1
|
Shen E, Piao M, Li Y, Wu Y, Li S, Lee SH, Jin L, Lee KY. CMTM3 Suppresses Proliferation and Osteogenic Transdifferentiation of C2C12 Myoblasts through p53 Upregulation. Cells 2024; 13:1352. [PMID: 39195242 PMCID: PMC11352514 DOI: 10.3390/cells13161352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family that is closely related to tumor occurrence and progression, plays crucial roles in the immune system, cardiovascular system, and male reproductive system. Recently, CMTM3 has emerged as a potential target for treating diseases related to bone formation. However, additional studies are needed to understand the mechanisms by which CMTM3 regulates the process of osteogenic differentiation. In this study, we observed a significant downregulation of Cmtm3 expression during the transdifferentiation of C2C12 myoblasts into osteoblasts induced by BMP4. Cmtm3 overexpression suppressed proliferation and osteogenic differentiation in BMP4-induced C2C12 cells, whereas its knockdown conversely facilitated the process. Mechanistically, Cmtm3 overexpression upregulated both the protein and mRNA levels of p53 and p21. Conversely, Cmtm3 knockdown exerted the opposite effects. Additionally, we found that Cmtm3 interacts with p53 and increases protein stability by inhibiting proteasome-mediated ubiquitination and degradation. Notably, Trp53 downregulation abrogated the inhibitory effect of Cmtm3 on BMP4-induced proliferation and osteogenic differentiation of C2C12 myoblasts. Collectively, our findings provide key insights into the role of CMTM3 in regulating myoblast proliferation and transdifferentiation into osteoblasts, highlighting its significance in osteogenesis research.
Collapse
Affiliation(s)
- Enzhao Shen
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| | - Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| | - Yuecheng Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Sihang Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China; (Y.W.); (S.L.)
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (E.S.); (M.P.); (Y.L.)
| |
Collapse
|
2
|
Su Y, He S, Chen Q, Zhang H, Huang C, Zhao Q, Pu Y, He X, Jiang L, Ma Y, Zhao Q. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell. Genomics 2024; 116:110851. [PMID: 38692440 DOI: 10.1016/j.ygeno.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-β and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.
Collapse
Affiliation(s)
- Yingxiao Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Siqi He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hechun Zhang
- Chaoyang Chaomu Breeding Farm Co., LTD, Chaoyang, Liaoning 122629, China
| | - Chang Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China.
| |
Collapse
|
3
|
Yang J, Dong X, Wen H, Li Y, Wang X, Yan S, Zuo C, Lyu L, Zhang K, Qi X. FGFs function in regulating myoblasts differentiation in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2024; 347:114426. [PMID: 38103843 DOI: 10.1016/j.ygcen.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish. To remedy this problem, in the present study, a total of 33 fgfs were identified from the genomic and transcriptomic databases of spotted sea bass, of which 10 were expressed in the myoblasts. According to the expression pattern during myoblasts proliferation and differentiation, fgf6a, fgf6b and fgf18 were selected for further prokaryotic expression and purification. The recombinant proteins FGF6a, FGF6b and FGF18 were found to inhibit myoblast differentiation. Overall, our results provide a theoretical basis for the molecular mechanisms of growth regulation in economic fish such as spotted sea bass.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003.
| |
Collapse
|
4
|
Dam TV, Dalgaard LB, Johansen FT, Bengtsen MB, Mose M, Lauritsen KM, Gravholt CH, Hansen M. Effects of transdermal estrogen therapy on satellite cell number and molecular markers for muscle hypertrophy in response to resistance training in early postmenopausal women. Eur J Appl Physiol 2023; 123:667-681. [PMID: 36585491 DOI: 10.1007/s00421-022-05093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the effects of resistance training with or without transdermal estrogen therapy (ET) on satellite cell (SC) number and molecular markers for muscle hypertrophy in early postmenopausal women. METHODS Using a double-blinded randomized controlled design, we allocated healthy, untrained postmenopausal women to perform 12 weeks of resistance training with placebo (PLC, n = 16) or ET (n = 15). Muscle biopsies obtained before and after the intervention, and two hours after the last training session were analyzed for fiber type, SC number and molecular markers for muscle hypertrophy and degradation (real-time PCR, western blotting). RESULTS The analysis of SCs per Type I fiber showed a time x treatment interaction caused by a 47% decrease in PLC, and a 26% increase after ET after the training period. Also, SCs per Type II fiber area was lower after the intervention driven by a 57% decrease in PLC. Most molecular markers changed similarly in the two groups. CONCLUSION A decline in SC per muscle fiber was observed after the 12-week training period in postmenopausal women, which was counteracted when combined with use of transdermal ET. CLINICAL TRIAL REGISTRATION NUMBER nct03020953.
Collapse
Affiliation(s)
- Tine Vrist Dam
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Line Barner Dalgaard
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Frank Ted Johansen
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Mads Bisgaard Bengtsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Maike Mose
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Meyer Lauritsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Shen J, Wang J, Zhen H, Liu Y, Li L, Luo Y, Hu J, Liu X, Li S, Hao Z, Li M, Zhao Z. MicroRNA-381 Regulates Proliferation and Differentiation of Caprine Skeletal Muscle Satellite Cells by Targeting PTEN and JAG2. Int J Mol Sci 2022; 23:ijms232113587. [PMID: 36362373 PMCID: PMC9656929 DOI: 10.3390/ijms232113587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In our previous study, microRNA (miR)-381 was found to be the most down-regulated miRNA in skeletal muscle of Liaoning cashmere goats with higher skeletal muscle mass, but the molecular mechanism involved remains unclear. In this study, primary caprine skeletal muscle satellite cells (SMSCs) were isolated and identified. We investigated the effect of miR-381 on the viability, proliferation and differentiation of caprine SMSCs, and the target relationships of miR-381 with jagged canonical Notch ligand 2 (JAG2) and phosphatase and tensin homolog (PTEN). Cells isolated were positive for SMSC-specific marker protein Pax7. This suggests that purified SMSCs were obtained. The expression level of miR-381 achieved a peak value on day 4 after SMSC differentiation, and miR-381 also significantly increased the expression levels of myogenic differentiation marker genes: myosin heavy chain (MyHC), myogenin (MyoG) and myocyte enhancer factor 2C (MEF2C) in differentiated SMSCs, the area of MyHC-positive myotubes and the myogenic index. These findings suggest that miR-381 promoted myogenic differentiation of caprine SMSCs. The CCK8 assay and EDU staining analysis showed that miR-381 mimic both inhibited the viability of SMSCs and decreased the percentage of EDU-labeled positive SMSCs. In contrast, miR-381 inhibitor had the opposite effect with miR-381 mimic. A dual luciferase reporter assay verified that miR-381 can target JAG2 and PTEN by binding to the 3′-untranslated regions (3′-UTR) of the genes. The transfection of miR-381 mimic into caprine SMSCs resulted in decreases in expression levels of JAG2 and PTEN, while miR-381 inhibitor increased the two target genes in expression. This is the first study to reveal the biological mechanisms by which miR-381 regulates caprine SMSC activities.
Collapse
Affiliation(s)
| | - Jiqing Wang
- Correspondence: ; Tel./Fax: +86-931-763-2469
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
O'Bryan SM, Connor KR, Drummer DJ, Lavin KM, Bamman MM. Considerations for Sex-Cognizant Research in Exercise Biology and Medicine. Front Sports Act Living 2022; 4:903992. [PMID: 35721874 PMCID: PMC9204149 DOI: 10.3389/fspor.2022.903992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
As the fields of kinesiology, exercise science, and human movement developed, the majority of the research focused on male physiology and extrapolated findings to females. In the medical sphere, basing practice on data developed in only males resulted in the removal of drugs from the market in the late 1990s due to severe side effects (some life-threatening) in females that were not observed in males. In response to substantial evidence demonstrating exercise-induced health benefits, exercise is often promoted as a key modality in disease prevention, management, and rehabilitation. However, much like the early days of drug development, a historical literature knowledge base of predominantly male studies may leave the exercise field vulnerable to overlooking potentially key biological differences in males and females that may be important to consider in prescribing exercise (e.g., how exercise responses may differ between sexes and whether there are optimal approaches to consider for females that differ from conventional approaches that are based on male physiology). Thus, this review will discuss anatomical, physiological, and skeletal muscle molecular differences that may contribute to sex differences in exercise responses, as well as clinical considerations based on this knowledge in athletic and general populations over the continuum of age. Finally, this review summarizes the current gaps in knowledge, highlights the areas ripe for future research, and considerations for sex-cognizant research in exercise fields.
