1
|
Zhu Y, Cai K, Guo L, Zhang H, Guan L, Zhang Z, Huang P, Yang S. Thrombospondin-1 induces immunogenic cell death in human mucoepidermoid carcinoma MC-3 cells via the PERK/eIF2α signaling pathway: potential implications for tumor immunotherapy. Discov Oncol 2025; 16:576. [PMID: 40253314 PMCID: PMC12009254 DOI: 10.1007/s12672-025-02315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
OBJECTIVE To investigate whether Thrombospondin-1 (TSP-1) induces immunogenic cell death (ICD) in human mucoepidermoid carcinoma (MC-3) cells and explore its potential to induce calreticulin (CRT) exposure via the PERK/eIF2α signaling pathway. METHODS The MC-3 cell line was used as the research model. The CCK-8 assay was performed to determine the optimal seeding density, TSP-1 concentration, and treatment time. Annexin V/PI double staining combined with flow cytometry was used to assess apoptosis across different experimental groups (blank control, TSP-1, paclitaxel (PTX), TSP-1 + PTX). Cells were divided into groups: blank control, PTX, TSP-1, TSP-1 + ISRIB (ISRIB: Integrated Stress Response Inhibitor), and TSP-1 + PTX, and CRT expression was detected by flow cytometry. Immunofluorescence, Western blot, and qPCR were used to detect the expression of PERK (Protein Kinase R-like Endoplasmic Reticulum Kinase), eIF2α (eukaryotic Initiation Factor 2α), and CRT. All experiments were performed in triplicate, and data were analyzed using GraphPad Prism 8.0 software. Statistical significance was set at P < 0.05. RESULTS At a seeding density of 2 × 104/mL, MC-3 cells reached the growth plateau by day six. The optimal concentration and duration of TSP-1 treatment were 0.1 μmol/L and 72 h, respectively. Flow cytometry, immunofluorescence, Western blot, and qPCR results revealed that TSP-1 significantly induced CRT exposure in MC-3 cells (P < 0.05), accompanied by the upregulation of PERK and eIF2α expression (P < 0.05). Co-treatment with PTX further enhanced these effects, while the addition of ISRIB reduced the expression of PERK, eIF2α, and CRT (P < 0.05). CONCLUSION TSP-1 induces ICD in MC-3 cells, accompanied by CRT exposure, potentially mediated through the activation of the PERK/eIF2α signaling pathway. These findings suggest that TSP-1 may have potential as an adjunct to chemotherapy for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Yixuan Zhu
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Kaizhi Cai
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Lijuan Guo
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Huan Zhang
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Li Guan
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Zongyao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, No. 203 Huai Bin Road, Tian Jia'an District, Huainan, 232007, China
| | - Pengcheng Huang
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China
| | - Sen Yang
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, China.
| |
Collapse
|
2
|
Xu J, Liu S, Jin Y, Wang L, Gao J. MicroRNAs and lysosomal membrane proteins: Critical interactions in tumor progression and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189303. [PMID: 40132693 DOI: 10.1016/j.bbcan.2025.189303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Cancer development is influenced by genetic and epigenetic variations, with the interactions between microRNAs (miRNAs) and lysosomal membrane proteins (LMPs) representing key regulatory mechanisms with potential as therapeutic targets. This review focuses on the complex regulatory mechanisms of miRNAs and LMPs in tumor progression, specifically highlighting their roles in tumor suppression, tumor promotion, tumor therapy, and drug resistance and their future application in treatment strategies. Overall, the interactions of LMPs with miRNAs have critical roles in tumor regulation, and studies of these interactions will further highlight their molecular contributions to cancer development.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Shiqiang Liu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China
| | - Yujie Jin
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China; Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, Anhui, China.
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
3
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Chen J, Ikeda SI, Yang Y, Zhang Y, Ma Z, Liang Y, Negishi K, Tsubota K, Kurihara T. Scleral remodeling during myopia development in mice eyes: a potential role of thrombospondin-1. Mol Med 2024; 30:25. [PMID: 38355399 PMCID: PMC10865574 DOI: 10.1186/s10020-024-00795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Scleral extracellular matrix (ECM) remodeling plays a crucial role in the development of myopia, particularly in ocular axial elongation. Thrombospondin-1 (THBS1), also known as TSP-1, is a significant cellular protein involved in matrix remodeling in various tissues. However, the specific role of THBS1 in myopia development remains unclear. METHOD We employed the HumanNet database to predict genes related to myopic sclera remodeling, followed by screening and visualization of the predicted genes using bioinformatics tools. To investigate the potential target gene Thbs1, we utilized lens-induced myopia models in male C57BL/6J mice and performed Western blot analysis to detect the expression level of scleral THBS1 during myopia development. Additionally, we evaluated the effects of scleral THBS1 knockdown on myopia development through AAV sub-Tenon's injection. The refractive status and axial length were measured using a refractometer and SD-OCT system. RESULTS During lens-induced myopia, THBS1 protein expression in the sclera was downregulated, particularly in the early stages of myopia induction. Moreover, the mice in the THBS1 knockdown group exhibited alterations in myopia development in both refraction and axial length changed compared to the control group. Western blotting analysis confirmed the effectiveness of AAV-mediated knockdown, demonstrating a decrease in COLA1 expression and an increase in MMP9 levels in the sclera. CONCLUSION Our findings indicate that sclera THBS1 levels decreased during myopia development and subsequent THBS1 knockdown showed a decrease in scleral COLA1 expression. Taken together, these results suggest that THBS1 plays a role in maintaining the homeostasis of scleral extracellular matrix, and the reduction of THBS1 may promote the remodeling process and then affect ocular axial elongation during myopia progression.
