1
|
Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv 2020; 46:107659. [PMID: 33259907 DOI: 10.1016/j.biotechadv.2020.107659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
The identification of causal genomic loci and their interactions underlying various traits in plants has been greatly aided by progress in understanding the organization of the nuclear genome. This provides clues to the responses of plants to environmental stimuli at the molecular level. Apart from other uses, these insights are needed to fully explore the potential of new breeding techniques that rely on genome editing. However, genome analysis and sequencing is not straightforward in the many agricultural crops and their wild relatives that possess large and complex genomes. Chromosome genomics streamlines this task by dissecting the genome to single chromosomes whose DNA is then used instead of nuclear DNA. This results in a massive and lossless reduction in DNA sample complexity, reduces the time and cost of the experiment, and simplifies data interpretation. Flow cytometric sorting of condensed mitotic chromosomes makes it possible to purify single chromosomes in large quantities, and as the DNA remains intact this process can be coupled successfully with many techniques in molecular biology and genomics. Since the first experiments with flow cytometric sorting in the late 1980s, numerous applications have been developed, and chromosome genomics has been having a significant impact in many areas of research, including the sequencing of complex genomes of important crops and gene cloning. This review discusses these applications, describes their contribution to advancements in plant genome analysis and gene cloning, and outlines future directions.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Yang S, Zeng K, Luo L, Qian W, Wang Z, Doležel J, Zhang M, Gao X, Deng Z. A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp. Sci Rep 2020; 10:5016. [PMID: 32193460 PMCID: PMC7081271 DOI: 10.1038/s41598-020-62086-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
Collapse
Affiliation(s)
- Shan Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zeng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Qian
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqiang Wang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Olomouc, CZ-78371, Czech Republic
| | - Muqing Zhang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Xiangxiong Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Sci Rep 2019; 9:19362. [PMID: 31852940 PMCID: PMC6920420 DOI: 10.1038/s41598-019-55652-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Sugarcane (Saccharum spp.) is a globally important crop for sugar and bioenergy production. Its highly polyploid, complex genome has hindered progress in understanding its molecular structure. Flow cytometric sorting and analysis has been used in other important crops with large genomes to dissect the genome into component chromosomes. Here we present for the first time a method to prepare suspensions of intact sugarcane chromosomes for flow cytometric analysis and sorting. Flow karyotypes were generated for two S. officinarum and three hybrid cultivars. Five main peaks were identified and each genotype had a distinct flow karyotype profile. The flow karyotypes of S. officinarum were sharper and with more discrete peaks than the hybrids, this difference is probably due to the double genome structure of the hybrids. Simple Sequence Repeat (SSR) markers were used to determine that at least one allelic copy of each of the 10 basic chromosomes could be found in each peak for every genotype, except R570, suggesting that the peaks may represent ancestral Saccharum sub genomes. The ability to flow sort Saccharum chromosomes will allow us to isolate and analyse chromosomes of interest and further examine the structure and evolution of the sugarcane genome.
Collapse
|
4
|
Vrána J, Cápal P, Šimková H, Karafiátová M, Čížková J, Doležel J. Flow Analysis and Sorting of Plant Chromosomes. CURRENT PROTOCOLS IN CYTOMETRY 2016; 78:5.3.1-5.3.43. [PMID: 27723090 DOI: 10.1002/cpcy.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Analysis and sorting of plant chromosomes (plant flow cytogenetics) is a special application of flow cytometry in plant genomics and its success depends critically on sample quality. This unit describes the methodology in a stepwise manner, starting with the induction of cell cycle synchrony and accumulation of dividing cells in mitotic metaphase, and continues with the preparation of suspensions of intact mitotic chromosomes, flow analysis and sorting of chromosomes, and finally processing of the sorted chromosomes. Each step of the protocol is described in detail as some procedures have not been used widely. Supporting histograms are presented as well as hints on dealing with plant material; the utility of sorted chromosomes for plant genomics is also discussed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
5
|
Abstract
Nuclear genomes of many important plant species are tremendously complicated to map and sequence. The ability to isolate single chromosomes, which represent small units of nuclear genome, is priceless in many areas of plant research including cytogenetics, genomics, and proteomics. Flow cytometry is the only technique which can provide large quantities of pure chromosome fractions suitable for downstream applications including physical mapping, preparation of chromosome-specific BAC libraries, sequencing, and optical mapping. Here, we describe step-by-step procedure of preparation of liquid suspensions of intact mitotic metaphase chromosomes and their flow cytometric analysis and sorting.
