. [PMID: 33864885 DOI: 10.1016/j.mce.2021.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
7
|
Zhou L, Zhang C, Yang X, Liu L, Hu J, Hou Y, Tao H, Sugimura H, Chen Z, Wang L, Chen K. Melatonin inhibits lipid accumulation to repress prostate cancer progression by mediating the epigenetic modification of CES1. Clin Transl Med 2021; 11:e449. [PMID: 34185414 PMCID: PMC8181204 DOI: 10.1002/ctm2.449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the main clinical treatment for patients with advanced prostate cancer (PCa). However, PCa eventually progresses to castration-resistant prostate cancer (CRPC), largely because of androgen receptor variation and increased intratumoral androgen synthesis. Several studies have reported that one abnormal lipid accumulation is significantly related to the development of PCa. Melatonin (MLT) is a functionally pleiotropic indoleamine molecule and a key regulator of energy metabolism. The aim of our study is finding the links between CRPC and MLT and providing the basis for MLT treatment for CRPC. METHODS We used animal CRPC models with a circadian rhythm disorder, and PCa cell lines to assess the role of melatonin in PCa. RESULTS We demonstrated that MLT treatment inhibited tumor growth and reversed enzalutamide resistance in animal CRPC models with a circadian rhythm disorder. A systematic review and meta-analysis demonstrated that MLT is positively associated with an increased risk of developing advanced PCa. Restoration of carboxylesterase 1 (CES1) expression by MLT treatment significantly reduced lipid droplet (LD) accumulation, thereby inducing apoptosis by increasing endoplasmic reticulum stress, reducing de novo intratumoral androgen synthesis, repressing CRPC progression and reversing the resistance to new endocrine therapy. Mechanistic investigations demonstrated that MLT regulates the epigenetic modification of CES1. Ces1-knockout (Ces-/- ) mice verified the important role of endogenous Ces1 in PCa. CONCLUSIONS Our findings provide novel preclinical and clinical information about the role of melatonin in advanced PCa and characterize the importance of enzalutamide combined with MLT administration as a therapy for advanced PCa.
Collapse
MESH Headings
- Acetylation
- Androgen Antagonists/pharmacology
- Animals
- Antioxidants/pharmacology
- Apoptosis
- Benzamides/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carboxylic Ester Hydrolases/genetics
- Carboxylic Ester Hydrolases/metabolism
- Cell Proliferation
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Drug Resistance, Neoplasm
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Lipids/analysis
- Male
- Melatonin/pharmacology
- Mice
- Mice, Inbred C57BL
- Nitriles/pharmacology
- Phenylthiohydantoin/pharmacology
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/prevention & control
- Receptors, Androgen/chemistry
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Cai Zhang
- Department of Clinical Laboratorythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Hong Tao
- Department of Tumor PathologyHamamatsu University School of MedicineHamamatsuShizuokaJapan
| | - Haruhiko Sugimura
- Department of Tumor PathologyHamamatsu University School of MedicineHamamatsuShizuokaJapan
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| |
Collapse
|
8
|
Wang Y, Jia X, Hsieh JCF, Monson MS, Zhang J, Shu D, Nie Q, Persia ME, Rothschild MF, Lamont SJ. Transcriptome Response of Liver and Muscle in Heat-Stressed Laying Hens. Genes (Basel) 2021; 12:genes12020255. [PMID: 33578825 PMCID: PMC7916550 DOI: 10.3390/genes12020255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to high ambient temperature has detrimental effects on poultry welfare and production. Although changes in gene expression due to heat exposure have been well described for broiler chickens, knowledge of the effects of heat on laying hens is still relatively limited. In this study, we profiled the transcriptome for pectoralis major muscle (n = 24) and liver (n = 24), during a 4-week cyclic heating experiment performed on layers in the early phase of egg production. Both heat-control and time-based contrasts were analyzed to determine differentially expressed genes (DEGs). Heat exposure induced different changes in gene expression for the two tissues, and we also observed changes in gene expression over time in the control animals suggesting that metabolic changes occurred during the transition from onset of lay to peak egg production. A total of 73 DEGs in liver were shared between the 3 h heat-control contrast, and the 4-week versus 3 h time contrast in the control group, suggesting a core set of genes that is responsible for maintenance of metabolic homeostasis regardless of the physiologic stressor (heat or commencing egg production). The identified DEGs improve our understanding of the layer’s response to stressors and may serve as targets for genetic selection in the future to improve resilience.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xinzheng Jia
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - John C. F. Hsieh
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Melissa S. Monson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Jibin Zhang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- Toni Stephenson Lymphoma Center, City of Hope, Duarte, CA 91010, USA
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Qinghua Nie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Michael E. Persia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (Y.W.); (X.J.); (J.C.F.H.); (M.S.M.); (J.Z.); (M.F.R.)