Collapse
Affiliation(s)
- Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shin-Ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yajing Yang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yan Zhang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ziyan Ma
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yifan Liang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Tsubota Laboratory, Inc, 34 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Touchaei AZ, Vahidi S, Samadani AA. Decoding the interaction between miR-19a and CBX7 focusing on the implications for tumor suppression in cancer therapy. Med Oncol 2023; 41:21. [PMID: 38112798 DOI: 10.1007/s12032-023-02251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023]
Abstract
Cancer is a complex and multifaceted disease characterized by uncontrolled cell growth, genetic alterations, and disruption of normal cellular processes, leading to the formation of malignant tumors with potentially devastating consequences for patients. Molecular research is important in the diagnosis and treatment, one of the molecular mechanisms involved in various cancers is the fluctuation of gene expression. Non-coding RNAs, especially microRNAs, are involved in different stages of cancer. MicroRNAs are small RNA molecules that are naturally produced within cells and bind to the 3'-UTR of target mRNA, repressing gene expression by regulating translation. Overexpression of miR-19a has been reported in human malignancies. Upregulation of miR-19a as a member of the miR-17-92 cluster is key to tumor formation, cell proliferation, survival, invasion, metastasis, and drug resistance. Furthermore. bioinformatics and in vitro data reveal that the miR-19a-3p isoform binds to the 3'UTR of CBX7 and was identified as the miR-19a-3p target gene. CBX7 is known as a tumor suppressor. This review initially describes the regulation of mir-19a in multiple cancers. Accordingly, the roles of miR-19 in affecting its target gene expression CBX7 in carcinoma also be discussed.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Yang X, Luo Y, Li M, Jin Z, Chen G, Gan C. Long non-coding RNA NBR2 suppresses the progression of colorectal cancer by downregulating miR-19a to regulate M2 macrophage polarization. CHINESE J PHYSIOL 2023; 66:546-557. [PMID: 38149567 DOI: 10.4103/cjop.cjop-d-23-00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.
Collapse
Affiliation(s)
- Xiaoting Yang
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Ye Luo
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Mengying Li
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Zhan Jin
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Gao Chen
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Chunchun Gan
- School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang, China
| |
Collapse
|
7
|
Huang B, Lu Y, Ni Z, Liu J, He Y, An H, Ye F, Shen J, Lin M, Chen Y, Lin J. ANRIL promotes the regulation of colorectal cancer on lymphatic endothelial cells via VEGF-C and is the key target for Pien Tze Huang to inhibit cancer metastasis. Cancer Gene Ther 2023; 30:1260-1273. [PMID: 37286729 PMCID: PMC10501904 DOI: 10.1038/s41417-023-00635-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
lncRNA ANRIL is an oncogene, however the role of ANRIL in the regulation of colorectal cancer on human lymphatic endothelial cells (HLECs) is remain elusive. Pien Tze Huang (PZH, PTH) a Tradition Chinese Medicine (TCM) as an adjunctive medication could inhibit the cancer metastasis, however the mechanism still uncovering. We used network pharmacology, subcutaneous and orthotopic transplanted colorectal tumors models to determine the effect of PZH on tumor metastasis. Differential expressions of ANRIL in colorectal cancer cells, and stimulating the regulation of cancer cells on HLECs by culturing HLECs with cancer cells' supernatants. Network pharmacology, transcriptomics, and rescue experiments were carried out to verify key targets of PZH. We found PZH interfered with 32.2% of disease genes and 76.7% of pathways, and inhibited the growth of colorectal tumors, liver metastasis, and the expression of ANRIL. The overexpression of ANRIL promoted the regulation of cancer cells on HLECs, leading to lymphangiogenesis, via upregulated VEGF-C secretion, and alleviated the effect of PZH on inhibiting the regulation of cancer cells on HLECs. Transcriptomic, network pharmacology and rescue experiments show that PI3K/AKT pathway is the most important pathway for PZH to affect tumor metastasis via ANRIL. In conclusion, PZH inhibits the regulation of colorectal cancer on HLECs to alleviate tumor lymphangiogenesis and metastasis by downregulating ANRIL dependent PI3K/AKT/VEGF-C pathway.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Yao Lu
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Jinhong Liu
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Yanbin He
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Honglin An
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Feimin Ye
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Jiayu Shen
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Minghe Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Yong Chen
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China.
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China.
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Shin W, Yun J, Han K, Park DG. Comparison of genetic variation between primary colorectal cancer and metastatic peritoneal cancer. Genes Genomics 2023; 45:989-1001. [PMID: 37277571 DOI: 10.1007/s13258-023-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Among cancer metastases by primary colorectal cancer (CRC), peritoneal metastasis is the second most common metastatic lesion after liver metastasis. In treating metastatic CRC, it is very important to differentiate targeted-therapy and chemotherapy according to the characteristics of each lesion because the genetic variation of the primary and metastatic lesions are different. However, there are few studies of genetic characteristics on peritoneal metastasis caused by primary CRC, so molecular-level studies are continuously required. OBJECTIVE We propose an appropriate peritoneal metastasis treatment policy by identifying the genetic characteristics between primary CRC and synchronous peritoneal metastatic lesions. METHODS Primary CRC and synchronous peritoneal metastasis samples were analyzed in pairs from six patients using Comprehensive Cancer Panel (409 cancer-related genes, Thermo Fisher Scientific, USA) and next-generation sequencing (NGS). RESULTS The mutations were commonly found on the KMT2C and THBS1 genes in both primary CRC and peritoneal metastasis. The PDE4DIP gene was mutated in all cases except for on a sample of peritoneal metastasis. As a result of analysis using the mutation database, we confirmed that the gene mutations of primary CRC and the peritoneal metastasis derived from it showed the same tendency, although we did not accompany the gene expression level or epigenetic study. CONCLUSION It is thought that the treatment policy through molecular genetic testing of primary CRC can also be applied to peritoneal metastasis treatment. Our study is expected to be the basis for further peritoneal metastasis research.