Collapse
Affiliation(s)
- Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic.
| | - Petr Cápal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Jarmila Číhalíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, 783 71, Olomouc, Czech Republic
| |
Collapse
|
6
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
7
|
Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M, Simková H. Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 2012; 12:397-416. [PMID: 22895700 PMCID: PMC3431466 DOI: 10.1007/s10142-012-0293-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 07/30/2012] [Indexed: 11/25/2022]
Abstract
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
8
|
Hwang YJ, Lim KB. Development of microdissection and chromosome specific genomic library in Lilium tigrinum. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Dolezel J, Macas J, Lucretti S. Flow analysis and sorting of plant chromosomes. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 5:Unit 5.3. [PMID: 18770713 DOI: 10.1002/0471142956.cy0503s09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of flow cytometry for evaluation of plant chromosomes requires some specialized attention to preparation and instrumentation. This unit deals exclusively with plant cytogenetics and presents an outline of this area as well as methods for accumulation of cells in metaphase, preparation of chromosome suspensions, flow analysis and sorting of chromosomes, and processing of the sorted chromosomes. Each method is described in tremendous detail because in many aspects dealing with plant cells is quite different from dealing with mammalian cells. Supporting histograms are presented as well as a range of special hints on dealing with plant material and a discussion of the utility of sorted chromosomes for plant genome mapping.
Collapse
Affiliation(s)
- J Dolezel
- Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | |
Collapse
|
10
|
Abstract
The cereals are of enormous importance to mankind. Many of the major cereal species - specifically, wheat, barley, oat, rye, and maize - have large genomes. Early cytogenetics, genome analysis and genetic mapping in the cereals benefited greatly from their large chromosomes, and the allopolyploidy of wheat and oats that has allowed for the development of many precise cytogenetic stocks. In the genomics era, however, large genomes are disadvantageous. Sequencing large and complex genomes is expensive, and the assembly of genome sequence is hampered by a significant content of repetitive DNA and, in allopolyploids, by the presence of homoeologous genomes. Dissection of the genome into its component chromosomes and chromosome arms provides an elegant solution to these problems. In this review we illustrate how this can be achieved by flow cytometric sorting. We describe the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry. We explain how difficulties in the discrimination of specific chromosomes and their arms can be overcome by exploiting extant cytogenetic stocks of polyploid wheat and oats, in particular chromosome deletion and alien addition lines. Finally, we discuss some of the applications of flow-sorted chromosomes, and present some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals, and that it can offer significant potential for the delivery of genome sequencing and gene cloning in these crops.
Collapse
Affiliation(s)
- Jaroslav Dolezel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
Ma Y, Lee JH, Li LC, Uchiyama S, Ohmido N, Fukui K. Fluorescent labeling of plant chromosomes in suspension by FISH. Genes Genet Syst 2005; 80:35-9. [PMID: 15824454 DOI: 10.1266/ggs.80.35] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
By optimizing the concentration and time of treatment with hydroxyurea (HU), a DNA synthesis inhibitor, and trifluralin, a microtubule inhibitor, a highly effective (over 60%) cell cycle synchronization method for rye and barley meristem cells was developed. Chromosome suspensions containing highly purified and morphologically intact rye and barley chromosomes were prepared from the meristems of their root tips by homogenization. Digoxigenin-labeled 5S rDNA was used as a probe in FISH for the rye chromosomes in the suspension, and biotin-labeled 17S rDNA and centromeric DNA were used in FISH for the rye and barley chromosome suspensions, respectively. Bright signals were detected at the specific regions of interest on the chromosomes. The results indicate that the method developed in this study is useful for selection and sorting of chromosomes that are not distinguishable by other means, using specific fluorescent labeling by FISH of the chromosomes in suspension.
