1
|
Singh B, Fredriksson Sundbom M, Muthukrishnan U, Natarajan B, Stransky S, Görgens A, Nordin JZ, Wiklander OPB, Sandblad L, Sidoli S, El Andaloussi S, Haney M, Gilthorpe JD. Extracellular Histones as Exosome Membrane Proteins Regulated by Cell Stress. J Extracell Vesicles 2025; 14:e70042. [PMID: 39976275 PMCID: PMC11840699 DOI: 10.1002/jev2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025] Open
Abstract
Histones are conserved nuclear proteins that function as part of the nucleosome in the regulation of chromatin structure and gene expression. Interestingly, extracellular histones populate biofluids from healthy individuals, and when elevated, may contribute to various acute and chronic diseases. It is generally assumed that most extracellular histones exist as nucleosomes, as components of extracellular chromatin. We analysed cell culture models under normal and stressed conditions to identify pathways of histone secretion. We report that core and linker histones localize to extracellular vesicles (EVs) and are secreted via the multivesicular body/exosome pathway. Upregulation of EV histone secretion occurs in response to cellular stress, with enhanced vesicle secretion and a shift towards a population of smaller EVs. Most histones were membrane associated with the outer surface of EVs. Degradation of EV-DNA did not impact significantly on EV-histone association. Individual histones and histone octamers bound strongly to liposomes and EVs, but nucleosomes did not, showing histones do not require DNA for EV binding. Histones colocalized to tetraspanin positive EVs but using genetic or pharmacological intervention, we found that all known pathways of exosome biogenesis acted positively on histone secretion. Inhibition of autophagy and lysosomal degradation had a strong positive effect on EV histone release. Unexpectedly, EV-associated histones lacked the extensive post-translational modification of their nuclear counterparts, suggesting loss of PTMs may be involved in their trafficking or secretion. Our data does not support a significant role for EV-histones existing as nucleosomes. We show for the first time that histones are secreted from cells as membrane proteins via EVs/exosomes. This fundamental discovery provides support for further investigation of the biological activity of exosome associated histones and their role in disease.
Collapse
Affiliation(s)
- Birendra Singh
- Department of Diagnostics and Intervention, Anaesthesiology and Intensive CareUmeå UniversityUmeåSweden
| | | | - Uma Muthukrishnan
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | | | - Stephanie Stransky
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - André Görgens
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Joel Z. Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | - Oscar P. B. Wiklander
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | | | - Simone Sidoli
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Samir El Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | - Michael Haney
- Department of Diagnostics and Intervention, Anaesthesiology and Intensive CareUmeå UniversityUmeåSweden
| | | |
Collapse
|
2
|
Shishkin SS. Moonlighting Proteins of Human and Some Other Eukaryotes. Evolutionary Aspects. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S36-S59. [PMID: 40164152 DOI: 10.1134/s0006297924602855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/02/2025]
Abstract
This review presents materials on formation of the concept of moonlighting proteins and general characteristics of different similar proteins. It is noted that the concept under consideration is based on the data on the existence in different organisms of individual genes, protein products of which have not one, but at least two fundamentally different functions, for example, depending on cellular or extracellular location. An important feature of these proteins is that their functions can be switched. As a result, in different cellular compartments or outside the cells, as well as under a number of other circumstances, one of the possible functions can be carried out, and under other conditions, another. It is emphasized that the significant interest in moonlighting proteins is due to the fact that information is currently accumulating about their involvement in many vital molecular processes (glycolysis, translation, transcription, replication, etc.). Alternative hypotheses on the evolutionary origin of moonlighting proteins are discussed.
Collapse
Affiliation(s)
- Sergei S Shishkin
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
3
|
Petersen JM, Bryon A, Bézier A, Drezen JM, van Oers MM. Transcriptional dynamics during Heliothis zea nudivirus 1 infection in an ovarian cell line from Helicoverpa zea. J Gen Virol 2025; 106:002066. [PMID: 39804289 PMCID: PMC11728702 DOI: 10.1099/jgv.0.002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Nudiviruses (family Nudiviridae) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce. Hence, this study aims to provide a transcriptomic profile of HzNV-1 in an ovary-derived cell line of Helicoverpa zea (HZ-AM1), during early (3, 6 and 9 h post-infection) and advanced (12 and 24 h post-infection) stages of infection. Total RNA was extracted from both virus- and mock-infected cells, and RNA-seq analysis was performed to examine both virus and host transcriptional dynamics. Hierarchical clustering was used to categorize viral genes, while differential gene expression analysis was utilized to pinpoint host genes that are significantly affected by the infection. Hierarchical clustering classified the 154 HzNV-1 genes into four temporal phases, with early phases mainly involving transcription and replication genes and later phases including genes for virion assembly. In addition, a novel viral promoter motif was identified in the upstream region of early-expressed genes. Host gene analysis revealed significant upregulation of heat shock protein genes and downregulation of histone genes. The identification of temporal patterns in viral gene expression enhances the molecular understanding of nudivirus pathology, while the identified differentially expressed host genes highlight the key pathways most hijacked by HzNV-1 infection.
Collapse
Affiliation(s)
- Jirka Manuel Petersen
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Astrid Bryon
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| |
Collapse
|
4
|
Liang Y, Pan JM, Zhu KC, Xian L, Guo HY, Liu BS, Zhang N, Zhu TF, Zhang DC. Molecular characterization of histone gene in golden pompano (Trachinotus ovatus) and antimicrobial activity of its derived peptides. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109860. [PMID: 39209007 DOI: 10.1016/j.fsi.2024.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In addition to controlling gene expression, mediating DNA folding into chromatin, and responding to immunological stimuli, histones are also thought to have antimicrobial effects. This study identified the molecular characteristics of core Histone MacroH2A2 (TOMacroH2A2) and Histone H2B 1/2 (TOH2B) from Trachinotus ovatus, and the antimicrobial potential of their derived peptides (To.mh2a and To. h2b). The open reading frames (ORFs) of TOMacroH2A2 and TOH2B from T. ovatus were 1010 bp and 375 bp, encoding polypeptides of 369 and 124 amino acids, respectively. The TOMacroH2A2 included an H2A domain and an A1pp domain, while TOH2B included an H2B domain. The amino acid sequences of TOMacroH2A2 and TOH2B demonstrated high homology with other teleost's sequences of histone macroh2a2 and histone h2b, with homologies exceeding 90 %. Expression analysis showed high expression of TOMacroH2A2 in brain, stomach, heart, and skin tissues and TOH2B in gill, brain, and skin tissues. In addition, the histone-derived peptides To. mh2a and To. h2b, synthesized based on two histone sequences from T. ovatus, exhibited typical physical characteristics of antimicrobial peptides, including positive charges, amphipathicity, hydrophobicity, and rich α-helix structure. Crucially, the vitro antibacterial results demonstrated that To. mh2a and To. h2b can inhibit the growth of various aquatic pathogens including Streptococcus agalactiae, Staphylococcus aureus, Bacillus subtilis, Acinetobacter baumannii, Aeromonas hydrophila, and Escherichia coli to varying degrees. Specifically, To. mh2a and To. h2b were capable of disrupting the cell surface structures of S. aureus and penetrating the cell membrane, leading to the leakage of cellular contents, thereby exerting their antibacterial effects. Furthermore, gel electrophoresis migration assays showed that To. mh2a and To. h2b participated in antimicrobial activity by binding to bacterial genomic DNA and reducing the migration rate of gDNA in a dose-dependent manner. The minimum effective concentration for binding to DNA was approximately 50 μM. In conclusion, our study suggested that To. mh2a and To. h2b can act as antimicrobial peptides, providing a potential strategy for controlling bacterial diseases in T. ovatus.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Teng-Fei Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Geng X, Wang DW, Li H. The pivotal role of neutrophil extracellular traps in cardiovascular diseases: Mechanisms and therapeutic implications. Biomed Pharmacother 2024; 179:117289. [PMID: 39151311 DOI: 10.1016/j.biopha.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.