Collapse
Affiliation(s)
- Wonseok Shin
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, Republic of Korea
| | - Jeongseok Yun
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Kyudong Han
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, Republic of Korea.
- Department of Microbiology, Dankook University, Cheonan, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea.
- R&D Center, HuNbiome Co., Ltd, Seoul, Republic of Korea.
| | - Dong-Guk Park
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, Republic of Korea.
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
9
|
Hong Y, Kim I, Moon H, Lee J, Lertpatipanpong P, Ryu CH, Jung YS, Seok J, Kim Y, Ryu J, Baek SJ. Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis. Oncogene 2023:10.1038/s41388-023-02692-9. [PMID: 37055552 DOI: 10.1038/s41388-023-02692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.
Collapse
Affiliation(s)
- Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chang Hwan Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yuh-Seog Jung
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jungirl Seok
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
10
|
Zhang W, Zhang Q, Cui Q, Xu Y. MiR-3612 targeting THBS1 suppresses nasopharyngeal carcinoma progression by PI3K/AKT signaling pathway. Hum Exp Toxicol 2023; 42:9603271221150248. [PMID: 36607163 DOI: 10.1177/09603271221150248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNA-3612 (miR-3612) is considered a tumor suppressor in different cancers. Nonetheless, its function in nasopharyngeal carcinoma (NPC) has yet to be uncovered. METHODS NPC cells and tissues were tested by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and western blotting to quantify the expressions of miR-3612 and Thrombospondin 1 (THBS1). Cell Counting Kit-8 (CCK-8) and scratch experiments were carried out to evaluate the migration and proliferation of NPC cells. NPC cell adhesion was also assessed. The predicted interaction of miR-3612 with THBS1 was verified by means of a luciferase reporter assay. In vivo experiments were also conducted to examine how miR-3612 overexpression affects in vivo tumorigenicity. Lastly, phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway status was assessed via western blotting. RESULTS MiR-3612 was downregulated in NPC cells and tissues, whereas THBS1 expression showed an opposite trend. The MiR-3612 mimic inhibited the NPC cell proliferation, adhesion, and migration and also inactivated the PI3K/AKT signaling pathway. Furthermore, miR-3612 mimic also hampered NPC tumorigenesis in vivo. MiR-3612 targeted THBS1 and downregulated THBS1 expression. THBS1 offset the miR-3612-overexpression-induced repression of the migration, adhesion, and proliferation of NPC cells via the activation of the PI3K/AKT pathway. CONCLUSION MiR-3612 retarded NPC cell migration, adhesion, and proliferation by targeting THBS1 and inactivating the PI3K/AKT signaling pathway. This provides a novel therapeutic approach for NPC intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhang
- Department of Otorhinolaryngology, 593237Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Qianbo Cui
- Department of Otorhinolaryngology Head and Neck Surgery, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Cadamuro M, Romanzi A, Guido M, Sarcognato S, Cillo U, Gringeri E, Zanus G, Strazzabosco M, Simioni P, Villa E, Fabris L. Translational Value of Tumor-Associated Lymphangiogenesis in Cholangiocarcinoma. J Pers Med 2022; 12:jpm12071086. [PMID: 35887583 PMCID: PMC9324584 DOI: 10.3390/jpm12071086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The prognosis of cholangiocarcinoma remains poor in spite of the advances in immunotherapy and molecular profiling, which has led to the identification of several targetable genetic alterations. Surgical procedures, including both liver resection and liver transplantation, still represent the treatment with the best curative potential, though the outcomes are significantly compromised by the early development of lymph node metastases. Progression of lymphatic metastasis from the primary tumor to tumor-draining lymph nodes is mediated by tumor-associated lymphangiogenesis, a topic largely overlooked until recently. Recent findings highlight tumor-associated lymphangiogenesis as paradigmatic of the role played by the tumor microenvironment in sustaining cholangiocarcinoma invasiveness and progression. This study reviews the current knowledge about the intercellular signaling and molecular mechanism of tumor-associated lymphangiogenesis in cholangiocarcinoma in the hope of identifying novel therapeutic targets to halt a process that often limits the success of the few available treatments.
Collapse
Affiliation(s)
| | - Adriana Romanzi
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (M.G.); (S.S.)
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Giacomo Zanus
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35122 Padua, Italy; (U.C.); (E.G.); (G.Z.)
| | - Mario Strazzabosco
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
| | - Paolo Simioni
- Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Medical Specialties, University of Modena & Reggio Emilia and Modena University-Hospital, 41124 Modena, Italy;
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, 35122 Padua, Italy;
- Liver Center, Digestive Disease Section, Department of Internal Medicine, Yale University, New Haven, CT 208056, USA;
- General Internal Medicine Unit, Padua University-Hospital, 35122 Padua, Italy
- Correspondence: (E.V.); (L.F.); Tel.: +39-059-422-5308 (E.V.); +39-049-821-3131 (L.F.); Fax: +39-059-422-4424 (E.V.); +39-049-827-2355 (L.F.)
