1
|
Vieiros M, Almeida-Toledano L, Serra-Delgado M, Navarro-Tapia E, Ramos-Triguero A, Muñoz-Lozano C, Martínez L, Marchei E, Gómez-Roig MD, García-Algar Ó, Andreu-Fernández V. Effects of maternal drinking patterns and epigallocatechin-3-gallate treatment on behavioural and molecular outcomes in a mouse model of fetal alcohol spectrum disorders. Biomed Pharmacother 2025; 187:118138. [PMID: 40349554 DOI: 10.1016/j.biopha.2025.118138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Prenatal alcohol exposure (PAE) impairs fetal development leading to fetal alcohol spectrum disorders (FASD). Antioxidants like epigallocatechin-3-gallate (EGCG) may mitigate alcohol-induced oxidative stress, a major contributor to FASD. This study assessed the effects of PAE on cognition and behaviour under two drinking patterns and the role of postnatal EGCG therapy in a FASD-like mouse model. C57BL/6J mice were divided into five groups: control, moderate drinking (Mod), binge drinking (Bin), Mod+EGCG, and Bin+EGCG. Cognitive and behavioural performance were assessed using Rotarod test, T-Maze, and Morris Water Maze (MWM). Western blot analyses evaluated brain and cerebellum biomarkers related to neuronal plasticity, maturation, differentiation, transport, and proliferation. PAE impaired motor coordination, significantly reducing rotarod walking time in both drinking patterns. Spatial learning and memory were also disrupted, decreasing T-maze success rate. It also decreased time in the platform area and distance travelled in MWM. Both drinking patterns affected neuronal plasticity (BDNF, DYRK1A) and maturation (NeuN), astrocyte differentiation (GFAP, s100β), neuronal transport (MBP) and proliferation (GDNF, Wnt-3) via oxidative stress (Nrf2). Our results show how EGCG treatment significantly improved behavioural tests results and restored most brain and cerebellum biomarkers, reaching levels similar to control. These findings highlight the impact of PAE on cognition and behaviour and how EGCG may counteract its effects by reducing oxidative stress and enhancing brain plasticity. Our findings open the door to future studies on the mechanism of action of this antioxidant in order to use it as a therapeutic tool in this vulnerable population.
Collapse
Affiliation(s)
- Melina Vieiros
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Spanish network in maternal, neonatal, child, and developmental health research (RICORS-SAMID, RD21/0012/0017, RD24/0013/0019) Instituto de Salud Carlos III, Madrid, Spain; Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain
| | - Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Spanish network in maternal, neonatal, child, and developmental health research (RICORS-SAMID, RD21/0012/0017, RD24/0013/0019) Instituto de Salud Carlos III, Madrid, Spain; Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - Anna Ramos-Triguero
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain; Institute for Biomedical Research La Paz (IdiPaz), Madrid, Spain
| | - Concha Muñoz-Lozano
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Leopoldo Martínez
- Institute for Biomedical Research La Paz (IdiPaz), Madrid, Spain; Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Emilia Marchei
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - María D Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat 08950, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and and Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Óscar García-Algar
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Spanish network in maternal, neonatal, child, and developmental health research (RICORS-SAMID, RD21/0012/0017, RD24/0013/0019) Instituto de Salud Carlos III, Madrid, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain; Biosanitary Research Institute, Valencian International University, Valencia, Spain.
| |
Collapse
|
2
|
Hendrikse CJ, Joshi SH, Ringshaw JE, Bradford L, Roos A, Wedderburn CJ, Hoffman N, Burd T, Narr KL, Woods RP, Zar HJ, Stein DJ, Donald KA. Prenatal alcohol exposure alters brain structure and neurocognitive outcomes for 6- to 7-year-old children in a South African birth cohort. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:1028-1041. [PMID: 40189903 PMCID: PMC12098808 DOI: 10.1111/acer.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/16/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Several studies have demonstrated an association between prenatal alcohol exposure (PAE) and altered brain structure. However, more research is needed to understand how structural brain changes may influence neurocognitive performance in children with PAE at the age of school entry. We investigated the associations between PAE and cortical and subcortical gray matter morphology and whether PAE-related structural brain changes mediate the associations between PAE and neurocognitive outcomes in 6- to 7-year-old children. METHODS One hundred fifty-eight children (49 PAE, 109 unexposed controls; 46% female; mean age 76 ± 5 months) who participated in a brain imaging substudy of the population-based Drakenstein Child Health Study were included. The children had moderate-to-high PAE without other substance exposure, except prenatal tobacco exposure. T1-weighted brain structural scans were acquired using a 3T MRI scanner. General linear models and mediation analyses tested the associations of PAE with cortical and subcortical metrics and associated neurocognitive outcomes. RESULTS PAE was associated with a smaller total cortical surface area and had multivariate effects on regional cortical volume and surface area in the temporal lobe. The smaller volume and surface area of the left middle temporal gyrus mediated associations between PAE and neurocognitive outcomes for numeracy and mathematics and/or cognition and executive functioning. Findings persisted when adjusting for age, sex, maternal education, prenatal tobacco exposure, and, in volumetric and surface area models, intracranial volume. CONCLUSION This study suggests that there is persistent altered brain structural development in children with PAE, consistent with previous findings in this cohort at infancy and age 2-3 years. Cortical changes in regions known to play a role in numeracy and semantic memory mediated associations between PAE and neurocognitive deficits, highlighting clinical relevance. Efforts to prevent PAE and improve neurocognitive development in children with PAE should be implemented as early as possible after birth.
Collapse
Affiliation(s)
- Chanellé J. Hendrikse
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
| | - Shantanu H. Joshi
- Department of Neurology, Ahmanson‐Lovelace Brain Mapping CenterUniversity of California Los AngelesCaliforniaLos AngelesUSA
- Department of BioengineeringUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Jessica E. Ringshaw
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Neuroimaging, Centre for Neuroimaging SciencesKings College LondonLondonUK
| | - Layla Bradford
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
| | - Annerine Roos
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Catherine J. Wedderburn
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Nadia Hoffman
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | - Tiffany Burd
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Unit on Child and Adolescent Health, South African Medical Research Council (SAMRC)University of Cape TownCape TownSouth Africa
| | - Katherine L. Narr
- Department of Neurology, Ahmanson‐Lovelace Brain Mapping CenterUniversity of California Los AngelesCaliforniaLos AngelesUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Roger P. Woods
- Department of Neurology, Ahmanson‐Lovelace Brain Mapping CenterUniversity of California Los AngelesCaliforniaLos AngelesUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
- The Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Unit on Child and Adolescent Health, South African Medical Research Council (SAMRC)University of Cape TownCape TownSouth Africa
| | - Dan J. Stein
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Kirsten A. Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
3
|
Ghasoub M, Scholten C, Perdue M, Long M, Ostertag C, Kar P, McMorris C, Tortorelli C, Gibbard WB, Dewey D, Lebel C. Associations between white matter asymmetry and communication skills in children with prenatal alcohol exposure. Drug Alcohol Depend 2025; 272:112674. [PMID: 40311557 DOI: 10.1016/j.drugalcdep.2025.112674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) occurs in ~10 % of pregnancies and can cause behavioral and neurological deficits, including alterations to white matter pathways involved in language processing. Language and communication skills are generally left-lateralized in the brain, and this asymmetry is associated with better performance in typically developing individuals, while alterations to this association are found in children with language challenges. However, the degree of asymmetry and its relationship with language skills remain poorly understood in children with PAE. METHODS 200 datasets collected from 98 children (46 with PAE) aged 4-8 years were included here. Language skills were assessed using the Children's Communication Checklist, 2nd edition (CCC-2) parent report. Diffusion MRI was used to examine white matter microstructure and asymmetry in five major language white matter pathways. Measures of white matter microstructure were extracted (fractional anisotropy and mean diffusivity), and a laterality index was calculated. Linear mixed models were used to test associations between language scores and white matter laterality, and whether PAE moderates this relationship. RESULTS Children with PAE had lower language scores than controls across all CCC-2 indices. Both groups had similar patterns of white matter asymmetry; however, leftward white matter lateralization was associated with worse language scores in children with PAE, but better language scores in unexposed children. CONCLUSION Our findings show alterations to the white matter asymmetry-language relationship in children with PAE. This may indicate an altered language processing mechanism that could underlie language deficits observed in many individuals with PAE.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chloe Scholten
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Meaghan Perdue
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Madison Long
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Curtis Ostertag
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Preeti Kar
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Werklund School of Education, University of Calgary, Calgary, AB, Canada
| | | | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Steane SS, Das T, Kalisch‐Smith JI, Mahaliyanage DT, Akison LK, Moritz KM, Cuffe JSM. Effects of periconceptional ethanol on mitochondrial content and oxidative stress in maternal liver and placentas from male and female fetuses in rats. J Physiol 2025; 603:1281-1298. [PMID: 39924874 PMCID: PMC11870040 DOI: 10.1113/jp287566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Alcohol exposure during pregnancy disrupts fetal development and programs lifelong disease. We have shown, in rats, that alcohol exposure during the periconceptional period (PC:EtOH), causes placental dysfunction and cardiometabolic disease in offspring. The process of metabolising alcohol can cause oxidative stress and damage mitochondrial DNA (mtDNA). It is unknown whether alcohol metabolism in a rat model of PC:EtOH impacts oxidative stress markers and mitochondrial content in maternal and placental tissues. We aimed to determine whether PC:EtOH induced oxidative stress and reduced mtDNA in maternal liver and the placental labyrinth and junctional zone. Sprague-Dawley rats were given an ethanol liquid (12.5% v/v) or control (0%) diet for one oestrous cycle before mating to embryonic day (E) 4. Maternal livers were collected at E5 and E20. Placentas were collected at E20 and separated into the junctional zone and labyrinth zone. PC:EtOH reduced Cyp2e1 mRNA levels and mtDNA in the E5 liver with lower mtDNA persisting to E20, at which time mitochondrial proteins were also decreased. PC:EtOH also reduced mitochondrial content in the E20 junctional zone, although mitochondrial protein levels were unaffected. Superoxide dismutase activity was increased in the placental junctional zone and there was no evidence of oxidative stress. The present study demonstrates that alcohol exposure around conception, reduces mitochondrial content within the maternal liver and the junctional zone of the placenta towards the end of pregnancy. These prolonged deficits may have disrupted metabolic processes required for a healthy pregnancy. The study further supports avoiding alcohol when planning a pregnancy. KEY POINTS: Even when alcohol is consumed only around conception (PC:EtOH), it can have profound impacts on the developing baby. Here, we use our established rat model to investigate if PC:EtOH causes oxidative stress and reduces mitochondrial content in the maternal liver immediately after exposure on embryonic day (E) 5. We also investigate these parameters at the end of pregnancy (E20) in maternal liver and the placenta. PC:EtOH reduced mitochondrial DNA content in the maternal liver by 77% at E5 and by 40% at E20. At E20, expression of proteins that form the electron transport chain were also reduced. The placenta had a more subtle reduction in mitochondrial DNA content, but protein levels of mitochondrial complexes were unchanged. There was no evidence of oxidative stress in the maternal liver or placenta in response to PC:EtOH. The lack of oxidative stress in the placenta may be a result of compensatory increases in antioxidants.