Collapse
Affiliation(s)
- Xinyu Geng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Muñoz-Camargo C, Cruz JC. From inside to outside: exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules. J Antibiot (Tokyo) 2024; 77:553-568. [PMID: 38871806 PMCID: PMC11347383 DOI: 10.1038/s41429-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
The emergence of bacterial resistance to antibiotics poses a global health threat, necessitating innovative solutions. The contemporary challenge lies in bacterial resistance, impacting morbidity, mortality, and global economies. Antimicrobial peptides (AMPs) offer a promising avenue for addressing antibiotic resistance. The Antimicrobial Peptide Database catalogs 3569 peptides from various organisms, representing a rich resource for drug development. Histones, traditionally recognized for their role in nucleosome structures, have gained attention for their extracellular functions, including antimicrobial and immunomodulatory properties. This review aims to thoroughly investigate antimicrobial peptides derived from histones in various organisms, elucidating their mechanisms. In addition, it gives us clues about how extracellular histones might be used in drug delivery systems to fight bacterial infections. This comprehensive analysis emphasizes the importance of histone-derived peptides in developing innovative therapeutic strategies for evolving bacterial challenges.
Collapse
Affiliation(s)
- Carolina Muñoz-Camargo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia.
| | - Juan C Cruz
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
7
|
Wang H, Liao Z, Yang Z, Xiao W, Yang Z, He J, Zhang X, Yan X, Tang C. Histone derived antimicrobial peptides identified from Mytilus coruscus serum by peptidomics. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109546. [PMID: 38614412 DOI: 10.1016/j.fsi.2024.109546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.
Collapse
Affiliation(s)
- Haodong Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zongxin Yang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Wenhui Xiao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zilin Yang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Changsheng Tang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| |
Collapse
|
8
|
Li Y, Wang HB, Cao JL, Zhang WJ, Wang HL, Xu CH, Li KP, Liu Y, Wang JR, Ha HL, Fu SJ, Yang L. Proteomic analysis of mitochondria associated membranes in renal ischemic reperfusion injury. J Transl Med 2024; 22:261. [PMID: 38461333 PMCID: PMC10925013 DOI: 10.1186/s12967-024-05021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. METHODS A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein-Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. RESULTS A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value < 0.05 and HR/N > 1.5 or HR/N < 0.66 set as the threshold criteria. Enrichment analysis of differentially expressed proteins unveiled biological processes such as mRNA splicing, apoptosis regulation, and cell division, while molecular functions were predominantly associated with energy metabolic activity. These proteins play key roles in the cellular responses during HR, offering insights into the IRI mechanisms and potential therapeutic targets. The validation of hub genes MFN2 and BNIP3 both in vitro and vivo was consistent with the proteomic findings. MFN2 demonstrated a protective role in maintaining the integrity of mitochondria associated membranes (MAMs) and mitigating mitochondrial damage following hypoxia/reoxygenation injury, this protective effect may be associated with the activation of the PI3K/AKT pathway. CONCLUSIONS The proteins located in mitochondria associated membranes (MAMs) are implicated in crucial roles during renal ischemic reperfusion injury (IRI), with MFN2 playing a pivotal regulatory role in this context.
Collapse
Affiliation(s)
- Yi Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Bin Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jin-Long Cao
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wen-Jun Zhang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hai-Long Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chang-Hong Xu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Kun-Peng Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yi Liu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ji-Rong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hua-Lan Ha
- Department of Nephrology, The First People's Hospital of Lanzhou City, Lanzhou, 730030, Gansu, China
| | - Sheng-Jun Fu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
9
|
Adegoke A, Ribeiro JMC, Smith R, Karim S. Tick innate immune responses to hematophagy and Ehrlichia infection at single-cell resolution. Front Immunol 2024; 14:1305976. [PMID: 38274813 PMCID: PMC10808623 DOI: 10.3389/fimmu.2023.1305976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
10
|
Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Intern Med 2023; 114:15-22. [PMID: 37277249 DOI: 10.1016/j.ejim.2023.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Epigenetics is a rapidly growing field of biology that studies the changes in gene expression that are not due to alterations in the DNA sequence but rather the chemical modifications of DNA and its associated proteins. Epigenetic mechanisms can profoundly influence gene expression, cell differentiation, tissue development, and disease susceptibility. Understanding epigenetic changes is essential to elucidate the mechanisms underlying the increasingly recognized role of environmental and lifestyle factors in health and disease and the intergenerational transmission of phenotypes. Recent studies suggest epigenetics may be critical in various diseases, from cardiovascular disease and cancer to neurodevelopmental and neurodegenerative disorders. Epigenetic modifications are potentially reversible and could provide new therapeutic avenues for treating these diseases using epigenetic modulators. Moreover, epigenetics provide insight into disease pathogenesis and biomarkers for disease diagnosis and risk stratification. Nevertheless, epigenetic interventions have the potential for unintended consequences and may potentially lead to increased risks of unexpected outcomes, such as adverse drug reactions, developmental abnormalities, and cancer. Therefore, rigorous studies are essential to minimize the risks associated with epigenetic therapies and to develop safe and effective interventions for improving human health. This article provides a synthetic and historical view of the origin of epigenetics and some of the most relevant achievements.
Collapse
Affiliation(s)
- Antonella Farsetti
- Istituto di analisi dei sistemi ed informatica "Antonio Ruberti" (IASI), Consiglio Nazionale delle Ricerche (CNR), Via dei Taurini, 19 - 00185 Roma, Italy
| | - Barbara Illi
- Istituto di biologia e Patologia Molecolari, (IBPM), Consiglio Nazionale delle Ricerche (CNR), P.le Aldo Moro 5, 00185, Roma, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Cinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Richards CM, McRae SA, Ranger AL, Klegeris A. Extracellular histones as damage-associated molecular patterns in neuroinflammatory responses. Rev Neurosci 2023; 34:533-558. [PMID: 36368030 DOI: 10.1515/revneuro-2022-0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023]
Abstract
The four core histones H2A, H2B, H3, H4, and the linker histone H1 primarily bind DNA and regulate gene expression within the nucleus. Evidence collected mainly from the peripheral tissues illustrates that histones can be released into the extracellular space by activated or damaged cells. In this article, we first summarize the innate immune-modulatory properties of extracellular histones and histone-containing complexes, such as nucleosomes, and neutrophil extracellular traps (NETs), described in peripheral tissues. There, histones act as damage-associated molecular patterns (DAMPs), which are a class of endogenous molecules that trigger immune responses by interacting directly with the cellular membranes and activating pattern recognition receptors (PRRs), such as toll-like receptors (TLR) 2, 4, 9 and the receptor for advanced glycation end-products (RAGE). We then focus on the available evidence implicating extracellular histones as DAMPs of the central nervous system (CNS). It is becoming evident that histones are present in the brain parenchyma after crossing the blood-brain barrier (BBB) or being released by several types of brain cells, including neurons, microglia, and astrocytes. However, studies on the DAMP-like effects of histones on CNS cells are limited. For example, TLR4 is the only known molecular target of CNS extracellular histones and their interactions with other PRRs expressed by brain cells have not been observed. Nevertheless, extracellular histones are implicated in the pathogenesis of a variety of neurological disorders characterized by sterile neuroinflammation; therefore, detailed studies on the role these proteins and their complexes play in these pathologies could identify novel therapeutic targets.
Collapse
Affiliation(s)
- Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Athena L Ranger
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
12
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
13
|
Revealing Natural Intracellular Peptides in Gills of Seahorse Hippocampus reidi. Biomolecules 2023; 13:biom13030433. [PMID: 36979368 PMCID: PMC10046794 DOI: 10.3390/biom13030433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The seahorse is a marine teleost fish member of the Syngnathidae family that displays a complex variety of morphological and reproductive behavior innovations and has been recognized for its medicinal importance. In the Brazilian ichthyofauna, the seahorse Hippocampus reidi is among the three fish species most used by the population in traditional medicine. In this study, a protocol was performed based on fast heat inactivation of proteases plus liquid chromatography coupled to mass spectrometry to identify native peptides in gills of seahorse H. reidi. The MS/MS spectra obtained from gills allowed the identification of 1080 peptides, of which 1013 peptides were present in all samples and 67 peptide sequences were identified in an additional LC-MS/MS run from an alkylated and reduced pool of samples. The majority of peptides were fragments of the internal region of the amino acid sequence of the precursor proteins (67%), and N- and C-terminal represented 18% and 15%, respectively. Many peptide sequences presented ribosomal proteins, histones and hemoglobin as precursor proteins. In addition, peptide fragments from moronecidin-like protein, described with antimicrobial activity, were found in all gill samples of H. reidi. The identified sequences may reveal new bioactive peptides.