Collapse
Affiliation(s)
- Samia M. O'Bryan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kathleen R. Connor
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Devin J. Drummer
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaleen M. Lavin
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- *Correspondence: Marcas M. Bamman
| |
Collapse
|
7
|
Oxfeldt M, Dalgaard LB, Farup J, Hansen M. Sex Hormones and Satellite Cell Regulation in Women. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:9065923. [PMID: 38655160 PMCID: PMC11022763 DOI: 10.1155/2022/9065923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 04/26/2024]
Abstract
Recent years have seen growing scholarly interest in female physiology in general. Moreover, particular attention has been devoted to how concentrations of female sex hormones vary during the menstrual cycle and menopausal transition and how hormonal contraception and hormonal therapy influence skeletal muscle tissue. While much effort has been paid to macro outcomes, such as muscle function or mass, rather less attention has been paid to mechanistic work that may help explain the underlying mechanism through which sex hormones regulate skeletal muscle tissue. Evidence from animal studies shows a strong relationship between the female sex hormone estrogen and satellite cells (SCs), a population of muscle stem cells involved in skeletal muscle regulation. A few human studies investigating this relationship have been published only recently. Thus, the purpose of this study was to bring an updated review on female sex hormones and their role in SC regulation. First, we describe how SCs regulate skeletal muscle maintenance and repair and introduce sex hormone signaling within the muscle. Second, we present evidence from animal studies elucidating how estrogen deficiency and supplementation influence SCs. Third, we present results from investigations from human trials including women whose concentrations of female hormones differ due to menopause, hormone therapy, hormonal contraceptives, and the menstrual cycle. Finally, we discuss research and methodological recommendations for future studies aiming at elucidating the link between female sex hormones and SCs with respect to aging and training.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Muscle hypertrophy is correlated with load progression delta, climb volume, and total load volume in rodents undergoing different ladder-based resistance training protocols. Tissue Cell 2022; 75:101725. [DOI: 10.1016/j.tice.2021.101725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
|
9
|
Latham CM, Owen RN, Dickson EC, Guy CP, White-Springer SH. Skeletal Muscle Adaptations to Exercise Training in Young and Aged Horses. FRONTIERS IN AGING 2021; 2:708918. [PMID: 35822026 PMCID: PMC9261331 DOI: 10.3389/fragi.2021.708918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
In aged humans, low-intensity exercise increases mitochondrial density, function and oxidative capacity, decreases the prevalence of hybrid fibers, and increases lean muscle mass, but these adaptations have not been studied in aged horses. Effects of age and exercise training on muscle fiber type and size, satellite cell abundance, and mitochondrial volume density (citrate synthase activity; CS), function (cytochrome c oxidase activity; CCO), and integrative (per mg tissue) and intrinsic (per unit CS) oxidative capacities were evaluated in skeletal muscle from aged (n = 9; 22 ± 5 yr) and yearling (n = 8; 9.7 ± 0.7 mo) horses. Muscle was collected from the gluteus medius (GM) and triceps brachii at wk 0, 8, and 12 of exercise training. Data were analyzed using linear models with age, training, muscle, and all interactions as fixed effects. At wk 0, aged horses exhibited a lower percentage of type IIx (p = 0.0006) and greater percentage of hybrid IIa/x fibers (p = 0.002) in the GM, less satellite cells per type II fiber (p = 0.03), lesser integrative and intrinsic (p ≤ 0.04) CCO activities, lesser integrative oxidative phosphorylation capacity with complex I (PCI; p = 0.02) and maximal electron transfer system capacity (ECI+II; p = 0.06), and greater intrinsic PCI, ECI+II, and electron transfer system capacity with complex II (ECII; p ≤ 0.05) than young horses. The percentage of type IIx fibers increased (p < 0.0001) and of type IIa/x fibers decreased (p = 0.001) in the GM, and the number of satellite cells per type II fiber increased (p = 0.0006) in aged horses following exercise training. Conversely, the percentage of type IIa/x fibers increased (p ≤ 0.01) and of type IIx fibers decreased (p ≤ 0.002) in young horses. Integrative maximal oxidative capacity (p ≤ 0.02), ECI+II (p ≤ 0.07), and ECII (p = 0.0003) increased for both age groups from wk 0 to 12. Following exercise training, aged horses had a greater percentage of IIx (p ≤ 0.002) and lesser percentage of IIa/x fibers (p ≤ 0.07), and more satellite cells per type II fiber (p = 0.08) than young horses, but sustained lesser integrative and intrinsic CCO activities (p ≤ 0.04) and greater intrinsic PCI, ECI+II, and ECII (p ≤ 0.05). Exercise improved mitochondrial measures in young and aged horses; however, aged horses showed impaired mitochondrial function and differences in adaptation to exercise training.
Collapse
Affiliation(s)
| | | | | | | | - Sarah H. White-Springer
- Texas A&M AgriLife Research and Department of Animal Science, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Gladden LB. Medicine & Science in Sports & Exercise: 2020 Paper of the Year. Med Sci Sports Exerc 2021; 53:1547-1548. [PMID: 34261987 DOI: 10.1249/mss.0000000000002681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Oxfeldt M, Dalgaard LB, Jørgensen EB, Johansen FT, Dalgaard EB, Ørtenblad N, Hansen M. Molecular markers of skeletal muscle hypertrophy following 10 wk of resistance training in oral contraceptive users and nonusers. J Appl Physiol (1985) 2020; 129:1355-1364. [PMID: 33054662 DOI: 10.1152/japplphysiol.00562.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The objective was to determine whether skeletal muscle molecular markers and SC number were influenced differently in users and nonusers of oral contraceptives (OCs) following 10 wk of resistance training. Thirty-eight young healthy untrained users (n = 20) and nonusers of OC (n = 18) completed a 10-wk supervised progressive resistance training program. Before and after the intervention, a muscle tissue sample was obtained from the vastus lateralis muscle for analysis of muscle fiber cross-sectional area (fCSA) and satellite cell (SC) and myonuclei number using immunohistochemistry, gene expression using PCR, protein expression, and myosin heavy chain composition. Following the training period, quadriceps fCSA (P < 0.05), SCs/type I fiber (P = 0.05), and MURF-1 mRNA (P < 0.01) were significantly increased with no difference between the groups. However, SCs/total fiber and SCs/type II fiber increased in OC users only, and SCs/type II fCSA tended (P = 0.055) to be greater in the OC users. Furthermore, in OC users there were a fiber type shift from myosin heavy chain (MHC) IIx to MHC IIa (P < 0.01), and expression of muscle regulatory factor 4 (MRF4) mRNA (P < 0.001) was significantly greater than in non-OC users. Use of second-generation OCs in young untrained women increased skeletal muscle MRF4 expression and SC number following 10 wk of resistance training compared with nonusers.NEW & NOTEWORTHY The effect of oral contraceptive use on the skeletal muscle regulatory pathways in response to resistance training has not been investigated previously. Here we present novel data, demonstrating that use of second-generation oral contraceptives in young untrained women increased skeletal muscle regulatory factor 4 expression and satellite cell number following 10 wk of resistance training compared with nonusers.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | - Emil Barner Dalgaard
- Department of Clinical Medicine, Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Kobayashi Y, Tanaka T, Mulati M, Ochi H, Sato S, Kaldis P, Yoshii T, Okawa A, Inose H. Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Front Cell Dev Biol 2020; 8:564581. [PMID: 33163487 PMCID: PMC7591635 DOI: 10.3389/fcell.2020.564581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Satellite cell proliferation is an essential step in proper skeletal muscle development and muscle regeneration. However, the mechanisms regulating satellite cell proliferation are relatively unknown compared to the knowledge associated with the differentiation of satellite cells. Moreover, it is still unclear whether overload muscle fiber hypertrophy is dependent on satellite cell proliferation. In general, cell proliferation is regulated by the activity of cell cycle regulators, such as cyclins and cyclin-dependent kinases (CDKs). Despite recent reports on the function of CDKs and CDK inhibitors in satellite cells, the physiological role of Cdk1 in satellite cell proliferation remains unknown. Herein, we demonstrate that Cdk1 regulates satellite cell proliferation, muscle regeneration, and muscle fiber hypertrophy. Cdk1 is highly expressed in myoblasts and is downregulated upon myoblast differentiation. Inhibition of CDK1 activity inhibits myoblast proliferation. Deletion of Cdk1 in satellite cells leads to inhibition of muscle recovery after muscle injury due to reduced satellite cell proliferation in vivo. Finally, we provide direct evidence that Cdk1 expression in satellite cells is essential for overload muscle fiber hypertrophy in vivo. Collectively, our results demonstrate that Cdk1 is essential for myoblast proliferation, muscle regeneration, and muscle fiber hypertrophy. These findings could help to develop treatments for refractory muscle injuries and muscle atrophy, such as sarcopenia.
