1
|
Xie Q, Zhai C, Yang S, Wang X, Cao T, Li B, Xu X, Wang Z. Lactobacillus complex fermentation of whey protein to reduce foodborne allergy symptoms in mice. Food Funct 2025; 16:3152-3165. [PMID: 40160156 DOI: 10.1039/d4fo05988c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bovine whey protein, a common ingredient in foods for infants and young children, represents the primary source of nutrition for this demographic. However, bovine whey protein contains β-lactoglobulin (β-LG), which is not found in human whey protein, and some α-lactalbumin (α-LA) with a different amino acid sequence, which has the potential to cause allergic reactions. Eating bovine whey protein can cause allergic reactions in the human immune system. This phenomenon refers to an allergy to bovine whey protein. It is estimated that this condition affects 1.9% to 4.9% of infants globally. Lactobacilli possess a robust protein hydrolysis system capable of disrupting epitopes associated with whey protein allergies while yielding hydrolyzed products and bioactive peptides. This process represents a safe and effective approach to reducing the allergenicity of milk. Consequently, we established a mouse model for whey protein allergy and evaluated the effects of fermented whey protein produced by Lactobacillus on allergic symptoms in mice using ELISA, real-time fluorescence quantitative PCR (RT-qPCR), and HE staining techniques. Furthermore, we analyzed the intestinal flora of allergic mice through 16S rDNA sequencing to elucidate the relationship between Lactobacillus-mediated alterations in gut microbiota and allergic phenotypes within this study. The results showed that compared with the whey protein group, the levels of immunoglobulin E (IgE), histamine and mast cell protease in the serum of mice in the lactic acid bacteria fermented whey protein group were significantly increased, and the secretion of T helper 2 (Th2) type cytokines was inhibited, the production of T helper 1 (Th1) type cytokines was promoted, and the inflammation caused by sensitized mice was significantly alleviated. Furthermore, the fermentation of whey protein by Lactobacillus resulted in an improvement in the intestinal flora of mice, accompanied by promotion of the growth of probiotics such as Lactobacillus, Odoribacter and Bacteroides. This effectively alleviated the allergic reaction in mice. The findings of this experiment provide a theoretical basis for the development of hypoallergenic dairy products and offer a certain degree of guidance for the clinical treatment of allergic diseases.
Collapse
Affiliation(s)
- Qinggang Xie
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Heilongjiang Feihe Dairy Co. Ltd, Qiqihaer 164800, China
| | - Chunyi Zhai
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shengjun Yang
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangxin Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Heilongjiang Feihe Dairy Co. Ltd, Qiqihaer 164800, China
| | - Ting Cao
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxi Xu
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Wei S, Li X, Li X, Wang R, Wang Y, Li Y. An integrated approach using molecular docking, network pharmacology, and UPLC-Q-TOF-MS analysis to investigate the chemical makeup and mechanism of Xiaoqinglong decoction against asthma. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124490. [PMID: 39923611 DOI: 10.1016/j.jchromb.2025.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE This study aims to investigate the potential mechanisms by which Xiaoqinglong decoction (XQLD) exerts its therapeutic effects on asthma. This will be achieved through the application of the UPLC-Q-TOF-MS coupling technique, integrated with network pharmacology and molecular docking methodologies. METHODS The UPLC-Q-TOF-MS technique was employed to perform a qualitative analysis of both the aqueous extract of XQLD and the drug-containing serum. The Swiss TargetPrediction, OMIM, and GeneCards databases were utilized to identify blood-derived components and disease-associated targets. Subsequently, a protein-protein interaction (PPI) network was constructed by intersecting these datasets to identify key targets, which were then subjected to Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Cytoscape software facilitated the construction of a 'drug-component-disease-target' network to enable visualization and analysis, thereby aiding in the prediction of targets and signaling pathways of XQLD in the treatment of asthma. Finally, molecular docking of the pertinent incoming components to the central target was conducted utilizing AutoDock Vina and PyMol software. RESULTS A comprehensive analysis identified 102 components within the aqueous extract of XQLD, alongside 93 components in the drug-containing serum. Additionally, 90 compound-disease shared targets and 45 key targets were identified through PPI network analysis. Notably, compounds such as apigenin, l-asarinin, 6-shogaol, ellagic acid, kaempferol, and naringenin are pivotal in mediating the therapeutic effects of XQLD in asthma treatment. The primary molecular targets of XQLD for asthma include SRC, AKT1, EGFR, ESR1, HIF1A, and PIK3CA. The results of the molecular docking analysis indicated that the binding energies between the core target and the active ingredient were ≤ -5.5 kcal/mol, demonstrating a strong affinity. CONCLUSION This study elucidated the chemical composition, potential targets, and action pathways of the aqueous extract of XQLD and its drug-containing serum. It preliminarily identified the material basis and mechanism of action, thereby providing a foundation for further in-depth research into the mechanisms underlying XQLD and its clinical applications.