Collapse
|
14
|
Tsoneva DK, Ivanov MN, Conev NV, Manev R, Stoyanov DS, Vinciguerra M. Circulating Histones to Detect and Monitor the Progression of Cancer. Int J Mol Sci 2023; 24:ijms24020942. [PMID: 36674455 PMCID: PMC9860657 DOI: 10.3390/ijms24020942] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Liquid biopsies have emerged as a minimally invasive cancer detection and monitoring method, which could identify cancer-related alterations in nucleosome or histone levels and modifications in blood, saliva, and urine. Histones, the core component of the nucleosome, are essential for chromatin compaction and gene expression modulation. Increasing evidence suggests that circulating histones and histone complexes, originating from cell death or immune cell activation, could act as promising biomarkers for cancer detection and management. In this review, we provide an overview of circulating histones as a powerful liquid biopsy approach and methods for their detection. We highlight current knowledge on circulating histones in hematologic malignancies and solid cancer, with a focus on their role in cancer dissemination, monitoring, and tumorigenesis. Last, we describe recently developed strategies to identify cancer tissue-of-origin in blood plasma based on nucleosome positioning, inferred from nucleosomal DNA fragmentation footprint, which is independent of the genetic landscape.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Nikolay Vladimirov Conev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Rostislav Manev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Dragomir Svetozarov Stoyanov
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Correspondence:
| |
Collapse
|
15
|
Sathyan N, Muhammed Musthafa S, Anju MV, Archana K, Athira PP, Prathap N, Chaithanya ER, Priyaja P, Bright Singh IS, Philip R. Functional characterization of a histone H2A derived antimicrobial peptide HARRIOTTIN-1 from sicklefin chimaera, Neoharriotta pinnata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104554. [PMID: 36185036 DOI: 10.1016/j.dci.2022.104554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial peptides (AMPs) are gene encoded short peptides which play an important role in the innate immunity of almost all living organisms ranging from bacteria to mammals. Histones play a very important role in defense as precursors to bioactive peptides. The present study is an attempt to decipher the antimicrobial activity of a histone H2A derived peptide, Harriottin-1 from sicklefin chimaera, Neoharriotta pinnata. Analysis in silico predicted the molecule with potent antibacterial and anticancer property. The Harriottin-1 was recombinantly produced and the recombinant peptide rHar-1 demonstrated potent antibacterial activity at 25 μM besides anticancer activity. The study strongly suggests the importance of histone H2A derived peptides as a model for the design and synthesis of potent peptide drugs.
Collapse
Affiliation(s)
- Naveen Sathyan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - S Muhammed Musthafa
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Namitha Prathap
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - E R Chaithanya
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - P Priyaja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
16
|
Alves S, Pereira JM, Mayer RL, Gonçalves ADA, Impens F, Cabanes D, Sousa S. Cells Responding to Closely Related Cholesterol-Dependent Cytolysins Release Extracellular Vesicles with a Common Proteomic Content Including Membrane Repair Proteins. Toxins (Basel) 2022; 15:4. [PMID: 36668824 PMCID: PMC9865450 DOI: 10.3390/toxins15010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane (PM) protects cells from extracellular threats and supports cellular homeostasis. Some pathogens produce pore-forming toxins (PFTs) that disrupt PM integrity by forming transmembrane pores. High PFT concentrations cause massive damage leading to cell death and facilitating infection. Sub-lytic PFT doses activate repair mechanisms to restore PM integrity, support cell survival and limit disease. Shedding of extracellular vesicles (EVs) has been proposed as a key mechanism to eliminate PFT pores and restore PM integrity. We show here that cholesterol-dependent cytolysins (CDCs), a specific family of PFTs, are at least partially eliminated through EVs release, and we hypothesize that proteins important for PM repair might be included in EVs shed by cells during repair. To identify new PM repair proteins, we collected EVs released by cells challenged with sub-lytic doses of two different bacterial CDCs, listeriolysin O and pneumolysin, and determined the EV proteomic repertoire by LC-MS/MS. Intoxicated cells release similar EVs irrespectively of the CDC used. Also, they release more and larger EVs than non-intoxicated cells. A cluster of 70 proteins including calcium-binding proteins, molecular chaperones, cytoskeletal, scaffold and membrane trafficking proteins, was detected enriched in EVs collected from intoxicated cells. While some of these proteins have well-characterized roles in repair, the involvement of others requires further study. As proof of concept, we show here that Copine-1 and Copine-3, proteins abundantly detected in EVs released by intoxicated cells, are required for efficient repair of CDC-induced PM damage. Additionally, we reveal here new proteins potentially involved in PM repair and give new insights into common mechanisms and machinery engaged by cells in response to PM damage.
Collapse
Affiliation(s)
- Sara Alves
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana M. Pereira
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Rupert L. Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Proteomics Core, VIB, 9052 Ghent, Belgium
| | - Alexandre D. A. Gonçalves
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Proteomics Core, VIB, 9052 Ghent, Belgium
| | - Didier Cabanes
- Molecular Microbiology, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Sousa
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell Mol Life Sci 2022; 79:365. [PMID: 35708858 PMCID: PMC9201269 DOI: 10.1007/s00018-022-04318-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2 alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.
Collapse
|
18
|
Sadeghi F, Kajbaf M, Shafiee F. BR2, a Buforin Derived Cancer Specific Cell Penetrating Peptide for Targeted Delivering of Toxic Agents: a Review Article. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nat Commun 2022; 13:590. [PMID: 35105886 PMCID: PMC8807736 DOI: 10.1038/s41467-022-28257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
Collapse
|
20
|
Singh A, Verma S, Modak SB, Chaturvedi MM, Purohit JS. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 2022; 477:507-524. [PMID: 34796445 DOI: 10.1007/s11010-021-04300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, 110078, India
| | | | | | - Jogeswar S Purohit
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- Molecular and Systems Biology Lab, Cluster Innovation Centre, University of Delhi, North Campus, DREAM Building, Delhi, 110007, India.
| |
Collapse
|
21
|
Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains. Int J Mol Sci 2022; 23:ijms23031079. [PMID: 35163002 PMCID: PMC8835130 DOI: 10.3390/ijms23031079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C–X–C motif chemokine ligand 10 (CXCL10) and C–C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration.
Collapse
|
22
|
Speziale P, Pietrocola G. Staphylococcus aureus induces neutrophil extracellular traps (NETs) and neutralizes their bactericidal potential. Comput Struct Biotechnol J 2021; 19:3451-3457. [PMID: 34194670 PMCID: PMC8220102 DOI: 10.1016/j.csbj.2021.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are considered part of the innate human immune system because they are involved in host defense during bacterial infections. NETs are formed by activated neutrophils and consist of a DNA backbone combined with proteins with different biological functions. The activity of NETs can be significantly reduced by a Staphylococcus aureus DNase, which degrades the DNA backbone and enables the liberation of bacteria from NETs, and by Eap, a secreted protein which binds and aggregates linearized DNA, suppressing the formation of NETs. Furthermore, the pathogen can resist NET-mediated killing by expressing the surface protein FnBPB, which neutralizes the bactericidal activity of histones. Finally, the anti-staphylococcal activity of NETs is counteracted and blocked by S. aureus biofilm. Staphylococcal cells and several virulence factors such as protein A and phenol-soluble modulins can also elicit the formation of NETs which in turn can cause tissue injury, enhancing bacterial performance in host colonization. The identification of additional virulence factors involved in NET formation/neutralization could provide the basis for therapeutic interventions against this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, Viale Taramelli 3/b, 27100 Pavia, Italy
| |
Collapse
|
23
|
Hobson ST, Richieri RA, Parseghian MH. Phosgene: toxicology, animal models, and medical countermeasures. Toxicol Mech Methods 2021; 31:293-307. [PMID: 33588685 DOI: 10.1080/15376516.2021.1885544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phosgene is a gas crucial to industrial chemical processes with widespread production (∼1 million tons/year in the USA, 8.5 million tons/year worldwide). Phosgene's high toxicity and physical properties resulted in its use as a chemical warfare agent during the First World War with a designation of CG ('Choky Gas'). The industrial availability of phosgene makes it a compound of concern as a weapon of mass destruction by terrorist organizations. The hydrophobicity of phosgene exacerbates its toxicity often resulting in a delayed toxidrome as the upper airways are moderately irritated; by the time symptoms appear, significant damage has occurred. As the standard of care for phosgene intoxication is supportive therapy, a pressing need for effective therapeutics and treatment regimens exists. Proposed toxicity mechanisms for phosgene based on human and animal exposures are discussed. Whereas intermediary components in the phosgene intoxication pathways are under continued discussion, generation of reactive oxygen species and oxidative stress is a common factor. As animal models are required for the study of phosgene and for FDA approval via the Animal Rule; the status of existing models and their adherence to Haber's Rule is discussed. Finally, we review the continued search for efficacious therapeutics for phosgene intoxication; and present a rapid post-exposure response that places exogenous human heat shock protein 72, in the form of a cell-penetrating fusion protein (Fv-HSP72), into lung tissues to combat apoptosis resulting from oxidative stress. Despite significant progress, additional work is required to advance effective therapeutics for acute phosgene exposure.