Collapse
Affiliation(s)
- Sarah S. Steane
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Tulika Das
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | | | | | - Lisa K. Akison
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - James S. M. Cuffe
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
5
|
Rouzer SK, Domen M, George A, Bowring A, Miranda RC. Early Life Outcomes of Prenatal Exposure to Alcohol and Synthetic Cannabinoids in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635118. [PMID: 39975197 PMCID: PMC11838379 DOI: 10.1101/2025.01.27.635118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
This study explores the effects of prenatal co-exposure to alcohol and synthetic cannabinoids on offspring viability, physical development, and neurobehavioral outcomes in young adulthood. The aim is to identify distinct outcomes of co-exposure compared to single-drug exposures and to examine potential sex-specific vulnerabilities in motor coordination and exploratory behaviors. Pregnant C57Bl/6J mice were assigned to one of four treatment groups: Control, Alcohol-exposed, Cannabinoid-exposed, or Alcohol+Cannabinoid-exposed, with drug administration occurring between Gestational Days 12-15. Offspring were first evaluated at birth for survival, physical malformations, and developmental delays. Subsequently, young adult offspring were assessed for motor coordination using rotarod tests and exploratory behavior using open field tests. Our results indicate that alcohol and cannabinoid co-exposure significantly reduced offspring survival and litter sizes compared to controls. Non-viable offspring displayed craniofacial abnormalities, limb malformations, and developmental delays. Behavioral assessments in young adulthood demonstrated that all forms of prenatal drug exposure impaired motor coordination in males, while alcohol and cannabinoid exposures independently produced impairments in females. In the open field test, co-exposed male offspring exhibited reduced center exploration, indicative of anxiety-like behavior. Co-exposed offspring, regardless of sex, demonstrated hyperactivity, characterized by increased speed and distance traveled. Together, these findings underscore the heightened risks associated with prenatal polysubstance exposure, which exacerbates offspring mortality and induces sex-specific neurobehavioral deficits. This study highlights the distinct outcomes associated with prenatal co-exposure, and the need for future research to investigate underlying mechanisms driving these developmental disruptions and sex-specific susceptibilities.
Collapse
Affiliation(s)
- Siara K. Rouzer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, 8447 John Sharp Parkway, Bryan, TX 77807, United States
| | - McKay Domen
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, 8447 John Sharp Parkway, Bryan, TX 77807, United States
| | - Aisley George
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, 8447 John Sharp Parkway, Bryan, TX 77807, United States
| | - Abigail Bowring
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, 8447 John Sharp Parkway, Bryan, TX 77807, United States
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, 8447 John Sharp Parkway, Bryan, TX 77807, United States
| |
Collapse
|
6
|
Curti L, Rizzi B, Mottarlini F, Bigagli E, Ilari A, Costa A, Sordi V, Ranieri G, Luceri C, Cannella N, Ubaldi M, Masi A, Fumagalli F, Caffino L, Mannaioni G, Gerace E. Prenatal ethanol exposure impairs hippocampal plasticity and cognition in adolescent mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111174. [PMID: 39447689 DOI: 10.1016/j.pnpbp.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) induces a wide range of neurodevelopmental disabilities that are grouped under the term 'fetal alcohol spectrum disorders' (FASD). The effects of PAE on brain development are dependent on complex neurochemical events, including modification of AMPA receptors (AMPARs). We have recently found that chronic ethanol (EtOH) exposure decreases AMPA-mediated neurotransmission and expression through the overexpression of the specific microRNA (miR)137 and 501-3p, which target GluA1 AMPA subunit, in the developing hippocampus in vitro. Here, we explored how PAE mice may alter AMPAergic synapses in the hippocampus, and its effects on behavior. METHODS To model PAE, we exposed C57Bl/6 pregnant mice to 10 % EtOH during during the first 10 days of gestation (GD 0-10; equivalent to the first trimester of pregnancy in humans). AMPA subunits postsynaptic expression in the hippocampus, electrical properties of CA1 neurons, memory recognition, and locomotor functions were then analyzed in adolescent PAE-exposed offspring. RESULTS PAE adolescent mice showed dysregulation of AMPAergic neurotransmission, and increased miR 501-3p expression, associated with a significant reduction of spontaneous AMPA currents and intrinsic somatic excitability. In addition, PAE reduced the phosphorylation of AMPAR-containing GluA1 subunit, despite an increase in its total levels. Of note, the total levels of GluA2 and GluA3 AMPA receptors were enhanced as well. Consistently, at behavioral level, PAE reduced object recognition without altering locomotor activity. CONCLUSIONS Our study shows that PAE leads to dysfunctional formation of AMPAergic synapses that could be responsible for neurobehavioral impairments, contributing to the understanding of the pathogenesis of FASD.
Collapse
Affiliation(s)
- Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Alessia Costa
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Virginia Sordi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; School of Pharmacy, Pharmacology Unit, Centre for Neuroscience, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Giuseppe Ranieri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, Centre for Neuroscience, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, Centre for Neuroscience, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Department of Health Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
7
|
Cunningham LA, Tunc-Ozcan E, Rodriguez AM. Adult Hippocampal Neurogenesis as a Therapeutic Target in Fetal Alcohol Spectrum Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:93-109. [PMID: 40128476 DOI: 10.1007/978-3-031-81908-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This review is focused on adult hippocampal neurogenesis as a potential therapeutic target in fetal alcohol spectrum disorder (FASD). Adult hippocampal neurogenesis refers to the production of new hippocampal dentate granule cells (DGCs) from a replenishable pool of neural stem and progenitor cells throughout life. Adult-generated DGCs have been shown to exert a profound influence on hippocampal network activity in experimental animals and have been implicated in the regulation of many hippocampal-dependent behaviors and emotional states, including certain forms of learning and memory, anxiety, mood, and stress resilience. While adult hippocampal neurogenesis in humans remains controversial, many studies support its existence and impact on hippocampal function in human health and disease. Here, we review mechanisms of adult hippocampal neurogenesis under physiological conditions, as described primarily in rodent brain, its impact on network activity and behavior, and the negative effects of developmental alcohol exposure on this process. We then explore hippocampal neurogenesis as a potential target for FASD therapy using pharmacological and neurophysiological approaches known to stimulate adult hippocampal neurogenesis, currently available for clinical use in FASD patients.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | - Elif Tunc-Ozcan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Arasely M Rodriguez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Kunz Godói A, Canever L, Pacheco Rico E, Mastella G, Tonello M, Veadrigo N, de Bem Tomé B, da Silva Lemos I, Luiz Streck E, Zugno AL. The relationship between alcohol bingeing in the gestational period of wistar rats and the development of schizophrenia in the offspring adult life. Brain Res 2024; 1845:149270. [PMID: 39389527 DOI: 10.1016/j.brainres.2024.149270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The incidence of schizophrenia in young adulthood may be associated with intrauterine factors, such as gestational alcohol consumption. This study investigated the relationship between a single high dose of alcohol during pregnancy in Wistar rats and the development of schizophrenia in the adult life of the offspring. On the 11th day of gestation, pregnant rats received either water or alcohol via intragastric gavage. Male and female offspring were subjected to behavioral tests at 30 days of age according to the maternal group. At 60 days of age, offspring received intraperitoneal injections of ketamine (ket) or saline (SAL). After the final ketamine administration, the adult offspring underwent behavioral tests, and their brain structures were removed for biochemical analysis. Alcohol binge drinking during pregnancy induces hyperlocomotion in both young female and male offspring, with males of alcohol-exposed mothers showing reduced social interactions. In adult offspring, ketamine induced hyperlocomotion; however, only females in the alcohol + ket group exhibited increased locomotor activity, and a decrease in the time to first contact was observed in the alcohol group. Cognitive impairment was exclusively observed in male animals in the alcohol group. Increased serotonin and dopamine levels were observed in male rats in the alcohol + ket group. Biochemical alterations indicate the effects of intrauterine alcohol exposure associated with ketamine in adult animals. These behavioral and biochemical changes suggest that the impact of prenatal stressors such as alcohol persists throughout the animals' lives and may be exacerbated by a second stressor in adulthood, such as ketamine.
