1
|
Nakamura N, Sato-Dahlman M, Travis E, Jacobsen K, Yamamoto M. CDX2 Promoter-Controlled Oncolytic Adenovirus Suppresses Tumor Growth and Liver Metastasis of Colorectal Cancer. Cancer Sci 2025. [PMID: 40275626 DOI: 10.1111/cas.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 04/26/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide, and liver metastasis (CRLM) is the most common among its distant metastases. We have recently generated a CDX2 promoter-controlled oncolytic adenovirus (Ad5/3-pCDX2) that showed an anticancer effect for CDX2-positive upper gastrointestinal tumors. Here, we reported the anticancer effect of Ad5/3-pCDX2 for CDX2-positive CRC and CRLM, and its combination efficacy with 5-fluorouracil (5FU) in vitro and in vivo. We used HT29 as CDX2-positive, and LS174T and SW480 as CDX2-negative CRC cell lines. Without 5FU, Ad5/3-pCDX2 killed HT29 but not LS174T and SW480 cells. In vitro, 5FU exposure upregulated CDX2 mRNA levels in all three cell lines. The 5FU combination enhanced the cytocidal effect and virus replication of Ad5/3-pCDX2 in CDX2-negative LS174T. In mouse xenograft models, Ad5/3-pCDX2 monotherapy suppressed the HT29 subcutaneous tumor growth compared to the control group. The 5FU plus Ad5/3-pCDX2 combination therapy showed a remarkable antitumor effect over the efficacy of Ad5/3-pCDX2 monotherapy. In the LS174T subcutaneous tumor, although Ad5/3-pCDX2 monotherapy did not show an antitumor effect, the 5FU plus Ad5/3-pCDX2 combination therapy significantly suppressed the tumor growth compared to the Ad5/3-pCDX2 monotherapy. In mice with HT29 liver metastasis, intrasplenic injection of Ad5/3-pCDX2 induced virus replication in liver tumors and thus successfully attenuated tumor growth. In conclusion, Ad5/3-pCDX2 showed a significant anticancer effect that was enhanced by 5FU treatment in not only CDX2-positive but also negative CRCs. Ad5/3-pCDX2 is a promising therapeutic modality for metastatic CRC such as CRLM.
Collapse
Affiliation(s)
- Naohiko Nakamura
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mizuho Sato-Dahlman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elise Travis
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Badia-Ramentol J, Gimeno-Valiente F, Duréndez E, Martínez-Ciarpaglini C, Linares J, Iglesias M, Cervantes A, Calon A, Tarazona N. The prognostic potential of CDX2 in colorectal cancer: Harmonizing biology and clinical practice. Cancer Treat Rev 2023; 121:102643. [PMID: 37871463 DOI: 10.1016/j.ctrv.2023.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Adjuvant chemotherapy following surgical intervention remains the primary treatment option for patients with localized colorectal cancer (CRC). However, a significant proportion of patients will have an unfavorable outcome after current forms of chemotherapy. While reflecting the increasing complexity of CRC, the clinical application of molecular biomarkers provides information that can be utilized to guide therapeutic strategies. Among these, caudal-related homeobox transcription factor 2 (CDX2) emerges as a biomarker of both prognosis and relapse after therapy. CDX2 is a key transcription factor that controls intestinal fate. Although rarely mutated in CRC, loss of CDX2 expression has been reported mostly in right-sided, microsatellite-unstable tumors and is associated with aggressive carcinomas. The pathological assessment of CDX2 by immunohistochemistry can thus identify patients with high-risk CRC, but the evaluation of CDX2 expression remains challenging in a substantial proportion of patients. In this review, we discuss the roles of CDX2 in homeostasis and CRC and the alterations that lead to protein expression loss. Furthermore, we review the clinical significance of CDX2 assessment, with a particular focus on its current use as a biomarker for pathological evaluation and clinical decision-making. Finally, we attempt to clarify the molecular implications of CDX2 deficiency, ultimately providing insights for a more precise evaluation of CDX2 protein expression.
Collapse
Affiliation(s)
- Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - Elena Duréndez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | | | - Jenniffer Linares
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, CIBERONC, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain.
| |
Collapse
|
3
|
Lucidi D, Cantaffa C, Miglio M, Spina F, Alicandri Ciufelli M, Marchioni A, Marchioni D. Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms-A Systematic Review. Int J Mol Sci 2023; 24:ijms24032670. [PMID: 36768990 PMCID: PMC9916834 DOI: 10.3390/ijms24032670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Sinonasal neoplasms are uncommon diseases, characterized by heterogeneous biological behavior, which frequently results in challenges in differential diagnosis and treatment choice. The aim of this review was to examine the pathogenesis and molecular mechanisms underlying the regulation of tumor initiation and growth, in order to better define diagnostic and therapeutic strategies as well as the prognostic impact of these rare neoplasms. A systematic review according to Preferred Reporting Items for Systematic Review and Meta-Analysis criteria was conducted between September and November 2022. The authors considered the three main histological patterns of sinonasal tumors, namely Squamous Cell Carcinoma, Intestinal-Type Adenocarcinoma, and Olfactory Neuroblastoma. In total, 246 articles were eventually included in the analysis. The genetic and epigenetic changes underlying the oncogenic process were discussed, through a qualitative synthesis of the included studies. The identification of a comprehensive model of carcinogenesis for each sinonasal cancer subtype is needed, in order to pave the way toward tailored treatment approaches and improve survival for this rare and challenging group of cancers.
Collapse
Affiliation(s)
- Daniela Lucidi
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Carla Cantaffa
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
- Correspondence: ; Tel.: +39-3385313850; Fax: +39-0594222402
| | - Matteo Miglio
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Federica Spina
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Matteo Alicandri Ciufelli
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, 41124 Modena, Italy
| | - Daniele Marchioni
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
4
|
Singh J, Rajesh NG, Dubashi B, Maroju NK, Ganesan P, Matta KK, Charles I, Kayal S. Pattern of Expression of CDX2 in Colorectal Cancer and its Role in Prognosis: An Ambispective Observational Study. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1750207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
Introduction Caudal-type homeobox 2 (CDX2), a nuclear protein, is essential for the proliferation and development of intestinal epithelial cells and is frequently downregulated during tumorigenesis. CDX2 inhibits cell growth as well as stimulates differentiation by activating intestinal specific genes, thus lack of CDX2 favors tumor growth and aggressiveness.
Objectives We aimed to evaluate the pattern of CDX2 expression in all stages of colorectal cancer (CRC) and study its association with baseline characteristics and prognosis.
Materials and Methods Study was conducted as an ambispective observational study, enrolling cases of CRC retrospectively from January 2014 to July 2016 (30 months), and prospectively during next 18-month period till January 2018. We performed CDX2 staining by immunohistochemistry on the available biopsy blocks of CRC patients during the study period. Total 286 patients were registered during the study period, of which only 110 biopsy blocks were available for staining. CDX2 scoring was done by a semiquantitative method on whole tissue section for the intensity and percentage of the cells showing positivity. Correlation of CDX2 expression was done with baseline clinical and histopathologic characteristics, and survival.
Results Of 110 patients, 77 (70%) constituted colon cancer and 33 (30%) were rectal cancer. The median age was 54.2 years, 62 (56.4%) being male and 48 (43.6%) female with male-to-female ratio 1.3:1. In the study cohort, 33 (30%) patients had stage II disease, 30 (27.3%) stage III, and 47 (42.7%) were stage IV. Seventy-three (66.4%) were positive for CDX2 and 37 (33.4%) were negative. Loss of CDX2 expression was significantly associated with advanced stage, rectal site, poor grade of differentiation, and presence of lymphovascular invasion (LVSI). With median follow-up of 16 months, progression-free survival (PFS) at 2 years was 30% for CDX2 negative patients compared with 67% for CDX2 positive (p = 0.009), while overall survival (OS) at 2 years was 46% for CDX2 negative versus 77% for positive patients (p = 0.01).
Conclusion Loss of CDX2 expression is associated with advanced stage, higher tumor grade, presence of LVSI, and worse PFS and OS and thereby functions as a poor prognostic factor in CRC.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| | - N G. Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Nanda K. Maroju
- Department of General Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Kiran K. Matta
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - I Charles
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
5
|
Delhorme JB, Bersuder E, Terciolo C, Vlami O, Chenard MP, Martin E, Rohr S, Brigand C, Duluc I, Freund JN, Gross I. CDX2 controls genes involved in the metabolism of 5-fluorouracil and is associated with reduced efficacy of chemotherapy in colorectal cancer. Pharmacotherapy 2022; 147:112630. [DOI: 10.1016/j.biopha.2022.112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
6
|
Abstract
Cutaneous adenosquamous carcinoma is a mixed, squamous and glandular, rare malignant tumor of the skin characterized by a mixed, squamous, and glandular differentiation. Few cases of this tumor have been so far reported, and even fewer have been thoroughly studied by immunohistochemistry. We report here an exceptional case of cutaneous adenosquamous carcinoma which showed immunohistochemically features of intestinal differentiation, namely because of the expression of keratin 20 and CDX2, a marker of gastrointestinal tumors.