Collapse
Affiliation(s)
- Yutaka Kobayashi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tanaka
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mieradilli Mulati
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons with Disabilities, Research Institute, Tokorozawa, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Toshitaka Yoshii
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Inose
- Department of Orthopedic and Trauma Research, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
roostaei M, pirani H, rashidlamir A. High intensity interval training induces the expression of Myostatin and Follistatin isoforms in rat muscle: differential effects on fast and slow twitch skeletal muscles. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.5.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
MOBERG MARCUS, LINDHOLM MALENEE, REITZNER STEFANM, EKBLOM BJÖRN, SUNDBERG CARLJOHAN, PSILANDER NIKLAS. Exercise Induces Different Molecular Responses in Trained and Untrained Human Muscle. Med Sci Sports Exerc 2020; 52:1679-1690. [DOI: 10.1249/mss.0000000000002310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Al-Dabbagh S, McPhee JS, Piasecki M, Stewart CE, Al-Shanti N. Soluble Factors Released From Activated T Lymphocytes Regulate C2C12 Myoblast Proliferation and Cellular Signaling, but Effects Are Blunted in the Elderly. J Gerontol A Biol Sci Med Sci 2019; 74:1375-1385. [PMID: 30329021 DOI: 10.1093/gerona/gly238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
The key objective of this work was to investigate the impact of young and old human lymphocyte secretomes on C2C12 myoblasts regeneration. Conditioned media were harvested from isolated young and older lymphocytes treated with (activated [AC]) or without (nonactivated [NA]), anti-CD3/CD28 activators for 4 days. AC conditioned media from older lymphocytes had decreased levels of amphiregulin (367 ± 208 pg/mL vs 904 ± 323 pg/mL; p = .018) and IGF-I (845 ± 88 ng/mL vs 1100 ± 48 ng/mL; p = .032) compared with younger AC lymphocytes. AC older versus younger lymphocytes had reduced expression of CD25 (24.6 ± 5.5%; p = .0003) and increased expression of FoxP3 (35 ± 15.7%; p = .032). Treatment of C2C12 myoblasts with young AC lymphocytes resulted in decreased expression of MyoD (0.46 ± 0.12; p =.004) and Myogenin (0.34 ± 0.05; p = .010) mRNA, increased activation of MEk1 (724 ± 140 mean fluorescent intensity [MFI]; p =.001) and ERK1/2 (3768 ± 314 MFI; p =.001), and a decreased activation of Akt (74.5 ± 4 MFI; p = .009) and mTOR (61.8 ± 7 MFI; p = .001) compared with old AC lymphocytes. By contrast, C2C12 myoblasts treated with older AC lymphocytes displayed increased expression of MyoD (0.7 ± 0.08; p =.004) and Myogenin (0.68 ± 0.05; p =.010) mRNA, decreased phosphorylation of MEk1 and ERK1/2 (528 ± 80 MFI; p = .008, and 1141 ± 668 MFI; p = .001, respectively), and increased Akt/mTOR activation (171 ± 35 MFI; p = .009, and 184 ± 33 MFI; p = .001, respectively). These data provide new evidence that differences between older and younger lymphocyte secretomes contribute to differential responses of C2C12 myoblasts in culture.
Collapse
Affiliation(s)
- Sarah Al-Dabbagh
- School of Healthcare Science, Manchester Metropolitan University
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University
| | - Mathew Piasecki
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University
| | - Nasser Al-Shanti
- School of Healthcare Science, Manchester Metropolitan University
| |
Collapse
|
16
|
Riddle ES, Bender EL, Thalacker-Mercer AE. Expansion capacity of human muscle progenitor cells differs by age, sex, and metabolic fuel preference. Am J Physiol Cell Physiol 2018; 315:C643-C652. [PMID: 30110562 DOI: 10.1152/ajpcell.00135.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of satellite cells and expansion of the muscle progenitor cell (MPC) population are essential to generate a sufficient number of cells to repair damaged skeletal muscle. Proliferating MPCs have high energetic and biosynthetic material requirements, and the ability to utilize oxidative phosphorylation (OXPHOS) and/or glycolysis may affect expansion capacity of MPCs. In the present study, we investigated the effect of donor age and sex on human (h)MPC expansion capacity and metabolic fuel preference. hMPCs from young and old male and female donors were grown for 408 h (17 days). Percent confluence, live nuclei count, and dead cell count were measured every 24 h. Metabolic phenotype was assessed by glucose uptake, expression of genes related to glycolysis and OXPHOS, and the Seahorse XF24 Phenotype Test Kit during the exponential phase of growth. hMPCs from old male donors had impaired expansion capacity secondary to heightened cell death early in expansion compared with hMPCs from young male donors, an effect not observed in female hMPCs. Age-related differences in metabolism were also sex dependent; markers of OXPHOS were altered in old (vs. young) male hMPCs, whereas markers of metabolism were largely unaffected by age in female hMPCs. For the first time, we identify sex-specific differences in cell death and OXPHOS that contribute to impaired expansion capacity of hMPC cell populations with age.
Collapse
Affiliation(s)
- Emily S Riddle
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | - Erica L Bender
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | | |
Collapse
|
17
|
Lee SR, Khamoui AV, Jo E, Zourdos MC, Panton LB, Ormsbee MJ, Kim JS. Effect of conjugated linoleic acids and omega-3 fatty acids with or without resistance training on muscle mass in high-fat diet-fed middle-aged mice. Exp Physiol 2017; 102:1500-1512. [PMID: 28795443 DOI: 10.1113/ep086317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/08/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? This study examined the effects of 20 weeks of administration of conjugated linoleic acids/omega-3 fatty acids with or without programed resistance exercise training on body composition, skeletal muscle properties and functional capacity in middle-aged mice fed a high-fat diet. What is the main finding and its importance? Chronic daily administration of conjugated linoleic acids/omega-3 fatty acids with resistance exercise training can help to blunt fat gain, alleviate loss of myogenic capacity and sensorimotor function and lower tissue inflammation in middle-aged mice during chronic high-fat diet-induced catabolism. This study investigated the effects of 20 weeks of combined conjugated linoleic acid (CLA)/omega-3 fatty acid (n-3) administration independently or combined with resistance exercise training (RET) on skeletal muscle in middle-aged mice consuming a high-fat diet (HFD). Nine-month-old C57BL/6 mice were randomly assigned into four experimental groups (H, high-fat diet; HE, H + RET; HCN, H + CLA/n-3; and HECN, H + CLA/n3 + RET). Body composition and functional capacity were assessed pre- and post-intervention. Muscle tissues were collected at 14 months of age. ANOVA was used, with significance set at P ≤ 0.05. Fat mass significantly increased in H (+74%), HE (+142%) and HECN (+43%) but not in HCN. Muscle wet weights were significantly lower in H and HCN than in HE and HECN. Grip strength substantially declined in H (-15%) and HCN (-17%), whereas sensorimotor function significantly declined only in H (-11%). HECN exhibited improvement in strength (+22%) and sensorimotor coordination (+17%). In comparison to H, muscle tumour necrosis factor-α mRNA expression was significantly lower in HE (-39%), HCN (-24%) and HECN (-21%), respectively. Mean myofibre cross-sectional areas were markedly lower in H and HCN than in HE and HECN. H showed significantly lower satellite cell abundance and numbers of myonuclei than all other groups. Our findings suggest that long-term daily CLA/n-3 intake with resistance training improved sensorimotor function, ameliorated fat gain and prevented loss of myogenic capacity while lowering tumour necrosis factor-α expression during chronic HFD.