| |
Collapse
|
12
|
Braoudaki M, Ahmad MS, Mustafov D, Seriah S, Siddiqui MN, Siddiqui SS. Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Semin Cancer Biol 2022; 86:436-449. [PMID: 35700938 DOI: 10.1016/j.semcancer.2022.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
Colorectal cancer (CRC) is considered the second cause of cancer death worldwide. The early diagnosis plays a key role in patient prognosis and subsequently overall survival. Similar to several types of cancer, colorectal cancer is also characterised by drug resistance and heterogeneity that contribute to its complexity -especially at advanced stages. However, despite the extensive research related to the identification of biomarkers associated to early diagnosis, accurate prognosis and the management of CRC patients, little progress has been made thus far. Therefore, the mortality rates, especially at advanced stages, remain high. A large family of chemoattractant cytokines called chemokines are known for their significant role in inflammation and immunity. Chemokines released by the different tumorous cells play a key role in increasing the complexity of the tumour's microenvironment. The current review investigates the role of chemokines and chemokine receptors in colorectal cancer and their potential as clinical molecular signatures that could be effectively used as a personalised therapeutic approach. We discussed how chemokine and chemokine receptors regulate the microenvironment and lead to heterogeneity in CRC. An important aspect of chemokines is their role in drug resistance which has been extensively discussed. This review also provides an overview of the current advances in the search for chemokines and chemokine receptors in CRC.
Collapse
Affiliation(s)
- Maria Braoudaki
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Mohammed Saqif Ahmad
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Denis Mustafov
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Sara Seriah
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Mohammad Naseem Siddiqui
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shoib Sarwar Siddiqui
- Dept of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, UK.
| |
Collapse
|
13
|
Li H, Huang B. <em>miR-19a</em> targeting <em>CLCA4</em> to regulate the proliferation, migration, and invasion of colorectal cancer cells. Eur J Histochem 2022; 66. [PMID: 35266369 PMCID: PMC8958453 DOI: 10.4081/ejh.2022.3381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
The role of miR-19a in colorectal cancer (CRC), a devastating disease with high mortality and morbidity, remains controversial. In the present study, we show that the level of miR-19a is significantly higher in clinical CRC tissue samples than in paracancerous tissue samples, and significantly higher in CRC cells lines HT29, SW480, and CaCO2 than in the normal human colon mucosal epithelial cell line NCM460. miR-19a mimics and inhibitors were synthesized and validated. Overexpression of miR-19a mimics significantly promoted, while miR-19a inhibitors inhibited, the proliferation, survival, migration, and invasion of SW480 and CaCO2 CRC cells. Furthermore, mRNA and protein levels of chloride channel accessory 4 (CLCA4) were lower in CRC cells and tissues. Bioinformatics and a luciferase reporter assay confirmed that CLCA4 was a miR-19a target. Further, miR-19a inhibition increased CLCA4 expression. The inhibitory effect of miR-19a on cell growth, survival, migration, and invasion was reversed by knockdown of CLCA4 expression. The data demonstrated that the miR-19a/CLCA4 axis modulates phospho-activation of the PI3K/AKT pathway in CRC cells. In conclusion, our results revealed that miR-19a overexpression decreases CLCA4 levels to promote CRC oncogenesis, suggesting that miR-19a inhibitors have potential applications for future therapeutic of CRC.
Collapse
Affiliation(s)
- Huiwen Li
- Department of Pediatrics, the First Affiliated Hospital of Jinan University, Guangzhou; Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou.
| | - Bo Huang
- Department of Gastrointestinal Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou.
| |
Collapse
|
14
|
Carpino G, Cardinale V, Di Giamberardino A, Overi D, Donsante S, Colasanti T, Amato G, Mennini G, Franchitto M, Conti F, Rossi M, Riminucci M, Gaudio E, Alvaro D, Mancone C. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma. J Hepatol 2021; 75:1377-1386. [PMID: 34329660 DOI: 10.1016/j.jhep.2021.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS The microenvironment of intrahepatic cholangiocarcinoma (iCCA) is hypovascularized, with an extensive lymphatic network. This leads to rapid cancer spread into regional lymph nodes and the liver parenchyma, precluding curative treatments. Herein, we investigated which factors released in the iCCA stroma drive the inhibition of angiogenesis and promote lymphangiogenesis. METHODS Quantitative proteomics was performed on extracellular fluid (ECF) proteins extracted both from cancerous and non-cancerous tissues (NCT) of patients with iCCA. Computational biology was applied on a proteomic dataset to identify proteins involved in the regulation of vessel formation. Endothelial cells incubated with ECF from either iCCA or NCT specimens were used to assess the role of candidate proteins in 3D vascular assembly, cell migration, proliferation and viability. Angiogenesis and lymphangiogenesis were further investigated in vivo by a heterotopic transplantation of bone marrow stromal cells, along with endothelial cells in SCID/beige mice. RESULTS Functional analysis of upregulated proteins in iCCA unveils a soluble angio-inhibitory milieu made up of thrombospondin (THBS)1, THBS2 and pigment epithelium-derived factor (PEDF). iCCA ECF was able to inhibit in vitro vessel morphogenesis and viability. Antibodies blocking THBS1, THBS2 and PEDF restored tube formation and endothelial cell viability to levels observed in NCT ECF. Moreover, in transplanted mice, the inhibition of blood vessel formation, the de novo generation of the lymphatic network and the dissemination of iCCA cells in lymph nodes were shown to depend on THBS1, THBS2 and PEDF expression. CONCLUSIONS THBS1, THBS2 and PEDF reduce blood vessel formation and promote tumor-associated lymphangiogenesis in iCCA. Our results identify new potential targets for interventions to counteract the dissemination process in iCCA. LAY SUMMARY Intrahepatic cholangiocarcinoma is a highly aggressive cancer arising from epithelial cells lining the biliary tree, characterized by dissemination into the liver parenchyma via lymphatic vessels. Herein, we show that the proteins THBS1, THBS2 and PEDF, once released in the tumor microenvironment, inhibit vascular growth, while promoting cancer-associated lymphangiogenesis. Therefore, targeting THBS1, THBS2 and PEDF may be a promising strategy to reduce cancer-associated lymphangiogenesis and counteract the invasiveness of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | | | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Tania Colasanti
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Gaia Amato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Mennini