Collapse
|
7
|
Wang H, Nan S, Wang Y, Xu C. CDX2 enhances natural killer cell-mediated immunotherapy against head and neck squamous cell carcinoma through up-regulating CXCL14. J Cell Mol Med 2021; 25:4596-4607. [PMID: 33733587 PMCID: PMC8107099 DOI: 10.1111/jcmm.16253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
(NK) cells are at the first line of defence against tumours, but their anti‐tumour mechanisms are not fully understood. We aimed to investigate the mechanism by which NK cells can mediate immunotherapy against head and neck squamous cell carcinoma (HNSCC). We collected fifty‐two pairs of HNSCC tissues and corresponding adjacent normal tissues; analysis by RT‐qPCR showed underexpression of CXCL14 in HNSCC tissues. Primary NK cells were then isolated from the peripheral blood of HNSCC patients and healthy donors. CXCL14 was found to be consistently under‐expressed in the primary NK cells from the HNSCC patients. However, CXCL14 expression was increased in IL2‐activated primary NK cells and NK‐92 cells. We next evaluated NK cell migration, IFN‐γ and TNF‐α expression, cytotoxicity and infiltration in response to CXCL14 overexpression or knockdown using gain‐ and loss‐of‐function approach. The results exhibited that CXCL14 overexpression promoted NK cell migration, cytotoxicity and infiltration. Subsequent in vivo experiments revealed that CXCL14 suppressed the growth of HNSCC cells via activation of NK cells. ChIP was applied to study the enrichment of H3K27ac, p300, H3K4me1 and CDX2 in the enhancer region of CXCL14, which showed that CDX2/p300 activated the enhancer of CXCL14 to up‐regulate its expression. Rescue experiments demonstrated that CDX2 stimulated NK cell migration, cytotoxicity and infiltration through up‐regulating CXCL14. In vivo data further revealed that CDX2 suppressed tumorigenicity of HNSCC cells through enhancement of CXCL14. To conclude, CDX2 promotes CXCL14 expression by activating its enhancer, which promotes NK cell–mediated immunotherapy against HNSCC.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Otolaryngology Head and Neck Surgery, Jilin University Second Hospital, Changchun, China
| | - Shanji Nan
- Department of Neurology, Jilin University Second Hospital, Changchun, China
| | - Ying Wang
- Department of Gastroenterology, Jilin University First Hospital, Changchun, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, Jilin University Second Hospital, Changchun, China
| |
Collapse
|
8
|
Holst S, Wilding JL, Koprowska K, Rombouts Y, Wuhrer M. N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells 2019; 8:cells8030273. [PMID: 30909444 PMCID: PMC6468459 DOI: 10.3390/cells8030273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Jennifer L Wilding
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Kamila Koprowska
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
9
|
Machlowska J, Maciejewski R, Sitarz R. The Pattern of Signatures in Gastric Cancer Prognosis. Int J Mol Sci 2018; 19:1658. [PMID: 29867026 PMCID: PMC6032410 DOI: 10.3390/ijms19061658] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/26/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide and it is a fourth leading cause of cancer-related death. Carcinogenesis is a multistage disease process specified by the gradual procurement of mutations and epigenetic alterations in the expression of different genes, which finally lead to the occurrence of a malignancy. These genes have diversified roles regarding cancer development. Intracellular pathways are assigned to the expression of different genes, signal transduction, cell-cycle supervision, genomic stability, DNA repair, and cell-fate destination, like apoptosis, senescence. Extracellular pathways embrace tumour invasion, metastasis, angiogenesis. Altered expression patterns, leading the different clinical responses. This review highlights the list of molecular biomarkers that can be used for prognostic purposes and provide information on the likely outcome of the cancer disease in an untreated individual.
Collapse
Affiliation(s)
- Julita Machlowska
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.
- Department of Surgery, St. John's Cancer Center, 20-090 Lublin, Poland.
| |
Collapse
|
10
|
CDX2 expression is concordant between primary colorectal cancer lesions and corresponding liver metastases independent of chemotherapy: a single-center retrospective study in Japan. Oncotarget 2018; 9:17056-17065. [PMID: 29682204 PMCID: PMC5908305 DOI: 10.18632/oncotarget.24842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/28/2018] [Indexed: 01/17/2023] Open
Abstract
Objective Loss of caudal-type homeobox transcription factor 2 (CDX2) expression in colorectal cancers (CRCs) has recently been proposed as a promising predictive biomarker for not only prognosis but also response to chemotherapy. However, the relationship between alterations in CDX2 expression during cancer progression and response to chemotherapy remains unclear. We herein aimed to determine the concordance of CDX2 expression between primary CRCs and corresponding liver metastases, in association with chemotherapy. Results Primary CRCs exhibited heterogeneous CDX2 expression. Seven of the 144 CRCs in the cohort (4.9%, 95% confidential interval, 2.0%–9.8%) were CDX2-negative. The concordance rate of the CDX2 expression status in patients who did not receive chemotherapy was 100% (P = 0.041), whereas the concordance rate among patients who received chemotherapy only after primary resection was 96.3% (P = 0.005). Moreover, the concordance rate in patients who received chemotherapy before both primary resection and liver metastasectomy was 100% (P < 0.001). Conclusion CDX2 expression status was highly concordant between primary CRCs and corresponding liver metastases, independent of chemotherapy, suggesting that the CDX2 expression status in CRCs was not affected by metastasis or chemotherapy. Methods A total of 144 consecutive patients with CRC who were treated at a single center in Japan between 2006 and 2014 were included. Formalin-fixed paraffin-embedded whole sections of surgically resected primary CRCs and corresponding liver metastases were assessed for CDX2 expression by immunohistochemistry.
Collapse
|
11
|
Srivastava S, Kern F, Sharma N, McKeon F, Xian W, Yeoh KG, Ho KY, Teh M. FABP1 and Hepar expression levels in Barrett's esophagus and associated neoplasia in an Asian population. Dig Liver Dis 2017; 49:1104-1109. [PMID: 28807490 DOI: 10.1016/j.dld.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Barrett's esophagus (BE) is a premalignant condition associated with esophageal adenocarcinoma (EAC). Evidence highlights that EAC is associated with an estimated 5-year survival of approximately 10-15%. Therefore, there is a need to determine which biomarkers are of value in the diagnosis of BE and beyond. The aim of our study was to evaluate the clinical significance of markers known to be expressed across BE and associated neoplasia. METHODS Retrospective tissues were obtained from columnar lined esophagus (CLE) without goblet cells (n=22), BE (n=29), dysplasia (n=14), and EAC (n=10). Standardised immunohistochemistry for FABP1, Hepar, CDH17, and CDX2 were performed followed by quantitative staining and statistical analysis. RESULTS FABP1 expression was negligible in CLE and was highest in BE, with a further decrease in expression in dysplasia and EAC. Hepar expression was also negligible in CLE and was highest in dysplasia and BE, with a reduced expression in EAC. CDH17 and CDX2 showed a significantly higher expression in BE, dysplasia, and EAC compared to CLE. CONCLUSION All 4 markers were excellent diagnostic panels to clearly discriminate BE from CLE. Moreover, as FABP1 and Hepar have different expression levels in dysplasia and EAC, these markers could function as key diagnostic aids in helping to determine the state of disease progression.
Collapse
Affiliation(s)
| | - Florian Kern
- Genome Institute of Singapore, A-STAR, Singapore
| | - Neel Sharma
- Department of Medicine, National University Health System, Singapore
| | - Frank McKeon
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wa Xian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Khay Guan Yeoh
- Department of Medicine, National University Health System, Singapore
| | - Khek Yu Ho
- Department of Medicine, National University Health System, Singapore
| | - Ming Teh
- Department of Pathology, National University Health System, Singapore.
| |
Collapse
|
12
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
13
|
Jessurun J. Intra-Alveolar Intestinal Epithelium: A Reappraisal of the So-Called Mucinous Goblet-Cell Rich Carcinoma Apropos of Two Cases With Prolonged Follow-up and Literature Review. Int J Surg Pathol 2015; 23:196-201. [PMID: 25627070 DOI: 10.1177/1066896915568992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary pulmonary mucin-rich lesions with abundant goblet cells growing within alveolar spaces are either classified as mucinous adenocarcinoma (previously called mucinous bronchioloalveolar carcinoma) or colloid carcinoma. Some of these lesions display a morphologic pattern characterized by paucicellular discontinuous patches of nonatypical colonic type epithelium attached to alveolar walls without evidence of invasion. Immunohistochemically, these epithelial patches express an intestinal immunophenotype (CD20+, CDX-2+, CK7-, TTF-1-). None of the lesions so far reported with these histological and immunohistochemical characteristics have recurred or metastasized. Herein we describe 2 patients with this type of intra-alveolar mucinous lesions who have been meticulously followed-up for 9 and 14 years, respectively, without evidence of disease progression. Based on their histologic appearance, immunoreactivity, and on the presence of occasional CDX-2 expressing cells in terminal airways adjacent to the lesions, we propose alternative interpretations of the mucin-producing epithelium. More important, a separate provisional category for these lesions is suggested that eliminates their force inclusion as adenocarcinomas.
Collapse
Affiliation(s)
- Jose Jessurun
- New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Mansfield AS, Wang L, Cunningham JM, Jen J, Kolbert CP, Sun Z, Yang P. DNA methylation and RNA expression profiles in lung adenocarcinomas of never-smokers. Cancer Genet 2014; 208:253-60. [PMID: 25650174 DOI: 10.1016/j.cancergen.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Lung cancer occurs in never-smokers. Epigenetic changes in lung cancer potentially represent important diagnostic, prognostic, and therapeutic targets. We compared DNA methylation profiles of 28 adenocarcinomas of the lungs of never-smokers with paired adjacent nonmalignant lung tissue. We correlated differential methylation changes with gene expression changes from the same 28 sample pairs. Using principal component analysis, we observed a distinct separation in methylation profiles between tumor and adjacent nonmalignant lung tissue. Tumors were generally hypomethylated compared with adjacent nonmalignant tissue. Of 1,906 CpG sites differentially methylated between tumor and nonmalignant tissue, 1,198 were within classically defined CpG islands where tumors were hypermethylated compared with nonmalignant tissue. A total of 708 sites were outside CpG islands where tumors were hypomethylated compared with nonmalignant tissue. There were significant differences in expression of 351 genes (23%) of the 1,522 genes matched to the differentially methylated CpG sites. Genes that were not significantly differentially expressed and were hypermethylated within CpG sites were enriched for homeobox genes. These results suggest that the methylation profiles of lung adenocarcinomas of never-smokers and adjacent nonmalignant lung tissue are significantly different. Despite the differential methylation of homeobox genes, no significant changes in expression of these genes were detected.
Collapse
Affiliation(s)
- Aaron S Mansfield
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie M Cunningham
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Medical Genome Facility, Mayo Clinic, Rochester, MN, USA
| | - Jin Jen
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Medical Genome Facility, Mayo Clinic, Rochester, MN, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ping Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Division of Epidemiology and Department of Medical Genetics, Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Jun SY, Eom DW, Park H, Bae YK, Jang KT, Yu E, Hong SM. Prognostic significance of CDX2 and mucin expression in small intestinal adenocarcinoma. Mod Pathol 2014; 27:1364-74. [PMID: 24603585 DOI: 10.1038/modpathol.2014.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 02/06/2023]
Abstract
The clinicopathological and prognostic significance of CDX2 and mucin expression have not been comprehensively evaluated in small intestinal adenocarcinoma. Immunohistochemical microarray analyses of CDX2, MUC1, MUC5AC, and MUC6 protein expressions in 189 surgically resected small intestinal adenocarcinoma cases were examined and compared with various clinicopathologic variables, including survival. CDX2, MUC1, MUC5AC, and MUC6 expressions were observed in 43.4% (82 patients), 37.6% (71), 31.7% (60), and 21.7% (41) of patients, respectively. Whereas CDX2 expression was found to be associated with low-grade tumors (P=0.034), fewer nodal metastases (P=0.019), and less perineural invasion (P=0.049) in small intestinal adenocarcinoma patients, patients expressing MUC1 tended to demonstrate high-grade (P=0.021) and nodular or infiltrative (P=0.020) tumors. On the basis of the combined CDX2, MUC1, MUC5AC, and MUC6 expression patterns, small intestinal adenocarcinoma patients were further classified as intestinal (CDX2+/MUC1-; 29.6%), pancreatobiliary (CDX2-/MUC1+; 23.8%), mixed (CDX2+/MUC1+; 13.8%), gastric (CDX2-/MUC1-/MUC5AC+ or MUC6+; 13.8%), or null (CDX2-/MUC1-/MUC5AC-/MUC6-; 19.0%). Among these immunophenotypes, intestinal-type patients demonstrated more frequent distal (jejunal or ileal; P=0.033), tubular (P=0.039), and low-grade tumors (P=0.004) and significantly better survival according to univariate (P<0.0001) and multivariate (P=0.001) analyses. In summary, intestinal immunophenotype adenocarcinomas are associated with distal (jejunal or ileal), tubular, and low-grade tumors and better survival outcomes. Hence, CDX2 and mucin immunohistochemical staining may provide better estimations of survival after surgical resection and intestinal immunophenotype could therefore be used as a better prognostic indicator of small intestinal adenocarcinoma.