Collapse
Affiliation(s)
- Stephen T Hobson
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA.,Rubicon Biotechnology, Irvine, CA, USA
| | | | | |
Collapse
|
24
|
A histone H2A-derived antimicrobial peptide, Hipposin from mangrove whip ray, Himantura walga: Molecular and functional characterisation. 3 Biotech 2020; 10:467. [PMID: 33088663 DOI: 10.1007/s13205-020-02455-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) are biologically dynamic molecules produced by all type of organisms as a fundamental component of their innate immune system. The present study deals with the identification of a histone H2A-derived antimicrobial peptide, Hipposin from mangrove whip ray, Himantura walga. A 243 base pair fragment encoding 81 amino acid residues amplified from complementary DNA was identified as Hipposin and termed as Hw-Hip. Homologous analysis showed that Hw-Hip belongs to the Histone H2A superfamily and shares sequence identity with other histone-derived AMPs from fishes. Phylogenetic analysis of Hw-Hip displayed clustering with the fish H2A histones. Secondary structure analysis showed the presence of three α-helices and four random coils with a prominent proline hinge. The physicochemical properties of Hw-Hip are in agreement with the properties of antimicrobial peptides. A 39-mer active peptide sequence was released by proteolytic cleavage in silico. Functional characterisation of active peptide in silico revealed antibacterial, anticancer and antibiofilm activities making Hw-Hip a promising candidate for further exploration.
Collapse
|
25
|
Parida S, Mohapatra A, Das S, Kumar Sahoo P. Cloning and characterization of linker histone H1 gene in rohu, Labeo rohita. Anim Biotechnol 2020; 33:745-756. [DOI: 10.1080/10495398.2020.1832506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sonali Parida
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Amruta Mohapatra
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Sweta Das
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Pramoda Kumar Sahoo
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| |
Collapse
|
26
|
Evaluating Organism-Wide Changes in the Metabolome and Microbiome following a Single Dose of Antibiotic. mSystems 2020; 5:5/5/e00340-20. [PMID: 33024048 PMCID: PMC7542558 DOI: 10.1128/msystems.00340-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We are just beginning to understand the unintended effects of antibiotics on our microbiomes and health. In this study, we aimed to define an approach by which one could obtain a comprehensive picture of (i) how antibiotics spatiotemporally impact commensal microbes throughout the gut and (ii) how these changes influence host chemistry throughout the body. We found that just a single dose of antibiotic altered host chemistry in a variety of organs and that microbiome alterations were not uniform throughout the gut. As technological advances increase the feasibility of whole-organism studies, we argue that using these approaches can provide further insight on both the wide-ranging effects of antibiotics on health and how to restore microbial communities to mitigate these effects. Antibiotics are a mainstay of modern medicine, but as they kill their target pathogen(s), they often affect the commensal microbiota. Antibiotic-induced microbiome dysbiosis is a growing research focus and health concern, often assessed via analysis of fecal samples. However, such analysis does not inform how antibiotics influence the microbiome across the whole host or how such changes subsequently alter host chemistry. In this study, we investigated the acute (1 day postadministration) and delayed (6 days postadministration) effects of a single parenteral dose of two common antibiotics, ampicillin or vancomycin, on the global metabolome and microbiome of mice across 77 different body sites from 25 different organs. The broader-spectrum agent ampicillin had the greatest impact on the microbiota in the lower gastrointestinal tract (cecum and colon), where microbial diversity is highest. In the metabolome, the greatest effects were seen 1 day posttreatment, and changes in metabolite abundances were not confined to the gut. The local abundance of ampicillin and its metabolites correlated with increased metabolome effect size and a loss of alpha diversity versus control mice. Additionally, small peptides were elevated in the lower gastrointestinal tract of mice 1 day after antibiotic treatment. While a single parenteral dose of antibiotic did not drastically alter the microbiome, nevertheless, changes in the metabolome were observed both within and outside the gut. This study provides a framework for how whole-organism -omics approaches can be employed to understand the impact of antibiotics on the entire host. IMPORTANCE We are just beginning to understand the unintended effects of antibiotics on our microbiomes and health. In this study, we aimed to define an approach by which one could obtain a comprehensive picture of (i) how antibiotics spatiotemporally impact commensal microbes throughout the gut and (ii) how these changes influence host chemistry throughout the body. We found that just a single dose of antibiotic altered host chemistry in a variety of organs and that microbiome alterations were not uniform throughout the gut. As technological advances increase the feasibility of whole-organism studies, we argue that using these approaches can provide further insight on both the wide-ranging effects of antibiotics on health and how to restore microbial communities to mitigate these effects.
Collapse
|
27
|
Natural Catalytic IgGs Hydrolyzing Histones in Schizophrenia: Are They the Link between Humoral Immunity and Inflammation? Int J Mol Sci 2020; 21:ijms21197238. [PMID: 33008051 PMCID: PMC7582518 DOI: 10.3390/ijms21197238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is known to be accompanied not only with an imbalance in the neurotransmitter systems but also with immune system dysregulation and chronic low-grade inflammation. Extracellular histones and nucleosomes as damage-associated molecular patterns (DAMPs) trigger systemic inflammatory and toxic reactions by activating Toll-like receptors. In this work, we obtained the first evidence that polyclonal IgGs of patients with schizophrenia effectively hydrolyze five histones (H1, H2a, H2b, H3, and H4). Several strict criteria were used to demonstrate that histone-hydrolyzing activity is a property of the analyzed IgGs. The IgGs histone-hydrolyzing activity level, depending on the type of histone (H1–H4), was statistically significantly 6.1–20.2 times higher than that of conditionally healthy donors. The investigated biochemical properties (pH and metal ion dependences, kinetic characteristics) of these natural catalytic IgGs differed markedly from canonical proteases. It was previously established that the generation of natural catalytic antibodies is an early and clear sign of impaired humoral immunity. One cannot, however, exclude that histone-hydrolyzing antibodies may play a positive role in schizophrenia pathogenesis because histone removal from circulation or the inflamed area minimizes the inflammatory responses. Thus, it can be assumed that histone-hydrolyzing antibodies are a link between humoral immunity and inflammatory responses in schizophrenia.