Collapse
Affiliation(s)
- Youzhi Ma
- Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Breeding and Cultivation, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
12
|
Safár J, Bartos J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tusková R, Cíhalíková J, Vrána J, Simková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Dolezel J, Chalhoub B. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:960-8. [PMID: 15341637 DOI: 10.1111/j.1365-313x.2004.02179.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The analysis of the complex genome of common wheat (Triticum aestivum, 2n = 6x = 42, genome formula AABBDD) is hampered by its large size ( approximately 17 000 Mbp) and allohexaploid nature. In order to simplify its analysis, we developed a generic strategy for dissecting such large and complex genomes into individual chromosomes. Chromosome 3B was successfully sorted by flow cytometry and cloned into a bacterial artificial chromosome (BAC), using only 1.8 million chromosomes and an adapted protocol developed for this purpose. The BAC library (designated as TA-3B) consists of 67 968 clones with an average insert size of 103 kb. It represents 6.2 equivalents of chromosome 3B with 100% coverage and 90% specificity as confirmed by genetic markers. This method was validated using other chromosomes and its broad application and usefulness in facilitating wheat genome analysis were demonstrated by target characterization of the chromosome 3B structure through cytogenetic mapping. This report on the successful cloning of flow-sorted chromosomes into BACs marks the integration of flow cytogenetics and genomics and represents a great leap forward in genetics and genomic analysis.
Collapse
Affiliation(s)
- Jan Safár
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kubaláková M, Valárik M, Barto J, Vrána J, Cíhalíková J, Molnár-Láng M, Dolezel J. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 2004; 46:893-905. [PMID: 14608406 DOI: 10.1139/g03-054] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) were developed for rye (Secale cereale L.). Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity obtained after the analysis of DAPI-stained chromosomes (flow karyotypes) were characterized and the chromosome content of the DNA peaks was determined. Chromosome 1R could be discriminated on a flow karyotype of S. cereale 'Imperial'. The remaining rye chromosomes (2R-7R) could be discriminated and sorted from individual wheat-rye addition lines. The analysis of lines with reconstructed karyotypes demonstrated a possibility of sorting translocation chromosomes. Supernumerary B chromosomes could be sorted from an experimental rye population and from S. cereale 'Adams'. Flow-sorted chromosomes were identified by fluorescence in situ hybridization (FISH) with probes for various DNA repeats. Large numbers of chromosomes of a single type sorted onto microscopic slides facilitated detection of rarely occurring chromosome variants by FISH with specific probes. PCR with chromosome-specific primers confirmed the identity of sorted fractions and indicated suitability of sorted chromosomes for physical mapping. The possibility to sort large numbers of chromosomes opens a way for the construction of large-insert chromosome-specific DNA libraries in rye.
Collapse
Affiliation(s)
- M Kubaláková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
14
|
Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 2004; 271:709-16. [PMID: 15197578 DOI: 10.1007/s00438-004-1021-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
We estimated the genome size of Korean ginseng (Panax ginseng C.A. Meyer), a medicinal herb, constructed a HindIII BAC library, and analyzed BAC-end sequences to provide an initial characterization of the library. The 1C nuclear DNA content of Korean ginseng was estimated to be 3.33 pg (3.12 x 10(3) Mb). The BAC library consists of 106,368 clones with an average size of 98.61 kb, amounting to 3.34 genome equivalents. Sequencing of 2167 BAC clones generated 2492 BAC-end sequences with an average length of 400 bp. Analysis using BLAST and motif searches revealed that 10.2%, 20.9% and 3.8% of the BAC-end sequences contained protein-coding regions, transposable elements and microsatellites, respectively. A comparison of the functional categories represented by the protein-coding regions found in BAC-end sequences with those of Arabidopsis revealed that proteins pertaining to energy metabolism, subcellular localization, cofactor requirement and transport facilitation were more highly represented in the P. ginseng sample. In addition, a sequence encoding a glucosyltransferase-like protein implicated in the ginsenoside biosynthesis pathway was also found. The majority of the transposable element sequences found belonged to the gypsy type (67.6%), followed by copia (11.7%) and LINE (8.0%) retrotransposons, whereas DNA transposons accounted for only 2.1% of the total in our sequence sample. Higher levels of transposable elements than protein-coding regions suggest that mobile elements have played an important role in the evolution of the genome of Korean ginseng, and contributed significantly to its complexity. We also identified 103 microsatellites with 3-38 repeats in their motifs. The BAC library and BAC-end sequences will serve as a useful resource for physical mapping, positional cloning and genome sequencing of P. ginseng.