Collapse
Affiliation(s)
- Sun-Young Jun
- Department of Pathology, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Dae Woon Eom
- Department of Pathology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Hosub Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Overman MJ, Zhang J, Kopetz S, Davies M, Jiang ZQ, Zhi-Qin J, Stemke-Hale K, Rümmele P, Pilarsky C, Grützmann R, Hamilton S, Hwang R, Abbruzzese JL, Varadhachary G, Broom B, Wang H. Gene expression profiling of ampullary carcinomas classifies ampullary carcinomas into biliary-like and intestinal-like subtypes that are prognostic of outcome. PLoS One 2013; 8:e65144. [PMID: 23776447 PMCID: PMC3679143 DOI: 10.1371/journal.pone.0065144] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adenocarcinomas of the ampulla of Vater are classified as biliary cancers, though the exact epithelium of origin for these cancers is not known. We sought to molecularly classify ampullary adenocarcinomas in comparison to known adenocarcinomas of the pancreas, bile duct, and duodenum by gene expression analysis. METHODS We analyzed 32 fresh-frozen resected, untreated periampullary adenocarcinomas (8 pancreatic, 2 extrahepatic biliary, 8 duodenal, and 14 ampullary) using the Affymetrix U133 Plus 2.0 genome array. Unsupervised and supervised hierarchical clustering identified two subtypes of ampullary carcinomas that were molecularly and histologically characterized. RESULTS Hierarchical clustering of periampullary carcinomas segregated ampullary carcinomas into two subgroups, which were distinctly different from pancreatic carcinomas. Non-pancreatic periampullary adenocarcinomas were segregated into two subgroups with differing prognoses: 5 year RFS (77% vs. 0%, p = 0.007) and 5 year OS (100% vs. 35%, p = 0.005). Unsupervised clustering analysis of the 14 ampullary samples also identified two subgroups: a good prognosis intestinal-like subgroup and a poor prognosis biliary-like subgroup with 5 year OS of 70% vs. 28%, P = 0.09. Expression of CK7+/CK20- but not CDX-2 correlated with these two subgroups. Activation of the AKT and MAPK pathways were both increased in the poor prognostic biliary-like subgroup. In an independent 80 patient ampullary validation dataset only histological subtype (intestinal vs. pancreaticobiliary) was significantly associated with OS in both univariate (p = 0.006) and multivariate analysis (P = 0.04). CONCLUSIONS Gene expression analysis discriminated pancreatic adenocarcinomas from other periampullary carcinomas and identified two prognostically relevant subgroups of ampullary adenocarcinomas. Histological subtype was an independent prognostic factor in ampullary adenocarcinomas.
Collapse
Affiliation(s)
- Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Novikova EL, Bakalenko NI, Nesterenko AY, Kulakova MA. Expression of Hox genes during regeneration of nereid polychaete Alitta (Nereis) virens (Annelida, Lophotrochozoa). EvoDevo 2013; 4:14. [PMID: 23638687 PMCID: PMC3667000 DOI: 10.1186/2041-9139-4-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are the key determinants of different morphogenetic events in all bilaterian animals. These genes are probably responsible for the maintenance of regenerative capacities by providing positional information in the regenerating animal body. Polychaetes are well known for their ability to regenerate the posterior as well as the anterior part of the body. We have recently described the expression of 10 out of 11 Hox genes during postlarval growth of Alitta (Nereis) virens. Hox genes form gradient overlapping expression patterns, which probably do not contribute to the morphological diversity of segments along the anterior-posterior axis of the homonomously segmented worm. We suggest that this gradient expression of Hox genes establishes positional information along the body that can be used to maintain coordinated growth and regeneration. RESULTS We showed that most of the Hox gene expression patterns are reorganized in the central nervous system, segmental ectoderm and mesoderm. The reorganization takes place long before regeneration becomes apparent. The most rapid reorganization was observed for the genes with the largest differences in expression levels in the amputation site and the terminal structures (pygidium and growth zone). Moreover, we revealed the expression of two antisense Hox RNAs (Nvi-antiHox5 and Nvi-antiHox7) demonstrating unique expression patterns during regeneration. CONCLUSIONS Hox genes probably participate in the maintenance and restoration of the positional information in A. virens. During postlarval growth and regeneration, Hox genes do not alter the diversity of segments but provide the positional information along the anterior-posterior axis. The reorganization of at least some Hox gene patterns during regeneration may be regulated by their anti-sense transcripts, providing a rapid response of Hox gene transcripts to positional failure. The capacity of Hox genes to maintain the positional information in the adult body is present in different bilaterian animals (planarias, polychaetes and mammals) and might be an ancestral function inherited from the common evolutionary remote ancestor.
Collapse
Affiliation(s)
- Elena L Novikova
- Department of Embryology, Laboratory of Experimental Embryology, Saint-Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| | - Nadezhda I Bakalenko
- Department of Embryology, Laboratory of Experimental Embryology, Saint-Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| | - Alexander Y Nesterenko
- Department of Embryology, Laboratory of Experimental Embryology, Saint-Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| | - Milana A Kulakova
- Department of Embryology, Laboratory of Experimental Embryology, Saint-Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
| |
Collapse
|
18
|
Zhang JF, Zhang JG, Kuai XL, Zhang H, Jiang W, Ding WF, Li ZL, Zhu HJ, Mao ZB. Reactivation of the homeotic tumor suppressor gene CDX2 by 5-aza-2'-deoxycytidine-induced demethylation inhibits cell proliferation and induces caspase-independent apoptosis in gastric cancer cells. Exp Ther Med 2013; 5:735-741. [PMID: 23408490 PMCID: PMC3570199 DOI: 10.3892/etm.2013.901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/10/2013] [Indexed: 12/17/2022] Open
Abstract
The DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-aza-CdR) is widely used as an anticancer drug for the treatment of leukemia and solid tumors. Gastric cancer (GC) patients who were positive for caudal type homeobox transcription factor 2 (CDX2) expression showed a higher survival rate compared with those who were CDX2 negative, which suggests that CDX2 performs a tumor suppressor role. However, the molecular mechanisms leading to the inactivation of CDX2 remain unclear. In the present study we demonstrated that the expression levels of CDX2 and DNA methyltransferase enzyme 1 (DNMT1) mRNA were significantly higher in GC compared with distal non-cancerous tissue. The expression of CDX2 mRNA was significantly correlated with Lauren classification, TNM stage and lymph node metastasis. DNMT1 mRNA expression was significantly correlated with TNM stage, pathological differentiation and lymph node metastasis. The expression of CDX2 mRNA was inversely correlated with that of DNMT1 mRNA in GC. Hypermethylation of the CDX2 gene promoter region, extremely low expression levels of CDX2 mRNA and no expression of CDX2 protein were the characteristics observed in MKN-45 and SGC-7901 GC cell lines. Following the treatment of MKN-45 cells with 5-aza-CdR, the hypermethylated CDX2 gene promoter region was demethylated and expression of CDX2 was upregulated, while DNMT1 expression was downregulated. Furthermore, a concentration- and time-dependent growth inhibition as well as increased apoptosis were observed. Caspase-3, −8 and −9 activities increased in a concentration-dependent manner following exposure to different concentrations of 5-aza-CdR. Therefore, our data show that the overexpression of DNMT1 and methylation of the CDX2 gene promoter region is likely to be responsible for CDX2 silencing in GC. 5-Aza-CdR may effectively induce re-expression of the CDX2 gene, inhibit cell proliferation and enhance the caspase-independent apoptosis of MKN-45 cells in vitro.
Collapse
Affiliation(s)
- Jian-Feng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang T, Tang XB, Wang LL, Bai YZ, Qiu GR, Yuan ZW, Wang WL. Mutations and down-regulation of CDX1 in children with anorectal malformations. Int J Med Sci 2013; 10:191-7. [PMID: 23329892 PMCID: PMC3547218 DOI: 10.7150/ijms.4929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anorectal malformations (ARMs) represent a variety of congenital disorders that involve abnormal termination of the anorectum. This study was to reveal relation between CDX1 and human ARMs phenotypes. METHODS 108 Chinese patients and 120 Chinese controls were included in this study. We analyzed the relation between two by PCR, qRT-PCR, western blot and immunofluorescence. RESULTS Four heterozygous mutations in CDX1 gene were identified in ARMs patients (3.7%, 4/108), no found in controls. CDX1 protein expression was significantly decreased in the ARMs compared with the control anorectum. All samples analyzed in ARMs group exhibited down-regulated CDX1 mRNA expression in comparison to matched normal group, demonstrated significant differences statistically. CONCLUSION The findings represented the relation between CDX1 mutations and CDX1 genotype. Furthermore, it was suggested that the downregulation of CDX1 might be related to the development of ARMs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | | | | | | | | | | | | |
Collapse
|
20
|
Qin R, Wang NN, Chu J, Wang X. Expression and significance of homeodomain protein Cdx2 in gastric carcinoma and precancerous lesions. World J Gastroenterol 2012; 18:3296-302. [PMID: 22783055 PMCID: PMC3391768 DOI: 10.3748/wjg.v18.i25.3296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/15/2011] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and significance of caudal-related homeobox transcription factor (Cdx2) in gastric carcinoma (GC) and precancerous lesions.
METHODS: The expression of Cdx2 in GC, precancerous lesions and normal gastric mucosa were detected using immunohistochemical method. Hematoxylin and eosin staining, alcian blue/periodic acid-schiff and high iron diamine/alcian blue staining were used to classify intestinal metaplasia (IM) and GC.