Collapse
Affiliation(s)
- Amanda Kunz Godói
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Gustavo Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Marina Tonello
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Natália Veadrigo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Beatriz de Bem Tomé
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Isabela da Silva Lemos
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Emílio Luiz Streck
- Neurometabolic Diseases Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Alexandra L Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
9
|
Gimbel BA, Roediger DJ, Anthony ME, Ernst AM, Tuominen KA, Mueller BA, de Water E, Rockhold MN, Wozniak JR. Normative modeling of brain MRI data identifies small subcortical volumes and associations with cognitive function in youth with fetal alcohol spectrum disorder (FASD). Neuroimage Clin 2024; 45:103722. [PMID: 39652996 PMCID: PMC11681830 DOI: 10.1016/j.nicl.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
AIM To quantify regional subcortical brain volume anomalies in youth with fetal alcohol spectrum disorder (FASD), assess the relative sensitivity and specificity of abnormal volumes in FASD vs. a comparison group, and examine associations with cognitive function. METHOD Participants: 47 children with FASD and 39 typically-developing comparison participants, ages 8-17 years, who completed physical evaluations, cognitive and behavioral testing, and an MRI brain scan. A large normative MRI dataset that controlled for sex, age, and intracranial volume was used to quantify the developmental status of 7 bilateral subcortical regional volumes. Z-scores were calculated based on volumetric differences from the normative sample. T-tests compared subcortical volumes across groups. Percentages of atypical volumes are reported as are sensitivity and specificity in discriminating groups. Lastly, Pearson correlations examined the relationships between subcortical volumes and neurocognitive performance. RESULTS Participants with FASD demonstrated lower mean volumes across a majority of subcortical regions relative to the comparison group with prominent group differences in the bilateral hippocampi and bilateral caudate. More individuals with FASD (89%) had one or more abnormally small volume compared to 72% of the comparison group. The bilateral hippocampi, bilateral putamen, and right pallidum were most sensitive in discriminating those with FASD from the comparison group. Exploratory analyses revealed associations between subcortical volumes and cognitive functioning that differed across groups. CONCLUSION In this sample, youth with FASD had a greater number of atypically small subcortical volumes than individuals without FASD. Findings suggest MRI may have utility in identifying individuals with structural brain anomalies resulting from PAE.
Collapse
Affiliation(s)
- Blake A Gimbel
- The Ohio State University and Nationwide Children's Hospital, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bailey CS, Craig AJ, Jagielo-Miller JE, Leibold CT, Keller PS, Beckmann JS, Prendergast MA. Late-term moderate prenatal alcohol exposure impairs tactile, but not spatial, discrimination in a T-maze continuous performance task in juvenile rats. Behav Brain Res 2024; 474:115208. [PMID: 39154755 PMCID: PMC11418090 DOI: 10.1016/j.bbr.2024.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Existing maze apparatuses used in rodents often exclusively assess spatial discriminability as a means to evaluate learning impairments. Spatial learning in such paradigms is reportedly spared by moderate prenatal alcohol exposure in rats, suggesting that spatial reinforcement alone is insufficient to delineate executive dysfunction, which consistently manifests in humans prenatally-exposed to alcohol. To address this, we designed a single-session continuous performance task in the T-maze apparatus that requires rats to discriminate within and between simultaneously-presented spatial (left or right) and tactile (sandpaper or smooth) stimuli for food reinforcement across four sequential discrimination stages: simple discrimination, intradimensional reversal 1, extradimensional shift, and intradimensional reversal 2. This design incorporates elements of working memory, attention, and goal-seeking behavior which collectively contribute to the executive function construct. Here, we found that rats prenatally-exposed to alcohol performed worse in both the tactile intradimensional reversal and extradimensional shift; alternatively, rats prenatally-exposed to alcohol acquired the extradimensional shift faster when shifting from the tactile to spatial dimension. In line with previous work, moderate prenatal alcohol exposure spared specifically spatial discrimination in this paradigm. However, when tactile stimuli were mapped into the spatial dimension, rats prenatally-exposed to alcohol required more trials to discriminate between the dimensions. We demonstrate that tactile stimuli can be operantly employed in a continuous performance T-maze task to detect discriminatory learning impairments in rats exposed to moderate prenatal alcohol. The current paradigm may be useful for assessing features of executive dysfunction in rodent models of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Caleb S Bailey
- Department of Psychology, University of Kentucky, United States; Department of Neuroscience, University of Kentucky, United States.
| | - Ashley J Craig
- Department of Neuroscience, University of Kentucky, United States
| | | | | | - Peggy S Keller
- Department of Psychology, University of Kentucky, United States
| | | | | |
Collapse
|
11
|
Hashimoto JG, Margolies N, Zhang X, Karpf J, Song Y, Davis BA, Zhang F, Linhardt RJ, Carbone L, Guizzetti M. Astrocyte extracellular matrix modulates neuronal dendritic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606424. [PMID: 39211148 PMCID: PMC11361265 DOI: 10.1101/2024.08.06.606424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Major developmental events occurring in the hippocampus during the third trimester of human gestation and neonatally in altricial rodents include rapid and synchronized dendritic arborization and astrocyte proliferation and maturation. We tested the hypothesis that signals sent by developing astrocytes to developing neurons modulate dendritic development in vivo. We altered neuronal development by neonatal (third trimester-equivalent) ethanol exposure in mice; this treatment increased dendritic arborization in hippocampal pyramidal neurons. We next assessed concurrent changes in the mouse astrocyte translatome by translating ribosomal affinity purification (TRAP)-seq. We followed up on ethanol-inhibition of astrocyte Chpf2 and Chsy1 gene translation because these genes encode for biosynthetic enzymes of chondroitin sulfate glycosaminoglycan (CS-GAG) chains (extracellular matrix components that inhibit neuronal development and plasticity) and have not been explored before for their roles in dendritic arborization. We report that Chpf2 and Chsy1 are enriched in astrocytes and their translation is inhibited by ethanol, which also reduces the levels of CS-GAGs measured by Liquid Chromatography/Mass Spectrometry. Finally, astrocyte-conditioned medium derived from Chfp2-silenced astrocytes increased neurite branching of hippocampal neurons in vitro. These results demonstrate that CS-GAG biosynthetic enzymes in astrocytes regulates dendritic arborization in developing neurons.
Collapse
Affiliation(s)
- Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Nicholas Margolies
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Joshua Karpf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Brett A. Davis
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Robert J. Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Lucia Carbone
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Genetics, Oregon Health & Science University, Portland, OR
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| |
Collapse
|
12
|
Green CR, Harding KD, Unsworth K, Kaminsky K, Roberts N, Nagpal TS, Cook JL. Reporting on Health Care and Social Service Provider Approaches to Promoting Alcohol Abstinence During Pregnancy. SOCIAL WORK IN PUBLIC HEALTH 2024; 39:422-433. [PMID: 38713493 DOI: 10.1080/19371918.2024.2323136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Despite the known detrimental health effects of alcohol use during pregnancy, there are still health care (HCP) and social service providers (SSP) who do not promote complete abstinence. The purpose of this study was to explore the current practices of HCPs and SSPs when discussing alcohol use during pregnancy, and to understand their rationale for their specific recommendations. An online survey was completed by 1123 HCPs (n = 588) and SSPs (n = 535) that asked them to identify their approach to discussing alcohol and pregnancy. Participants had the option to further explain their current recommendations regarding alcohol use during pregnancy in an open-ended format. Open-ended responses were analyzed using a content analysis approach (n = 156). The majority of respondents recommend abstinence (83.9% of HCPs, n = 493; 78.4% of SSPs, n = 419), while 9.8% of HCPs (n = 57) and 2.2% of SSPs (n = 12) responded that low levels of consumption may be acceptable. HCPs may recommend low levels of consumption based on other international guidelines, limited evidence to suggest that one unit of alcohol is harmful, and as a harm reduction strategy. SSPs stated that they refer clients to HCPs for recommendations related to alcohol consumption, and that they prefer to provide information based on public health guidelines. This exploratory work may inform the development of resources to support HCPs and SSPs to recommend abstinence from alcohol throughout gestation.
Collapse
Affiliation(s)
- Courtney R Green
- The Society of Obstetricians and Gynaecologists of Canada, Ottawa, ON, Canada
| | - Kelly D Harding
- The Canada Fetal Alcohol Spectrum Disorder Research Network, Vancouver, BC Canada
- Psychology Department, Laurentian University, Sudbury, ON, Canada
| | - Kathy Unsworth
- The Canada Fetal Alcohol Spectrum Disorder Research Network, Vancouver, BC Canada
| | - Kyla Kaminsky
- The Society of Obstetricians and Gynaecologists of Canada, Ottawa, ON, Canada
| | | | - Taniya S Nagpal
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Jocelynn L Cook
- The Society of Obstetricians and Gynaecologists of Canada, Ottawa, ON, Canada
- The Canada Fetal Alcohol Spectrum Disorder Research Network, Vancouver, BC Canada
- The University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Higgins SL, Bhadsavle SS, Gaytan MN, Thomas KN, Golding MC. Chronic paternal alcohol exposures induce dose-dependent changes in offspring craniofacial shape and symmetry. Front Cell Dev Biol 2024; 12:1415653. [PMID: 39011393 PMCID: PMC11246915 DOI: 10.3389/fcell.2024.1415653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Although dose-response analyses are a fundamental tool in developmental toxicology, few studies have examined the impacts of toxicant dose on the non-genetic paternal inheritance of offspring disease and dysgenesis. In this study, we used geometric morphometric analyses to examine the impacts of different levels of preconception paternal alcohol exposure on offspring craniofacial shape and symmetry in a mouse model. Procrustes ANOVA followed by canonical variant analysis of geometric facial relationships revealed that Low-, Medium-, and High-dose treatments each induced distinct changes in craniofacial shape and symmetry. Our analyses identified a dose threshold between 1.543 and 2.321 g/kg/day. Below this threshold, preconception paternal alcohol exposure induced changes in facial shape, including a right shift in facial features. In contrast, above this threshold, paternal exposures caused shifts in both shape and center, disrupting facial symmetry. Consistent with previous clinical studies, changes in craniofacial shape predominantly mapped to regions in the lower portion of the face, including the mandible (lower jaw) and maxilla (upper jaw). Notably, high-dose exposures also impacted the positioning of the right eye. Our studies reveal that paternal alcohol use may be an unrecognized factor contributing to the incidence and severity of alcohol-related craniofacial defects, complicating diagnostics of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Samantha L Higgins
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Sanat S Bhadsavle
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Matthew N Gaytan
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Kara N Thomas
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael C Golding
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Bourne LE, Jayash SN, Michels LV, Hopkinson M, Guppy FM, Clarkin CE, Gard P, Brissett N, Staines KA. Sexually dimorphic effects of prenatal alcohol exposure on the murine skeleton. Biol Sex Differ 2024; 15:51. [PMID: 38890762 PMCID: PMC11186175 DOI: 10.1186/s13293-024-00626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in lifelong disabilities known as foetal alcohol spectrum disorder (FASD) and is associated with childhood growth deficiencies and increased bone fracture risk. However, the effects of PAE on the adult skeleton remain unclear and any potential sexual dimorphism is undetermined. Therefore, we utilised a murine model to examine sex differences with PAE on in vitro bone formation, and in the juvenile and adult skeleton. METHODS Pregnant C57BL/6J female mice received 5% ethanol in their drinking water during gestation. Primary calvarial osteoblasts were isolated from neonatal offspring and mineralised bone nodule formation and gene expression assessed. Skeletal phenotyping of 4- and 12-week-old male and female offspring was conducted by micro-computed tomography (µCT), 3-point bending, growth plate analyses, and histology. RESULTS Osteoblasts from male and female PAE mice displayed reduced bone formation, compared to control (≤ 30%). Vegfa, Vegfb, Bmp6, Tgfbr1, Flt1 and Ahsg were downregulated in PAE male osteoblasts only, whilst Ahsg was upregulated in PAE females. In 12-week-old mice, µCT analysis revealed a sex and exposure interaction across several trabecular bone parameters. PAE was detrimental to the trabecular compartment in male mice compared to control, yet PAE females were unaffected. Both male and female mice had significant reductions in cortical parameters with PAE. Whilst male mice were negatively affected along the tibial length, females were only distally affected. Posterior cortical porosity was increased in PAE females only. Mechanical testing revealed PAE males had significantly reduced bone stiffness compared to controls; maximum load and yield were reduced in both sexes. PAE had no effect on total body weight or tibial bone length in either sex. However, total growth plate width in male PAE mice compared to control was reduced, whilst female PAE mice were unaffected. 4-week-old mice did not display the altered skeletal phenotype with PAE observed in 12-week-old animals. CONCLUSIONS Evidence herein suggests, for the first time, that PAE exerts divergent sex effects on the skeleton, possibly influenced by underlying sex-specific transcriptional mechanisms of osteoblasts. Establishing these sex differences will support future policies and clinical management of FASD.