Collapse
Affiliation(s)
- Shuang Wei
- College of traditional Chinese medicine, Tianjin University of traditional Chinese medicine, Tianjin 301617, China
| | - Xueting Li
- College of traditional Chinese medicine, Tianjin University of traditional Chinese medicine, Tianjin 301617, China
| | - Xinyu Li
- College of traditional Chinese medicine, Tianjin University of traditional Chinese medicine, Tianjin 301617, China
| | - Rui Wang
- College of traditional Chinese medicine, Tianjin University of traditional Chinese medicine, Tianjin 301617, China
| | - Yuming Wang
- College of traditional Chinese medicine, Tianjin University of traditional Chinese medicine, Tianjin 301617, China.
| | - Yubo Li
- College of traditional Chinese medicine, Tianjin University of traditional Chinese medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Ming X, Lu Y, Huang H, Zheng J, Wang T, Li Z, Yu X, Xiong L. Xuanhong Dingchuan Tang suppresses bronchial asthma inflammation via the microRNA-107-3p/PTGS2/MAPK axis. Funct Integr Genomics 2024; 25:1. [PMID: 39704779 DOI: 10.1007/s10142-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to investigate the mechanism of Xuanhong Dingchuan Tang (XHDCT) in delaying bronchial asthma inflammation via the microRNA (miR)-107-3p/prostaglandin endoperoxide synthase 2 (PTGS2)/mitogen-activated protein kinase (MAPK) axis. Based on the network pharmacological analysis, XHDCT chemical constituents and targets of each chemical constituent were screened through the TCMSP database, and differential-expressed genes of bronchial asthma were obtained from the GEO database, which were intersected to get XHDCT potential anti-inflammatory targets. The key anti-inflammatory targets of XHDCT were acquired by protein-protein interaction (PPI) analysis of the candidate targets. Bronchial asthma mouse models were established and the pathological changes of lung tissues were observed. Serum IgE levels were tested. Total cells and eosinophils in bronchoalveolar lavage fluid (BALF) were counted. The expression of Th2-associated cytokines (interleukin (IL)-4, IL-5, and IL-13) and chemokines (monocyte chemoattractant protein-1 (MCP-1) and eotaxin) in BALF were measured. The targeting relationship between miR-107-3p and PTGS2 was tested. XHDCT delayed bronchial asthma inflammation in in-vivo asthma mouse models. A total of 155 active ingredients and their 341 targets were intersected with bronchial asthma-relevant genes, obtaining 20 potential targets of XHDCT for bronchial asthma treatment. Based on the PPI and "drug-component-target" network diagram, PTGS2 was found to be in a central position. PTGS2 was downregulated and miR-107-3p was upregulated in bronchial asthma mice after XHDCT treatment. PTGS2 overexpression activated the MAPK signaling pathway to promote inflammation in bronchial asthma mice, whereas inflammatory symptoms were reduced and the MAPK signaling pathway was inhibited after XHDCT treatment. miR-107-3p was an upstream regulatory miRNA for PTGS2. After miR-107-3p interference, the activation of the PTGS2/MAPK axis promoted inflammation in bronchial asthma mice, whereas the inflammatory symptoms were reduced after XHDCT treatment. XHDCT promotes anti-inflammatory effects in bronchial asthma via the miR-107-3p/PTGS2/MAPK axis.