Collapse
|
28
|
Villalba N, Baby S, Cha BJ, Yuan SY. Site-specific opening of the blood-brain barrier by extracellular histones. J Neuroinflammation 2020; 17:281. [PMID: 32962721 PMCID: PMC7510151 DOI: 10.1186/s12974-020-01950-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Increased extracellular histones in the bloodstream are known as a biomarker for vascular dysfunction associated with severe trauma or sepsis. There is limited information regarding the pathogenic role of circulating histones in neuroinflammation and cerebrovascular endothelial injury. Particularly, it remains unclear whether histones affect the blood-brain barrier (BBB) permeability function. METHODS The direct effects of unfractionated histones on endothelial barrier properties were first assessed in brain microvascular endothelial cell monolayers by measuring transendothelial electrical resistance and solute flux. This was followed by in vivo mouse experiments, where BBB function was assessed by quantifying brain tissue accumulation of intravenously injected tracers of different molecular sizes, and comparison was made in mice receiving a sublethal dose of histones versus sterile saline. In parallel, the endothelial barrier ultrastructure was examined in histone- and saline-injected animals under transmission electron microscopy, corresponding to the expression of tight junction and adherens junction proteins. RESULTS Histones increased paracellular permeability to sodium fluorescein and reduced barrier resistance at 100 μg/mL; these responses were accompanied by discontinuous staining of the tight junction proteins claudin-5 and zona ocludens-1. Interestingly, the effects of histones did not seem to result from cytotoxicity, as evidenced by negative propidium iodide staining. In vivo, histones increased the paracellular permeability of the BBB to small tracers of < 1-kDa, whereas tracers larger than 3-kDa remained impermeable across brain microvessels. Further analysis of different brain regions showed that histone-induced tracer leakage and loss of tight junction protein expression mainly occurred in the hippocampus, but not in the cerebral cortex. Consistently, opening of tight junctions was found in hippocampal capillaries from histone-injected animals. Protein expression levels of GFAP and iBA1 remained unchanged in histone-injected mice indicating that histones did not affect reactive gliosis. Moreover, cell membrane surface charge alterations are involved in histone-induced barrier dysfunction and tight junction disruption. CONCLUSIONS Extracellular histones cause a reversible, region-specific increase in BBB permeability to small molecules by disrupting tight junctions in the hippocampus. We suggest that circulating histones may contribute to cerebrovascular injury or brain dysfunction by altering BBB structure and function.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Sheon Baby
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Byeong J Cha
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
29
|
Frydman GH, Tessier SN, Wong KHK, Vanderburg CR, Fox JG, Toner M, Tompkins RG, Irimia D. Megakaryocytes contain extranuclear histones and may be a source of platelet-associated histones during sepsis. Sci Rep 2020; 10:4621. [PMID: 32165642 PMCID: PMC7067782 DOI: 10.1038/s41598-020-61309-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Histones are typically located within the intracellular compartment, and more specifically, within the nucleus. When histones are located within the extracellular compartment, they change roles and become damage-associated molecular patterns (DAMPs), promoting inflammation and coagulation. Patients with sepsis have increased levels of extracellular histones, which have been shown to correlate with poor prognosis and the development of sepsis-related sequelae, such as end-organ damage. Until now, neutrophils were assumed to be the primary source of circulating histones during sepsis. In this paper, we show that megakaryocytes contain extranuclear histones and transfer histones to their platelet progeny. Upon examination of isolated platelets from patients with sepsis, we identified that patients with sepsis have increased amounts of platelet-associated histones (PAHs), which appear to be correlated with the type of infection. Taken together, these results suggest that megakaryocytes and platelets may be a source of circulating histones during sepsis and should be further explored.
Collapse
Affiliation(s)
- Galit H Frydman
- Division of Comparative Medicine and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America. .,BioMEMS Resource Center, Center for Engineering in Medicine, and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | - Shannon N Tessier
- BioMEMS Resource Center, Center for Engineering in Medicine, and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Keith H K Wong
- BioMEMS Resource Center, Center for Engineering in Medicine, and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Charles R Vanderburg
- Harvard Neurodiscovery Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James G Fox
- Division of Comparative Medicine and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine, and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ronald G Tompkins
- BioMEMS Resource Center, Center for Engineering in Medicine, and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine, and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| |
Collapse
|
30
|
Kühnle A, Galuska CE, Zlatina K, Galuska SP. The Bovine Antimicrobial Peptide Lactoferricin Interacts with Polysialic Acid without Loss of Its Antimicrobial Activity against Escherichia coli. Animals (Basel) 2019; 10:E1. [PMID: 31861263 PMCID: PMC7022438 DOI: 10.3390/ani10010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 01/28/2023] Open
Abstract
The lactoferrin-derived peptide lactoferricin (LFcin) belongs to the family of antimicrobial peptides, and its bovine form has already been successfully applied to counteract enterohemorrhagic Escherichia coli (EHEC) infection. Recently, it was described that LFcin interacts with the sugar polymer polysialic acid (polySia) and that the binding of lactoferrin to polySia is mediated by LFcin, included in the N-terminal domain of lactoferrin. For this reason, the impact of polySia on the antimicrobial activity of bovine LFcin was investigated. Initially, the interaction of LFcin was characterized in more detail by native agarose gel electrophoresis, demonstrating that a chain length of 10 sialic acid residues was necessary to bind LFcin, whereas approximately twice-as-long chains were needed to detect binding of lactoferrin. Remarkably, the binding of polySia showed, independently of the chain length, no impact on the antimicrobial effects of LFcin. Thus, LFcin binds polySia without loss of its protective activity as an antimicrobial peptide.
Collapse
Affiliation(s)
- Andrea Kühnle
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| | - Christina E. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| |
Collapse
|
31
|
Encinas-García T, Loreto-Quiroz DL, Mendoza-Cano F, Peña-Rodriguez A, Fimbres-Olivarria D, Re-Vega ED, Sánchez-Paz A. White spot syndrome virus down-regulates expression of histones H2A and H4 of Penaeus vannamei to promote viral replication. DISEASES OF AQUATIC ORGANISMS 2019; 137:73-79. [PMID: 31802744 DOI: 10.3354/dao03428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The white spot syndrome virus (WSSV) is a highly lethal and contagious pathogen to most cultivated shrimp species. The WSSV genome contains the ICP11 gene and its encoded protein acts as a multifunctinal DNA mimic protein that disrupts the nucleosome assembly by binding to the histone proteins H2A and H3. In addition, WSSV provokes severe nuclear hypertrophy and DNA damage. However, little is known about the influence of WSSV on the expression of the host's genes encoding for histones. Therefore, we investigated the effect of WSSV infection on the expression of the genes encoding histones in shrimp Penaeus vannamei. An RT-qPCR assay was performed to evaluate the temporal expression of H2A and H4 transcripts in the shrimp. Significant changes were observed in the expression of these genes, which coincided with the dynamics of replication of the virus. H2A reached its maximum expression levels at 12 hpi. Thus, it may be suggested that this is a viral strategy to evade the host's immune response in order to promote viral replication.
Collapse
Affiliation(s)
- Trinidad Encinas-García
- Laboratorio de Análisis, Referencia y Diagnóstico en Sanidad Acuícola, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle Hermosa 101, Col. Los Ángeles, Hermosillo, Sonora 83106, México
| | | | | | | | | | | | | |
Collapse
|
32
|
Griffiths SG, Ezrin A, Jackson E, Dewey L, Doucette AA. A robust strategy for proteomic identification of biomarkers of invasive phenotype complexed with extracellular heat shock proteins. Cell Stress Chaperones 2019; 24:1197-1209. [PMID: 31650515 PMCID: PMC6882979 DOI: 10.1007/s12192-019-01041-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
As an extension of their orchestration of intracellular pathways, secretion of extracellular heat shock proteins (HSPs) is an emerging paradigm of homeostasis imperative to multicellular organization. Extracellular HSP is axiomatic to the survival of cells during tumorigenesis; proportional representation of specific HSP family members is indicative of invasive potential and prognosis. Further significance has been added by the knowledge that all cancer-derived exosomes have surface-exposed HSPs that reflect the membrane topology of cells that secrete them. Extracellular HSPs are also characteristic of chronic inflammation and sepsis. Accordingly, interrogation of extracellular HSPs secreted from cell culture models may represent a facile means of identifying translational biomarker signatures for targeting in situ. In the current study, we evaluated a simple peptide-based multivalent HSP affinity approach using the Vn96 peptide for low speed pelleting of HSP complexes from bioreactor cultures of cell lines with varying invasive phenotype in xenotransplant models: U87 (glioblastoma multiforme; invasive); HELA (choriocarcinoma; minimally invasive); HEK293T (virally transformed immortalized; embryonic). Proteomic profiling by bottom-up mass spectrometry revealed a comprehensive range of candidate biomarkers including primary HSP ligands. HSP complexes were associated with additional chaperones of prognostic significance such as protein disulfide isomerases, as well as pleiotropic metabolic enzymes, established as proportionally reflective of invasive phenotype. Biomarkers of inflammatory and mechanotransductive phenotype were restricted to the most invasive cell model U87, including chitinase CHI3L1, lamin C, amyloid derivatives, and histone isoforms.