Collapse
Affiliation(s)
- Lucie E Bourne
- School of Applied Sciences, Centre for Lifelong Health, University of Brighton, Lewes Road, Brighton, BN2 4GT, UK
| | - Soher N Jayash
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Lysanne V Michels
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark Hopkinson
- Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | - Fergus M Guppy
- Institute of Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Claire E Clarkin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Gard
- School of Applied Sciences, Centre for Lifelong Health, University of Brighton, Lewes Road, Brighton, BN2 4GT, UK
| | - Nigel Brissett
- School of Applied Sciences, Centre for Lifelong Health, University of Brighton, Lewes Road, Brighton, BN2 4GT, UK
| | - Katherine A Staines
- School of Applied Sciences, Centre for Lifelong Health, University of Brighton, Lewes Road, Brighton, BN2 4GT, UK.
| |
Collapse
|
15
|
Kizasu S, Sato T, Inoue Y, Tasaki H, Shirasuna K, Okiishi Y, Iwata H. Effect of low ethanol concentration in maturation medium on developmental ability, mitochondria, and gene expression profile in mouse oocytes. Reprod Biol 2024; 24:100854. [PMID: 38772287 DOI: 10.1016/j.repbio.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 05/23/2024]
Abstract
Ethanol affects pre-conceptional oocyte quality in women. In this study, we examined the effect of low ethanol concentrations on mouse oocytes. Oocytes were collected from the ovaries of 9-10 week old mice and allowed to mature in vitro in the presence of low concentrations of ethanol (0.1% and 0.2% v/v) for 24 h. Treatment of oocytes with ethanol (0.2%) during maturation decreased the mitochondrial DNA content and membrane potential compared to that in untreated ones, whereas the ATP content did not differ between the groups. Both 0.1% and 0.2% ethanol reduced the lipid content in the oocytes. In addition, immunostaining revealed that oocytes cultured in maturation medium containing ethanol (0.2%) had reduced levels of global DNA methylation and DNMT3A compared with untreated oocytes, and decreased rate of blastocyst development with low mitochondrial protein levels (TOMM40) in embryo. RNA-sequencing of the ethanol-treated (0.2%) and untreated oocytes revealed that mitochondria were a major target of ethanol. In conclusion, treatment of oocytes with low concentration of ethanol reduces the developmental rate to the blastocyst stage, with a lower total cell number and global DNA methylation. In addition, ethanol affected mitochondrial function and mitochondria-related gene expression.
Collapse
Affiliation(s)
- Susaki Kizasu
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Takuya Sato
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Yuki Inoue
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Hidetaka Tasaki
- Assisted Reproductive Technology Center, Okayama University, Okayama, Japan
| | - Komei Shirasuna
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Yuichi Okiishi
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Hisataka Iwata
- Animal Science, Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan.
| |
Collapse
|
16
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
17
|
Crichton A, Harris K, McGree JM, Nikles J, Anderson PJ, Williams K. Fetal alcohol spectrum disorder and attention deficit hyperactivity disorder stimulant trial in children: an N-of-1 pilot trial to compare stimulant to placebo (FASST): protocol. BMJ Open 2024; 14:e071266. [PMID: 38631835 PMCID: PMC11029357 DOI: 10.1136/bmjopen-2022-071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/21/2023] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Fetal alcohol spectrum disorder (FASD) is a neurodevelopmental disorder caused by alcohol exposure during pregnancy. FASD is associated with neurodevelopmental deviations, and 50%-94% of children with FASD meet the Diagnostic and Statistical Manual of Mental Disorders-fifth edition diagnostic criteria for attention deficit hyperactivity disorder (ADHD). There is a paucity of evidence around medication efficacy for ADHD symptoms in children with FASD. This series of N-of-1 trials aims to provide pilot data on the feasibility of conducting N-of-1 trials in children with FASD and ADHD. METHODS AND ANALYSIS A pilot N-of-1 randomised trial design with 20 cycles of stimulant and placebo (four cycles of 2-week duration) for each child will be conducted (n=20) in Melbourne, Australia.Feasibility and tolerability will be assessed using recruitment and retention rates, protocol adherence, adverse events and parent ratings of side effects. Each child's treatment effect will be determined by analysing teacher ADHD ratings across stimulant and placebo conditions (Wilcoxon rank). N-of-1 data will be aggregated to provide an estimate of the cohort treatment effect as well as individual-level treatment effects. We will assess the sample size and number of cycles required for a future trial. Potential mediating factors will be explored to identify variables that might be associated with treatment response variability. ETHICS AND DISSEMINATION The study was approved by the Hospital and Health Service Human Research Ethics Committee (HREC/74678/MonH-2021-269029), Monash (protocol V6, 25 June 2023).Individual outcome data will be summarised and provided to participating carers and practitioners to enhance care. Group-level findings will be presented at a local workshop to engage stakeholders. Findings will be presented at national and international conferences and published in peer-reviewed journals. All results will be reported so that they can be used to inform prior information for future trials. TRIAL REGISTRATION NUMBER NCT04968522.
Collapse
Affiliation(s)
- Alison Crichton
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Katrina Harris
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Developmental and Community Paediatrics, Monash Health, Clayton, Victoria, Australia
| | - James M McGree
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jane Nikles
- University of Queensland Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Peter J Anderson
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Jurczyk M, Król M, Midro A, Dyląg K, Kurnik-Łucka M, Skowron K, Gil K. The Impact of Prenatal Alcohol Exposure on the Autonomic Nervous System and Cardiovascular System in Rats in a Sex-Specific Manner. Pediatr Rep 2024; 16:278-287. [PMID: 38651463 PMCID: PMC11036276 DOI: 10.3390/pediatric16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorder (FASD) is a consequence of prenatal alcohol exposure (PAE) associated with a range of effects, including dysmorphic features, prenatal and/or postnatal growth problems, and neurodevelopmental difficulties. Despite advances in treatment methods, there are still gaps in knowledge that highlight the need for further research. The study investigates the effect of PAE on the autonomic system, including sex differences that may aid in early FASD diagnosis, which is essential for effective interventions. METHODS During gestational days 5 to 20, five pregnant female Wistar rats were orally administered either glucose or ethanol. After 22 days, 26 offspring were born and kept with their mothers for 21 days before being isolated. Electrocardiographic recordings were taken on the 29th and 64th day. Heart rate variability (HRV) parameters were collected, including heart rate (HR), standard deviation (SD), standard deviation of normal-to-normal intervals (SDNN), and the root mean square of successive differences between normal heartbeats (RMSSD). Additionally, a biochemical analysis of basic serum parameters was performed on day 68 of the study. RESULTS The study found that PAE had a significant impact on HRV. While electrolyte homeostasis remained mostly unaffected, sex differences were observed across various parameters in both control and PAE groups, highlighting the sex-specific effects of PAE. Specifically, the PAE group had lower mean heart rates, particularly among females, and higher SDNN and RMSSD values. Additionally, there was a shift towards parasympathetic activity and a reduction in heart rate entropy in the PAE group. Biochemical changes induced by PAE were also observed, including elevated levels of alanine transaminase (ALT) and aspartate aminotransferase (AST), especially in males, increased creatinine concentration in females, and alterations in lipid metabolism. CONCLUSIONS PAE negatively affects the development of the autonomic nervous system, resulting in decreased heart rate and altered sympathetic activity. PAE also induces cardiovascular abnormalities with sex-specific effects, highlighting a relationship between PAE consequences and sex. Elevated liver enzymes in the PAE group may indicate direct toxic effects, while increased creatinine levels, particularly in females, may suggest an influence on nephrogenesis and vascular function. The reduced potassium content may be linked to hypothalamus-pituitary-adrenal axis overactivity.