Collapse
Affiliation(s)
- Sang-Rok Lee
- Department of Kinesiology and Dance, New Mexico State University, Las Cruces, NM, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andy V Khamoui
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - Edward Jo
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USA
| | - Michael C Zourdos
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - Lynn B Panton
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Michael J Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
18
|
The maintenance ability and Ca 2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med 2016; 48:e278. [PMID: 27932789 PMCID: PMC5192075 DOI: 10.1038/emm.2016.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Sildenafil relaxes vascular smooth muscle cells and is used to treat pulmonary artery hypertension as well as erectile dysfunction. However, the effectiveness of sildenafil on skeletal muscle and the benefit of its clinical use have been controversial, and most studies focus primarily on tissues and organs from disease models without cellular examination. Here, the effects of sildenafil on skeletal muscle at the cellular level were examined using mouse primary skeletal myoblasts (the proliferative form of skeletal muscle stem cells) and myotubes, along with single-cell Ca2+ imaging experiments and cellular and biochemical studies. The proliferation of skeletal myoblasts was enhanced by sildenafil in a dose-independent manner. In skeletal myotubes, sildenafil enhanced the activity of ryanodine receptor 1, an internal Ca2+ channel, and Ca2+ movement that promotes skeletal muscle contraction, possibly due to an increase in the resting cytosolic Ca2+ level and a unique microscopic shape in the myotube membranes. Therefore, these results suggest that the maintenance ability of skeletal muscle mass and the contractility of skeletal muscle could be improved by sildenafil by enhancing the proliferation of skeletal myoblasts and increasing the Ca2+ availability of skeletal myotubes, respectively.
Collapse
|
19
|
Armakolas N, Armakolas A, Antonopoulos A, Dimakakos A, Stathaki M, Koutsilieris M. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology. Crit Rev Oncol Hematol 2016; 108:137-145. [DOI: 10.1016/j.critrevonc.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 10/05/2016] [Accepted: 11/13/2016] [Indexed: 11/28/2022] Open
|
20
|
Saini J, McPhee JS, Al-Dabbagh S, Stewart CE, Al-Shanti N. Regenerative function of immune system: Modulation of muscle stem cells. Ageing Res Rev 2016; 27:67-76. [PMID: 27039885 DOI: 10.1016/j.arr.2016.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease.
Collapse
|
21
|
Abstract
To evaluate the anastomotic potential of prevascular tissue constructs generated from scaffold-free self-assembly of human endothelial and fibroblast cells, tissue constructs were implanted into athymic mice and immune-competent rats. Analysis of xenografts placed into hind limb muscle defects showed vascular anastomotic activity by 3 days after implantation and persisting for 2 weeks. Integration of the implanted prevascular tissue constructs with the host circulatory system was evident from presence of red blood cells in the implant as early as 3 days after implantation. Additionally, analysis of 3-day xenografts in the rat model showed activation of skeletal muscle satellite cells based on Pax-7 and MyoD expressions. We conclude that prevascular tissue constructs generated from scaffold-free self-assembly of human endothelial and fibroblast cells are a promising tool to provide both vascular supply and satellite cell activation toward the resolution of skeletal muscle injury.
Collapse
|
22
|
Effects of chronic high-fat feeding on skeletal muscle mass and function in middle-aged mice. Aging Clin Exp Res 2015; 27:403-11. [PMID: 25647784 DOI: 10.1007/s40520-015-0316-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Increased adipose tissue may promote catabolic events in skeletal muscle. The aim of this study was to test whether high-fat diet (HFD)-induced obesity would accelerate the onset of muscle wasting in middle-aged mice. METHODS Muscle was collected from C57BL/6 mice at 9 months of age (baseline) and 14 months of age after consuming a control (C) or HFD. Mice in C and HFD were also subjected to evaluations of body composition and function before and after their respective diets. RESULTS HFD demonstrated significant (p < 0.05) losses of grip strength (-15 %) and sensorimotor coordination (-11 %), whereas C did not. Lean mass decreased to a greater degree in HFD although not significantly (C: -20.69 ± 7.94 vs. HFD: -31.14 ± 5.49 %, p > 0.05). Gastrocnemius, quadriceps, and hamstrings mass in C and HFD were significantly reduced from baseline (-27 to 43 and -39 to 47 %, respectively, p < 0.05) with no differences between the two; however, soleus mass was lower only in HFD (-24 %, p = 0.03). Myofiber area, satellite cells, and myonuclei of the gastrocnemius were lower only in HFD (-23, -19, and -16 %, respectively, p < 0.05) compared to baseline. CONCLUSIONS HFD-induced obesity adversely affected function in middle-aged mice. Atrophy of the soleus in HFD but not C suggests sensitivity of oxidative muscle to HFD-dependent catabolism more so than aging. In the muscles containing fast/mixed fibers, aging effects may have concealed the catabolic nature of HFD; however, morphological changes in the gastrocnemius including decreased fiber area, satellite cells, and myonuclei are consistent with an atrophic phenotype related to HFD.
Collapse
|
23
|
Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, Pereira SL. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol (1985) 2014; 118:319-30. [PMID: 25414242 DOI: 10.1152/japplphysiol.00674.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Justin Sperringer
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | | | | |
Collapse
|
24
|
Sung E, Han A, Hinrichs T, Vorgerd M, Manchado C, Platen P. Effects of follicular versus luteal phase-based strength training in young women. SPRINGERPLUS 2014; 3:668. [PMID: 25485203 PMCID: PMC4236309 DOI: 10.1186/2193-1801-3-668] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 11/07/2014] [Indexed: 11/13/2022]
Abstract
Hormonal variations during the menstrual cycle (MC) may influence trainability of strength. We investigated the effects of a follicular phase-based strength training (FT) on muscle strength, muscle volume and microscopic parameters, comparing it to a luteal phase-based training (LT). Eumenorrheic women without oral contraception (OC) (N = 20, age: 25.9 ± 4.5 yr, height: 164.2 ± 5.5 cm, weight: 60.6 ± 7.8 kg) completed strength training on a leg press for three MC, and 9 of them participated in muscle biopsies. One leg had eight training sessions in the follicular phases (FP) and only two sessions in the luteal phases (LP) for follicular phase-based training (FT), while the other leg had eight training sessions in LP and only two sessions in FP for luteal phase-based training (LT). Estradiol (E2), progesterone (P4), total testosterone (T), free testosterone (free T) and DHEA-s were analysed once during FP (around day 11) and once during LP (around day 25). Maximum isometric force (Fmax), muscle diameter (Mdm), muscle fibre composition (No), fibre diameter (Fdm) and cell nuclei-to-fibre ratio (N/F) were analysed before and after the training intervention. T and free T were higher in FP compared to LP prior to the training intervention (P < 0.05). The increase in Fmax after FT was higher compared to LT (P <0.05). FT also showed a higher increase in Mdm than LT (P < 0.05). Moreover, we found significant increases in Fdm of fibre type ΙΙ and in N/F only after FT; however, there was no significant difference from LT. With regard to change in fibre composition, no differences were observed between FT and LT. FT showed a higher gain in muscle strength and muscle diameter than LT. As a result, we recommend that eumenorrheic females without OC should base the periodization of their strength training on their individual MC.
Collapse
Affiliation(s)
- Eunsook Sung
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
- />Department of Health and Fitness Management, Woosong University, Deajeon, South Korea
| | - Ahreum Han
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
| | - Timo Hinrichs
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
- />Swiss Paraplegic Research, Nottwil, Switzerland
| | - Matthias Vorgerd
- />Department of Neurology, Ruhr-University Bochum, Kliniken Bergmannsheil, Bochum, Germany
| | - Carmen Manchado
- />Department of General and Specific Didactics, Faculty of Education, University of Alicante, Alicante, Spain
| | - Petra Platen
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
| |
Collapse
|
25
|
Ijiri D, Ishitani K, Shimamoto S, Ishimaru Y, Ohtsuka A. The effects of intraperitoneal clenbuterol injection on protein degradation and myostatin expression differ between the sartorius and pectoral muscles of neonatal chicks. Gen Comp Endocrinol 2014; 206:111-7. [PMID: 25117456 DOI: 10.1016/j.ygcen.2014.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the effects of injection of the β2-adrenergic receptor agonist clenbuterol on the skeletal muscles of neonatal chicks (Gallus gallus domesticus). One-day-old chicks were randomly divided into four groups and given a single intraperitoneal injection of clenbuterol (0.01, 0.1, or 1mg/kg) or phosphate-buffered saline. Twenty-four hours after the injection, the sartorius muscles (which consist of both slow- and fast-twitch fibers) of chicks that received 0.01 or 0.1mg/kg clenbuterol were significantly heavier than those of controls, while there were no between-group differences in the weight of the pectoral muscles, which consist of only fast-twitch fibers. Muscle free N(t)-methylhistidine, regarded as an index of myofibrillar proteolysis, was decreased in the sartorius muscle of the clenbuterol-injected chicks, while it was not affected in the pectoral muscles. In the sartorius muscle of the clenbuterol-injected chicks, myostatin and atrogin-1/MAFbx mRNA expressions were decreased, while insulin-like growth factor-I was unaffected. These observations suggested, in 1-day-old chicks, clenbuterol might increase mass of the sartorius muscle by decreasing myostatin gene expression and protein degradation.