RESULTS: Cdx2 was not detected in normal gastric mucosa. Cdx2 expression was detected in 87.1% (101/116) of IM, 50% (36/72) of dysplasia and 48.2% (41/85) of GC. The Cdx2-expressing cells in IM were more prevalent than in dysplasia and carcinoma (P < 0.05). There was no relationship between Cdx2 expression and the classification of IM or the degree of dysplasia. Expression of Cdx2 was significantly higher in intestinal-type carcinoma than in diffuse and mixed-type carcinoma (P < 0.05). Positive expression of Cdx2 was mainly found in moderately to well differentiated GC. There was a negative association between nuclear Cdx2 expression and lymph node metastasis and tumor, nodes, metastasis stage of GC (P < 0.05). The patients with Cdx2-positive expression showed a higher survival rate than those with Cdx2-negative expression (P = 0.038). Multivariate analysis revealed that the expression of Cdx2 and lymph node metastasis were independent prognostic indicators of GC (P < 0.05).
CONCLUSION: Cdx2 may be closely related to IM and the intestinal-type GC and implicate better biological behavior and outcome. Cdx2 is useful for predicting the prognosis of GC.
Collapse
|
21
|
Ma L, Jüttner M, Kullak-Ublick GA, Eloranta JJ. Regulation of the gene encoding the intestinal bile acid transporter ASBT by the caudal-type homeobox proteins CDX1 and CDX2. Am J Physiol Gastrointest Liver Physiol 2012; 302:G123-G133. [PMID: 22016432 DOI: 10.1152/ajpgi.00102.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The apical sodium-dependent bile acid transporter (ASBT) is expressed abundantly in the ileum and mediates bile acid absorption across the apical membranes. Caudal-type homeobox proteins CDX1 and CDX2 are transcription factors that regulate genes involved in intestinal epithelial differentiation and proliferation. Aberrant expression of both ASBT and CDXs in Barrett's esophagus (BE) prompted us to study, whether the expression of the ASBT gene is regulated by CDXs. Short interfering RNA-mediated knockdown of CDXs resulted in reduced ASBT mRNA expression in intestinal cells. CDXs strongly induced the activity of the ASBT promoter in reporter assays in esophageal and intestinal cells. Nine CDX binding sites were predicted in silico within the ASBT promoter, and binding of CDXs to six of them was verified in vitro and within living cells by electrophoretic mobility shift assays and chromatin immunoprecipitation assays, respectively. RNAs were extracted from esophageal biopsies from 20 BE patients and analyzed by real-time PCR. Correlation with ASBT expression was found for CDX1, CDX2, and HNF-1α in BE biopsies. In conclusion, the human ASBT promoter is activated transcriptionally by CDX1 and CDX2. Our finding provides a possible explanation for the reported observation that ASBT is aberrantly expressed in esophageal metaplasia that also expresses CDX transcription factors.
Collapse
Affiliation(s)
- Li Ma
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
22
|
Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci U S A 2011; 108:4382-7. [PMID: 21368208 DOI: 10.1073/pnas.1014519107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypoxia is an important regulator of normal and cancer stem cell (CSC) differentiation. Colorectal CSCs from SW1222, LS180, and CCK81 colorectal cancer-derived cell lines are able to differentiate into complex 3D lumen-containing structures in normoxia, whereas in hypoxia, they form undifferentiated dense colonies that have reduced expression of the enterocyte differentiation marker CDX1, lack goblet cell formation, and have increased expression of BMI1 and activated Notch1. Hypoxia increases the clonogenicity of CSCs, which is cumulative as each round of hypoxia enriches for more CSCs. The hypoxic phenotype is reversible, because cells from hypoxic-dense colonies are able to reform differentiated structures when regrown in normoxia. We show that CDX1 is able to stimulate the generation of lumens even in hypoxia and has a negative feedback on BMI1 expression. Knockdown of CDX1 reduces lumen formation but does not affect goblet cell formation, suggesting that enterocytes and goblet cells form from different progenitor cells. Notch inhibition by dibenzazepine (DBZ) allowed CSCs to form goblet cells in both normoxia and hypoxia. Finally, we show that Hif1α, but not CA9, is an important mediator of the effects of hypoxia on the clonogenicity and differentiation of CSCs. In summary, hypoxia maintains the stem-like phenotype of colorectal cell line-derived CSCs and prevents differentiation of enterocytes and goblet cells by regulating CDX1 and Notch1, suggesting that this regulation is an important component of how hypoxia controls the switch between stemness and differentiation in CSCs.
Collapse
|
23
|
Ruan W, Zhu S, Wang H, Xu F, Deng H, Ma Y, Lai M. IGFBP-rP1, a potential molecule associated with colon cancer differentiation. Mol Cancer 2010; 9:281. [PMID: 20977730 PMCID: PMC2987981 DOI: 10.1186/1476-4598-9-281] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In our previous studies, we have demonstrated that insulin-like growth factor binding protein-related protein1 (IGFBP-rP1) played its potential tumor suppressor role in colon cancer cells through apoptosis and senescence induction. In this study, we will further uncover the role of IGFBP-rP1 in colon cancer differentiation and a possible mechanism by revealing responsible genes. RESULTS In normal colon epithelium, immunohistochemistry staining detected a gradient IGFBP-rP1 expression along the axis of the crypt. IGFBP-rP1 strongly expressed in the differentiated cells at the surface of the colon epithelium, while weakly expressed at the crypt base. In colon cancer tissues, the expression of IGFBP-rP1 correlated positively with the differentiation status. IGFBP-rP1 strongly expressed in low grade colorectal carcinoma and weakly expressed in high grade colorectal carcinoma. In vitro, transfection of PcDNA3.1(IGFBP-rP1) into RKO, SW620 and CW2 cells induced a more pronounced anterior-posterior polarity morphology, accompanied by upregulation with alkaline phosphatase (AKP) activity. Upregulation of carcino-embryonic antigen (CEA) was also observed in SW620 and CW2 transfectants. The addition of IGFBP-rP1 protein into the medium could mimic most but not all effects of IGFBP-rP1 cDNA transfection. Seventy-eight reproducibly differentially expressed genes were detected in PcDNA3.1(IGFBP-rP1)-RKO transfectants, using Affymetrix 133 plus 2.0 expression chip platform. Directed Acyclic Graph (DAG) of the enriched GO categories demonstrated that differential expression of the enzyme regulator activity genes together with cytoskeleton and actin binding genes were significant. IGFBP-rP1 could upreguate Transgelin (TAGLN), downregulate SRY (sex determining region Y)-box 9(campomelic dysplasia, autosomal sex-reversal) (SOX9), insulin receptor substrate 1(IRS1), cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B), amphiregulin(schwannoma-derived growth factor) (AREG) and immediate early response 5-like(IER5L) in RKO, SW620 and CW2 colon cancer cells, verified by Real time Reverse Transcription Polymerase Chain Reaction (rtRT-PCR). During sodium butyrate-induced Caco2 cell differentiation, IGFBP-rP1 was upregulated and the expression showed significant correlation with the AKP activity. The downregulation of IRS1 and SOX9 were also induced by sodium butyrate. CONCLUSION IGFBP-rP1 was a potential key molecule associated with colon cancer differentiation. Downregulation of IRS1 and SOX9 may the possible key downstream genes involved in the process.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Pathology, School of Medicine, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Weimann A, Rieger A, Zimmermann M, Gross M, Hoffmann P, Slevogt H, Morawietz L. Comparison of six immunohistochemical markers for the histologic diagnosis of neoplasia in Barrett's esophagus. Virchows Arch 2010; 457:537-45. [PMID: 20844891 DOI: 10.1007/s00428-010-0972-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 12/28/2022]
Abstract
In esophageal neoplasms, the histopathologic differentiation between Barrett's esophagus with or without intraepithelial neoplasia and adenocarcinoma is often challenging. Immunohistochemistry might help to differentiate between these lesions. The expression of CDX2, LI-cadherin, mucin 2 (MUC2), blood group 8 (BG8, Lewis(y)), claudin-2, and villin was investigated in normal gastroesophageal (n = 23) and in Barrett's (n = 17) mucosa, in low-grade (n = 12) and high-grade (n = 9) intraepithelial neoplasia (IEN) as well as in esophageal adenocarcinoma (n = 16), using immunohistochemistry. For CDX2 and LI-cadherin, the immunoreactivity score was highest in IEN while for MUC2, BG8, and villin, it dropped gradually from Barrett's via IEN to adenocarcinoma, and expression of Claudin-2 was only weak and focal in all lesions. The expression of MUC2 and LI-cadherin differed significantly between all examined lesions except between low-grade and high-grade IEN. MUC2 and LI-cadherin are useful immunohistochemical markers for the differentiation between normal glandular mucosa, Barrett's mucosa, IEN, and invasive carcinoma of the esophagus; however, none of the examined markers was helpful for the differentiation between low-grade and high-grade IEN.
Collapse
Affiliation(s)
- Andreas Weimann
- Institute for Laboratory Medicine and Pathobiochemistry, Charité-University Medical Center, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Joo JH, Taxter TJ, Munguba GC, Kim YH, Dhaduvai K, Dunn NW, Degan WJ, Oh SP, Sugrue SP. Pinin modulates expression of an intestinal homeobox gene, Cdx2, and plays an essential role for small intestinal morphogenesis. Dev Biol 2010; 345:191-203. [PMID: 20637749 DOI: 10.1016/j.ydbio.2010.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 01/29/2023]
Abstract
Pinin (Pnn), a nuclear speckle-associated protein, has been shown to function in maintenance of epithelial integrity through altering expression of several key adhesion molecules. Here we demonstrate that Pnn plays a crucial role in small intestinal development by influencing expression of an intestinal homeobox gene, Cdx2. Conditional inactivation of Pnn within intestinal epithelia resulted in significant downregulation of a caudal type homeobox gene, Cdx2, leading to obvious villus dysmorphogenesis and severely disrupted epithelial differentiation. Additionally, in Pnn-deficient small intestine, we observed upregulated Tcf/Lef reporter activity, as well as misregulated expression/distribution of beta-catenin and Tcf4. Since regulation of Cdx gene expression has been closely linked to Wnt/beta-catenin signaling activity, we explored the possibility of Pnn's interaction with beta-catenin, a major effector of the canonical Wnt signaling pathway. Co-immunoprecipitation assays revealed that Pnn, together with its interaction partner CtBP2, a transcriptional co-repressor, was in a complex with beta-catenin. Moreover, both of these proteins were found to be recruited to the proximal promoter area of Cdx2. Taken together, our results suggest that Pnn is essential for tight regulation of Wnt signaling and Cdx2 expression during small intestinal development.