Collapse
Affiliation(s)
- Michał Jurczyk
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Magdalena Król
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Aleksandra Midro
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Katarzyna Dyląg
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- St. Louis Children Hospital, Strzelecka 2, 31-503 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Kamil Skowron
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
19
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
20
|
Villalba NM, Madarnas C, Bressano J, Sanchez V, Brusco A. Perinatal ethanol exposure affects cell populations in adult dorsal hippocampal neurogenic niche. Neurosci Res 2024; 198:8-20. [PMID: 37419388 DOI: 10.1016/j.neures.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Neurodevelopment is highly affected by perinatal ethanol exposure (PEE). In the adult brain, neurogenesis takes place in the dentate gyrus (DG) of the hippocampus and in the subventricular zone. This work aimed to analyze the effect of PEE on the cellular types involved in adult dorsal hippocampal neurogenesis phases using a murine model. For this purpose, primiparous female CD1 mice consumed only ethanol 6% v/v from 20 days prior to mating and along pregnancy and lactation to ensure that the pups were exposed to ethanol throughout pre- and early postnatal development. After weaning, pups had no further contact with ethanol. Cell types of the adult male dorsal DG were studied by immunofluorescence. A lower percentage of type 1 cells and immature neurons and a higher percentage of type 2 cells were observed in PEE animals. This decrease in type 1 cells suggests that PEE reduces the population of remnant progenitors of the dorsal DG present in adulthood. The increase in type 2 cells and the decrease in immature neurons indicate that, during neurodevelopment, ethanol alters the capacity of neuroblasts to become neurons in the adult neurogenic niche. These results suggest that pathways implicated in cell determination are affected by PEE and remain affected in adulthood.
Collapse
Affiliation(s)
- Nerina M Villalba
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Catalina Madarnas
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Julieta Bressano
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina
| | - Viviana Sanchez
- Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, CONICET, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, 1° Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
22
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
23
|
Boateng T, Beauchamp K, Torres F, Ruffaner-Hanson CD, Pinner JFL, Vakamudi K, Cerros C, Hill DE, Stephen JM. Brain structural differences in children with fetal alcohol spectrum disorder and its subtypes. Front Neurosci 2023; 17:1152038. [PMID: 37621716 PMCID: PMC10445146 DOI: 10.3389/fnins.2023.1152038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction The teratogenic effects of prenatal alcohol exposure (PAE) have been examined in animal models and humans. The current study extends the prior literature by quantifying differences in brain structure for individuals with a fetal alcohol spectrum disorder (FASD) compared to typically developing controls, as well as examining FASD subtypes. We hypothesized the FASD group would reveal smaller brain volume, reduced cortical thickness, and reduced surface area compared to controls, with the partial fetal alcohol syndrome (pFAS)/fetal alcohol syndrome (FAS) subtypes showing the largest effects and the PAE/alcohol-related neurodevelopmental disorder (ARND) subtype revealing intermediate effects. Methods The sample consisted of 123 children and adolescents recruited from a single site including children with a diagnosis of FASD/PAE (26 males, 29 females) and controls (34 males, 34 females). Structural T1-weighted MRI scans were obtained on a 3T Trio TIM scanner and FreeSurfer v7.2 was used to quantify brain volume, cortical thickness, and surface area. Analyses examined effects by subgroup: pFAS/FAS (N = 32, Mage = 10.7 years, SEage = 0.79), PAE/ARND (N = 23, Mage = 10.8, SEage = 0.94), and controls (N = 68, Mage = 11.1, SEage = 0.54). Results Total brain volume in children with an FASD was smaller relative to controls, but subtype analysis revealed only the pFAS/FAS group differed significantly from controls. Regional analyses similarly revealed reduced brain volume in frontal and temporal regions for children with pFAS/FAS, yet children diagnosed with PAE/ARND generally had similar volumes as controls. Notable differences to this pattern occurred in the cerebellum, caudate, and pallidum where children with pFAS/FAS and PAE/ARND revealed lower volume relative to controls. In the subset of participants who had neuropsychological testing, correlations between volume and IQ scores were observed. Goodness-of-Fit analysis by age revealed differences in developmental patterns (linear vs. quadratic) between groups in some cases. Discussion This study confirmed prior results indicating decreased brain volume in children with an FASD and extended the results by demonstrating differential effects by structure for FASD subtypes. It provides further evidence for a complex role of PAE in structural brain development that is likely related to the cognitive and behavioral effects experienced by children with an FASD.
Collapse
Affiliation(s)
- Theresah Boateng
- Department of Special Education, The University of New Mexico, Albuquerque, NM, United States
| | - Kathryn Beauchamp
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Faerl Torres
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Chaselyn D. Ruffaner-Hanson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - John F. L. Pinner
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Kishore Vakamudi
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Dina E. Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Julia M. Stephen
- The Mind Research Network, Division of the Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| |
Collapse
|
24
|
Petrelli B, Oztürk A, Pind M, Ayele H, Fainsod A, Hicks GG. Genetically programmed retinoic acid deficiency during gastrulation phenocopies most known developmental defects due to acute prenatal alcohol exposure in FASD. Front Cell Dev Biol 2023; 11:1208279. [PMID: 37397253 PMCID: PMC10311642 DOI: 10.3389/fcell.2023.1208279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) arises from maternal consumption of alcohol during pregnancy affecting 2%-5% of the Western population. In Xenopus laevis studies, we showed that alcohol exposure during early gastrulation reduces retinoic acid (RA) levels at this critical embryonic stage inducing craniofacial malformations associated with Fetal Alcohol Syndrome. A genetic mouse model that induces a transient RA deficiency in the node during gastrulation is described. These mice recapitulate the phenotypes characteristic of prenatal alcohol exposure (PAE) suggesting a molecular etiology for the craniofacial malformations seen in children with FASD. Gsc +/Cyp26A1 mouse embryos have a reduced RA domain and expression in the developing frontonasal prominence region and delayed HoxA1 and HoxB1 expression at E8.5. These embryos also show aberrant neurofilament expression during cranial nerve formation at E10.5 and have significant FASD sentinel-like craniofacial phenotypes at E18.5. Gsc +/Cyp26A1 mice develop severe maxillary malocclusions in adulthood. Phenocopying the PAE-induced developmental malformations with a genetic model inducing RA deficiency during early gastrulation strongly supports the alcohol/vitamin A competition model as a major molecular etiology for the neurodevelopmental defects and craniofacial malformations seen in children with FASD.
Collapse
Affiliation(s)
- B. Petrelli
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - A. Oztürk
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - M. Pind
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - H. Ayele
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - A. Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - G. G. Hicks
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
26
|
Thomas KN, Srikanth N, Bhadsavle SS, Thomas KR, Zimmel KN, Basel A, Roach AN, Mehta NA, Bedi YS, Golding MC. Preconception paternal ethanol exposures induce alcohol-related craniofacial growth deficiencies in fetal offspring. J Clin Invest 2023; 133:e167624. [PMID: 37040180 PMCID: PMC10231986 DOI: 10.1172/jci167624] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
|
27
|
Yasmin N, Collier AD, Abdulai AR, Karatayev O, Yu B, Fam M, Leibowitz SF. Role of Chemokine Cxcl12a in Mediating the Stimulatory Effects of Ethanol on Embryonic Development of Subpopulations of Hypocretin/Orexin Neurons and Their Projections. Cells 2023; 12:1399. [PMID: 37408233 PMCID: PMC10216682 DOI: 10.3390/cells12101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Studies in zebrafish and rats show that embryonic ethanol exposure at low-moderate concentrations stimulates hypothalamic neurons expressing hypocretin/orexin (Hcrt) that promote alcohol consumption, effects possibly involving the chemokine Cxcl12 and its receptor Cxcr4. Our recent studies in zebrafish of Hcrt neurons in the anterior hypothalamus (AH) demonstrate that ethanol exposure has anatomically specific effects on Hcrt subpopulations, increasing their number in the anterior AH (aAH) but not posterior AH (pAH), and causes the most anterior aAH neurons to become ectopically expressed further anterior in the preoptic area (POA). Using tools of genetic overexpression and knockdown, our goal here was to determine whether Cxcl12a has an important function in mediating the specific effects of ethanol on these Hcrt subpopulations and their projections. The results demonstrate that the overexpression of Cxcl12a has stimulatory effects similar to ethanol on the number of aAH and ectopic POA Hcrt neurons and the long anterior projections from ectopic POA neurons and posterior projections from pAH neurons. They also demonstrate that knockdown of Cxcl12a blocks these effects of ethanol on the Hcrt subpopulations and projections, providing evidence supporting a direct role of this specific chemokine in mediating ethanol's stimulatory effects on embryonic development of the Hcrt system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
28
|
Ghosal R, Borrego-Soto G, Eberhart JK. Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae. Front Physiol 2023; 14:1131075. [PMID: 36824468 PMCID: PMC9941677 DOI: 10.3389/fphys.2023.1131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Forming a vertebrate head involves the meticulous integration of multiple tissue types during development. Prenatal alcohol exposure is known to cause a variety of birth defects, especially to tissues in the vertebrate head. However, a systematic analysis of coordinated defects across tissues in the head is lacking. Here, we delineate the effects of ethanol on individual tissue types and their integration during craniofacial development. We found that exposure to 1% ethanol induced ectopic cranial muscle and nerve defects with only slight effects on skeletal pattern. Ectopic muscles were, however, unaccompanied by ectopic tendons and could be partially rescued by anesthetizing the larvae before muscle fibers appeared. This finding suggests that the ectopic muscles result from fiber detachment and are not due to an underlying muscle patterning defect. Interestingly, immobilization did not rescue the nerve defects, thus ethanol has an independent effect on each tissue even though they are linked in developmental time and space. Time-course experiments demonstrated an increase in nerve defects with ethanol exposure between 48hpf-4dpf. Time-lapse imaging confirmed the absence of nerve pathfinding or misrouting defects until 48hpf. These results indicate that ethanol-induced nerve defects occur at the time of muscle innervation and after musculoskeletal patterning. Further, we investigated the effect of ethanol on the neuromuscular junctions of the craniofacial muscles and found a reduced number of postsynaptic receptors with no significant effect on the presynaptic terminals. Our study shows that craniofacial soft tissues are particularly susceptible to ethanol-induced damage and that these defects appear independent from one another. Thus, the effects of ethanol on the vertebrate head appear highly pleiotropic.