Collapse
Affiliation(s)
- Xi Ming
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Yingzhu Lu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Huihui Huang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Jialin Zheng
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Tianzi Wang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhuoqun Li
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Xingzhu Yu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Lei Xiong
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
4
|
El-Hashim AZ, Khajah MA, Orabi KY, Balakrishnan S, Sary HG, Barakat AM. Treatment with onion bulb extract both prevents and reverses allergic inflammation in a murine model of asthma. PHARMACEUTICAL BIOLOGY 2024; 62:326-340. [PMID: 38584568 PMCID: PMC11003327 DOI: 10.1080/13880209.2024.2335187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
CONTEXT Asthma presents a global health challenge. The main pharmacotherapy is synthetic chemicals and biological-based drugs that are costly, and have significant side effects. In contrast, use of natural products, such as onion (Allium cepa L., Amaryllidaceae) in the treatment of airway diseases has increased world-wide because of their perceived efficacy and little safety concerns. However, their pharmacological actions remain largely uncharacterized. OBJECTIVE We investigated whether onion bulb extract (OBE) can (1) reverse established asthma phenotype (therapeutic treatment) and/or (2) prevent the development of the asthma phenotype, if given before the immunization process (preventative treatment). MATERIALS AND METHODS Six groups of male Balb/c mice were established for the therapeutic (21 days) and five groups for the preventative (19 days) treatment protocols; including PBS and house dust mite (HDM)-challenged mice treated with vehicle or OBE (30, 60, and 100 mg/kg/i.p.). Airways inflammation was determined using cytology, histology, immunofluorescence, Western blot, and serum IgE. RESULTS Therapeutic (60 mg/kg/i.p.) and preventative (100 mg/kg/i.p.) OBE treatment resulted in down-regulation of HDM-induced airway cellular influx, histopathological changes and the increase in expression of pro-inflammatory signaling pathway EGFR, ERK1/2, AKT, pro-inflammatory cytokines and serum IgE. DISCUSSION AND CONCLUSION Our data show that OBE is an effective anti-inflammatory agent with both therapeutic and preventative anti-asthma effects. These findings imply that onion/OBE may be used as an adjunct therapeutic agent in established asthma and/or to prevent development of allergic asthma. However, further studies to identify the active constituents, and demonstrate proof-of-concept in humans are needed.
Collapse
Affiliation(s)
- Ahmed Z. El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Maitham A. Khajah
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Khaled Y. Orabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Sowmya Balakrishnan
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Hanan G. Sary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Ahmad M. Barakat
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
5
|
Liu C, He Y, Zhou K, Wang H, Zhou M, Sun J, Lu Y, Huang Y, Wang Y, Liu T, Li Y. Mitigation of allergic asthma in mice: A compound mixture comprising luteolin, arbutin, and marmesin from Gerbera Piloselloides Herba by suppression of PI3K/Akt pathway. Heliyon 2024; 10:e37632. [PMID: 39381113 PMCID: PMC11456855 DOI: 10.1016/j.heliyon.2024.e37632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Background Gerberae Piloselloidis Herba (GPH) exhibits notable efficacy in alleviating allergic asthma. Previous studies in our research have identified a mixture of luteolin, arbutin, and marmesin as effective components of GPH in treating allergic asthma. However, the underlying mechanism remains unclear. This study aims to elucidate the molecular mechanism of these active components. Method Using an ovalbumin (OVA)-induced allergic asthma mouse model, various treatment groups were administered, including GPH, the active component mixture (termed "Mixture") containing luteolin, arbutin, and marmesin, and a positive drug (dexamethasone, DEX). Relevant indices were assessed, including behavioral characteristics, inflammatory cell counts, cytokine levels, histopathological examination of lung tissue, apoptosis, and expression of key proteins such as Caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt. The effect of the Mixture on the PI3K/Akt signaling pathway was further verified using the PI3K inhibitor LY294002. Results The Mixture significantly alleviated asthma symptoms, decreased IgE levels, cytokine levels (IL-4, IL-5, IL-13 and TNF-α), and the number of inflammatory cells in serum or bronchoalveolar lavage fluid (BALF), leading to the alleviation of lung pathological lesions. Additionally, the Mixture reduced the expression of Bax and Caspase-3 while increasing Bcl-2 expression, resulting in mitigated apoptosis in lung tissue. Furthermore, there appeared a decrease in the levels of PI3K and p-PI3K, as well as the ratio of p-Akt to Akt in the Mixture group, indicating the suppression of PI3K and Akt phosphorylation. Interestingly, the effects of the Mixture were comparable to those of GPH, LY294002, or the combination of LY294002 with the Mixture. Conclusion The study confirms that the Mixture containing luteolin, arbutin, and marmesin indeed alleviates allergic asthma induced by OVA in mice by suppressing the PI3K/Akt signaling pathway. These findings highlight the potential of the GPH-derived Mixture as a novel therapeutic for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yu He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Kun Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Hong Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan Lu