Collapse
Affiliation(s)
- Jeong-Hoon Joo
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Coskun M, Boyd M, Olsen J, Troelsen JT. Control of intestinal promoter activity of the cellular migratory regulator gene ELMO3 by CDX2 and SP1. J Cell Biochem 2010; 109:1118-28. [PMID: 20127720 DOI: 10.1002/jcb.22490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important aspect of the cellular differentiation in the intestine is the migration of epithelial cells from the crypt to the villus tip. As homeodomaine transcription factor CDX2 has been suggested to influence cell migration, we performed a genome-wide promoter analysis for CDX2 binding in the differentiated human intestinal cancer cell line Caco-2 in order to identify CDX2-regulated genes involved in cellular migration. The engulfment and cell motility 3 (ELMO3) gene was identified as a potential CDX2 target gene. ELMO3 is an essential upstream regulator of the GTP-binding protein RAC during cell migration. However, no information is available about the transcriptional regulation of the ELMO3 gene. The aim of this study was to investigate the potential role of CDX2 in the regulation of the ELMO3 promoter activity. Electrophoretic mobility shift assays showed that CDX2 bound to conserved CDX2 sequences and mutations of the CDX2-binding sites, significantly reduced the promoter activity. Reporter gene assays demonstrated that the region mediating ELMO3 basal transcriptional activity to be located between -270 and -31 bp. Sequence analysis revealed no typical TATA-box, but four GC-rich sequences. In vitro analyses (electrophoretic mobility shift assays and promoter analyses) demonstrate that the SP1-binding sites are likely to play an important role in regulating the ELMO3 promoter activity. Furthermore, we showed here that CDX2 and SP1 can activate the ELMO3 promoter. Taken together, the present study reports the first characterization of the ELMO3 promoter and suggests a significant role of CDX2 in the basal transcriptional regulation of the intestine-specific expression of ELMO3, possibly through interaction with SP1.
Collapse
Affiliation(s)
- Mehmet Coskun
- Faculty of Health Sciences, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
27
|
Naran S, Abrams P, de Oliveira PQ, Hughes SJ. Bile salts differentially sensitize esophageal squamous cells to CD95 (Fas/Apo-1 receptor) mediated apoptosis. J Surg Res 2010; 171:504-9. [PMID: 20934723 DOI: 10.1016/j.jss.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/07/2010] [Accepted: 05/04/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND The role of nonacidic reflux contents on the pathophysiology of Barrett's esophagus remains poorly understood. We hypothesized that esophageal squamous epithelium differs from Barrett's columnar epithelium in response to bile salts with respect to subsequent changes in the cell surface expression of CD95 (Fas/Apo-1) and sensitivity to CD95-mediated apoptosis. METHODS Immortalized esophageal squamous cells (HET-1A) and Barrett's esophagus cells (BAR-T), and esophageal adenocarcinoma cells (Flo-1) were treated with toxic and nontoxic bile salts at concentrations observed in gastroesophageal refluxate. CD95 cell-surface expression and apoptotic response to activating anti-CD95 antibody treatment was determined by FACScan analysis. RESULTS Bile salt exposure resulted in a dose-dependent increase in CD95 cell-surface expression in HET-1A cells, but not BAR-T or Flo-1 cells. This response occurred rapidly, within a time-frame inconsistent with de novo protein synthesis and was blocked by protein kinase C (PKC) inhibition. Surprisingly, PKC inhibition in Flo-1 cells resulted in an increase in CD95 cell surface expression. Following bile salt exposure, a corresponding increase in the induction of CD95-mediated apoptosis was observed in HET-1A cells; PKC inhibition sensitized Flo-1 cells to apoptosis. CONCLUSIONS Our findings suggest that esophageal squamous cells are sensitized to CD95-mediated apoptosis following bile salt exposure. This differential response, compared with columnar epithelial cells, could exert a selection pressure that contributes to the pathophysiology of Barrett's esophagus.
Collapse
Affiliation(s)
- Sanjay Naran
- Department of Surgery, Section of Gastrointestinal Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
28
|
Weimann A, Zimmermann M, Gross M, Slevogt H, Rieger A, Morawietz L. CDX2 and LI-cadherin expression in esophageal mucosa: use of both markers can facilitate the histologic diagnosis of Barrett's esophagus and carcinoma. Int J Surg Pathol 2010; 18:330-7. [PMID: 20444732 DOI: 10.1177/1066896910364228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Barrett's mucosa is a risk factor for esophageal adenocarcinoma and should be detected at an early stage. CDX2 and liver-intestine (LI)-cadherin are intestine-specific markers. Aberrant CDX2 expression has been demonstrated in Barrett's metaplasia, esophagitis, and intestinal metaplasia of the stomach. METHODS The relationship between CDX2 and LI-cadherin expression was investigated in normal gastroesophageal (n = 24) and in Barrett's (n = 20) mucosa, in low-grade (n = 15) and high-grade (n = 13) intraepithelial neoplasia (IEN) as well as in esophageal adenocarcinoma (n = 16), using immunohistochemistry. RESULTS Nuclear positivity for CDX2 coupled with membranous expression of LI-cadherin was observed in about 70% of the epithelial cells of Barrett's mucosa. The intensity of staining and the percentage of positive cells increased within the sequential steps of low-grade to high-grade IEN, whereas the normal cylindric epithelium lacked the expression of both. In adenocarcinoma, the expression of LI-cadherin and CDX2 was significantly weaker or absent. CONCLUSIONS CDX2 and LI-cadherin are sensitive markers of intestinal metaplasia with or without dysplasia in the upper gastrointestinal tract. Both can be helpful for the early histologic diagnosis of Barrett's esophagus and its subsequent lesions; however, they do not significantly discern between different grades of dysplasia.
Collapse
|
29
|
Ameri J, Ståhlberg A, Pedersen J, Johansson JK, Johannesson MM, Artner I, Semb H. FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells 2010; 28:45-56. [PMID: 19890880 DOI: 10.1002/stem.249] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor (FGF) signaling controls axis formation during endoderm development. Studies in lower vertebrates have demonstrated that FGF2 primarily patterns the ventral foregut endoderm into liver and lung, whereas FGF4 exhibits broad anterior-posterior and left-right patterning activities. Furthermore, an inductive role of FGF2 during dorsal pancreas formation has been shown. However, whether FGF2 plays a similar role during human endoderm development remains unknown. Here, we show that FGF2 specifies hESC-derived definitive endoderm (DE) into different foregut lineages in a dosage-dependent manner. Specifically, increasing concentrations of FGF2 inhibits hepatocyte differentiation, whereas intermediate concentration of FGF2 promotes differentiation toward a pancreatic cell fate. At high FGF2 levels specification of midgut endoderm into small intestinal progenitors is increased at the expense of PDX1(+) pancreatic progenitors. High FGF2 concentrations also promote differentiation toward an anterior foregut pulmonary cell fate. Finally, by dissecting the FGF receptor intracellular pathway that regulates pancreas specification, we demonstrate for the first time to the best of our knowledge that induction of PDX1(+) pancreatic progenitors relies on FGF2-mediated activation of the MAPK signaling pathway. Altogether, these observations suggest a broader gut endodermal patterning activity of FGF2 that corresponds to what has previously been advocated for FGF4, implying a functional switch from FGF4 to FGF2 during evolution. Thus, our results provide new knowledge of how cell fate specification of human DE is controlled-facts that will be of great value for future regenerative cell therapies.
Collapse
Affiliation(s)
- Jacqueline Ameri
- Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am J Surg Pathol 2010; 33:1006-15. [PMID: 19363439 DOI: 10.1097/pas.0b013e31819f57e9] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Barrett esophagus (BE) is defined by the presence of metaplastic esophageal columnar epithelium with goblet cells within endoscopically recognizable areas of the esophagus. However, some carcinomas in BE, or from the gastroesophageal junction region, develop within mucosa devoid of goblet cells. However, the biologic properties, pathogenesis, and risk of malignancy of metaplastic, esophageal nongoblet columnar epithelium, is, essentially, unknown. In this study, 89 patients with metaplastic esophageal columnar epithelium were evaluated immunohistochemically for markers of intestinal differentiation, such as MUC2, DAS-1, Villin, and CDX2, a marker of gastric differentiation (MUC5AC), and Ki67, a marker of cell proliferation. Of the 89 patients, 59 had columnar metaplasia with goblet cells (BE), which were further separated into low-density goblet cell and high-density goblet cell groups based on the percentage of crypts with goblet cells, and 30 patients had columnar metaplasia of the esophagus without goblet cells. As controls, gastric biopsies from 19 age and sex matched patients without esophageal or gastric pathology were used. The rate of positivity of the markers and the location of Ki67 staining was evaluated only in non-goblet columnar epithelium from all patient groups. Patients with metaplastic esophageal columnar epithelium without goblet cells showed positivity for MUC5AC, MUC2, DAS-1, Villin, and CDX2 in 100%, 0%, 30%, 17%, and 43% of cases, respectively. 17% of cases showed aberrant surface Ki67 positivity. These values were significantly higher than gastric controls, which showed absence of staining for all markers except MUC5AC (100%). In patients with metaplastic esophageal columnar epithelium with goblet cells (BE) a significant increased rate of staining was observed for all markers, except MUC5AC. In addition, both MUC2 and surface Ki67 staining were significantly increased in BE patients with high-density goblet cells versus those with low-density goblet cells. In a separate analysis in which metaplastic esophageal nongoblet epithelium was evaluated in areas of mucosa devoid of goblet cells compared with areas of mucosa with goblet cells, from patients who had goblet cells elsewhere in the mucosa (N=59), no significant differences were observed with regard to the percentage of cases that stained with any of the markers in the nongoblet epithelium in areas devoid of goblet cells, similar to the patient group with metaplastic esophageal epithelium without goblet cells (N=30). Similar to above, in all cases, expression of intestinal markers increased in areas of mucosa adjacent to goblet cells. This study provides evidence that metaplastic esophageal columnar epithelium without goblet cells shows phenotypic evidence of intestinal differentiation and supports the theory that squamous epithelium converts initially to nongoblet columnar epithelium before goblet cell metaplasia. Further prospective studies are needed to evaluate the pathogenetic sequence, natural history, and risk of malignancy of metaplastic esophageal nongoblet epithelium.