Collapse
Affiliation(s)
| | | | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
29
|
Roach AN, Zimmel KN, Thomas KN, Basel A, Bhadsavle SS, Golding MC. Preconception paternal alcohol exposure decreases IVF embryo survival and pregnancy success rates in a mouse model. Mol Hum Reprod 2023; 29:gaad002. [PMID: 36637195 PMCID: PMC9907225 DOI: 10.1093/molehr/gaad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.
Collapse
Affiliation(s)
- Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sanat S Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
30
|
Impact of Prenatal Alcohol Exposure on the Development and Myocardium of Adult Mice: Morphometric Changes, Transcriptional Modulation of Genes Related to Cardiac Dysfunction, and Antioxidant Cardioprotection. Antioxidants (Basel) 2023; 12:antiox12020256. [PMID: 36829814 PMCID: PMC9952294 DOI: 10.3390/antiox12020256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The impact of prenatal alcohol exposure (PAE) varies considerably between individuals, leading to morphological and genetic changes. However, minor changes usually go undetected in PAE children. We investigated PAE's effects on gene transcription of genes related to cardiac dysfunction signaling in mouse myocardium and morphological changes. C57Bl/6 mice were subjected to a 10% PAE protocol. In postnatal days 2 and 60 (PN2 and PN60), morphometric measurements in the offspring were performed. Ventricular samples of the heart were collected in PN60 from male offspring for quantification of mRNA expression of 47 genes of nine myocardial signal transduction pathways related to cardiovascular dysfunction. Animals from the PAE group presented low birth weight than the Control group, but the differences were abolished in adult mice. In contrast, the mice's size was similar in PN2; however, PAE mice were oversized at PN60 compared with the Control group. Cardiac and ventricular indexes were increased in PAE mice. PAE modulated the mRNA expression of 43 genes, especially increasing the expressions of genes essential for maladaptive tissue remodeling. PAE animals presented increased antioxidant enzyme activities in the myocardium. In summary, PAE animals presented morphometric changes, transcription of cardiac dysfunction-related genes, and increased antioxidant protection in the myocardium.
Collapse
|
31
|
Lachman HM. Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders. PHENOTYPING OF HUMAN IPSC-DERIVED NEURONS 2023:173-200. [DOI: 10.1016/b978-0-12-822277-5.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Fish EW, Mendoza-Romero HN, Love CA, Dragicevich CJ, Cannizzo MD, Boschen KE, Hepperla A, Simon JM, Parnell SE. The pro-apoptotic Bax gene modifies susceptibility to craniofacial dysmorphology following gastrulation-stage alcohol exposure. Birth Defects Res 2022; 114:1229-1243. [PMID: 35396933 PMCID: PMC10103739 DOI: 10.1002/bdr2.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND During early development, alcohol exposure causes apoptotic cell death in discrete regions of the embryo which are associated with distinctive patterns of later-life abnormalities. In gastrulation, which occurs during the third week of human pregnancy, alcohol targets the ectoderm, the precursor of the eyes, face, and brain. This midline tissue loss leads to the craniofacial dysmorphologies, such as microphthalmia and a smooth philtrum, which define fetal alcohol syndrome (FAS). An important regulator of alcohol-induced cell death is the pro-apoptotic protein Bax. The current study determines if mice lacking the Bax gene are less susceptible to the pathogenic effects of gastrulation-stage alcohol exposure. METHODS Male and female Bax+/- mice mated to produce embryos with full (-/- ) or partial (+/- ) Bax deletions, or Bax+/+ wild-type controls. On Gestational Day 7 (GD 7), embryos received two alcohol (2.9 g/kg, 4 hr apart), or control exposures. A subset of embryos was collected 12 hr later and examined for the presence of apoptotic cell death, while others were examined on GD 17 for the presence of FAS-like facial features. RESULTS Full Bax deletion reduced embryonic apoptotic cell death and the incidence of fetal eye and face malformations, indicating that Bax normally facilitates the development of alcohol-induced defects. An RNA-seq analysis of GD 7 Bax+/+ and Bax-/- embryos revealed 63 differentially expressed genes, some of which may interact with the Bax deletion to further protect against apoptosis. CONCLUSIONS Overall, these experiments identify that Bax is a primary teratogenic mechanism of gastrulation-stage alcohol exposure.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Haley N Mendoza-Romero
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charlotte A Love
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Constance J Dragicevich
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael D Cannizzo
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Austin Hepperla
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Subramoney S, Joshi SH, Wedderburn CJ, Lee D, Roos A, Woods RP, Zar HJ, Narr K, Stein DJ, Donald KA. The impact of prenatal alcohol exposure on gray matter volume and cortical surface area of 2 to 3-year-old children in a South African birth cohort. Alcohol Clin Exp Res 2022; 46:1233-1247. [PMID: 35581528 PMCID: PMC9357164 DOI: 10.1111/acer.14873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is a growing literature that demonstrates the effects of prenatal alcohol exposure (PAE) on brain development in school-aged children. Less is known, however, on how PAE impacts the brain early in life. We investigated the effects of PAE and child sex on subcortical gray matter volume, cortical surface area (CSA), cortical volume (CV), and cortical thickness (CT) in children aged 2 to 3 years. METHODS The sample was recruited as a nested cross-sectional substudy of the Drakenstein Child Health Study. Images from T1-weighted magnetic resonance imaging were acquired on 47 alcohol-exposed and 124 control children (i.e., with no or minimal alcohol exposure), aged 2 to 3 years, some of whom were scanned as neonates. Brain images were processed through automated processing pipelines using FreeSurfer version 6.0. Subcortical and a priori selected cortical regions of interest were compared. RESULTS Subcortical volume analyses revealed a PAE by child sex interaction for bilateral putamen volumes (Left: p = 0.02; Right: p = 0.01). There was no PAE by child sex interaction effect on CSA, CV, and CT. Analyses revealed an impact of PAE on CSA (p = 0.04) and CV (p = 0.04), but not CT in this age group. Of note, the inferior parietal gyrus CSA was significantly smaller in children with PAE compared to control children. CONCLUSIONS Findings from this subgroup scanned at age 2 to 3 years build on previously described subcortical volume differences in neonates from this cohort. Findings suggest that PAE persistently affects gray matter development through the critical early years of life. The detectable influence of PAE on brain structure at this early age further highlights the importance of brain imaging studies on the impact of PAE on the young developing brain.
Collapse
Affiliation(s)
- Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
| | - Shantanu H. Joshi
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Department of Clinical ResearchLondon School of Hygiene and Tropical MedicineLondonUK
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - David Lee
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityStellenboschSouth Africa
| | - Roger P. Woods
- Departments of Neurology, Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Unit on Child & Adolescent Health, South African Medical Research Council (SAMRC)University of Cape TownCape TownSouth Africa
| | - Katherine L. Narr
- Departments of Neurology, Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dan J. Stein
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- SU/UCT MRC Unit on Risk and Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
34
|
Brosolo M, Lecointre M, Laquerrière A, Janin F, Genty D, Lebon A, Lesueur C, Vivien D, Marret S, Marguet F, Gonzalez BJ. In utero alcohol exposure impairs vessel-associated positioning and differentiation of oligodendrocytes in the developing neocortex. Neurobiol Dis 2022; 171:105791. [PMID: 35760273 DOI: 10.1016/j.nbd.2022.105791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is a major cause of nongenetic mental retardation and can lead to fetal alcohol syndrome (FAS), the most severe manifestation of fetal alcohol spectrum disorder (FASD). FASD infants present behavioral disabilities resulting from neurodevelopmental defects. Both grey and white matter lesions have been characterized and are associated with apoptotic death and/or ectopic migration profiles. In the last decade, it was shown that PAE impairs brain angiogenesis, and the radial organization of cortical microvessels is lost. Concurrently, several studies have reported that tangential migration of oligodendrocyte precursors (OPCs) originating from ganglionic eminences is vascular associated. Because numerous migrating oligodendrocytes enter the developing neocortex, the present study aimed to determine whether migrating OPCs interacted with radial cortical microvessels and whether alcohol-induced vascular impairments were associated with altered positioning and differentiation of cortical oligodendrocytes. Using a 3D morphometric analysis, the results revealed that in both human and mouse cortices, 15 to 40% of Olig2-positive cells were in close association with radial cortical microvessels, respectively. Despite perinatal vascular disorganization, PAE did not modify the vessel association of Olig2-positive cells but impaired their positioning between deep and superficial cortical layers. At the molecular level, PAE markedly but transiently reduced the expression of CNPase and MBP, two differentiation markers of immature and mature oligodendrocytes. In particular, PAE inverted their distribution profiles in cortical layers V and VI and reduced the thickness of the myelin sheath of efferent axons. These perinatal oligo-vascular defects were associated with motor disabilities that persisted in adults. Altogether, the present study provides the first evidence that Olig2-positive cells entering the neocortex are associated with radial microvessels. PAE disorganized the cortical microvasculature and delayed the positioning and differentiation of oligodendrocytes. Although most of these oligovascular defects occurred in perinatal life, the offspring developed long-term motor troubles. Altogether, these data suggest that alcohol-induced oligo-vascular impairments contribute to the neurodevelopmental issues described in FASD.
Collapse
Affiliation(s)
- M Brosolo
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - M Lecointre
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - A Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - F Janin
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Genty
- Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - A Lebon
- Normandie Univ, UNIROUEN, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, 76000 Rouen, France
| | - C Lesueur
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France
| | - S Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, 76000 Rouen, France
| | - F Marguet
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - B J Gonzalez
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France.
| |
Collapse
|
35
|
Kar P, Reynolds JE, Gibbard WB, McMorris C, Tortorelli C, Lebel C. Trajectories of brain white matter development in young children with prenatal alcohol exposure. Hum Brain Mapp 2022; 43:4145-4157. [PMID: 35596624 PMCID: PMC9374879 DOI: 10.1002/hbm.25944] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/08/2022] [Accepted: 04/16/2022] [Indexed: 12/22/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is associated with alterations to brain white matter microstructure. Previous studies of PAE have demonstrated different findings in young children compared to older children and adolescents, suggesting altered developmental trajectories and highlighting the need for longitudinal research. 122 datasets in 54 children with PAE (27 males) and 196 datasets in 89 children without PAE (45 males) were included in this analysis. Children underwent diffusion tensor imaging between 2 and 8 years of age, returning approximately every 6 months. Mean fractional anisotropy (FA) and mean diffusivity (MD) were obtained for 10 major brain white matter tracts and examined for age-related changes using linear mixed effects models with age, sex, group (PAE vs. control) and an age-by-group interaction. Children with PAE had slower decreases of MD over time in the genu of the corpus callosum, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus. No significant age-by-group interactions were noted for FA. These findings show slower white matter development in young children with PAE than in unexposed controls. This connects previous cross-sectional findings of lower MD in young children with PAE to findings of higher MD in older children and adolescents with PAE, and further helps to understand brain development in children with PAE. This deviation from typical development trajectories may reflect altered brain plasticity, which has implications for cognitive and behavioral learning in children with PAE.