Collapse
Affiliation(s)
- Daichi Ijiri
- Department of Biochemical Science and Technology, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Kanae Ishitani
- Department of Biochemical Science and Technology, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Saki Shimamoto
- Department of Biochemical Science and Technology, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshitaka Ishimaru
- Department of Biochemical Science and Technology, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Akira Ohtsuka
- Department of Biochemical Science and Technology, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
26
|
Guo Y, Niu K, Okazaki T, Wu H, Yoshikawa T, Ohrui T, Furukawa K, Ichinose M, Yanai K, Arai H, Huang G, Nagatomi R. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp Gerontol 2014; 50:1-8. [DOI: 10.1016/j.exger.2013.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 12/25/2022]
|
27
|
Oliveira DR, Pinho ACA, Delise JDN, Nunes MP, Diniz LBMPV, Ribeiro Neto H, Santos HBD, Oliveira VND, Ribeiro RIMDA. Efeito da natacao associada a diferentes tratamentos sobre o musculo soleo de ratos: estudo histologico e morfometrico. REV BRAS MED ESPORTE 2014. [DOI: 10.1590/s1517-86922014000100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: O uso de suplementos ergogênicos farmacológicos e nutricionais cresce a cada dia no ambiente esportivo. A creatina e os esteroides anabólicos são os recursos ergogênicos mais procurados ultimamente. OBJETIVO: Avaliar as alterações histológicas e morfométricas do músculo sóleo de ratos que receberam suplementos e foram submetidos a treinamento físico (TF) de natação. MÉTODOS: Foram utilizados 50 ratos, distribuidos em cinco grupos: três não submetidos à atividade física (controles) e dois que receberam treinamento de natação (treinados). Um grupo controle recebeu apenas ração (grupo controle ração), dois grupos (um controle e outro treinado) receberam diariamente 3,3 mg de creatina por grama de dieta dissolvida em água aplicada oralmente via gavagem, e os outros dois grupos (um controle e outro treinado) receberam injeção intramuscular do esteroide anabolizante decanoato de nandrolona (Deca-durabolin(r) - Organon) 5 mg/kg duas vezes por semana. Os grupos treinados foram submetidos ao TF com duração de 60 min/sessão de segunda a sexta-feira por nove semanas, e foram sacrificados no final deste período. Após o sacrifício, o músculo sóleo foi retirado, fixado em formalina (10%) tamponada e incluído em parafina. Os cortes histológicos foram corados pela técnica de hematoxilina-eosina para avaliação de hiperplasia e hipertrofia muscular. Para análise dos dados aplicou-se a análise de variância ANOVA One-Way com post hoc de Tukey-Kramer com nível de significância de 5%. RESULTADOS: Foi demonstrado que a creatina associada ao exercício provavelmente aumente o espaço intersticial no músculo esquelético sem alterar o tamanho ou número de fibras musculares, enquanto que o anabolizante aumentou o número de fibras musculares por área de músculo analisada, embora nenhuma alteração tenha sido observada na área da fibra. CONCLUSÃO: O músculo de ratos submetidos ao treinamento de natação responde diferentemente frente ao tipo de recurso ergogênico utilizado.
Collapse
|
28
|
Souza MVC, Leite RD, Souza Lino ADD, Marqueti RDC, Bernardes CF, Araújo HSSD, Bouskela E, Shiguemoto GE, Andrade Perez SED, Kraemer-Aguiar LG. Resistance training improves body composition and increases matrix metalloproteinase 2 activity in biceps and gastrocnemius muscles of diet-induced obese rats. Clinics (Sao Paulo) 2014; 69:265-70. [PMID: 24714835 PMCID: PMC3971365 DOI: 10.6061/clinics/2014(04)08] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE We investigated the influence of resistance training on body composition and matrix metalloproteinase 2 activity in skeletal muscles of rats fed a high-fat diet. METHODS Thirty-two Wistar rats were divided into four experimental groups (n = 8/each) according to diet and exercise status: Control (standard diet), Obese Control (high-fat diet), Resistance Training (standard diet) and Obese Resistance Training (high-fat diet) groups. Animals were fed a high-fat diet for 12 weeks to promote excessive weight gain. Resistance Training groups performed 12 weeks of training periods after this period in a vertical ladder three times/week. Fat percentage, fat-free mass and fat mass were assessed using dual-energy X-ray absorptiometry, and matrix metalloproteinase 2 activity in biceps and gastrocnemius muscles was analyzed using zymography. RESULTS Resistance training significantly reduced body and fat masses and fat percentages in both trained groups (p<0.05). The maximal carrying load between trained groups was not different, but relative force was higher in the Resistance Training group (p<0.05). Of note, increased matrix metalloproteinase 2 activity was noted in the tested muscles of both trained groups (p<0.05). CONCLUSION In conclusion, altered body composition and muscle matrix metalloproteinase 2 activity promoted by excessive weight gain were positively modified by resistance training.
Collapse
Affiliation(s)
- Markus Vinicius Campos Souza
- Department of Physiological Sciences, Laboratory of Exercise Physiology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Richard Diego Leite
- Department of Physical Education, Federal University of Maranhão, São Luis, MA, Brazil
| | - Anderson Diogo de Souza Lino
- Department of Physiological Sciences, Laboratory of Exercise Physiology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Heloisa Sobreiro Selistre de Araújo
- Department of Physiological Sciences, Laboratory of Biochemistry and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Gilberto Eiji Shiguemoto
- Department of Physiological Sciences, Laboratory of Exercise Physiology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Sérgio Eduardo de Andrade Perez
- Department of Physiological Sciences, Laboratory of Exercise Physiology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Luiz Guilherme Kraemer-Aguiar
- Clinical and Experimental Research Laboratory in Vascular Biology (Biovasc), State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Alway SE, Bennett BT, Wilson JC, Edens NK, Pereira SL. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats. Exp Gerontol 2013; 50:82-94. [PMID: 24316035 DOI: 10.1016/j.exger.2013.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb suspension (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 months) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p<0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2±113.8 μm(2)) vs. vehicle treated animals (1953.0±41.9 μm(2)). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (-22%), and FADD (-77%) was lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; West Virginia Center for Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States.
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Neile K Edens
- Discovery R&D, Abbott Nutrition, Columbus, OH, United States
| | | |
Collapse
|
30
|
Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol 2013; 48:973-84. [DOI: 10.1016/j.exger.2013.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
|
31
|
Li YH, Chen HY, Li YW, Wu SY, Wangta-Liu, Lin GH, Hu SY, Chang ZK, Gong HY, Liao CH, Chiang KY, Huang CW, Wu JL. Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells. Sci Rep 2013; 3:1176. [PMID: 23378909 PMCID: PMC3560382 DOI: 10.1038/srep01176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/09/2013] [Indexed: 11/20/2022] Open
Abstract
Myogenic progenitor cell (MPC) is responsible for postembryonic muscle growth and regeneration. Progranulin (PGRN) is a pluripotent growth factor that is correlated with neuromuscular disease, which is characterised by denervation, leading to muscle atrophy with an abnormal quantity and functional ability of MPC. However, the role of PGRN in MPC biology has yet to be elucidated. Here, we show that knockdown of zebrafish progranulin A (GrnA) resulted in a reduced number of MPC and impaired muscle growth. The decreased number of Pax7-positive MPCs could be restored by the ectopic expression of GrnA or MET. We further confirmed the requirement of GrnA in MPC activation during muscle regeneration by knockdown and transgenic line with muscle-specific overexpression of GrnA. In conclusion, we demonstrate a critical role for PGRN in the maintenance of MPC and suggest that muscle atrophy under PGRN loss may begin with MPC during postembryonic myogenesis.