Collapse
|
31
|
CDX2 expression in the intestinal-type gastric epithelial neoplasia: frequency and significance. Mod Pathol 2010; 23:54-61. [PMID: 19820687 DOI: 10.1038/modpathol.2009.135] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CDX2 is an intestinal transcription factor responsible for regulating the proliferation and differentiation of intestinal epithelial cells. In gastric adenocarcinoma, CDX2 expression is known to be associated with limited invasiveness and intestinal phenotypes. The aims of this study were to analyze CDX2 expression in a series of well-characterized cases of gastric epithelial dysplasia, based on the morphologic and mucin phenotypes, and also to analyze CDX2 expression along the metaplasia-dysplasia-carcinoma sequence. CDX2 expression was evaluated in 69 cases of gastric epithelial dysplasia, 88 cases of intestinal-type early gastric cancers, and 56 cases of advanced gastric cancers. Increased CDX2 expression was more frequently associated with adenomatous-type gastric epithelial dysplasia (27/31, 87%) compared with foveolar (7/15, 47%) or hybrid (10/23, 44%) types of gastric epithelial dysplasia (P=0.001). CDX2 expression correlated with an increase in CD10 expression (P=0.005), and a decrease in MUC5AC expression (P=0.001) in gastric epithelial dysplasia. CDX2 expression was also gradually decreased from gastric epithelial dysplasia, to early and advanced gastric cancers (present in 64, 40 and 27% of the cases, respectively). A negative correlation was also observed between CDX2 expression and the depth of tumor invasion. Our results indicate that CDX2 expression is associated with specific morphological and mucin phenotypes of gastric epithelial dysplasias, and decreases progressively with the advancing stage of gastric cancers, suggesting a possible tumor suppressor role for CDX2.
Collapse
|
32
|
Liu LY, Sun Y, Li ZW, Feng G, You WC, Li JY. Pericryptal fibroblast sheath in intestinal metaplasia, dysplasia and carcinoma of the stomach. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Abstract
The incidence of adenocarcinoma of the esophagus and gastroesophageal junction has increased dramatically over the past 30 years. The major precursor to this type of adenocarcinoma is Barrett esophagus, which is defined as the conversion of normal squamous epithelium into metaplastic columnar epithelium. Abundant evidence suggests that adenocarcinoma in the setting of Barrett esophagus develops via a progressive sequence of histological and molecular events. Consequently, patients with Barrett esophagus routinely undergo endoscopic surveillance for early detection of neoplasia. Histological evaluation of mucosal biopsy samples from the esophagus and gastroesophageal junction for identification of goblet cells and evaluation of the presence, grade and extent of dysplasia is the mainstay of risk assessment for these patients. This Review provides physicians with a summary of the pertinent, clinically relevant histological features of Barrett esophagus and its neoplastic complications. The histology of Barrett esophagus and the gastroesophageal junction is summarized, and an overview of information necessary to interpret pathology reports from patients either with or without endoscopic evidence of Barrett esophagus is provided to appropriately guide management of patients. Close interaction between the clinician and the pathologist is essential for proper interpretation of biopsy results and to provide optimal surveillance or treatment strategies.
Collapse
Affiliation(s)
- Robert D Odze
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
34
|
Abstract
One of the main engines that drives cellular transformation is the loss of proper control of the mammalian cell cycle. The cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) promotes cell cycle arrest in response to many stimuli. It is well positioned to function as both a sensor and an effector of multiple anti-proliferative signals. This Review focuses on recent advances in our understanding of the regulation of p21 and its biological functions with emphasis on its p53-independent tumour suppressor activities and paradoxical tumour-promoting activities, and their implications in cancer.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
35
|
Primary ovarian carcinoid tumors may express CDX-2: a potential pitfall in distinction from metastatic intestinal carcinoid tumors involving the ovary. Int J Gynecol Pathol 2009; 28:41-8. [PMID: 19047909 DOI: 10.1097/pgp.0b013e31817a8f51] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carcinoid tumors of the ovary are rare neoplasms that may be primary or metastatic. Clinicopathologic features such as unilaterality and early stage favor a primary ovarian neoplasm but in the absence of other teratomatous elements it may be difficult or impossible to determine whether an ovarian carcinoid is primary or metastatic. CDX-2 is a marker of intestinal differentiation that has been proposed as a marker of midgut origin for metastatic carcinoids. Its expression has not been tested in ovarian carcinoids. Additional markers of potential help in defining the origin of a carcinoid include cytokeratin (CK) 20, CK7, and thyroid transcription factor (TTF-1), none of which have been studied in ovarian carcinoids. We evaluated the diagnostic utility of CDX-2, CK20, CK7, and TTF-1 as well as conventional clinicopathologic features in determining the site of origin in 26 ovarian carcinoids (16 primary and 10 metastatic from midgut). Non-neoplastic premenopausal ovaries (n=10) served as controls. All primary ovarian carcinoids were unilateral whereas only 3/10 metastatic carcinoids were unilateral. Multinodular growth occurred in 6/10 metastatic carcinoids but not in any primary carcinoid. The average size of primary ovarian carcinoids was 3.4 cm (range: 0.2-13.5 cm) versus 10.2 cm for metastatic carcinoids (range: 4-32 cm). Of the primary ovarian carcinoids, 12/16 were 3 cm or smaller whereas all metastatic carcinoids were 4 cm or larger. Teratomatous elements were present in association with 10/16 primary ovarian carcinoids, whereas none were present in any metastatic carcinoid. The primary ovarian carcinoid types were insular (n=6), trabecular (n=3), strumal (n=6, of which 5 were trabecular pattern and 1 was insular pattern) or mucinous (n=1). CDX-2 was not expressed in any cells in normal ovaries. Among primary ovarian neoplasms, there was diffuse nuclear CDX-2 expression in 4/6 insular, 0/3 trabecular, 1/6 strumal (1/1 insular pattern and 0/5 trabecular pattern strumal carcinoids), and 1/1 mucinous carcinoids. All metastatic carcinoids, except for two of mucinous type, were insular. CDX-2 was diffusely and strongly expressed in all 8 metastatic insular carcinoids and in both metastatic mucinous carcinoids. None of the metastases was trabecular in type but 12 primary hindgut or foregut trabecular carcinoids were evaluated and all were negative for CDX-2. None of the ovarian carcinoids expressed TTF-1, CK7, or CK20, except for the primary and metastatic mucinous carcinoids, all of which were CK20-positive. These results demonstrate that CDX-2 cannot be used to determine if a carcinoid is primary in the ovary or metastatic from the intestine as insular and mucinous types of either origin express this marker. Trabecular carcinoids of either origin lack CDX-2 expression. CK20, CK7, or TTF-1 do not have diagnostic utility in this context. Conventional clinicopathologic features (unilaterality, lack of multinodular growth, early stage, presence of teratomatous elements, and size 3 cm or smaller) are the most helpful findings in suggesting a primary origin for an ovarian carcinoid tumor.
Collapse
|
36
|
Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1. Proc Natl Acad Sci U S A 2009; 106:1936-41. [PMID: 19188603 DOI: 10.1073/pnas.0812904106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDX1 is a transcription factor that plays a key role in intestinal development and differentiation. However, the downstream targets of CDX1 are less well defined than those of its close homologue, CDX2. We report here the identification of downstream targets of CDX1 using microarray gene-expression analysis and other approaches. Keratin 20 (KRT20), a member of the intermediate filament and a well-known marker of intestinal differentiation, was initially identified as one of the genes likely to be directly regulated by CDX1. CDX1 and KRT20 mRNA expression were significantly correlated in a panel of 38 colorectal cancer cell lines. Deletion and mutation analysis of the KRT20 promoter showed that the minimum regulatory region for the control of KRT20 expression by CDX1 is within 246 bp upstream of the KRT20 transcription start site. ChIP analysis confirmed that CDX1 binds to the predicted CDX elements in this region of the KRT20 promoter in vivo. In addition, immunohistochemistry showed expression of CDX1 parallels that of KRT20 in the normal crypt, which further supports their close relationship. In summary, our observations strongly imply that KRT20 is directly regulated by CDX1, and therefore suggest a role for CDX1 in maintaining differentiation in intestinal epithelial cells. Because a key feature of the development of a cancer is an unbalanced program of proliferation and differentiation, dysregulation of CDX1 may be an advantage for the development of a colorectal carcinoma. This could, therefore, explain the relatively frequent down regulation of CDX1 in colorectal carcinomas by hypermethylation.
Collapse
|
37
|
Zheng LD, Tong QS, Weng MX, He J, Lv Q, Pu JR, Jiang GS, Cai JB, Liu Y, Hou XH. Enhanced expression of resistin-like molecule beta in human colon cancer and its clinical significance. Dig Dis Sci 2009; 54:274-81. [PMID: 18594973 DOI: 10.1007/s10620-008-0355-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 06/03/2008] [Indexed: 01/08/2023]
Abstract
Previous studies have indicated that resistin-like molecule beta (RELM beta), an intestinal goblet cell-specific protein, is markedly increased in the intestinal tumors of min mice and over-expressed in a human colon cancer cell line. We hypothesized that RELM beta might be enhanced in human colon cancer. The aim of this study was to examine the clinical importance of RELM beta expression in colon cancer patients and to correlate its expression with various clinicopathological parameters, upstream regulatory molecule expression, tumor proliferative capacity, and patients' survival. Of the 80 colon cancer patients studied, 65 (81.25%) tested positive for RELM beta, mainly in the cytoplasm of colon mucosa. Contrasting sharply with the strongly RELM beta-positive tumors, normal colon mucous membrane was negative or weakly positive. RELM beta positivity in colon cancer was correlated with histological grade of differentiation and lymph node metastasis, but not with age, gender, tumor location and size, tumor infiltration, Dukes' stage, liver metastasis, and venous invasion. RELM beta expression was significantly correlated with the expression of transcription factor CDX-2 (P < 0.01) but not with that of proliferative index Ki-67 (P > 0.05). The mean postoperative survival time (2.76 years) of RELM beta-positive patients was significantly longer than that (1.26 years) of RELM beta-negative patients (P = 0.032). These findings support evidence of the enhanced RELM beta expression in colon cancer patients and suggest that further investigation is warranted to explore the role of RELM beta in colon cancer.
Collapse
Affiliation(s)
- Li-Duan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chiori R, Jager M, Denker E, Wincker P, Da Silva C, Le Guyader H, Manuel M, Quéinnec E. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 2009; 4:e4231. [PMID: 19156208 PMCID: PMC2626245 DOI: 10.1371/journal.pone.0004231] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.