Collapse
Affiliation(s)
| | - Alan Ezrin
- NX Development Corporation, Louisville, KY, USA
| | - Emily Jackson
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | - Lisa Dewey
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | | |
Collapse
|
33
|
Buck AK, Elmore DE, Darling LEO. Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides. Future Med Chem 2019; 11:2445-2458. [PMID: 31517514 PMCID: PMC6787493 DOI: 10.4155/fmc-2019-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising in the fight against increasing bacterial resistance, but the development of AMPs with enhanced activity requires a thorough understanding of their mechanisms of action. Fluorescence microscopy is one of the most flexible and effective tools to characterize AMPs, particularly in its ability to measure the membrane interactions and cellular localization of peptides. Recent advances have increased the scope of research questions that can be addressed via microscopy through improving spatial and temporal resolution. Unique combinations of fluorescent labels and dyes can simultaneously consider different aspects of peptide-membrane interaction mechanisms. This review emphasizes the central role that fluorescence microscopy will continue to play in the interrogation of AMP structure-function relationships and the engineering of more potent peptides.
Collapse
Affiliation(s)
- Anne K Buck
- Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Donald E Elmore
- Department of Chemistry & Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Louise EO Darling
- Department of Biological Sciences & Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
34
|
Sruthy KS, Nair A, Antony SP, Puthumana J, Singh ISB, Philip R. A histone H2A derived antimicrobial peptide, Fi-Histin from the Indian White shrimp, Fenneropenaeus indicus: Molecular and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2019; 92:667-679. [PMID: 31252047 DOI: 10.1016/j.fsi.2019.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides (AMPs) derived from histone proteins form an important category of peptide antibiotics. Present study deals with the molecular and functional characterization of a 27-amino acid histone H2A derived AMP from the Indian White shrimp, Fenneropenaeus indicus designated as Fi-Histin. This peptide displayed distinctive features of AMPs such as amphiphilic alpha helical structure and a net charge of +6. The synthetic peptide exhibited significant antimicrobial activity against Gram-negative and Gram-positive bacteria especially against V. vulnificus, P. aeruginosa, V. parahaemolyticus, V. cholera and S. aureus. Disruption of cell membrane and cell content leakage were observed in peptide treated V. vulnificus using scanning electron microscopy. The synthetic peptide Fi-His1-21 exhibited DNA binding activity and found to be non-haemolytic at the tested concentrations. Peptide was also found to possess anticancer activity against NCI-H460 and HEp-2 cell lines with an IC50 of 22.670 ± 13.939 μM and 31.274 ± 24.531 μM respectively. This is the first report of a histone H2A derived peptide from F. indicus with a specific antimicrobial activity and anticancer activity, which could be a new candidate for future applications in aquaculture and medicine.
Collapse
Affiliation(s)
- K S Sruthy
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Aishwarya Nair
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, 682016, Kerala, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
35
|
Mariano DOC, Messias MDG, Spencer PJ, Pimenta DC. Protein identification from the parotoid macrogland secretion of Duttaphrynus melanostictus. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190029. [PMID: 31467513 PMCID: PMC6707386 DOI: 10.1590/1678-9199-jvatitd-2019-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Bufonid parotoid macrogland secretion contains several low molecular mass
molecules, such as alkaloids and steroids. Nevertheless, its protein content
is poorly understood. Herein, we applied a sample preparation methodology
that allows the analysis of viscous matrices in order to examine its
proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion
was submitted to ion-exchange batch sample preparation, yielding two
fractions: salt-displaced fraction and acid-displaced fraction. Each sample
was then fractionated by anionic-exchange chromatography, followed by
in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein,
alcohol dehydrogenase, calmodulin, galectin and histone. Moreover,
de novo analyses yielded 153 peptides, whereas BLAST
analyses corroborated some of the proteomic-identified proteins.
Furthermore, the de novo peptide analyses indicate the
presence of proteins related to apoptosis, cellular structure, catalysis and
transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo
identification of different proteins in the D.
melanostictus parotoid macrogland secretion. These results may
increase the knowledge about the universe of molecules that compose
amphibian skin secretion, as well as to understand their
biological/physiological role in the granular gland.
Collapse
Affiliation(s)
| | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), São Paulo, SP, Brazil
| | | |
Collapse
|
36
|
Cobos SN, Bennett SA, Torrente MP. The impact of histone post-translational modifications in neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1982-1991. [PMID: 30352259 PMCID: PMC6475498 DOI: 10.1016/j.bbadis.2018.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Every year, neurodegenerative disorders take more than 5000 lives in the US alone. Cures have not yet been found for many of the multitude of neuropathies. The majority of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Parkinson's disease (PD) cases have no known genetic basis. Thus, it is evident that contemporary genetic approaches have failed to explain the etiology or etiologies of ALS/FTD and PD. Recent investigations have explored the potential role of epigenetic mechanisms in disease development. Epigenetics comprises heritable changes in gene utilization that are not derived from changes in the genome. A main epigenetic mechanism involves the post-translational modification of histones. Increased knowledge of the epigenomic landscape of neurodegenerative diseases would not only further our understanding of the disease pathologies, but also lead to the development of treatments able to halt their progress. Here, we review recent advances on the association of histone post-translational modifications with ALS, FTD, PD and several ataxias.
Collapse
Affiliation(s)
- Samantha N Cobos
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Seth A Bennett
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Mariana P Torrente
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York 10016, United States.
| |
Collapse
|
37
|
Driouich A, Smith C, Ropitaux M, Chambard M, Boulogne I, Bernard S, Follet-Gueye ML, Vicré M, Moore J. Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol Rev Camb Philos Soc 2019; 94:1685-1700. [PMID: 31134732 DOI: 10.1111/brv.12522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
The root cap releases cells that produce massive amounts of mucilage containing polysaccharides, proteoglycans, extracellular DNA (exDNA) and a variety of antimicrobial compounds. The released cells - known as border cells or border-like cells - and mucilage secretions form networks that are defined as root extracellular traps (RETs). RETs are important players in root immunity. In animals, phagocytes are some of the most abundant white blood cells in circulation and are very important for immunity. These cells combat pathogens through multiple defence mechanisms, including the release of exDNA-containing extracellular traps (ETs). Traps of neutrophil origin are abbreviated herein as NETs. Similar to phagocytes, plant root cap-originating cells actively contribute to frontline defence against pathogens. RETs and NETs are thus components of the plant and animal immune systems, respectively, that exhibit similar compositional and functional properties. Herein, we describe and discuss the formation, molecular composition and functional similarities of these similar but different extracellular traps.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Matieland, 7602, South Africa
| | - Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie Chambard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - John Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
38
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
39
|
Mela AP, Momany M. Internuclear diffusion of histone H1 within cellular compartments of Aspergillus nidulans. PLoS One 2018; 13:e0201828. [PMID: 30114268 PMCID: PMC6095493 DOI: 10.1371/journal.pone.0201828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
Histone H1 is an evolutionarily conserved linker histone protein that functions in arranging and stabilizing chromatin structure and is frequently fused to a fluorescent protein to track nuclei in live cells. In time-lapse analyses, we observed stochastic exchange of photoactivated Dendra2-histone H1 protein between nuclei within the same cellular compartment. We also observed exchange of histones between genetically distinct nuclei in a heterokaryon derived from fusion of strains carrying histone H1-RFP or H1-GFP. Subsequent analysis of the resulting uninucleate conidia containing both RFP- and GFP-labeled histone H1 proteins showed only parental genotypes, ruling out genetic recombination and diploidization. These data together suggest that the linker histone H1 protein can diffuse between non-daughter nuclei in the filamentous fungus Aspergillus nidulans.