- Correspondence: ; Tel.: +1-515-294-4100
| |
Collapse
|
9
|
Topolska M, Roelants FM, Si EP, Thorner J. TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae. Biomolecules 2020; 10:biom10121598. [PMID: 33255682 PMCID: PMC7760575 DOI: 10.3390/biom10121598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane-tethered sterol-binding Lam/Ltc proteins localize at junctions between the endoplasmic reticulum (ER) membrane and other organelles. Two of the six family members-Lam2/Ltc4 (initially Ysp2) and paralog Lam4/Ltc3-localize to ER-plasma membrane (PM) contact sites (CSs) and mediate retrograde ergosterol transport from the PM to the ER. Our prior work demonstrated that Lam2 and Lam4 are substrates of TORC2-regulated protein kinase Ypk1, that Ypk1-mediated phosphorylation inhibits their function in retrograde sterol transport, and that PM sterol retention bolsters cell survival under stressful conditions. At ER-PM CSs, Lam2 and Lam4 associate with Laf1/Ymr102c and Dgr2/Ykl121w (paralogous WD40 repeat-containing proteins) that reportedly bind sterol. Using fluorescent tags, we found that Lam2 and Lam4 remain at ER-PM CSs when Laf1 and Dgr2 are absent, whereas neither Laf1 nor Dgr2 remain at ER-PM CSs when Lam2 and Lam4 are absent. Loss of Laf1 (but not Dgr2) impedes retrograde ergosterol transport, and a laf1∆ mutation does not exacerbate the transport defect of lam2∆ lam4∆ cells, indicating a shared function. Lam2 and Lam4 bind Laf1 and Dgr2 in vitro in a pull-down assay, and the PH domain in Lam2 hinders its interaction with Laf1. Lam2 phosphorylated by Ypk1, and Lam2 with phosphomimetic (Glu) replacements at its Ypk1 sites, exhibited a marked reduction in Laf1 binding. Thus, phosphorylation prevents Lam2 interaction with Laf1 at ER-PM CSs, providing a mechanism by which Ypk1 action inhibits retrograde sterol transport.
Collapse
Affiliation(s)
- Magdalena Topolska
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5000 Odense, Denmark
| | - Françoise M. Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
| | - Edward P. Si
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
- Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23501-1980, USA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; (M.T.); (F.M.R.); (E.P.S.)
- Correspondence: ; Tel.: +1-510-642-2558; Fax: +1-510-642-6420
| |
Collapse
|
10
|
Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. STARD1 Functions in Mitochondrial Cholesterol Metabolism and Nascent HDL Formation. Gene Expression and Molecular mRNA Imaging Show Novel Splicing and a 1:1 Mitochondrial Association. Front Endocrinol (Lausanne) 2020; 11:559674. [PMID: 33193082 PMCID: PMC7607000 DOI: 10.3389/fendo.2020.559674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
STARD1 moves cholesterol (CHOL) from the outer mitochondrial membrane (OMM) to the inner membrane (IMM) in steroidogenic cells. This activity is integrated into CHOL trafficking and synthesis homeostasis, involving uptake through SR-B1 and LDL receptors and distribution through endosomes, ER, and lipid droplets. In adrenal cells, STARD1 is imported into the mitochondrial matrix accompanied by delivery of several hundred CHOL molecules. This transfer limits CYP11A1-mediated generation of pregnenolone. CHOL transfer is coupled to translation of STARD1 mRNA at the OMM. In testis cells, slower CHOL trafficking seems to be limiting. STARD1 also functions in a slower process through ER OMM contacts. The START domain of STARD1 is utilized by a family of genes, which includes additional STARD (forms 3-6) and GRAMD1B proteins that transfer CHOL. STARD forms 2 and 7 deliver phosphatidylcholine. STARD1 and STARD7 target their respective activities to mitochondria, via N-terminal domains (NTD) of over 50 amino acids. The NTD is not essential for steroidogenesis but exerts tissue-selective enhancement (testis>>adrenal). Three conserved sites for cleavage by the mitochondrial processing protease (MPP) generate three forms, each potentially with specific functions, as demonstrated in STARD7. STARD1 is expressed in macrophage and cardiac repair fibroblasts. Additional functions include CHOL metabolism by CYP27A1 that directs activation of LXR and CHOL export processes. STARD1 generates 3.5- and 1.6-kb mRNA from alternative polyadenylation. The 