Collapse
Affiliation(s)
- Preeti Kar
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jess E Reynolds
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - William Ben Gibbard
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Werklund School of Education, University of Calgary, Calgary, Alberta, Canada
| | | | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Mooney SM, Petrenko CL, Hamre KM, Brigman J. Proceedings of the 2021 annual meeting of the Fetal Alcohol Spectrum Disorders Study Group. Alcohol 2022; 102:23-33. [PMID: 35597423 PMCID: PMC10084849 DOI: 10.1016/j.alcohol.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The 2021 meeting of the Fetal Alcohol Spectrum Disorders Study Group (FASDSG) was titled "Role of Parental Experiences in Offspring Outcomes". The theme was reflected in the presentations of two keynote speakers: Edward Levin, Ph.D., who spoke about the role of paternal exposures in offspring development, and Catherine Monk, Ph.D., who spoke about the effects of maternal exposures and maternal mental health on offspring development. The conference included updates from three government agencies, short presentations by junior and senior investigators showcasing late-breaking FASD research, a report on international efforts to streamline FASD classifications for research, a presentation of observations from adults with FASD, a short film of people with FASDs describing their experiences, and a poster session. The conference was capped by awarding the 2021 Henry Rosett award for career-long contributions to the field to Cynthia J.M. Kane, Ph.D.
Collapse
|
37
|
Solar KG, Treit S, Beaulieu C. High-resolution diffusion tensor imaging identifies hippocampal volume loss without diffusion changes in individuals with prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:1204-1219. [PMID: 35567310 DOI: 10.1111/acer.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies of prenatal alcohol exposure (PAE) commonly report reduced hippocampal volumes, which animal models suggest may result from microstructural changes that include cell loss and altered myelination. Diffusion tensor imaging (DTI) is sensitive to microstructural changes but has not yet been used to study the hippocampus in PAE. METHODS Thirty-six healthy controls (19 females; 8 to 24 years) and 19 participants with PAE (8 females; 8 to 23 years) underwent high-resolution (1 mm isotropic) DTI, anatomical T1-weighted imaging, and cognitive testing. Whole-hippocampus, head, body, and tail subregions were manually segmented to yield DTI metrics (mean, axial, and radial diffusivities-MD, AD, and RD; fractional anisotropy-FA), volumes, and qualitative assessments of hippocampal morphology and digitations. Automated segmentation of T1-weighted images was used to corroborate manual whole-hippocampus volumes. RESULTS Gross morphology and digitation counts were similar in both groups. Whole-hippocampus volumes were 18% smaller in the PAE than the control group on manually traced diffusion images, but automated T1-weighted image segmentations were not significantly different. Subregion segmentation on DTI revealed reduced volumes of the body and tail, but not the head. There were no significant differences in diffusion metrics between groups for any hippocampal region. Correlations between age and volume were not significant in either group, whereas negative correlations between age and whole-hippocampus MD/AD/RD, and head/body (but not tail) MD/AD/RD were significant in both groups. There were no significant effects of sex, group by age, or group by sex for any hippocampal metric. In controls, seven positive linear correlations were found between hippocampal volume and cognition; five of these were left lateralized and included episodic and working memory, and two were right lateralized and included working memory and processing speed. In PAE, left tail MD positively correlated with executive functioning, and right head MD negatively correlated with episodic memory. CONCLUSIONS Reductions of hippocampal volumes and altered relationships with memory suggest disrupted hippocampal development in PAE.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Morozova TV, Shankar V, MacPherson RA, Mackay TFC, Anholt RRH. Modulation of the Drosophila transcriptome by developmental exposure to alcohol. BMC Genomics 2022; 23:347. [PMID: 35524193 PMCID: PMC9074282 DOI: 10.1186/s12864-022-08559-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prenatal exposure to ethanol can cause fetal alcohol spectrum disorder (FASD), a prevalent, preventable pediatric disorder. Identifying genetic risk alleles for FASD is challenging since time, dose, and frequency of exposure are often unknown, and manifestations of FASD are diverse and evident long after exposure. Drosophila melanogaster is an excellent model to study the genetic basis of the effects of developmental alcohol exposure since many individuals of the same genotype can be reared under controlled environmental conditions. RESULTS We used 96 sequenced, wild-derived inbred lines from the Drosophila melanogaster Genetic Reference Panel (DGRP) to profile genome-wide transcript abundances in young adult flies that developed on ethanol-supplemented medium or standard culture medium. We found substantial genetic variation in gene expression in response to ethanol with extensive sexual dimorphism. We constructed sex-specific genetic networks associated with alcohol-dependent modulation of gene expression that include protein-coding genes, Novel Transcribed Regions (NTRs, postulated to encode long non-coding RNAs) and female-specific coordinated regulation of snoRNAs that regulate pseudouridylation of ribosomal RNA. We reared DGRP lines which showed extreme upregulation or downregulation of snoRNA expression during developmental alcohol exposure on standard or ethanol supplemented medium and demonstrated that developmental exposure to ethanol has genotype-specific effects on adult locomotor activity and sleep. CONCLUSIONS There is significant and sex-specific natural genetic variation in the transcriptional response to developmental exposure to ethanol in Drosophila that comprises networks of genes affecting nervous system development and ethanol metabolism as well as networks of regulatory non-coding RNAs.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Bioskryb Genomics, 2810 Meridian Parkway, Suite 110, Durham, NC, 27713, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| |
Collapse
|
39
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
40
|
Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022; 14:nu14030688. [PMID: 35277047 PMCID: PMC8837993 DOI: 10.3390/nu14030688] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is common and represents a significant public health burden, yet very few interventions have been tested in FASD. Cognitive deficits are core features of FASD, ranging from broad intellectual impairment to selective problems in attention, executive functioning, memory, visual–perceptual/motor skills, social cognition, and academics. One potential intervention for the cognitive impairments associated with FASD is the essential nutrient choline, which is known to have numerous direct effects on brain and cognition in both typical and atypical development. We provide a summary of the literature supporting the use of choline as a neurodevelopmental intervention in those affected by prenatal alcohol. We first discuss how alcohol interferes with normal brain development. We then provide a comprehensive overview of the nutrient choline and discuss its role in typical brain development and its application in the optimization of brain development following early insult. Next, we review the preclinical literature that provides evidence of choline’s potential as an intervention following alcohol exposure. Then, we review a handful of existing human studies of choline supplementation in FASD. Lastly, we conclude with a review of practical considerations in choline supplementation, including dose, formulation, and feasibility in children.
Collapse
|
41
|
Harvey DC, De Zoysa P, Toubat O, Choi J, Kishore J, Tsukamoto H, Kumar SR. Concomitant genetic defects potentiate the adverse impact of prenatal alcohol exposure on cardiac outflow tract maturation. Birth Defects Res 2022; 114:105-115. [PMID: 34859965 PMCID: PMC10033225 DOI: 10.1002/bdr2.1968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is associated with an increased incidence of congenital heart defects (CHD), in particular outflow tract (OFT) defects. However, the variability in the incidence of CHD following PAE has not been fully explored. We hypothesize that a concomitant, relevant genetic defect would potentiate the adverse effect of PAE and partially explain the variability of PAE-induced CHD incidence. METHODS The OFT is formed by the second heart field (SHF). Our PAE model consisted of two intraperitoneal injections (3 g/kg, separated by 6 hr) of 30% ethanol on E6.5 during SHF specification. The impact of genetic defects was studied by SHF-specific loss of Delta-like ligand 4 (Dll4), fibroblast growth factor 8 (Fgf8) and Islet1. RESULTS Acute PAE alone significantly increased CHD incidence (4% vs. 26%, p = .015) with a particular increase in OFT alignment defects, viz., double outlet right ventricle (0 vs. 9%, p = .02). In embryos with a SHF genetic defect, acute PAE significantly increased CHD incidence (14 vs. 63%, p < .001), including double outlet right ventricle (6 vs. 50%, p < .001) compared to controls. PAE (p = .01) and heterozygous loss of Dll4 (p = .04) were found to independently contribute to CHD incidence, while neither Islet1 nor Fgf8 defects were found to be significant. CONCLUSIONS Our model recapitulates the increased incidence of OFT alignment defects seen in the clinic due to PAE. The presence of a concomitant SHF genetic mutation increases the incidence of PAE-related OFT defects. An apparent synergistic interaction between PAE and the loss of DLL4-mediated Notch signaling in OFT alignment requires further analysis.