Collapse
Affiliation(s)
- C P Hong
- Department of Horticulture, and Genome Research Center, Chungnam National University, 305-764, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vlácilová K, Ohri D, Vrána J, Cíhalíková J, Kubaláková M, Kahl G, Dolezel J. Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res 2003; 10:695-706. [PMID: 12575797 DOI: 10.1023/a:1021584914931] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Procedures for flow cytometric analysis and sorting of mitotic chromosomes (flow cytogenetics) have been developed for chickpea (Cicer arietinum). Suspensions of intact chromosomes were prepared from root tips treated to achieve a high degree of metaphase synchrony. The optimal protocol consisted of a treatment of roots with 2 mmol/L hydroxyurea for 18 h, a 4.5-h recovery in hydroxyurea-free medium, 2 h incubation with 10 micromol/L oryzalin, and ice-water treatment overnight. This procedure resulted in an average metaphase index of 47%. Synchronized root tips were fixed in 2% formaldehyde for 20 min, and chromosome suspensions prepared by mechanical homogenization of fixed root tips. More than 4 x 10(5) morphologically intact chromosomes could be isolated from 15 root tips. Flow cytometric analysis of DAPI-stained chromosomes resulted in histograms of relative fluorescence intensity (flow karyotypes) containing eight peaks, representing individual chromosomes and/or groups of chromosomes with a similar relative DNA content. Five peaks could be assigned to individual chromosomes (A, B, C, G, H). The parity of sorted chromosome fractions was high, and chromosomes B and H could be sorted with 100% purity. PCR on flow-sorted chromosome fractions with primers for sequence-tagged microsatellite site (STMS) markers permitted assignment of the genetic linkage group LG8 to the smallest chickpea chromosome H. This study extends the number of legume species for which flow cytogenetics is available, and demonstrates the potential of flow cytogenetics for genome mapping in chickpea.
Collapse
Affiliation(s)
- K Vlácilová
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
16
|
Techio VH, Davide LC, Pereira AV, Bearzoti E. Cytotaxonomy of some species and of interspecific hybrids of Pennisetum (Poaceae, Poales). Genet Mol Biol 2002. [DOI: 10.1590/s1415-47572002000200014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Sorting of Mitotic Chromosomes in Common Wheat (Triticum aestivum L.) Using flow Cytometry. WHEAT IN A GLOBAL ENVIRONMENT 2001. [DOI: 10.1007/978-94-017-3674-9_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Dolezel J, Lysák MA, Kubaláková M, Simková H, Macas J, Lucretti S. Sorting of plant chromosomes. Methods Cell Biol 2001; 64:3-31. [PMID: 11070830 DOI: 10.1016/s0091-679x(01)64004-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J Dolezel
- Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
19
|
Vrána J, Kubaláková M, Simková H, Cíhalíková J, Lysák MA, Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 2000; 156:2033-41. [PMID: 11102393 PMCID: PMC1461381 DOI: 10.1093/genetics/156.4.2033] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to develop an improved procedure for preparation of chromosome suspensions, and to evaluate the potential of flow cytometry for chromosome sorting in wheat. Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes were characterized and the chromosome content of all peaks on wheat flow karyotype was determined for the first time. Only chromosome 3B could be discriminated on flow karyotypes of wheat lines with standard karyotype. Remaining chromosomes formed three composite peaks and could be sorted only as groups. Chromosome 3B could be sorted at purity >95% as determined by microscopic evaluation of sorted fractions that were labeled using C-PRINS with primers for GAA microsatellites and for Afa repeats, respectively. Chromosome 5BL/7BL could be sorted in two wheat cultivars at similar purity, indicating a potential of various wheat stocks for sorting of other chromosome types. PCR with chromosome-specific primers confirmed the identity of sorted fractions and suitability of flow-sorted chromosomes for physical mapping and for construction of small-insert DNA libraries. Sorted chromosomes were also found suitable for the preparation of high-molecular-weight DNA. On the basis of these results, it seems realistic to propose construction of large-insert chromosome-specific DNA libraries in wheat. The availability of such libraries would greatly simplify the analysis of the complex wheat genome.