Collapse
Affiliation(s)
- Roxane Chiori
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Muriel Jager
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | - Hervé Le Guyader
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Michaël Manuel
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Eric Quéinnec
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| |
Collapse
|
39
|
Odze RD. Update on the diagnosis and treatment of Barrett esophagus and related neoplastic precursor lesions. Arch Pathol Lab Med 2008; 132:1577-85. [PMID: 18834215 DOI: 10.5858/2008-132-1577-uotdat] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2008] [Indexed: 11/06/2022]
Abstract
CONTEXT At present, Barrett esophagus is the most common cause of esophageal adenocarcinoma. In the past 20 years, the incidence of esophageal adenocarcinoma in white males has exceeded that of tumors of the colorectum, lung, prostate, and skin. OBJECTIVES To (1) provide an evidence-based review of the diagnosis, classification, and histologic differentiation of Barrett esophagus from gastric carditis, (2) provide a summary of the key pathologic features of precursor lesions, such as dysplasia, and (3) evaluate adjunctive markers of dysplasia and predictive markers for the development of cancer. The natural history and risk of cancer in patients with Barrett esophagus is also reviewed. DATA SOURCES For this review, selected published peer reviewed articles were chosen from a search through PubMed between the years 1970 and 2007. CONCLUSIONS The current definition of Barrett esophagus is partially flawed because not all cases are endoscopically recognizable, nongoblet epithelium is biologically intestinalized, and determination of the presence or absence of goblet cells is susceptible to sampling error. Differentiation of ultrashort segment Barrett esophagus from chronic gastric carditis can be accomplished, in a minority of cases, by evaluating for the presence or absence of histologic features that are known to be associated with Barrett esophagus. Dysplasia in Barrett esophagus begins in the crypt bases and then extends more superficially to include the upper portions of the crypts and surface epithelium. Low- and high-grade dysplasia are distinguished by the presence of marked cytologic and/or architectural abnormalities in the latter compared with the former. There are few, if any, reliable adjunctive diagnostic techniques that can help differentiate nondysplastic from dysplastic epithelium. However, alpha-methylacyl coenzyme A racemase staining has been shown to be useful in 2 separate studies. Both low- and high-grade dysplasia are progressive lesions, and in general, the extent of dysplasia, particularly low grade, is a strong risk factor for progression to carcinoma. Of all the biologic and genetic biomarkers studied to date, evaluation of DNA content is the most reliable and specific. The management of patients with dysplasia is variable among institutions and ranges from aggressive surveillance, endoscopic mucosal resection, mucosal ablation, or total esophagectomy.
Collapse
Affiliation(s)
- Robert D Odze
- GI Pathology Service, Brigham andWomen's Hospital, Harvard Medical School, Boston, Massachussetts 02115, USA.
| |
Collapse
|
40
|
Tischoff I, Tannapfel A. Barrett's esophagus: can biomarkers predict progression to malignancy? Expert Rev Gastroenterol Hepatol 2008; 2:653-63. [PMID: 19072343 DOI: 10.1586/17474124.2.5.653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Barrett's esophagus (BE) is one of the most common premalignant lesions and can progress to esophageal adenocarcinoma. It is characterized histologically by a specialized intestinal metaplasia that replaces the squamous epithelium of the distal esophagus, and is associated with chronic gastroesophageal reflux disease and obesity. Similar to the adenoma-carcinoma sequence of colorectal carcinomas, esophageal adenocarcinoma develops through progression from BE to low- and high-grade dysplasia, then to adenocarcinoma with accumulation of genetic and epigenetic abnormalities. The exact malignancy potential of BE is uncertain. Dysplasia is the most predictive marker for risk of esophageal adenocarcinoma, whereas endoscopic and histological diagnoses are still the gold standard for surveillance of patients with BE. However, both are limited, either by sampling errors in biopsies or by differences in histological interpretation. Several studies have identified candidate biomarkers that may have predictive value and may serve as additional factors for the risk assessment of esophageal adenocarcinoma. This review discusses the role of biomarkers in the progression from BE to adenocarcinoma, focusing on clinical and molecular markers.
Collapse
Affiliation(s)
- Iris Tischoff
- Institute of Pathology, Ruhr-University of Bochum, Bürkle-de-la-Camp-Platz, Bochum 44789, Germany.
| | | |
Collapse
|
41
|
Bai Z, Ye Y, Chen D, Shen D, Xu F, Cui Z, Wang S. Homeoprotein Cdx2 and nuclear PTEN expression profiles are related to gastric cancer prognosis. APMIS 2008; 115:1383-90. [PMID: 18184409 DOI: 10.1111/j.1600-0463.2007.00654.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of the study was to analyze the expression of Cdx2 and nuclear PTEN in relation to clinicopathological features of gastric cancer tissue biopsies in order to determine the value of a combined analysis of Cdx2 and nuclear PTEN expression in distinguishing histological types and prognosis of gastric cancers. The expression of Cdx2 and nuclear PTEN was studied using immunohistochemistry of paraffin-embedded tumor specimens from 99 patients who underwent radical D2 gastrectomy between 1999 and 2001. Cdx2 and nuclear PTEN expression were detected in 39.6% (36 of 91) and 70.3% (64 of 91) of gastric cancer cases, respectively. There was a negative correlation between Cdx2 expression and Lauren classification (p=0.032), and between nuclear PTEN expression and lymph node metastasis (p=0.049). Patients with Cdx2-positive, or nuclear PTEN-positive expression had higher survival rates than those with Cdx2-negative or nuclear PTEN-negative expression (p<0.001 and p=0.003, respectively). Co-expression of Cdx2 and nuclear PTEN showed significantly lower levels in diffuse- or mixed-type cancers than in intestinal-type cancers (p=0.005). Multivariate analysis revealed that Cdx2 expression was an independent prognostic indicator of gastric cancer (p=0.014). These data suggest that combined analysis of Cdx2 and nuclear PTEN expression can have significant value in distinguishing histological types of gastric cancer and assessing prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Zhigang Bai
- Department of Gastroenterological Surgery, Surgical Oncology Laboratory, People's Hospital, Peking University, 100044 Beijing, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Chaudhry KK, Mahmood S, Mahmood A. Hormone induced expression of brush border lactase in suckling rat intestine. Mol Cell Biochem 2008; 312:11-6. [PMID: 18273561 DOI: 10.1007/s11010-008-9715-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 01/29/2008] [Indexed: 11/26/2022]
Abstract
The postnatal development of intestine is associated with a decline in brush border lactase activity in rodents. This is similar to adulthood hypolactasia, a phenomenon prevalent in humans worldwide. In the present study, the effect of luminal proteases from adult rat intestine was studied in vitro on intestinal lactase activity in saline control, thyroxine, insulin and cortisone treated rat pups. Lactase levels were determined by enzyme analysis and Western blotting. mRNA levels encoding lactase were determined by Northern blotting. Administration of thyroxine for 4 days reduced (P<0.05) lactase activity, but insulin treatment had no effect in 8-day-old rat intestine. However, cortisone administration augmented (P<0.01) lactase activity, under these conditions. Western blot analysis showed decreased lactase signal corresponding to 220-kDa protein band in thyroxine treated animals. However, the intensity of lactase signal was high in cortisone treated animals compared to controls. mRNA levels encoding lactase showed a 6.8-kb mRNA transcript in saline and hormone treated rats. mRNA levels encoding lactase were increased in cortisone treated animals but were reduced in thyroxine injected pups compared to controls. Microvillus membranes from saline (P<0.01) and thyroxine (P<0.05) or insulin (P<0.01) treated rats upon incubation with luminal wash from adult rat intestine showed a significant decline in lactase activity. These findings suggest that thyroxine, insulin or cortisone induced changes in lactase expression in suckling rat intestine make it susceptible to luminal proteases, which may in part be responsible for observed maturational decline in lactase activity in adult rat intestine.
Collapse
|
43
|
Cheng PY, Lin CC, Wu CS, Lu YF, Lin CY, Chung CC, Chu CY, Huang CJ, Tsai CY, Korzh S, Wu JL, Hwang SPL. Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development 2008; 135:941-52. [PMID: 18234726 DOI: 10.1242/dev.010595] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We identified a zebrafish caudal-related homeobox (cdx1b) gene, which shares syntenic conservation with both human and mouse Cdx1. Zebrafish cdx1b transcripts are maternally deposited. cdx1b is uniformly expressed in both epiblast and hypoblast cells from late gastrulation to the 1-2s stages and can be identified in the retinas, brain and somites during 18-22 hpf stages. After 28 hours of development, cdx1b is exclusively expressed in the developing intestine. Both antisense morpholino oligonucleotide-mediated knockdown and overexpression experiments were conducted to analyze cdx1b function. Hypoplastic development of the liver and pancreas and intestinal abnormalities were observed in 96 hpf cdx1b morphants. In 85% epiboly cdx1b morphants, twofold decreases in the respective numbers of gata5-, cas-, foxa2- and sox17-expressing endodermal precursors were identified. Furthermore, ectopic cdx1b expression caused substantial increases in the respective numbers of gata5-, cas-, foxa2- and sox17-expressing endodermal precursors and altered their distribution patterns in 85% epiboly injected embryos. Conserved Cdx1-binding motifs were identified in both gata5 and foxa2 genes by interspecific sequence comparisons. Cdx1b can bind to the Cdx1-binding motif located in intron 1 of the foxa2 gene based on an electrophoretic mobility shift assay. Co-injection of either zebrafish or mouse foxa2 mRNA with the cdx1b MO rescued the expression domains of ceruloplasmin in the liver of 53 hpf injected embryos. These results indicate that zebrafish cdx1b regulates foxa2 expression and may also modulate gata5 expression, thus affecting early endoderm formation. This study underscores a novel role of zebrafish cdx1b in the development of different digestive organs compared with its mammalian homologs.
Collapse
Affiliation(s)
- Pei-Yi Cheng
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li P, Lin JE, Chervoneva I, Schulz S, Waldman SA, Pitari GM. Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase C restricts the proliferating compartment in intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1847-58. [PMID: 17974601 DOI: 10.2353/ajpath.2007.070198] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Guanylyl cyclase C (GC-C), the receptor for diarrheagenic enterotoxins and the paracrine ligands guanylin and uroguanylin, regulates intestinal secretion. Beyond volume homeostasis, its importance in modulating cancer cell proliferation and its uniform dysregulation early in colon carcinogenesis, reflecting loss of ligand expression, suggests a role for GC-C in organizing the crypt-villus axis. Here, eliminating GC-C expression in mice increased crypt length along a decreasing rostral-caudal gradient by disrupting component homeostatic processes. Crypt expansion reflected hyperplasia of the proliferating compartment with reciprocal increases in rapidly cycling progenitor cells and reductions in differentiated cells of the secretory lineage, including Paneth and goblet cells, but not enteroendocrine cells. GC-C signaling regulated proliferation by restricting the cell cycle at the G(1)/S transition. Moreover, crypt expansion in GC-C(-/-) mice was associated with adaptive increases in cell migration and apoptosis. Reciprocal alterations in proliferation and differentiation resulting in expansion associated with adaptive responses in migration and apoptosis suggest that GC-C coordinates component processes maintaining homeostasis of the crypt progenitor compartment. In the context of uniform loss of GC-C signaling during tumorigenesis, dysregulation of those homeostatic processes may contribute to mechanisms underlying colon cancer.