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Rome, Italy
| | - Matteo Franchitto
- Department of Medical-Surgical Sciences and Translation Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Hypoxia Enhances Activity and Malignant Behaviors of Colorectal Cancer Cells through the STAT3/MicroRNA-19a/PTEN/PI3K/AKT Axis. Anal Cell Pathol (Amst) 2021; 2021:4132488. [PMID: 34796092 PMCID: PMC8595003 DOI: 10.1155/2021/4132488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is a typical microenvironment feature in almost all solid tumors and is frequently associated with growth of cancers including colorectal cancer (CRC). This study focuses on the influence of hypoxic microenvironment on the activity of CRC cells and the molecules involved. CRC cells were cultured under hypoxic conditions for 48 h, after which the proliferation, migration, invasion, and epithelial-mesenchymal transition activities of cells were increased. MicroRNA- (miR-) 19a was significantly upregulated in cells after hypoxia exposure according to a microarray analysis. STAT3 was confirmed as an upstream regulator of miR-19a which bound to the promoter region of miR-19a at the 96 bp/78 bp sites, and miR-19a bound to the PTEN mRNA to activate the PI3K/AKT signaling pathway. Hypoxia exposure induced STAT3 phosphorylation and PTEN knockdown in CRC cells. Silencing of STAT3 reduced the hypoxia-induced activity of CRC cells, whereas the malignant behaviors of cells were restored after miR-19a upregulation but blocked after PTEN overexpression. Similar results were reproduced in vivo where downregulation of STAT3 or overexpression of PTEN suppressed tumor growth and metastasis in nude mice. This study demonstrated that hypoxia augments activity and malignant behaviors of colorectal cancer cells through the STAT3/miR-19a/PTEN/PI3K/AKT axis.
Collapse
|
16
|
Xu G, Li J, Yu L. miR-19a-3p Promotes Tumor-Relevant Behaviors in Bladder Urothelial Carcinoma via Targeting THBS1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2710231. [PMID: 34745323 PMCID: PMC8568512 DOI: 10.1155/2021/2710231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE miR-19a-3p is widely increased in several cancers and can be used as an oncogenic factor in these cancers. However, the molecular mechanism of miR-19a-3p in bladder urothelial carcinoma (BLCA) is still open. So, the study was aimed at exploring the mechanism of miR-19a-3p in BLCA cells. METHODS Bioinformatics analysis was employed to find the differential miRNAs and mRNAs, and the target miRNA and mRNA were determined. Real-time quantitative PCR was used to evaluate miR-19a-3p and THBS1 levels in human urethral epithelial cells and BLCA cells. Western blot was carried out to assay protein expression of THBS1 in human urethral epithelial cells and BLCA cells. Behaviors of BLCA cells were detected through cellular functional assays. Dual-luciferase gene assay was conducted to validate the binding of miR-19a-3p and THBS1. RESULTS miR-19a-3p was increased in BLCA cells, while THBS1 was less expressed in BLCA cells. The miR-19a-3p functions as an oncogene in BLCA. THBS1 was a target of miR-19a-3p, and it could reverse the promotion of miR-19a-3p on cell malignant behaviors in BLCA. CONCLUSION miR-19a-3p facilitates cell progression in BLCA via binding THBS1, which may be an underlying therapeutic target for BLCA treatment.
Collapse
Affiliation(s)
- Gang Xu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, Shaoxing City, Zhejiang Province 312000, China
| | - Junlong Li
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, Shaoxing City, Zhejiang Province 312000, China
| | - Lihang Yu
- Department of Urology, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, Shaoxing City, Zhejiang Province 312000, China
| |
Collapse
|
17
|
Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev 2021; 42:576-614. [PMID: 34486138 PMCID: PMC9291933 DOI: 10.1002/med.21855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The lymphatic vasculature has been widely described and explored for its key functions in fluid homeostasis and in the organization and modulation of the immune response. Besides transporting immune cells, lymphatic vessels play relevant roles in tumor growth and tumor cell dissemination. Cancer cells that have invaded into afferent lymphatics are propagated to tumor‐draining lymph nodes (LNs), which represent an important hub for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites. In recent years many studies have reported new mechanisms by which the lymphatic vasculature affects cancer progression, ranging from induction of lymphangiogenesis to metastatic niche preconditioning or immune modulation. In this review, we provide an up‐to‐date description of lymphatic organization and function in peripheral tissues and in LNs and the changes induced to this system by tumor growth and progression. We will specifically focus on the reported interactions that occur between tumor cells and lymphatic endothelial cells (LECs), as well as on interactions between immune cells and LECs, both in the tumor microenvironment and in tumor‐draining LNs. Moreover, the most recent prognostic and therapeutic implications of lymphatics in cancer will be reported and discussed in light of the new immune‐modulatory roles that have been ascribed to LECs.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
MiR-222-3p induced by hepatitis B virus promotes the proliferation and inhibits apoptosis in hepatocellular carcinoma by upregulating THBS1. Hum Cell 2021; 34:1788-1799. [PMID: 34273068 DOI: 10.1007/s13577-021-00577-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to explore the role of miR-222-3p in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). MiR-222-3p expression in tumor tissues of HBV (+) or HBV (-) HCC patients and corresponding cell lines was detected by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation was assessed by cell counting kit-8 (CCK-8) and colony formation assays. Cell apoptosis was evaluated by flow cytometry. The potential targets of miR-222-3p were predicted by Targetscan, and the binding relationship between miR-222-3p and thrombospondin-1 (THBS1) was determined by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-222-3p was significantly upregulated in HCC tissues and cell lines and further elevated by HBV infection. MiR-222-3p downregulation effectively inhibited the proliferation and induced the apoptosis of HBV (-) HepG2 cells, HBV (+) HepG2.2.15 cells, Huh7-V cells, and Huh7-HBV cells. In addition, miR-222-3p overexpression enhanced the proliferation of these cell lines but exhibited no obvious effect on their apoptosis. Mechanistically, miR-222-3p was directly bound to the 3'-UTR of THBS1 and acted as its competing endogenous RNA (ceRNA). Interestingly, THBS1 silencing attenuated the inhibitory effect of miR-222-3p downregulation on the proliferation of these cell lines in vitro. Our results revealed that HBV infection further increased miR-222-3p expression and promoted HCC progression via miR-222-3p-mediated THBS1 downregulation. Our findings suggest that miR-222-3p might be a potential diagnostic and therapeutic target for HCC and HBV-related HCC.