Collapse
Affiliation(s)
- Yen-Hsing Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yost MJ, Morales MO, Rodriguez-Rivera V, Yost EM, Terracio L, Fann SA. A model system for primary abdominal closures. Methods Mol Biol 2013; 1037:165-73. [PMID: 24029935 DOI: 10.1007/978-1-62703-505-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The foreign body response to medical devices and materials implanted in the human body, including scarring, fibrous encapsulation, and potential rejection, is a longstanding and serious clinical issue. There are no widely acceptable or safe therapies for ameliorating the foreign body response. Clinical complications resulting from the response include disfigurement of silicone prostheses and loss of function of devices such as implanted pacemakers, stents, and shunts. Cellularized implants and stem cells placed in the body are also subject to the foreign body response with the added issue that the regenerative repair intended to be prompted by the graft may be inhibited. Beneficial modification of the body's reaction to implanted materials, medical devices, engineered constructs, or stem cells would be a fundamentally important therapeutic advance.As part of investigating the cellular response, we have developed a model which uses cells isolated from skeletal muscle biopsy, cultured, and proliferated in vitro. These satellite cells, which are mononucleated progenitor cells, reside between the plasma membrane of the muscle fiber and the basal membrane that encompasses the fiber. While usually quiescent, these cells become activated following muscle damage. Once activated, the satellite cells proliferate, migrate to injured muscle, and participate in repair by fusing with existing muscle fibers or by differentiating into new skeletal muscle fibers. Satellite cells have been shown to be heterogeneous populations of stem cells and progenitor cells. We have developed an explant method for isolating, sorting, enriching, and culturing these cells for use in skeletal muscle regenerative medicine to determine if the foreign body response can be inhibited by manipulating the cell-cell communication.
Collapse
Affiliation(s)
- Michael J Yost
- Department of General Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
33
|
Knoblauch MA, O'Connor DP, Clarke MSF. Obese mice incur greater myofiber membrane disruption in response to mechanical load compared with lean mice. Obesity (Silver Spring) 2013; 21:135-43. [PMID: 23505178 DOI: 10.1002/oby.20253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/31/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Obesity is associated with modified transmembrane signaling events in skeletal muscle, such as insulin signaling and glucose transport. The underlying cause of these obesity-related effects on transmembrane signaling is still unknown. In general, the function of membrane proteins responsible for transmembrane signaling is modulated by the biochemical makeup of the membrane, such as lipid composition, in which they are embedded. Any obesity-related alterations in membrane composition would also be predicted to modify membrane biomechanical properties and membrane susceptibility to mechanical load-induced damage. The primary objective of this study was to investigate whether obesity influences myofiber membrane susceptibility to mechanical damage in skeletal muscle. DESIGN AND METHODS Myofiber membrane damage was compared between 12-week-old obese, hypercholesterolemic (B6.V Lep(ob) /J) and isogenic, normocholesterolemic control (C57BL6/J) male mice following either normal cage activity or strenuous eccentric exercise (downhill running). Myofiber membrane damage was quantified in perfusion-fixed frozen sections of the gastrocnemius muscle via sarcoplasmic concentration of either albumin (cage activity experiment) or a fluorescent marker that had been injected immediately before activity (eccentric exercise experiment). RESULTS Obese mice exhibited evidence of increased myofiber membrane damage compared with lean mice after both normal cage activity and eccentric exercise indicating that myofiber membranes of obese mice are more susceptible to mechanical damage in general and that eccentric exercise exacerbates this effect. CONCLUSIONS These observations are consistent with the notion that obesity influences the biochemical and biomechanical properties of myofiber membranes.
Collapse
Affiliation(s)
- Mark A Knoblauch
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA.
| | | | | |
Collapse
|
34
|
Matheny RW, Lynch CM, Leandry LA. Enhanced Akt phosphorylation and myogenic differentiation in PI3K p110β-deficient myoblasts is mediated by PI3K p110α and mTORC2. Growth Factors 2012; 30:367-84. [PMID: 23137199 DOI: 10.3109/08977194.2012.734507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) is a principal regulator of Akt activation and myogenesis; however, the function of PI3K p110β in these processes is not well defined. To address this, we investigated the role of p110β in Akt activation and skeletal muscle cell differentiation. We found that Akt phosphorylation was enhanced in p110β-deficient myoblasts in response to Insulin-like Growth Factor-I (IGF-I), epidermal growth factor, or p110α overexpression, as compared to p110β-sufficient cells. This effect was associated with increased mammalian target of rapamycin complex 2 activation, even in myoblasts deficient in mSin1 and rictor. Conversely, in response to the G-protein-coupled receptor agonist lysophosphatidic acid, Akt phosphorylation was attenuated in p110β-deficient myoblasts. Loss of p110β also enhanced the expression of myogenic markers at the myoblast stage and during the first 48 h of differentiation. These data demonstrate that reductions in p110β are associated with agonist-specific Akt hyperactivation and accelerated myogenesis, thus revealing a negative role for p110β in Akt activation and during myoblast differentiation.
Collapse
Affiliation(s)
- Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Building 42, Natick, MA 01760, USA.
| | | | | |
Collapse
|
35
|
Kim JS, Park YM, Lee SR, Masad IS, Khamoui AV, Jo E, Park BS, Arjmandi BH, Panton LB, Lee WJ, Grant SC. β-hydroxy-β-methylbutyrate did not enhance high intensity resistance training-induced improvements in myofiber dimensions and myogenic capacity in aged female rats. Mol Cells 2012; 34:439-48. [PMID: 23149873 PMCID: PMC3887788 DOI: 10.1007/s10059-012-0196-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
Abstract
Older women exhibit blunted skeletal muscle hypertrophy following resistance training (RT) compared to other age and gender cohorts that is partially due to an impaired regenerative capacity. In the present study, we examined whether β-hydroxy-β-methylbutyrate (HMB) provision to aged female rodents would enhance regenerative mechanisms and facilitate RT-induced myofiber growth. Nineteen-month old female Sprague-Dawley rats were randomly divided into three groups: HMB (0.48 g/kg/d; n = 6), non-HMB (n = 6), and control (n = 4). HMB and non-HMB groups underwent RT every third day for 10 weeks using a ladder climbing apparatus. Whole body strength, grip strength, and body composition was evaluated before and after RT. The gastrocnemius and soleus muscles were analyzed using magnetic resonance diffusion tensor imaging, RT-PCR, and immunohistochemistry to determine myofiber dimensions, transcript expression, and satellite cells/myonuclei, respectively. ANOVAs were used with significance set at p < 0.05. There were significant time effects (pre vs. post) for whole body strength (+262%), grip strength (+17%), lean mass (+20%), and fat mass (-19%). Both RT groups exhibited significant increases in the mean myofiber cross-sectional area (CSA) in the gastrocnemius and soleus (+8-22%) compared to control. Moreover, both groups demonstrated significant increases in the numbers of satellite cells (+100-108%) and myonuclei (+32%) in the soleus but not the gastrocnemius. A significant IGF-I mRNA elevation was only observed in soleus of the HMB group (+33%) whereas MGF and myogenin increased significantly in both groups (+32-40%). Our findings suggest that HMB did not further enhance intense RT-mediated myogenic mechanisms and myofiber CSA in aged female rats.
Collapse
Affiliation(s)
- Jeong-Su Kim
- Department of Nutrition, Food, and Exercise Sciences, The Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Figueiredo VC, Nader GA. Ursolic acid directly promotes protein accretion in myotubes but does not affect myoblast proliferation. Cell Biochem Funct 2012; 30:432-7. [PMID: 22411156 DOI: 10.1002/cbf.2821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 01/17/2023]
Abstract
Ursolic acid (UA) has been recently proposed as a potential candidate for the treatment of muscle wasting conditions because of its protein sparring/anabolic effects. Despite this finding, it is unknown whether this response is the consequence of a direct effect on the muscle fibre or if it is mediated by neural or other systemic factors. In the present study, we sought to determine if UA has direct effects in skeletal muscle cells, whether it can increase myoblast proliferation and whether UA can become myotoxic at higher doses. Our results demonstrate that UA directly promoted protein accretion in cultured myotubes but did not modulate myoblast proliferation. At higher doses, UA compromised cell viability in both myoblasts and myotubes. We conclude that the anabolic properties of UA seen in vivo and in vitro are likely a direct effect on the muscle cell, but at higher doses, the benefits decline in favour of a myotoxic outcome.