Collapse
Affiliation(s)
- Alexander P. Mela
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Momany
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Zhu L, Tang X, Xing J, Sheng X, Zhan W. Differential proteome of haemocyte subpopulations responded to white spot syndrome virus infection in Chinese shrimp Fenneropenaeus chinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:82-93. [PMID: 29427599 DOI: 10.1016/j.dci.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In our previous study, the differentially expressed proteins have been identified by proteomic analysis in total haemocytes of shrimp (Fenneropenaeus chinensis) after white spot syndrome virus (WSSV) infection. To further investigate the differential response of haemocyte subpopulations to WSSV infection, granulocytes and hyalinocytes were separated from healthy and WSSV-infected shrimp by immunomagnetic bead (IMB) method, respectively. Then two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to analyze the differentially expressed proteins in haemocyte subpopulations between healthy and WSSV-infected shrimp. The results of flow cytometry (FCM) showed that about 98% of granulocytes and about 96% of hyalinocytes in purity were obtained. Quantitative intensity analysis revealed that 26 protein spots in granulocytes and 24 spots in hyalinocytes were significantly changed post WSSV infection. Among them, 24 proteins in granulocytes and 23 proteins in hyalinocytes were identified by MS analysis, which could be divided into eight categories according to Gene Ontology. The identification of prophenoloxidase (proPO), proPO 2 and peroxiredoxin in WSSV-infected granulocytes was consistent with the facts that the proPO-activating system and peroxiredoxin were mainly existed in granulocytes. The phagocytosis of hyalinocytes seemed to be enhanced during the infection, because several proteins that involved in phagocytosis, including clathrin heavy chain, ADP ribosylation factor 4 and Alpha2 macroglobulin were up-regulated in hyalinocytes upon WSSV infection. Our results also reflected the vital biological significance of calcium ion binding proteins in granulocytes and ATPase/GTPase in hyalinocytes during WSSV infection. The data in this study verified the roles of granulocytes and hyalinocytes involved in WSSV infection, and differentially expressed proteins identified in granulocytes and hyalinocytes had a close correlation with their function characteristics.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
41
|
Chuang CF, King CE, Ho BW, Chien KY, Chang YC. Unbiased Proteomic Study of the Axons of Cultured Rat Cortical Neurons. J Proteome Res 2018; 17:1953-1966. [DOI: 10.1021/acs.jproteome.8b00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Proteomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | | |
Collapse
|
42
|
Individual Impact of Distinct Polysialic Acid Chain Lengths on the Cytotoxicity of Histone H1, H2A, H2B, H3 and H4. Polymers (Basel) 2017; 9:polym9120720. [PMID: 30966022 PMCID: PMC6418544 DOI: 10.3390/polym9120720] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
Neutrophils are able to neutralize pathogens by phagocytosis, by the release of antimicrobial components, as well as by the formation of neutrophil extracellular traps (NETs). The latter possibility is a DNA-meshwork mainly consisting of highly concentrated extracellular histones, which are not only toxic for pathogens, but also for endogenous cells triggering several diseases. To reduce the negative outcomes initiated by extracellular histones, different approaches like antibodies against histones, proteases, and the polysaccharide polysialic acid (polySia) were discussed. We examined whether each of the individual histones is a binding partner of polySia, and analyzed their respective cytotoxicity in the presence of this linear homopolymer. Interestingly, all of the histones (H1, H2A, H2B, H3, and H4) seem to interact with α2,8-linked sialic acids. However, we observed strong differences regarding the required chain length of polySia to bind histone H1, H2A, H2B, H3, and H4. Moreover, distinct degrees of polymerization were necessary to act as a cytoprotective agent in the presence of the individual histones. In sum, the outlined results described polySia-based strategies to bind and/or to reduce the cytotoxicity of individual histones using distinct polySia chain length settings.
Collapse
|
43
|
Van Winkle LJ. Uterine Histone Secretion Likely Fosters Early Embryo Development So Efforts to Mitigate Histone Cytotoxicity Should Be Cautious. Front Cell Dev Biol 2017; 5:100. [PMID: 29230391 PMCID: PMC5711778 DOI: 10.3389/fcell.2017.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Lon J Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL, United States.,Department of Medical Humanities, Rocky Vista University, Parker, CO, United States
| |
Collapse
|
44
|
Zhang QL, Xie ZQ, Liang MZ, Luo B, Wang XQ, Chen JY. Genome-wide gene expression analysis in the amphioxus, Branchiostoma belcheri after poly (I: C) challenge using strand-specific RNA-seq. Oncotarget 2017; 8:108392-108405. [PMID: 29312538 PMCID: PMC5752451 DOI: 10.18632/oncotarget.21553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
The gene expression associated with immune response to bacteria/bacterial mimic has been extensively analyzed in amphioxus, but remains largely unknown about how gene are involved in the immune response to viral invasion at expression level. Here, we analyze the rRNA-depleted transcriptomes of Branchiostoma belcheri using strand-specific RNA-seq in response to the viral mimic, poly (I:C) (pIC). A total of 5,317 differentially expressed genes were detected at treatment group by comparing with control. The gene with the most significant expression changes (top 15) after pIC challenge and 7 immune-related categories involving 58 differently expressed genes were scrutinized. By functional enrichment analysis of differently expressed genes, gene ontology terms involving response to stress and stimulus, apoptosis, catabolic and metabolic processes and enzyme activity were overrepresented, and several pathways related to immune signaling, immune response, cancer, apoptosis, viral disease, metabolism were activated after pIC injection. A positive correlation between the qRT-PCR and strand-specific RNA-seq data confirmed the accuracy of the RNA-seq results. Additionally, the expression of genes encoding NLRC5, CASP1, CASP6, CYP450, CAT, and MDA5 were induced in B. belcheri under pIC challenge. Our experiments provide insight into the immune response of amphioxus to pIC and valuable gene expression information for studying the evolution of antiviral immunity in vertebrates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Zheng-Qing Xie
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Zhong Liang
- Department of Marine Science, Qinzhou University, Qinzhou, China
| | - Bang Luo
- Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiu-Qiang Wang
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China
| |
Collapse
|
45
|
Ma XW, Hou L, Chen B, Fan DQ, Chen YC, Yang Y, Wang KJ. A truncated Sph 12-38 with potent antimicrobial activity showing resistance against bacterial challenge in Oryzias melastigma. FISH & SHELLFISH IMMUNOLOGY 2017; 67:561-570. [PMID: 28600196 DOI: 10.1016/j.fsi.2017.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Antimicrobial peptides (AMPs) represent an efficient part of innate immunity and are found in a variety of life. Among them Histone 2A (H2A), as a promising class of AMPs, attracts great attention, but the in vivo mechanism of H2A derived AMP is still less known. Based on the acquisition of Sphistin, a synthetic 38-amino acid H2A derived peptide from Scylla paramamosain, as reported in our previous study, was truncated into three short fragments (Sph12-38, Sph20-38 and Sph30-38) and further investigated for its possible functional domains. The antimicrobial activities of these analogs against different Gram-positive bacteria, Gram-negative bacteria and fungi were illustrated. Among the analogs, Sph12-38 showed a stronger activity with a much lower minimum inhibitory concentration (3 μM) against Staphylococcus aureus, Corynebacterium glutamicum, Micrococcus lysodeikticus Fleming, Bacillus subtilis, Pseudomonas fluorescens, Aeromonas hydrophila and A. sobria in comparison with the reported Sphistin. A leakage of intracellular content was described in E. coli treated with Sph12-38. Unlike Sphistin which mainly disrupts the membrane integrity, Sph12-38 could also combine the A. sobria genomic DNA with a minimum concentration of 6 μM and was located intracellularly in cells observed under confocal laser scanning microscope imaging. In comparison with the control group of Oryzias melastigma injected with A. sobria alone, the group treated with a mixture of Sph12-38 and A. sobria showed a higher survival rate 7 days post-injection. Furthermore, in a pretreatment assay at 6 h, a higher survival rate was observed in the group injected with the mixture of Sph12-38 and A. sobria. Taken together, the synthetic peptide of Sph12-38 had a potent antimicrobial activity against bacteria. However, Sph12-38 had no cytotoxicity towards the hemolymph of S. paramamosain. Our study suggested that, as with Sph12-38, the H2A derived peptides were more likely prone to exert their activities in vivo through the truncated fragments while defending against different species of pathogens.