3.5-kb form exclusively binds the PKA-induced regulator, TIS11b, which binds at conserved sites in the extended 3'UTR to control mRNA translation and turnover. STARD1 expression also exhibits a novel, slow splicing that delayed splicing delivery of mRNA to mitochondria. Stimulation of transcription by PKA is directed by suppression of SIK forms that activate a CRTC/CREB/CBP promoter complex. This process is critical to pulsatile hormonal activation in vivo. sm-FISH RNA imaging shows a flow of single STARD1 mRNA particles from asymmetric accumulations of primary transcripts at gene loci to 1:1 complex of 3.5-kb mRNA with peri-nuclear mitochondria. Adrenal cells are similar but distinguished from testis cells by appreciable basal expression prior to hormonal activation. This difference is conserved in culture and in vivo.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joan S. Jorgensen
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
11
|
Lange Y, Steck TL. Active cholesterol 20 years on. Traffic 2020; 21:662-674. [PMID: 32930466 DOI: 10.1111/tra.12762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
This review considers the following hypotheses, some well-supported and some speculative. Almost all of the sterol molecules in plasma membranes are associated with bilayer phospholipids in complexes of varied strength and stoichiometry. These complexes underlie many of the material properties of the bilayer. The small fraction of cholesterol molecules exceeding the binding capacity of the phospholipids is thermodynamically active and serves diverse functions. It circulates briskly among the cell membranes, particularly through contact sites linking the organelles. Active cholesterol provides the upstream feedback signal to multiple mechanisms governing plasma membrane homeostasis, pegging the sterol level to a threshold set by its phospholipids. Active cholesterol could also be the cargo for various inter-organelle transporters and the form excreted from cells by reverse transport. Furthermore, it is integral to the function of caveolae; a mediator of Hedgehog regulation; and a ligand for the binding of cytolytic toxins to membranes. Active cholesterol modulates a variety of plasma membrane proteins-receptors, channels and transporters-at least in vitro.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Moesgaard L, Reinholdt P, Wüstner D, Kongsted J. Modeling the Sterol-Binding Domain of Aster-A Provides Insight into Its Multiligand Specificity. J Chem Inf Model 2020; 60:2268-2281. [PMID: 32233488 DOI: 10.1021/acs.jcim.0c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intracellular transport of cholesterol and related sterols relies to a large degree on nonvesicular mechanisms, which are only partly understood at the molecular level. Aster proteins belonging to the Lam family of sterol transfer proteins have recently been identified as important catalysts of nonvesicular sterol exchange between the plasma membrane (PM) and endoplasmic reticulum (ER). Here, we used a range of computational tools to study the molecular mechanisms underlying sterol binding as well as multisterol ligand specificity of Aster-A. Our study focused primarily on gaining atomistic insight into the bound ligand-protein complex and was, on this basis, performed in the absence of any membrane. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations provide a rationale for the experimentally found ranking of binding affinities of various sterols to Aster-A. In particular, the polarity of the sterols and the length of their alkyl chain could be identified as being critical determinants of ligand affinity. A Gibbs free energy decomposition identified a charged residue, Glu444, at the base of the binding pose as an important control point for sterol binding. Removing its net charge via protonation was found to cause significant changes to the environment surrounding this residue. In addition, the protonation of Glu444 was found to be paralleled by a large redistribution of molecular flexibility in the Aster domain. This finding was supplemented by multiple branched adaptive steered molecular dynamics (MB-ASMD) simulations by which we defined a possible molecular path for sterol release and demonstrated the importance of Glu444 in this process.