Collapse
|
19
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
20
|
Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13061351. [PMID: 33802764 PMCID: PMC8002505 DOI: 10.3390/cancers13061351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Early diagnosis of colorectal cancer (CRC) is crucial to improve patient outcomes. The tumour microenvironment immediately adapts to malignant transformations, including the activation of fibroblasts in the connective tissue nearby. In this study, we investigated fibroblast activity-related protein secretion via extracellular vesicles (EVs). QSOX1, a protein identified to be significantly reduced in activated fibroblasts and derived EVs, was also found to be significantly reduced in circulating blood plasma EVs of CRC patients as compared to control patients. Hence, blood plasma EV-associated QSOX1 represents a promising platform for diagnostic CRC screening. Abstract The treatment of colorectal cancer (CRC) has improved during the last decades, but methods for crucial early diagnosis are yet to be developed. The influence of the tumour microenvironment on liquid biopsies for early cancer diagnostics are gaining growing interest, especially with emphasis on exosomes (EXO), a subgroup of extracellular vesicles (EVs). In this study, we established paired cancer-associated (CAFs) and normal fibroblasts (NF) from 13 CRC patients and investigated activation status-related protein abundance in derived EXOs. Immunohistochemical staining of matched patient tissue was performed and an independent test cohort of CRC patient plasma-derived EXOs was assessed by ELISA. A total of 11 differentially abundant EV proteins were identified between NFs and CAFs. In plasma EXOs, the CAF-EXO enriched protein EDIL3 was elevated, while the NF-EXO enriched protein QSOX1 was diminished compared to whole plasma. Both markers were significantly reduced in patient-matched CRC tissue compared to healthy colon tissue. In an independent test cohort, a significantly reduced protein abundance of QSOX1 was observed in plasma EXOs from CRC patients compared to controls and diagnostic ROC curve analysis revealed an AUC of 0.904. In conclusion, EXO-associated QSOX1 is a promising novel marker for early diagnosis and non-invasive risk stratification in CRC.
Collapse
|
21
|
Ganig N, Baenke F, Thepkaysone ML, Lin K, Rao VS, Wong FC, Polster H, Schneider M, Helm D, Pecqueux M, Seifert AM, Seifert L, Weitz J, Rahbari NN, Kahlert C. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel) 2021. [PMID: 33802764 DOI: 10.3390/cancers130613510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The treatment of colorectal cancer (CRC) has improved during the last decades, but methods for crucial early diagnosis are yet to be developed. The influence of the tumour microenvironment on liquid biopsies for early cancer diagnostics are gaining growing interest, especially with emphasis on exosomes (EXO), a subgroup of extracellular vesicles (EVs). In this study, we established paired cancer-associated (CAFs) and normal fibroblasts (NF) from 13 CRC patients and investigated activation status-related protein abundance in derived EXOs. Immunohistochemical staining of matched patient tissue was performed and an independent test cohort of CRC patient plasma-derived EXOs was assessed by ELISA. A total of 11 differentially abundant EV proteins were identified between NFs and CAFs. In plasma EXOs, the CAF-EXO enriched protein EDIL3 was elevated, while the NF-EXO enriched protein QSOX1 was diminished compared to whole plasma. Both markers were significantly reduced in patient-matched CRC tissue compared to healthy colon tissue. In an independent test cohort, a significantly reduced protein abundance of QSOX1 was observed in plasma EXOs from CRC patients compared to controls and diagnostic ROC curve analysis revealed an AUC of 0.904. In conclusion, EXO-associated QSOX1 is a promising novel marker for early diagnosis and non-invasive risk stratification in CRC.