Collapse
Affiliation(s)
- J Vrána
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, CZ-77200 Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Kubal�kov� M, Lys�k MA, Vr�na J, ?imkov� H, ?�hal�kov� J, Dole?el J. Rapid identification and determination of purity of flow-sorted plant chromosomes using C-PRINS. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-0320(20001001)41:2<102::aid-cyto4>3.0.co;2-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Lysák MA, Cíhalíková J, Kubaláková M, Simková H, Künzel G, Dolezel J. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Res 1999; 7:431-44. [PMID: 10560966 DOI: 10.1023/a:1009293628638] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A high-yield method for isolation of barley chromosomes in suspension, their analysis and sorting using flow cytometry is described. To accumulate meristem root tip cells at metaphase, actively growing roots were subjected to subsequent treatment with 2 mmol/L hydroxyurea for 18 h, 2.5 micromol/L amiprophos methyl for 2 h, and ice water (overnight). This treatment resulted in metaphase indices exceeding 50%. Synchronized root tips were fixed in 2% formaldehyde for 20 min and chromosomes were released into a lysis buffer by mechanical homogenization, producing, on average, 5 x 10(5) chromosomes from 50 root tips. The isolated chromosomes were morphologically intact and suitable for flow cytometric analysis and sorting. While it was possible to discriminate and sort only one chromosome from a barley cultivar with standard karyotype, up to three chromosomes could be sorted in translocation lines with morphologically distinct chromosomes. The purity of chromosome fractions, estimated after PRINS with primers specific for GAA microsatellites, reached 97%. PCR with chromosome-specific primers confirmed the purity and suitability of flow-sorted chromosomes for physical mapping of DNA sequences.
Collapse
Affiliation(s)
- M A Lysák
- Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Nitrous oxide (N2O), colchicine, trifluralin, amiprophos-methyl, 8-hydroxyquinoline, and temperature pretreatments (cold and cold-hot-cold) were compared for chromosome counting in maize (Zea mays L.). Pretreated root tips were prepared by enzymatic maceration and air drying, and the number of countable figures and mitotic indexes were recorded. N2O treatment at 10 atm for 3 hr produced the largest number of countable chromosome figures (266.5 per preparation) and an average of 44.2 nonoverlapped chromosome figures per preparation. Treatment with 0.04% 8-hydroxyquinoline for 3 hr exhibited a moderate number of countable chromosome figures (53.9 per preparation). The effects of colchicine, trifluralin, amiprophos-methyl and temperature pretreatments were limited.
Collapse
Affiliation(s)
- A Kato
- Department of Agronomy, University of Missouri, Columbia 65211, USA.
| |
Collapse
|
23
|
Gill BS, Friebe B. Plant cytogenetics at the dawn of the 21st century. CURRENT OPINION IN PLANT BIOLOGY 1998; 1:109-115. [PMID: 10066575 DOI: 10.1016/s1369-5266(98)80011-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The years 1996-1997 saw advances in plant chromosome handling, structure, behaviour and manipulation. Improved protocols were developed for flow sorting, microdissection and microcloning. Fibre FISH was used to map a range of DNA sequences at a resolution of a few kilobases. Over 400 wheat deletion stocks were reported and healing of broken chromosomes by de novo addition of telomeric sequences was demonstrated. Centromeric DNA sequences were identified. The role of telomeric ends in pairing was demonstrated. Apparently unusually long chromosome arms can interfere with mitosis. Novel phenomena and potential of wide hybrids for genome analysis were noteworthy.
Collapse
Affiliation(s)
- B S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506-5502, USA.
| | | |
Collapse
|