Collapse
Affiliation(s)
- Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
13
|
Clark BJ. The START-domain proteins in intracellular lipid transport and beyond. Mol Cell Endocrinol 2020; 504:110704. [PMID: 31927098 DOI: 10.1016/j.mce.2020.110704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
The Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) domain is a ~210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for lipid binding. The helix-grip fold structure defines a large superfamily of proteins, and this review focuses on the mammalian START domain family members that include single START domain proteins with identified ligands, and larger multi-domain proteins that may have novel roles in metabolism. Much of our understanding of the mammalian START domain proteins in lipid transport and changes in metabolism has advanced through studies using knockout mouse models, although for some of these proteins the identity and/or physiological role of ligand binding remains unknown. The findings that helped define START domain lipid-binding specificity, lipid transport, and changes in metabolism are presented to highlight that fundamental questions remain regarding the biological function(s) for START domain-containing proteins.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
14
|
Chen S, Wang Y, Zhang L, Hu Y, Gu C, Wen Y, Gu A, Zhang J, Wang Y. SREBP2-STARD4 is involved in synthesis of cholesteryl ester stimulated by mono-butyl phthalate in MLTC-1 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:377-384. [PMID: 31705742 DOI: 10.1002/tox.22874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Sterol is synthesized from cholesterol which is from the hydrolysis of stored cholesteryl esters. The process of maintaining cholesterol homeostasis is regulated by SREBP2-STARD4. Lots of researches demonstrated that male steroidogenesis could be interfered by di-n-butyl phthalate (DBP) or monobutyl phthalate (MBP). However, mechanisms of MBP exposure in this process have not been uncovered clearly. The objectiveof this study was to explore roles of SREBP2 and STARD4 in cholesteryl estersynthesis stimulated by MBP in mouse Leydig tumor cells (MLTC-1). MLTC-1 exposedto 10-8, 10-7, 10-6, 10-5 M MBP showed that levels of cholestery ester were increased significantly at 10-7 M MBP. Besides, cholesteryl ester synthesis stimulated by MBP was down-regulate when STARD4 or SREBP2 were inhibited. Activity of SREBP2 binding to the promoter of STARD4 was increased after MBP exposure. This study suggests that MBP can increase cholesteryl ester synthesis through SREBP2-STARD4 signal pathway in MLTC-1 cells.
Collapse
Affiliation(s)
- Shanshan Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yidi Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Lulu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yanhui Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chenxi Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yun Wen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Insights into the Molecular Mechanisms of Cholesterol Binding to the NPC1 and NPC2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:139-160. [PMID: 31098815 DOI: 10.1007/978-3-030-14265-0_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, a growing number of studies have implicated the coordinated action of NPC1 and NPC2 in intralysosomal transport and efflux of cholesterol. Our current understanding of this process developed with just over two decades of research. Since the cloning of the genes encoding the NPC1 and NPC2 proteins, studies of the biochemical defects observed when either gene is mutated along with computational and structural studies have unraveled key steps in the underlying mechanism. Here, we summarize the major contributions to our understanding of the proposed cholesterol transport controlled by NPC1 and NPC2, and briefly discuss recent findings of cholesterol binding and transport proteins beyond NPC1 and NPC2. We conclude with key questions and major challenges for future research on cholesterol transport by the NPC1 and NPC2 proteins.
Collapse
|
16
|
Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong ZJ, Weng X, Ah Kim Y, Collins R, Trimble W, Pomès R, Privé GG, Annaert W, Schwake M, Heeren J, Lüllmann-Rauch R, Grinstein S, Ikonen E, Saftig P, Neculai D. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat Commun 2019; 10:3521. [PMID: 31387993 PMCID: PMC6684646 DOI: 10.1038/s41467-019-11425-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.
Collapse
Affiliation(s)
- Saskia Heybrock
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Kristiina Kanerva
- Faculty of Medicine, Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ying Meng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Chris Ing
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anna Liang
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zi-Jian Xiong
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xialian Weng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Young Ah Kim
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York, USA
| | - Richard Collins
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - William Trimble
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Régis Pomès
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
- Princes Margaret Cancer Centre, Toronto, ON, Canada
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Michael Schwake
- Faculty of Chemistry, Biochemistry III, University of Bielefeld, 33615, Bielefeld, Germany
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joerg Heeren
- Institut für Biochemie und Molekulare Zellbiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg-Eppendorf, Germany
| | | | - Sergio Grinstein
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada.
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | - Elina Ikonen
- Faculty of Medicine, Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Dante Neculai
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
17
|
Nishimura T, Stefan CJ. Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158492. [PMID: 31349025 DOI: 10.1016/j.bbalip.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/15/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.
Collapse
Affiliation(s)
- Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Wang H, Ma Q, Qi Y, Dong J, Du X, Rae J, Wang J, Wu WF, Brown AJ, Parton RG, Wu JW, Yang H. ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Mol Cell 2019; 73:458-473.e7. [DOI: 10.1016/j.molcel.2018.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
19
|
Roelants FM, Chauhan N, Muir A, Davis JC, Menon AK, Levine TP, Thorner J. TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Mol Biol Cell 2018; 29:2128-2136. [PMID: 29927351 PMCID: PMC6232965 DOI: 10.1091/mbc.e18-04-0229] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In our proteome-wide screen, Ysp2 (also known as Lam2/Ltc4) was identified as a likely physiologically relevant target of the TOR complex 2 (TORC2)-dependent protein kinase Ypk1 in the yeast Saccharomyces cerevisiae. Ysp2 was subsequently shown to be one of a new family of sterol-binding proteins located at plasma membrane (PM)-endoplasmic reticulum (ER) contact sites. Here we document that Ysp2 and its paralogue Lam4/Ltc3 are authentic Ypk1 substrates in vivo and show using genetic and biochemical criteria that Ypk1-mediated phosphorylation inhibits the ability of these proteins to promote retrograde transport of sterols from the PM to the ER. Furthermore, we provide evidence that a change in PM sterol homeostasis promotes cell survival under membrane-perturbing conditions known to activate TORC2-Ypk1 signaling. These observations define the underlying molecular basis of a new regulatory mechanism for cellular response to plasma membrane stress.