Collapse
Affiliation(s)
- Nicole Ganig
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Franziska Baenke
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - May-Linn Thepkaysone
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Kuailu Lin
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Venkatesh S Rao
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Heike Polster
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martin Schneider
- MS-based Protein Analysis Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Dominic Helm
- MS-based Protein Analysis Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Mathieu Pecqueux
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Adrian M Seifert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| | - Lena Seifert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Nuh N Rahbari
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167 Mannheim, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, D-69120 Heidelberg, Germany
| |
Collapse
|
22
|
Cui S, Wu Q, Liu M, Su M, Liu S, Shao L, Han X, He H. EphA2 super-enhancer promotes tumor progression by recruiting FOSL2 and TCF7L2 to activate the target gene EphA2. Cell Death Dis 2021; 12:264. [PMID: 33712565 PMCID: PMC7955082 DOI: 10.1038/s41419-021-03538-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/11/2023]
Abstract
Super-enhancers or stretch enhancers (SEs) consist of large clusters of active transcription enhancers which promote the expression of critical genes that define cell identity during development and disease. However, the role of many super-enhancers in tumor cells remains unclear. This study aims to explore the function and mechanism of a new super-enhancer in various tumor cells. A new super-enhancer that exists in a variety of tumors named EphA2-Super-enhancer (EphA2-SE) was found using multiple databases and further identified. CRISPR/Cas9-mediated deletion of EphA2-SE results in the significant downregulation of its target gene EphA2. Mechanistically, we revealed that the core active region of EphA2-SE comprises E1 component enhancer, which recruits TCF7L2 and FOSL2 transcription factors to drive the expression of EphA2, induce cell proliferation and metastasis. Bioinformatics analysis of RNA-seq data and functional experiments in vitro illustrated that EphA2-SE deletion inhibited cell growth and metastasis by blocking PI3K/AKT and Wnt/β-catenin pathway in HeLa, HCT-116 and MCF-7 cells. Overexpression of EphA2 in EphA2-SE-/- clones rescued the effect of EphA2-SE deletion on proliferation and metastasis. Subsequent xenograft animal model revealed that EphA2-SE deletion suppressed tumor proliferation and survival in vivo. Taken together, these findings demonstrate that EphA2-SE plays an oncogenic role and promotes tumor progression in various tumors by recruiting FOSL2 and TCF7L2 to drive the expression of oncogene EphA2.
Collapse
Affiliation(s)
- Shuang Cui
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| | - Ming Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Mu Su
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - ShiYou Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Lan Shao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
23
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
24
|
Md Yusof K, Rosli R, Abdullah M, Avery-Kiejda KA. The Roles of Non-Coding RNAs in Tumor-Associated Lymphangiogenesis. Cancers (Basel) 2020; 12:cancers12113290. [PMID: 33172072 PMCID: PMC7694641 DOI: 10.3390/cancers12113290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The lymphatic system plays key roles in the bodies’ defence against disease, including cancer. The expansion of this system is termed lymphangiogenesis and it is orchestrated by factors and conditions within the microenvironment. One approach to prevent cancer progression is by interfering with these microenvironment factors that promote this process and that facilitate the spread of cancer cells to distant organs. One of these factors are non-coding RNAs. This review will summarize recent findings of the distinct roles played by non-coding RNAs in the lymphatic system within normal tissues and tumours. Understanding the mechanisms involved in this process can provide new avenues for therapeutic intervention for inhibiting the spread of cancer. Abstract Lymphatic vessels are regarded as the ”forgotten” circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.M.Y.); (R.R.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Kelly A. Avery-Kiejda
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence:
| |
Collapse
|
25
|
miR-19 Is a Potential Clinical Biomarker for Gastrointestinal Malignancy: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2810150. [PMID: 32964023 PMCID: PMC7501555 DOI: 10.1155/2020/2810150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Objectives To assess the expression and clinical value of miR-19 in gastrointestinal malignancy. Setting. Embase, Web of Science, PubMed, and other databases were retrieved to screen out relevant studies until December 31, 2019. Participants. Gastrointestinal cancer patients with the description of miR-19 expression, as well as the correlation between miR-19 and clinicopathological characteristics or prognosis. Main Outcome Measures. Pooled odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) was obtained to determine miR-19 expression in gastrointestinal malignancy and the association between miR-19 and patients' clinical characteristics and survival. Results Thirty-seven studies were included in this study. miR-19 levels in gastrointestinal malignancy, especially in hepatocellular (OR = 4.88, 95% CI = 2.38‐9.99), colorectal (OR = 4.81, 95% CI = 2.38‐9.72), and pancreatic (OR = 5.12, 95% CI = 2.43‐10.78) cancers, were significantly overexpressed, and miR-19 was tightly related to some clinicopathological characteristics, such as lymph node metastasis (OR = 1.74, 95% CI = 1.05‐2.86). Although gastrointestinal cancer patients with low and high miR-19 expression had comparable OS (overall survival) and DFS (disease-free survival), subgroup analyses showed that patients with high miR-19 presented better DFS than those with low miR-19 in liver cancer (HR = 0.46, 95% CI = 0.30‐0.71). Conclusions miR-19 might be a potential progression and prognostic biomarker for gastrointestinal malignancy.