Collapse
|
37
|
Corona BT, Machingal MA, Criswell T, Vadhavkar M, Dannahower AC, Bergman C, Zhao W, Christ GJ. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng Part A 2012; 18:1213-28. [PMID: 22439962 DOI: 10.1089/ten.tea.2011.0614] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volumetric muscle loss (VML) can result from trauma and surgery in civilian and military populations, resulting in irrecoverable functional and cosmetic deficits that cannot be effectively treated with current therapies. Previous work evaluated a bioreactor-based tissue engineering approach in which muscle derived cells (MDCs) were seeded onto bladder acellular matrices (BAM) and mechanically preconditioned. This first generation tissue engineered muscle repair (TEMR) construct exhibited a largely differentiated cellular morphology consisting primarily of myotubes, and moreover, significantly improved functional recovery within 2 months of implantation in a murine latissimus dorsi (LD) muscle with a surgically created VML injury. The present report extends these initial observations to further document the importance of the cellular phenotype and composition of the TEMR construct in vitro to the functional recovery observed following implantation in vivo. To this end, three distinct TEMR constructs were created by seeding MDCs onto BAM as follows: (1) a short-term cellular proliferation of MDCs to generate primarily myoblasts without bioreactor preconditioning (TEMR-1SP), (2) a prolonged cellular differentiation and maturation period that included bioreactor preconditioning (TEMR-1SPD; identical to the first generation TEMR construct), and (3) similar treatment as TEMR-1SPD but with a second application of MDCs during bioreactor preconditioning (TEMR-2SPD); simulating aspects of "exercise" in vitro. Assessment of maximal tetanic force generation on retrieved LD muscles in vitro revealed that TEMR-1SP and TEMR-1SPD constructs promoted either an accelerated (i.e., 1 month) or a prolonged (i.e., 2 month postinjury) functional recovery, respectively, of similar magnitude. Meanwhile, TEMR-2SPD constructs promoted both an accelerated and prolonged functional recovery, resulting in twice the magnitude of functional recovery of either TEMR-1SP or TEMR-1SPD constructs. Histological and molecular analyses indicated that TEMR constructs mediated functional recovery via regeneration of functional muscle fibers either at the interface of the construct and the native tissue or within the BAM scaffolding independent of the native tissue. Taken together these findings are encouraging for the further development and clinical application of TEMR constructs as a VML injury treatment.
Collapse
Affiliation(s)
- Benjamin T Corona
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Al-Musawi SL, Stickland NC, Bayol SAM. In ovo temperature manipulation differentially influences limb musculoskeletal development in two lines of chick embryos selected for divergent growth rates. J Exp Biol 2012; 215:1594-604. [DOI: 10.1242/jeb.068791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Selective breeding has led to diverging phenotypic evolution in layer and broiler chickens through genomic and epigenetic modifications. Here we show that in ovo environmental manipulation differentially influences embryonic limb muscle phenotype in these two breeds. We demonstrate that raising incubation temperature from 37.5 to 38.5°C between embryonic days (ED) 4 and 7 increased motility and body mass in both layer and broiler embryos. In layers, this was accompanied by gastrocnemius muscle hypertrophy, increased fibre and nuclei numbers and a higher nuclei to fibre ratio (ED18), preceded by increased hindlimb Myf5 (ED5–8), Pax7 (ED5–10), BMP4 (ED6–9) and IGF-I (ED9–10, ED18) mRNAs. In broilers, the same temperature treatment led to reduced gastrocnemius cross-sectional area with fewer fibres and nuclei and an unchanged fibre to nuclei ratio (ED18). This was preceded by a delay in the peak of hindlimb Myf5 expression, increased Pax7 (ED5, ED7–10) and BMP4 (ED6–8) but reduced IGF-I (ED8–10) mRNAs. Rather than promoting myogenesis as in layer embryos, the temperature treatment promoted gastrocnemius intramuscular fat deposition in broilers (ED18) preceded by increased hindlimb PPARγ mRNA (ED7–10). The treatment increased tibia/tarsus bone length as well as femur cross-sectional area in both breeds, but femur length and bone to cartilage ratio in the femur and tibia/tarsus were only increased in treated layers (ED18). We conclude that in ovo temperature manipulation differentially affected the molecular regulation of hindlimb myogenic, adipogenic and growth factor expression in broiler and layer embryos, leading to differential changes in muscle phenotype. The underlying interactive mechanisms between genes and the environment need further investigation.
Collapse
Affiliation(s)
- Sara L. Al-Musawi
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Neil C. Stickland
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Stéphanie A. M. Bayol
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
39
|
Alfaro LAS, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, Cornelison DDW, Rossi FMV. CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells 2012; 29:2030-41. [PMID: 21997891 DOI: 10.1002/stem.759] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression of the cell surface sialomucin CD34 is common to many adult stem cell types, including muscle satellite cells. However, no clear stem cell or regeneration-related phenotype has ever been reported in mice lacking CD34, and its function on these cells remains poorly understood. Here, we assess the functional role of CD34 on satellite cell-mediated muscle regeneration. We show that Cd34(-/-) mice, which have no obvious developmental phenotype, display a defect in muscle regeneration when challenged with either acute or chronic muscle injury. This regenerative defect is caused by impaired entry into proliferation and delayed myogenic progression. Consistent with the reported antiadhesive function of CD34, knockout satellite cells also show decreased motility along their host myofiber. Altogether, our results identify a role for CD34 in the poorly understood early steps of satellite cell activation and provide the first evidence that beyond being a stem cell marker, CD34 may play an important function in modulating stem cell activity.
Collapse
Affiliation(s)
- Leslie Ann So Alfaro
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kano Y, Sonobe T, Inagaki T, Sudo M, Poole DC. Mechanisms of exercise-induced muscle damage and fatigue: Intracellular calcium accumulation. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Chen L, Huang HW, Gu SH, Xu L, Gu YD, Xu JG, Xu JG. The Study of Myogenin Expression in Denervated Human Skeletal Muscles. J Int Med Res 2011; 39:378-87. [PMID: 21672341 DOI: 10.1177/147323001103900205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Skeletal muscle denervation eventually causes atrophy as a result of interrupted nerve conduction and the lack of nutritional factors. Myogenin is a myogenic regulatory factor that plays a key role in myoblast differentiation. Changes in myogenin expression in denervated rat skeletal muscle have been demonstrated, but myogenin expression in denervated human skeletal muscle has not been reported. Human muscle samples were analysed at different time-points post-denervation to evaluate changes in myogenin expression and their relationship with skeletal muscle atrophy. Post-denervation, myogenin mRNA levels peaked at 7 months and were 37.5 times the normal level. Expression levels then declined to 21 and 11 times the normal level at 12 and 26 months post-denervation, respectively. Prolonged denervation resulted in pathological changes characterized by decreased numbers of intact muscle fibres.
Collapse
Affiliation(s)
- L Chen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - HW Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - SH Gu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - L Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - YD Gu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - JG Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - JG Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Stratos I, Graff J, Rotter R, Mittlmeier T, Vollmar B. Open blunt crush injury of different severity determines nature and extent of local tissue regeneration and repair. J Orthop Res 2010; 28:950-7. [PMID: 20069568 DOI: 10.1002/jor.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insufficiency of skeletal muscle regeneration is often accompanied with functional deficiencies. The goal of our study was to assess the restoration of peripheral muscle upon injury of different severity. Blunt crush injury of the soleus muscle in rats was induced by a clamp and stepwise amplified in severity by rising the locking level of the clamp, resulting in three different groups (1x lock; 2x lock; 3x lock; n = 30 animals per group). After assessment of the fast twitch and tetanic contraction capacity at days 1, 4, 7, 14, and 42 postinjury sampling of muscle tissue served for analysis of cell proliferation, including satellite cells, apoptosis, and leukocyte infiltration. Contraction force analysis demonstrated significantly higher values of relative muscle strength in the 1x lock group compared to the two other groups over 42 days. Calculation of the twitch-to-tetanic force ratio revealed significantly higher mean values at days 1, 7, and 14 in the animals of group 2x lock and 3x lock, indicating a transformation toward a fast-twitching muscular phenotype. Moreover, cell proliferation during the first 4 days was found dependent on the severity of muscle injury in that the higher the severity the higher the proliferation. At the same time, cell apoptosis was found increased, and at day 1 the local leukocyte infiltration was significantly higher in the 3x lock compared to the 1x lock group. These data indicate that severity of injury correlates with local repair responses, which, however, are not necessarily sufficient to fully restore muscle function.