Collapse
Affiliation(s)
- Xiao-Wan Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lin Hou
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Bei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Dan-Qing Fan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Yan-Chao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian 361102, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
46
|
Ye X, Feng C, Gao T, Mu G, Zhu W, Yang Y. Linker Histone in Diseases. Int J Biol Sci 2017; 13:1008-1018. [PMID: 28924382 PMCID: PMC5599906 DOI: 10.7150/ijbs.19891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/30/2017] [Indexed: 01/21/2023] Open
Abstract
The linker histone is a protein that binds with the nucleosome, which is generally considered to achieve chromatin condensation in the nucleus. Accumulating evidences suggest that the linker histone is essential in the pathogenesis of several diseases. In this review, we briefly introduce the current knowledge of the linker histone, including its structure, characteristics and functions. Also, we move forward to present the advances of the linker histone's association with certain diseases, such as cancer, Alzheimer's disease, infection, male infertility and aberrant immunity situations, focusing on the alteration of the linker histone under certain pathological conditions and its role in developing each disease.
Collapse
Affiliation(s)
- Xin Ye
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - ChuanLin Feng
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Tian Gao
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Guanqun Mu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Weiguo Zhu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Yang Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
47
|
Villagra-Blanco R, Silva LMR, Muñoz-Caro T, Yang Z, Li J, Gärtner U, Taubert A, Zhang X, Hermosilla C. Bovine Polymorphonuclear Neutrophils Cast Neutrophil Extracellular Traps against the Abortive Parasite Neospora caninum. Front Immunol 2017; 8:606. [PMID: 28611772 PMCID: PMC5447047 DOI: 10.3389/fimmu.2017.00606] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/08/2017] [Indexed: 01/01/2023] Open
Abstract
Neospora caninum represents a relevant apicomplexan parasite causing severe reproductive disorders in cattle worldwide. Neutrophil extracellular trap (NET) generation was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites. In vitro interactions of bovine PMN with N. caninum were analyzed at different ratios and time spans. Extracellular DNA staining was used to illustrate the typical molecules of NETs [i.e., histones (H3), neutrophil elastase (NE), myeloperoxidase (MPO), pentraxin] via antibody-based immunofluorescence analyses. Functional inhibitor treatments were applied to reveal the role of several enzymes [NADPH oxidase (NOX), NE, MPO, PAD4], ATP-dependent P2Y2 receptor, store-operated Ca++entry (SOCE), CD11b receptor, ERK1/2- and p38 MAPK-mediated signaling pathway in tachyzoite-triggered NETosis. N. caninum tachyzoites triggered NETosis in a time- and dose-dependent manner. Scanning electron microscopy analyses revealed NET structures being released by bovine PMN and entrapping tachyzoites. N. caninum-induced NET formation was found not to be NOX-, NE-, MPO-, PAD4-, ERK1/2-, and p38 MAP kinase-dependent process since inhibition of these enzymes led to a slight decrease of NET formation. CD11b was also identified as a neutrophil receptor being involved in NETosis. Furthermore, N. caninum-triggered NETosis depends on Ca++ influx as well as neutrophil metabolism since both the inhibition of SOCE and of P2Y2-mediated ATP uptake diminished NET formation. Host cell invasion assays indicated that PMN-derived NETosis hampered tachyzoites from active host cell invasion, thereby inhibiting further intracellular replication. NET formation represents an early and effective mechanism of response of the innate immune system, which might reduce initial infection rates during the acute phase of cattle neosporosis.
Collapse
Affiliation(s)
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
48
|
Ma JH, Shen S, Wang JJ, He Z, Poon A, Li J, Qu J, Zhang SX. Comparative Proteomic Analysis of the Mitochondria-associated ER Membrane (MAM) in a Long-term Type 2 Diabetic Rodent Model. Sci Rep 2017; 7:2062. [PMID: 28522876 PMCID: PMC5437025 DOI: 10.1038/s41598-017-02213-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The mitochondria-associated ER membrane (MAM) plays a critical role in cellular energetics and calcium homeostasis; however, how MAM is affected under diabetic condition remains elusive. This study presented a comprehensive proteome profiling of isolated brain MAM from long-term type 2 diabetic mice vs. non-diabetic controls. MAM protein was extracted efficiently by a surfactant-aided precipitation/on-pellet digestion (SOD) method, and MAM proteome was quantified by an ion-current-based MS1 method combined with nanoLC-MS/MS. A total of 1,313 non-redundant proteins of MAM were identified, among which 144 proteins were found significantly altered by diabetes. In-depth IPA analysis identified multiple disease-relevant signaling pathways associated with the MAM proteome changes in diabetes, most significantly the unfolded protein response (UPR), p53, hypoxia-related transcription factors, and methyl CpG binding protein 2. Using immunofluorescence labeling we confirmed the activation of three UPR branches and increased ERp29 and calreticulin in diabetic retinas. Moreover, we found GRP75, a key MAM tethering protein, was drastically reduced by long-term diabetes. In vitro, acute high glucose treatment reduces ER-mitochondrial contact in retinal endothelial cells. This study provides first insight into the significant alterations in MAM proteome associated with activation of the UPR in diabetes, which may serve as novel benchmarks for the future studies of diabetic complications.
Collapse
Affiliation(s)
- Jacey Hongjie Ma
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
- SUNY Eye Institute, State University of New York, New York, NY, USA
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Shichen Shen
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
- SUNY Eye Institute, State University of New York, New York, NY, USA
| | - Zhanwen He
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Amanda Poon
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jun Li
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
- SUNY Eye Institute, State University of New York, New York, NY, USA.
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
49
|
Luhrs KA, Pink D, Schulte W, Zijlstra A, Lewis JD, Parseghian MH. In vivo histone H1 migration from necrotic to viable tissue. Oncotarget 2017; 8:16275-16292. [PMID: 28187445 PMCID: PMC5369962 DOI: 10.18632/oncotarget.15181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/29/2022] Open
Abstract
Necrosis is induced by ischemic conditions within the core of many solid tumors. Using fluorescent fusion proteins, we provide in vivo evidence of histone trafficking among cancer cells in implanted tumors. In particular, the most abundant H1 isoform (H1.2) was found to be transported from necrotic tumor cells into surrounding viable cells where histones are selectively taken up by energy-dependent endocytosis. We propose that intercellular histone trafficking could function as a target for drug delivery. This concept was validated using an anti-histone antibody that was co-internalized with histones from dead cells into viable ones surrounding the necrotic regions of a tumor, where some of the most chemoresistant cells reside. These findings demonstrate that cellular translocation of conjugated drugs using anti-histone antibodies is a promising strategy for targeted drug delivery to chemoresistant tumors.
Collapse
Affiliation(s)
- Keith A. Luhrs
- Allergan Inc., Irvine, CA, USA
- Peregrine Pharmaceuticals Inc., Tustin, CA, USA
| | - Desmond Pink
- Innovascreen Inc., Halifax, NS, Canada
- University of Alberta, Edmonton, AB, Canada
| | | | - Andries Zijlstra
- Innovascreen Inc., Halifax, NS, Canada
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - John D. Lewis
- Innovascreen Inc., Halifax, NS, Canada
- University of Alberta, Edmonton, AB, Canada
| | - Missag H. Parseghian
- Rubicon Biotechnology, Lake Forest, CA, USA
- Peregrine Pharmaceuticals Inc., Tustin, CA, USA
| |
Collapse
|
50
|
Patel DM, Brinchmann MF. Skin mucus proteins of lumpsucker ( Cyclopterus lumpus). Biochem Biophys Rep 2017; 9:217-225. [PMID: 28956008 PMCID: PMC5614610 DOI: 10.1016/j.bbrep.2016.12.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
Fish skin mucus serves as a first line of defense against pathogens and external stressors. In this study the proteomic profile of lumpsucker skin mucus was characterized using 2D gels coupled with tandem mass spectrometry. Mucosal proteins were identified by homology searches across the databases SwissProt, NCBInr and vertebrate EST. The identified proteins were clustered into ten groups based on their gene ontology biological process in PANTHER (www.patherdb.org). Calmodulin, cystatin-B, histone H2B, peroxiredoxin1, apolipoprotein A1, natterin-2, 14-3-3 protein, alfa enolase, pentraxin, warm temperature acclimation 65 kDa (WAP65kDa) and heat shock proteins were identified. Several of the proteins are known to be involved in immune and/or stress responses. Proteomic profile established in this study could be a benchmark for differential proteomics studies. A proteome reference map of lumpsucker skin mucus was established. Proteins involved in immune and stress responses were identified in skin mucus of Cyclopterus lumpus. Mucosal proteins identified could be potential biomarkers.
Collapse
|