Collapse
|
26
|
Chen J, Chen Z. Downregulation of miR-19a inhibits the proliferation and promotes the apoptosis of osteosarcoma cells by regulating the JAK2/STAT3 pathway. Oncol Lett 2020; 20:173. [PMID: 32934740 DOI: 10.3892/ol.2020.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a malignant tumor derived from the skeletal system, often occurring in bone tissues, and it is the most common malignant tumor in the skeletal system, with more than 90% of cases being highly malignant. The present study was designed to explore the regulatory effects of microRNA (miR)-19a on the proliferation and apoptosis of osteosarcoma cells, and its influence on the activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. The expression of miR-19a in adult SaOS-2 osteosarcoma cells was downregulated via lentiviral transfection, and the cells were divided into a control group, NC-inhibitor group and miR-19a-inhibitor group. The expression of miR-19a in each group was detected via quantitative polymerase Chain reaction (qPCR). Next, the cell proliferation and apoptosis levels in each group were detected via methyl thiazolyl tetrazolium (MTT) assay and flow cytometry, respectively, and the level of reactive oxygen species (ROS) in cells was further determined. Moreover, the expression levels of apoptosis-related proteins and JAK2/STAT3 signaling pathway-related proteins were detected through western blotting. The expression level of miR-19a in the miR-19a-inhibitor group was significantly lower than that in the control group and NC-inhibitor group (P<0.01). Downregulation of miR-19a significantly reduced the proliferation ability (P<0.01), increased the apoptosis level of SaOS-2 cells (P<0.01), and significantly increased the ROS level in cells (P<0.01). Downregulation of miR-19a also promote cleaved caspase-3/caspase-3 expression in the OS cells (P<0.01) and inhibited Bcl-2/Bax expression (P<0.01). Additionally, downregulation of miR-19a markedly lowered the protein expression levels of phosphorylated (p-)JAK2, p-STAT3 and myeloid cell leukemia-1 (Mcl-1) in the cells (P<0.01). To conclude, downregulation of miR-19a can inhibit the JAK2/STAT3 signaling pathway in SaOS-2 cells, promote the expression of apoptosis-related proteins, and increase the ROS level in cells, thereby promoting apoptosis and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Jiangqiang Chen
- Department of Traumatology, Tiantai People's Hospital, Tiantai, Zhejiang 317200, P.R. China
| | - Zuhui Chen
- Department of Traumatology, Tiantai People's Hospital, Tiantai, Zhejiang 317200, P.R. China
| |
Collapse
|
27
|
Du H, He Z, Feng F, Chen D, Zhang L, Bai J, Wu H, Han E, Zhang J. Hsa_circ_0038646 promotes cell proliferation and migration in colorectal cancer via miR-331-3p/GRIK3. Oncol Lett 2020; 20:266-274. [PMID: 32565953 PMCID: PMC7286133 DOI: 10.3892/ol.2020.11547] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence supports the essential roles of circular RNAs (circRNAs) and microRNAs (miRNAs/miRs) in different types of human cancer. For example, hsa_circ_0137008 functions as a sponge for mi-338-5p and inhibits the malignant phenotype in colorectal cancer. Furthermore, hsa_circ_RNA_0011780 downregulates FBXW7 by targeting miR-554a and suppressing the progression of non-small cell lung cancer. Thus far, only a single report has identified that the miRNA miR-331-3p exerts a pivotal effect on human colorectal cancer (CRC) evolution. However, both the up- and downstream regulatory mechanisms of miR-331-3p are unclear. In the present study, it was predicted via bioinformatics analysis that the circRNA, hsa_circ_0038646, and the glutamate receptor ionotropic kainate 3 (GRIK3) gene contain binding sites that can interact with miR-331-3p. Thus, hsa_circ_0038646/miR-331-3p/GRIK3 may be a novel therapeutic pathway for CRC. Reverse transcription-quantitative PCR and western blotting analyses were performed, as well as cell proliferation, luciferase reporter and Transwell migration assays. Hsa_circ_0038646 was overexpressed in both CRC cells and tissues, and this aberrant expression was positively related with increasing tumor grade. Knockdown of hsa_circ_0038646 significantly weakened human CRC cell proliferation and migration. It was shown that hsa_circ_0038646 can sponge miR-331-3p to suppress its expression, and that suppression of miR-331-3p can reverse the effects of hsa_circ_0038646 inhibition in CRC cells. It was determined that GRIK3 is a downstream target of miR-331-3p, and that hsa_circ_0038646 could increase the levels of GRIK3 by suppressing miR-331-3p in CRC cells. Restoring GRIK3 expression rescued the weakened CRC cell proliferation and migration following hsa_circ_0038646 knockdown. The present study indicated that hsa_circ_0038646 functions as a tumor promoter in CRC by increasing GRIK3 expression via sponging of miR-331-3p. The hsa_circ_0038646/miR-331-3p/GRIK3 axis may be a novel therapeutic and diagnostic target of CRC.
Collapse
Affiliation(s)
- Haipeng Du
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Zhiguo He
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Fumei Feng
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Daming Chen
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Jingzhen Bai
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Huiguo Wu
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Enkun Han
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Jiansheng Zhang
- Department of Gastrointestinal Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| |
Collapse
|
28
|
Ciesielski O, Biesiekierska M, Panthu B, Vialichka V, Pirola L, Balcerczyk A. The Epigenetic Profile of Tumor Endothelial Cells. Effects of Combined Therapy with Antiangiogenic and Epigenetic Drugs on Cancer Progression. Int J Mol Sci 2020; 21:ijms21072606. [PMID: 32283668 PMCID: PMC7177242 DOI: 10.3390/ijms21072606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.
Collapse
Affiliation(s)
- Oskar Ciesielski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marta Biesiekierska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Baptiste Panthu
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Varvara Vialichka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- Correspondence: ; Tel.: +48-42-635-45-10
| |
Collapse
|
29
|
Jin Y, Zhan X, Zhang B, Chen Y, Liu C, Yu L. Polydatin Exerts an Antitumor Effect Through Regulating the miR-382/PD-L1 Axis in Colorectal Cancer. Cancer Biother Radiopharm 2020; 35:83-91. [PMID: 31755739 DOI: 10.1089/cbr.2019.2999] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ye Jin
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaobo Zhan
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bin Zhang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yun Chen
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Changfeng Liu
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lingli Yu
- Department of Anesthesiology, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Orso F, Quirico L, Dettori D, Coppo R, Virga F, Ferreira LC, Paoletti C, Baruffaldi D, Penna E, Taverna D. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol 2020; 60:214-224. [DOI: 10.1016/j.semcancer.2019.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|