Collapse
Affiliation(s)
- Françoise M Roelants
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Neha Chauhan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Alexander Muir
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jameson C Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Timothy P Levine
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
20
|
Jefcoate CR, Lee J. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. J Mol Endocrinol 2018; 60:R213-R235. [PMID: 29691317 PMCID: PMC6324173 DOI: 10.1530/jme-17-0281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022]
Abstract
Cholesterol is an important regulator of cell signaling, both through direct impacts on cell membranes and through oxy-metabolites that activate specific receptors (steroids, hydroxy-cholesterols, bile acids). Cholesterol moves slowly through and between cell membranes with the assistance of specific binding proteins and transfer processes. The prototype cholesterol regulator is the Steroidogenesis Acute Regulatory (STAR), which moves cholesterol into mitochondria, where steroid synthesis is initiated by cytochrome P450 11A1 in multiple endocrine cell types. CYP27A1 generates hydroxyl cholesterol metabolites that activate LXR nuclear receptors to control cholesterol homeostatic and transport mechanisms. LXR regulation of cholesterol transport and storage as cholesterol ester droplets is shared by both steroid-producing cells and macrophage. This cholesterol signaling is crucial to brain neuron regulation by astrocytes and microglial macrophage, mediated by ApoE and sensitive to disruption by β-amyloid plaques. sm-FISH delivers appreciable insights into signaling in single cells, by resolving single RNA molecules as mRNA and by quantifying pre-mRNA at gene loci. sm-FISH has been applied to problems in physiology, embryo development and cancer biology, where single cell features have critical impacts. sm-FISH identifies novel features of STAR transcription in adrenal and testis cells, including asymmetric expression at individual gene loci, delayed splicing and 1:1 association of mRNA with mitochondria. This may represent a functional unit for the translation-dependent cholesterol transfer directed by STAR, which integrates into mitochondrial fusion dynamics. Similar cholesterol dynamics repeat with different players in the cycling of cholesterol between astrocytes and neurons in the brain, which may be abnormal in neurodegenerative diseases.
Collapse
Affiliation(s)
- Colin R Jefcoate
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology and the Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis. BMC Genomics 2018. [PMID: 29514634 PMCID: PMC5842524 DOI: 10.1186/s12864-018-4520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Because the cost of cereals is unstable and represents a large part of production charges for meat-type chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The aim of this study was to better understand the molecular mechanisms of this adaptation to changes in dietary energy sources through the fine characterization of transcriptomic changes occurring in three major metabolic tissues – liver, adipose tissue and muscle – as well as in circulating blood cells. Results We revealed the fine-tuned regulation of many hepatic genes encoding key enzymes driving glycogenesis and de novo fatty acid synthesis pathways and of some genes participating in oxidation. Among the genes expressed upon consumption of a high-fat, high-fiber diet, we highlighted CPT1A, which encodes a key enzyme in the regulation of fatty acid oxidation. Conversely, the repression of lipogenic genes by the high-fat diet was clearly associated with the down-regulation of SREBF1 transcripts but was not associated with the transcript regulation of MLXIPL and NR1H3, which are both transcription factors. This result suggests a pivotal role for SREBF1 in lipogenesis regulation in response to a decrease in dietary starch and an increase in dietary PUFA. Other prospective regulators of de novo hepatic lipogenesis were suggested, such as PPARD, JUN, TADA2A and KAT2B, the last two genes belonging to the lysine acetyl transferase (KAT) complex family regulating histone and non-histone protein acetylation. Hepatic glycogenic genes were also down-regulated in chickens fed a high-fat, high-fiber diet compared to those in chickens fed a starch-based diet. No significant dietary-associated variations in gene expression profiles was observed in the other studied tissues, suggesting that the liver mainly contributed to the adaptation of birds to changes in energy source and nutrients in their diets, at least at the transcriptional level. Moreover, we showed that PUFA deposition observed in the different tissues may not rely on transcriptional changes. Conclusion We showed the major role of the liver, at the gene expression level, in the adaptive response of chicken to dietary starch substitution with fat and fiber. Electronic supplementary material The online version of this article (10.1186/s12864-018-4520-5) contains supplementary material, which is available to authorized users.
Collapse
|