Collapse
Affiliation(s)
- Drayton C Harvey
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Prashan De Zoysa
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Omar Toubat
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Jongkyu Choi
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Jahnavi Kishore
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA
- Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| |
Collapse
|
42
|
Chen MH, Hong CL, Wang YT, Wang TJ, Chen JR. The Effect of Astaxanthin Treatment on the Rat Model of Fetal Alcohol Spectrum Disorders (FASD). Brain Res Bull 2022; 183:57-72. [DOI: 10.1016/j.brainresbull.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
|
43
|
Harvey DC, Baer RJ, Bandoli G, Chambers CD, Jelliffe-Pawlowski LL, Kumar SR. Association of Alcohol Use Diagnostic Codes in Pregnancy and Offspring Conotruncal and Endocardial Cushion Heart Defects. J Am Heart Assoc 2022; 11:e022175. [PMID: 35014860 PMCID: PMC9238516 DOI: 10.1161/jaha.121.022175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The pathogenesis of congenital heart disease (CHD) remains largely unknown, with only a small percentage explained solely by genetic causes. Modifiable environmental risk factors, such as alcohol, are suggested to play an important role in CHD pathogenesis. We sought to evaluate the association between prenatal alcohol exposure and CHD to gain insight into which components of cardiac development may be most vulnerable to the teratogenic effects of alcohol. Methods and Results This was a retrospective analysis of hospital discharge records from the California Office of Statewide Health Planning and Development and linked birth certificate records restricted to singleton, live‐born infants from 2005 to 2017. Of the 5 820 961 births included, 16 953 had an alcohol‐related International Classification of Diseases, Ninth and Tenth Revisions (ICD‐9; ICD‐10) code during pregnancy. Log linear regression was used to calculate risk ratios (RR) for CHD among individuals with an alcohol‐related ICD‐9 and ICD10 code during pregnancy versus those without. Three models were created: (1) unadjusted, (2) adjusted for maternal demographic factors, and (3) adjusted for maternal demographic factors and comorbidities. Maternal alcohol‐related code was associated with an increased risk for CHD in all models (RR, 1.33 to 1.84); conotruncal (RR, 1.62 to 2.11) and endocardial cushion (RR, 2.71 to 3.59) defects were individually associated with elevated risk in all models. Conclusions Alcohol‐related diagnostic codes in pregnancy were associated with an increased risk of an offspring with a CHD, with a particular risk for endocardial cushion and conotruncal defects. The mechanistic basis for this phenotypic enrichment requires further investigation.
Collapse
Affiliation(s)
- Drayton C Harvey
- Department of Surgery Keck School of Medicine of University of Southern California Los Angeles CA
| | - Rebecca J Baer
- Department of Pediatrics and Herbert Wertheim School of Public Health and Longevity Science University of California San Diego La Jolla CA.,The California Preterm Birth Initiative University of California San Francisco San Francisco CA.,Department of Obstetrics, Gynecology and Reproductive Sciences University of California San Francisco San Francisco CA
| | - Gretchen Bandoli
- Department of Pediatrics and Herbert Wertheim School of Public Health and Longevity Science University of California San Diego La Jolla CA
| | - Christina D Chambers
- Department of Pediatrics and Herbert Wertheim School of Public Health and Longevity Science University of California San Diego La Jolla CA
| | - Laura L Jelliffe-Pawlowski
- The California Preterm Birth Initiative University of California San Francisco San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco San Francisco CA
| | - S Ram Kumar
- Department of Surgery Keck School of Medicine of University of Southern California Los Angeles CA.,Department of Pediatrics Keck School of Medicine of University of Southern California Los Angeles CA.,Heart Institute, Children's Hospital Los Angeles Los Angeles CA
| |
Collapse
|
44
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
45
|
Suresh S, Abozaid A, Tsang B, Gerlai R. Exposure of parents to alcohol alters behavior of offspring in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110143. [PMID: 33096155 DOI: 10.1016/j.pnpbp.2020.110143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Alcoholism and alcohol abuse represent a significant medical and societal problem, and have been thoroughly investigated in humans as well as using animal models. A less well understood aspect of alcohol related disorders is the possible effect of this drug on offspring whose parents were exposed prior to conception. The zebrafish has been successfully employed in alcohol research, however, the effect of exposing the parents to alcohol before fertilization of the eggs on offspring has not been demonstrated in this species. In this proof of concept study, we attempt to address this hiatus. We exposed both adult male and female zebrafish to 0.0% (control) or 0.5% (vol/vol) alcohol chronically for 7 days, subsequently bred the fish within their respective treatment group, collected the fertilized eggs, allowed them to develop, and tested the behavior of free-swimming offspring at their age of 7-9 days post-fertilization. We conducted the analysis in two genetically distinct quasi-inbred strains of zebrafish, AB and TL. Although gross morphology and general activity of the fish appeared unaffected, we found significant behavioral alterations in offspring of alcohol exposed parents compared to offspring of control parents in both strains. These alterations included robustly increased duration and reduced frequency of immobility, increased turn angle, and increased intra-individual variance of turn angle in offspring of alcohol exposed parents in both strains. The mechanisms underlying these behavioral effects or whether the effects are due to exposure of the father, the mother, or both to alcohol are unknown. Nevertheless, our results now set the stage for future studies with zebrafish that will address these questions.
Collapse
Affiliation(s)
| | - Amira Abozaid
- Department of Cell & System Biology, University of Toronto, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Canada; Department of Cell & System Biology, University of Toronto, Canada.
| |
Collapse
|
46
|
Mooney SM, Pjetri E, Friday WB, Smith SM. Growth and behavioral differences in a C57BL/6J mouse model of prenatal alcohol exposure. Alcohol 2021; 97:51-57. [PMID: 34592334 DOI: 10.1016/j.alcohol.2021.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce behavioral deficits in the presence or absence of growth and morphological deficits. Here, we describe a murine PAE model having parallels to the clinical diagnosis of alcohol-related neurodevelopmental deficit (ARND). METHODS Pregnant C57BL/6J mice were gavaged with alcohol (ALC, 3 g/kg) or maltodextrin daily on embryonic days (E) E8.5 through E17.5. Blood alcohol levels were 211 ± 14 mg/dL at 30 min post-gavage. Offspring behavior was tested at adolescence. RESULTS ALC dams gained less weight during the alcohol exposure period (p = 0.035). ALC male and female pups weighed more than controls at P15 (p ≤ 0.001) and P22 (p ≤ 0.001), but not at P37, perhaps because their dams were pair-housed. During the training session for accelerating rotarod, control offspring trended to stay longer on the rotarod than did ALC offspring [F(1,54) = 2.892, p = 0.095]. In the Y-maze, ALC offspring had a higher percent alternation than did controls [F(1,54) = 16.577, p < 0.001], but activity level did not appear to differ. In the fear-conditioning test, there was no ALC effect in the training trial. In the contextual test, there was a group × minute effect for males [F(4,120) = 2.94, p = 0.023], and ALC trended to freeze less than controls in minute 1 (p = 0.076) and froze less in minute 2 (p = 0.02). In the cue test, there was a trend for a group-sex interaction [F(1,53) = 3.008, p = 0.089] on overall freezing, such that ALC males (p < 0.05) again froze less than control males, whereas ALC females (p < 0.05) froze more than control females. CONCLUSIONS This mouse model of PAE, using a repeated intermediate exposure, produces modest behavioral impairments that are consistent along the continuum of PAE models, including deficits in associative memory and hyper-responsivity. The lack of growth or morphological deficits suggests these mice may model aspects of ARND.
Collapse
|
47
|
Gard P. Ethanol: Toxicity and Dangers in Women of Child-Bearing Age. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2021. [DOI: 10.18321/ectj1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The World Health Organisation estimates that alcohol abuse by adults accounts for about 5% of global disease burden. Additionally, prenatal alcohol exposure (PAE) causes ‘fetal alcohol spectrum disorder’ (FASD). Depending on severity, FASD is characterised by low birth weight, small head size at birth and growth retardation. There are also facial features of narrow eyes, flat upper lip and midface and impaired fine motor skills, hearing loss, poor hand-eye coordination and cognitive impairment. World-wide, up to 10% of children may be affected by PAE. It is unclear what dose or pattern of drinking results in these damaging effects, but animal models suggest that high, acute doses of ethanol (‘binge drinking’) in early pregnancy can result in the facial changes of FASD, whilst sustained, lower dose intake in later pregnancy produces anxiety and depression-like symptoms and deficits of learning and memory. The mechanisms underlying the deleterious effects of PAE are also unresolved, but evidence exists of long-lasting damage due to oxidative stress, increases in inflammatory mediators and changes to the brain renin-angiotensin system. There is also evidence of epigenetic changes. There is a need to prevent or limit the potential adverse effects of ethanol on the unborn child. It is highly unlikely, however, that all sexually-active women of child-bearing age not using reliable contraception will abstain from alcohol. There is therefore a need to research methods of reducing ethanol toxicity for the unborn child and / or develop therapeutic strategies to reverse the deleterious effects of ethanol on the unborn child.
Collapse
|
48
|
Lussier AA, Bodnar TS, Moksa M, Hirst M, Kobor MS, Weinberg J. Prenatal Adversity Alters the Epigenetic Profile of the Prefrontal Cortex: Sexually Dimorphic Effects of Prenatal Alcohol Exposure and Food-Related Stress. Genes (Basel) 2021; 12:genes12111773. [PMID: 34828381 PMCID: PMC8622940 DOI: 10.3390/genes12111773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023] Open
Abstract
Prenatal adversity or stress can have long-term consequences on developmental trajectories and health outcomes. Although the biological mechanisms underlying these effects are poorly understood, epigenetic modifications, such as DNA methylation, have the potential to link early-life environments to alterations in physiological systems, with long-term functional implications. We investigated the consequences of two prenatal insults, prenatal alcohol exposure (PAE) and food-related stress, on DNA methylation profiles of the rat brain during early development. As these insults can have sex-specific effects on biological outcomes, we analyzed epigenome-wide DNA methylation patterns in prefrontal cortex, a key brain region involved in cognition, executive function, and behavior, of both males and females. We found sex-dependent and sex-concordant influences of these insults on epigenetic patterns. These alterations occurred in genes and pathways related to brain development and immune function, suggesting that PAE and food-related stress may reprogram neurobiological/physiological systems partly through central epigenetic changes, and may do so in a sex-dependent manner. Such epigenetic changes may reflect the sex-specific effects of prenatal insults on long-term functional and health outcomes and have important implications for understanding possible mechanisms underlying fetal alcohol spectrum disorder and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: (A.A.L.); (J.W.)
| | - Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.M.); (M.H.)
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.M.); (M.H.)
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON M5G 1M1, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Correspondence: (A.A.L.); (J.W.)
| |
Collapse
|
49
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
50
|
Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 2021; 31:447-471. [PMID: 32789537 PMCID: PMC7878584 DOI: 10.1007/s11065-020-09450-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa M Savage
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA.
| | - Polliana T Nunes
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA
| | - Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|