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
43
|
Bower NI, Johnston IA. Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon. PLoS One 2010; 5:e11100. [PMID: 20559434 PMCID: PMC2885424 DOI: 10.1371/journal.pone.0011100] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d−1 at days 2 and 3 of the culture, increasing to 66% d−1 at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.
Collapse
Affiliation(s)
- Neil I Bower
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom.
| | | |
Collapse
|
44
|
Logan MS, Propst JT, Nottingham JM, Goodwin RL, Pabon DF, Terracio L, Yost MJ, Fann SA. Human Satellite Progenitor Cells for Use in Myofascial Repair. Ann Plast Surg 2010; 64:794-9. [DOI: 10.1097/sap.0b013e3181b025cb] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Adams GR. Insulin-like growth factor I signaling in skeletal muscle and the potential for cytokine interactions. Med Sci Sports Exerc 2010; 42:50-7. [PMID: 20010130 DOI: 10.1249/mss.0b013e3181b07d12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent research has demonstrated that intracellular signaling components associated with several proinflammatory cytokines have the potential to interact with signaling pathways that regulate anabolic processes in skeletal muscle. This presentation and the ensuing brief review are intended to present a selection of the potential interactions between these two critical processes.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA.
| |
Collapse
|
46
|
Matheny RW, Nindl BC, Adamo ML. Minireview: Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 2010; 151:865-75. [PMID: 20130113 PMCID: PMC2840678 DOI: 10.1210/en.2009-1217] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The discovery that IGF-I mRNAs encoding isoforms of the pro-IGF-I molecule are differentially regulated in response to mechanical stress in skeletal muscle has been the impetus for a number of studies designed to demonstrate that alternative splicing of IGF-I pre-mRNA involving exons 4, 5, and 6 gives rise to a unique peptide derived from pro-IGF-I that plays a novel role in myoblast proliferation. Research suggests that after injury to skeletal muscle, the IGF-IEb mRNA splice variant is up-regulated initially, followed by up-regulation of the IGF-IEa splice variant at later time points. Up-regulation of IGF-IEb mRNA correlates with markers of satellite cell and myoblast proliferation, whereas up-regulation of IGF-IEa mRNA is correlated with differentiation to mature myofibers. Due to the apparent role of IGF-IEb up-regulation in muscle remodeling, IGF-IEb mRNA was also named mechano-growth factor (MGF). A synthetically manufactured peptide (also termed MGF) corresponding to the 24 most C-terminal residues of IGF-IEb has been shown to promote cellular proliferation and survival. However, no analogous peptide product of the Igf1 gene has been identified in or isolated from cultured cells, their conditioned medium, or in vivo animal tissues or biological fluids. This review will discuss the relationship of the Igf1 gene to MGF and will differentiate actions of synthetic MGF from any known product of Igf1. Additionally, the role of MGF in satellite cell activation, aging, neuroprotection, and signaling will be discussed. A survey of outstanding questions relating to MGF will also be provided.
Collapse
Affiliation(s)
- Ronald W Matheny
- U.S. Army Research Institute of Environmental Medicine, Military Performance Division, 15 Kansas Street, Building 42, Natick, Massachusetts 01760, USA.
| | | | | |
Collapse
|
47
|
Sudo M, Kano Y. Myofiber apoptosis occurs in the inflammation and regeneration phase following eccentric contractions in rats. J Physiol Sci 2009; 59:405-12. [PMID: 19636670 PMCID: PMC10717303 DOI: 10.1007/s12576-009-0049-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Eccentric contractions (ECC) induce myofibrillar collapse, edema, and inflammation in muscle cells. Although apoptosis of myonuclei following ECC is activated during the inflammatory phase, the apoptosis response of the regenerative phase remains to be elucidated. The aim of the present study was to determine the inflammatory and regenerative phase of the apoptosis responses induced by ECC. In anesthetized rats, the tibialis anterior muscles were subjected to ECC repeated 40 times, evoked by surface electric stimulation (100 Hz, 10 V) with mechanical muscle stretch. Apoptosis was examined in the control group and in groups 1, 3, 7, and 14 days after ECC (each group, n = 4-6). Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive myonuclei were assessed by further labeling with dystrophin staining and DAPI. The expression of proteins related to apoptosis (Bcl-2 and Bax) was examined by Western blot assay. At 1 and 3 days, focal edema and necrotic myofibers invaded by mononuclear phagocytes were present, whereas regenerated myofibers with central nuclei were detected at 7 and 14 days. The occurrence of TUNEL-positive myonuclei increased significantly at 7 (7.0 +/- 1.5%) and 14 days (5.6 +/- 0.6%) compared with control (0.9 +/- 0.5%). Further we found that myonuclear apoptosis was restricted to the subsarcolemmal space at 7 and 14 days and markedly absent from the central nucleus. The Bax/Bcl-2 ratio was significantly higher at 3 (4.5 +/- 0.9) and 7 days (3.4 +/- 0.5) after ECC. In conclusion, myofiber apoptotic responses following ECC are present not only in the inflammatory phase but also persist during the regenerative phase.
Collapse
Affiliation(s)
- Mizuki Sudo
- Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu, Tokyo 1828585 Japan
| | - Yutaka Kano
- Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu, Tokyo 1828585 Japan
| |
Collapse
|
48
|
Scholz ME, Meissner JD, Scheibe RJ, Umeda PK, Chang KC, Gros G, Kubis HP. Different roles of H-ras for regulation of myosin heavy chain promoters in satellite cell-derived muscle cell culture during proliferation and differentiation. Am J Physiol Cell Physiol 2009; 297:C1012-8. [PMID: 19625607 DOI: 10.1152/ajpcell.00567.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of constitutively activated proto-oncogene H-ras (H-rasQ61L) on the regulation of myosin heavy chain (MHC) promoter activities was investigated in rabbit satellite cell-derived muscle cell culture during the proliferation stage and early and later stages of differentiation, respectively. During proliferation, overexpression of H-rasQ61L did not affect basal level of activity of the slow MHCI/beta or the fast MHCIId/x promoter luciferase reporter gene construct in transient transfection assays. By contrast, H-rasQ61L affected both MHC promoter activities during differentiation, and this effect changes from inactivation after 2 days to activation after 4 days of differentiation. The activating effect of H-rasQ61L on both MHC promoters after 4 days of differentiation was significantly reduced by LY-294002, a specific inhibitor of the phosphoinositol-3-kinase (PI3K), a downstream target of Ras. Furthermore, the protein kinase Akt (protein kinase B), a downstream target of PI3k, was activated 4 days after initiation of differentiation in myotubes overexpressing H-rasQ61L. By contrast, inhibition of another Ras downstream pathway, mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated protein kinase 1/2 (MKK1/2-ERK1/2-MAPK), increased activities of both MHC promoters, indicating a suppressive role of this pathway. Moreover, the Ras-PI3K-Akt signaling pathway is involved in the activation of MHCI/beta and IId/x promoters in a later stage of differentiation of muscle cells, presumably by a known inhibiting effect of activated Akt on the MKK1/2-ERK1/2-MAPK pathway. The experiments demonstrate that during differentiation of muscle cells activated H-ras is an important regulator of MHC isoform promoter function with opposite effects during early and later stages.
Collapse
Affiliation(s)
- Michael E Scholz
- Department of Physiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J, Frühbeck G. Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 2009; 4:e6808. [PMID: 19730740 PMCID: PMC2733298 DOI: 10.1371/journal.pone.0006808] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/31/2009] [Indexed: 12/26/2022] Open
Abstract
Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation.
Collapse
Affiliation(s)
- Neira Sáinz
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
50
|
LaFramboise WA, Jayaraman RC, Bombach KL, Ankrapp DP, Krill-Burger JM, Sciulli CM, Petrosko P, Wiseman RW. Acute molecular response of mouse hindlimb muscles to chronic stimulation. Am J Physiol Cell Physiol 2009; 297:C556-70. [PMID: 19625612 DOI: 10.1152/ajpcell.00046.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 +/- 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T(3) and I, alpha-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1beta/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1alpha) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A(2), B(2), C, and E(1) and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within 4 h of stimulation without injury or satellite cell recruitment. This conversion was associated with the expression of phenotype-specific transcription factors from resident fiber myonuclei, including the activation of nascent developmental transcriptional programs.
Collapse
Affiliation(s)
- W A LaFramboise
- Dept. of Pathology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Shadyside Hospital West Wing, WG02.11, 5230 Center Ave., Pittsburgh, PA 15232, USA.
| | | | | | | | | | | | | | | |
Collapse
|