Collapse
Affiliation(s)
- Peng Li
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1100 Walnut St./MOB 810, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The use of microarrays to evaluate the transcriptome has transformed our view of biology. In addition to the focused, hypothesis-testing studies that we have traditionally conducted in cell biology, we are now able to see global changes within the entire system of the cell in response to a treatment. By examining a biological question under multiple complementary perturbations model systems (e.g. yeast, C. Elegans) have revealed new complexity that would have been impossible to see on a gene-by-gene approach. Unfortunately, beyond the use of transcript profiles to define the molecular signature of diseases (e.g. cancer), transcriptomics has not been extensively used to study intestinal biology. This review will provide a roadmap for effective use of gene expression profiling for biological research and will review some of the microarray work that has been done to better understand the nature of intestinal development and enterocyte differentiation.
Collapse
Affiliation(s)
- J C Fleet
- Department of Foods and Nutrition and Interdepartmental Nutrition Program, Purdue University, 700 West State St., West Lafayette, IN 47906-2059, USA.
| |
Collapse
|
46
|
Jonckheere N, Vincent A, Perrais M, Ducourouble MP, Male AKV, Aubert JP, Pigny P, Carraway KL, Freund JN, Renes IB, Van Seuningen I. The human mucin MUC4 is transcriptionally regulated by caudal-related homeobox, hepatocyte nuclear factors, forkhead box A, and GATA endodermal transcription factors in epithelial cancer cells. J Biol Chem 2007; 282:22638-50. [PMID: 17553805 DOI: 10.1074/jbc.m700905200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human gene MUC4 encodes a large transmembrane mucin that is developmentally regulated and expressed along the undifferentiated pseudostratified epithelium, as early as 6.5 weeks during fetal development. Immunohistochemical analysis of Muc4 expression in developing mouse lung and gastrointestinal tract showed a different spatio-temporal pattern of expression before and after cytodifferentiation. The molecular mechanisms governing MUC4 expression during development are, however, unknown. Hepatocyte nuclear factors (HNF), forkhead box A (FOXA), GATA, and caudal-related homeobox transcription factors (TFs) are known to control cell differentiation of gut endoderm derived-tissues during embryonic development. They also control the expression of cell- and tissue-specific genes and may thus control MUC4 expression. To test this hypothesis, we studied and deciphered the molecular mechanisms responsible for MUC4 transcriptional regulation by these TFs. Experiments using small interfering RNA, cell co-transfection, and site-directed mutagenesis indicated that MUC4 is regulated at the transcriptional level by CDX-1 and -2, HNF-1 alpha and -1 beta, FOXA1/A2, HNF-4 alpha and -4 gamma, and GATA-4, -5, and -6 factors in a cell-specific manner. Binding of TFs was assessed by chromatin immunoprecipitation, and gel-shift assays. Altogether, these results demonstrate that MUC4 is a target gene of endodermal TFs and thus point out an important role for these TFs in regulating MUC4 expression during epithelial differentiation during development, cancer, and repair.
Collapse
|
47
|
Calon A, Gross I, Davidson I, Kedinger M, Duluc I, Domon-Dell C, Freund JN. Functional interaction between the homeoprotein CDX1 and the transcriptional machinery containing the TATA-binding protein. Nucleic Acids Res 2006; 35:175-85. [PMID: 17158164 PMCID: PMC1802564 DOI: 10.1093/nar/gkl1034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have previously reported that the CDX1 homeoprotein interacts with the TATA-box binding protein (TBP) on the promoter of the glucose-6-phosphatase (G6Pase) gene. We show here that CDX1 interacts with TBP via the homeodomain and that the transcriptional activity additionally requires the N-terminal domain upstream of the homeodomain. CDX1 interacting with TBP is connected to members of the TFIID and Mediator complexes, two major elements of the general transcriptional machinery. Transcription luciferase assays performed using an altered-specificity mutant of TBP provide evidence for the functionality of the interaction between CDX1 and TBP. Unlike CDX1, CDX2 does not interact with TBP nor does it transactivate the G6Pase promoter. Swapping experiments between the domains of CDX1 and CDX2 indicate that, despite opposite functional effects of the homeoproteins on the G6Pase promoter, the N-terminal domains and homeodomains of both CDX1 and CDX2 have the intrinsic ability to activate transcription and to interact with TBP. However, the carboxy domains define the specificity of CDX1 and CDX2. Thus, intra-molecular interactions control the activity and partner recruitment of CDX1 and CDX2, leading to different molecular functions.
Collapse
Affiliation(s)
| | | | - Irwin Davidson
- CNRS UMR7104, IGBMC and University Louis PasteurIllkirch, France
| | | | | | | | - Jean-Noël Freund
- To whom correspondence should be addressed at INSERM U682, 3 Avenue Molière, 67200 Strasbourg, France. Tel: +33 388 27 77 27; Fax: +33 388 26 35 38;
| |
Collapse
|
48
|
Sung MT, Lopez-Beltran A, Eble JN, MacLennan GT, Tan PH, Montironi R, Jones TD, Ulbright TM, Blair JE, Cheng L. Divergent pathway of intestinal metaplasia and cystitis glandularis of the urinary bladder. Mod Pathol 2006; 19:1395-401. [PMID: 16951671 DOI: 10.1038/modpathol.3800670] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal metaplasia has been proposed to be a precursor lesion of adenocarcinoma in the urinary bladder. CDX2 is a transcription factor that is encoded by a homeotype gene that plays an essential role in the differentiation and proliferation of intestinal epithelial cells. Hepatocyte-specific antigen (Hep) has also been shown to be a useful marker of intestinal metaplasia. Tissues from 46 patients, including 22 cases of intestinal metaplasia of the urinary bladder, 11 cases of typical cystitis glandularis, and 13 cases containing both lesions, were selected and immunohistochemical stains for CDX2, Hep, cytokeratin 20 (CK20), and cytokeratin 7 (CK7) were performed. Nuclear staining for CDX2 was observed in 29 of 35 (83%) cases of intestinal metaplasia of the urinary bladder. In contrast, nuclear staining for CDX2 was not observed in any case of typical cystitis glandularis; however, seven of 24 (29%) cases showed aberrant cytoplasmic expression in a mean of 37% of cells. CK20 was expressed in 28 of 35 (80%) cases of intestinal metaplasia, but was observed in only one of 24 (4%) cases of cystitis glandularis in 15% of cells. CK7 was expressed in only six of 35 (17%) cases of intestinal metaplasia, whereas expression of CK7 was observed in all cases (100%) of typical cystitis glandularis with a mean percentage of positively staining cells of 63%. The mean percentages of positively staining cells in intestinal metaplasia with CDX2, CK20, and CK7 were 55, 49, and 53%, respectively. All examples of both intestinal metaplasia and typical cystitis glandularis were uniformly negative for Hep. In the urinary bladder, intestinal metaplasia and typical cystitis glandularis have sharply contrasting immunoprofiles. Additionally, the absence of Hep staining in intestinal metaplasia of the urinary bladder, despite its morphologic resemblance to normal colonic mucosa and intestinal metaplasia in other organs, may signify the presence of unique metaplastic pathways in the urinary bladder.
Collapse
Affiliation(s)
- Ming-Tse Sung
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shinmyo Y, Mito T, Uda T, Nakamura T, Miyawaki K, Ohuchi H, Noji S. brachyenteron is necessary for morphogenesis of the posterior gut but not for anteroposterior axial elongation from the posterior growth zone in the intermediate-germband cricket Gryllus bimaculatus. Development 2006; 133:4539-47. [PMID: 17050622 DOI: 10.1242/dev.02646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the long-germband insect Drosophila, all body segments and posterior terminal structures, including the posterior gut and anal pads, are specified at the blastoderm stage. In short- and intermediate-germband insects, however, posterior segments are sequentially produced from the posterior growth zone, a process resembling somitogenesis in vertebrates, and invagination of the posterior gut starts after anteroposterior (AP) axial elongation from the growth zone. The mechanisms underlying posterior segmentation and terminal patterning in these insects are poorly understood. In order to elucidate these mechanisms, we have investigated the roles of the Brachyury/brachyenteron (Bra/byn) homolog in the intermediate-germband cricket Gryllus bimaculatus. Loss-of-function analysis by RNA interference (RNAi) revealed that Gryllus byn (Gb'byn) is not required for AP axial elongation or normal segment formation, but is required for specification of the posterior gut. We also analyzed Gryllus caudal (Gb'cad) RNAi embryos using in situ hybridization with a Gb'byn probe, and found that Gb'cad is required for internalization of the posterior gut primordium, in addition to AP axial elongation. These results suggest that the functions of byn and cad in posterior terminal patterning are highly conserved in Gryllus and Drosophila despite their divergent posterior patterning. Moreover, because it is thought that the progressive growth of the AP axis from the growth zone, controlled by a genetic program involving Cdx/cad and Bra/byn, might be ancestral to bilaterians, our data suggest that the function of Bra/byn in this process might have been lost in insects.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Josanjima-cho, Tokushima City 770-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Schaeffer C, Habold C, Martin E, Lignot JH, Kedinger M, Foltzer-Jourdainne C. Cytokine expression in rat colon during postnatal development: regulation by glucocorticoids. J Pediatr Gastroenterol Nutr 2006; 43:439-50. [PMID: 17033518 DOI: 10.1097/01.mpg.0000239989.27893.f1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Cytokine expression and regulation by glucocorticoids and retinoic acid were investigated in the colon during postnatal development. MATERIALS AND METHODS Gene expression of the transforming growth factors (TGFs) TGF-beta1, TGF-beta2 and TGF-alpha and the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) in rat colon mucosa during weaning and in adult rats. Protein expression and distribution of TGF-betas was analysed in the colon from 14- and 60-day-old animals. The effect of hydrocortisone administration on mucosal cytokine transcripts (RT-PCR) and of dexamethasone on the expression of cytokines by the epithelial cell line IEC-18 and 2 subepithelial myofibroblasts (MIC 307-1 and 316) was examined. RESULTS TGF-beta1 and TGF-beta2 messenger RNAs and proteins decreased in the entire colon from weaning to adult stages, whereas the amount of TGF-alpha messenger RNA increased in the proximal colon and decreased in the distal part of the colon in adult rats in comparison with weanlings. However, proinflammatory cytokines showed no postnatal changes in the proximal colon but decreased in the distal part in comparison with weaning rats. Hydrocortisone treatment did not affect growth factor expression but decreased proinflammatory cytokines. Likewise, dexamethasone decreased TNF-alpha and IL-1beta gene expression but did not affect TGF-betas in either epithelial or myofibroblast cells. CONCLUSIONS During postnatal maturation, the expression of growth factors and proinflammatory cytokines decreased in the distal colon, whereas in the proximal colon, a differential maturation occurs with no changes in proinflammatory cytokines, an increase in TGF-alpha and a decrease in TGF-beta. Glucocorticoids may control the developmental profile of proinflammatory cytokines.
Collapse
|