- Computer Education and Information Technology Center, Guizhou Medical University,Guiyang, 561113, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yonglin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
6
|
Jia R, Zheng H, Li S, Chen W, Yang Y, Wu H, Chen H, Qin S, Huang S. QingChang-XiaoPi decoction ameliorates intestinal inflammation of ulcerative colitis by regulating the pathogenicity of Th17 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155779. [PMID: 38876011 DOI: 10.1016/j.phymed.2024.155779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND QingChang-XiaoPi Decoction (QCXPY), a Chinese herbal prescription, has been employed in the treatment of ulcerative colitis (UC) in China. However, its molecular mechanism of action in UC remains unclear. PURPOSE To elucidate the therapeutic effects of QCXPY against UC and reveal its mechanism of action. STUDY DESIGN We conducted a single-arm observation to evaluate the clinical efficacy of QCXPY in patients with mild-to-moderate UC. Inclusion and exclusion criteria were established to ensure the eligibility of participants, with a focus on excluding patients with specific conditions or complications that could confound the results. METHODS The expression of inflammatory factors in patients' serum was detected using a Luminex assay. The main components of QCXPY were identified using UHPLC-Q-TOF-MS. Network pharmacology was employed to predict potential therapeutic targets and their mechanisms of action. The efficacy of QCXPY was evaluated using a dextran sulfate sodium (DSS)-induced mouse model. Disease activity index (DAI), histopathological score, cytokine detection by ELISA, T-helper 17 (Th17) cell proportion by flow cytometry, expression of the IL-23/IL-17 axis, and changes in the levels of its downstream effectors were detected by immunohistochemistry, immunofluorescence, and western blotting. RESULTS QCXPY could alleviate the symptoms of diarrhea, abdominal pain, abdominal distension, and purulent stool in patients with mild-to-moderate UC. Moreover, it reduced the expression of IL-6, IL-17, and IL-23 in serum; alleviated DSS-induced experimental colitis in mice; reduced DAI, pathological scores, and the expressions of IL-6, IL-17, and IL-23 in colon tissue; and decreased the proportion of pathogenic Th17 cells and the expression of STAT3 and phospho-STAT3. CONCLUSION This study confirmed for the first time that QCXPY could alleviate intestinal symptoms, reduce the levels of serum inflammatory factors, and improve the quality of life of patients with mild-to-moderate UC. Its mechanism of action may involve reducing the secretion of inflammatory cytokines, moderating the pathogenicity of Th17 cells, and inhibiting STAT3 phosphorylation, thereby alleviating intestinal inflammation in UC.
Collapse
Affiliation(s)
- Rui Jia
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Huan Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| | - Siya Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Yuanming Yang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Haomeng Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| | - Shumin Qin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China.
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China; Yang Chunbo academic experience inheritance studio of Guangdong provincial hospital of Chinese Medicine, Guangzhou 510120, PR China.
| |
Collapse
|
7
|
Ren X, Kong Y, Yu H, Dong A, Wang Y, Wei L, Song Y, Wang Z, Wang L, Guo Y, Sun L. YiQi GuBen capsule alleviates OVA-induced asthma through improving mitochondrial dysfunction. J Asthma 2024; 61:725-735. [PMID: 38647486 DOI: 10.1080/02770903.2024.2303755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 04/25/2024]
Abstract
Objective: This study aims to explore the effect of YiQi GuBen capsule on improving mitochondrial dysfunction in an animal model of asthma.Methods: The mice (n = 8) were divided into four groups including control (NC), ovalbumin (OVA), dexamethasone (OVA + DEX), and YiQi GuBen (OVA + YQGB) groups. Firstly, we established an OVA-induced mouse asthma model except for the NC group, which then were treated with dexamethasone and YiQi GuBen capsule. Subsequently, HE staining and Masson staining were used for pathological analysis of mice lung tissues. Next, we used transmission electron microscopy (TEM) to observe the effect of the Yiqi Guben capsule on the ultrastructure of mitochondria. Flow cytometry was used to analyze the ROS level, membrane potential, and the number of mitochondria in lung tissue. Moreover, we analyzed the copy number of mitochondrial DNA (mtDNA) and the expression levels of activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial transcription factor A (TFAM).Results: The results of the pathological analysis showed that after treatment with the YiQi GuBen capsule, the lung tissue damage was significantly reduced. In addition, we observed that the ultrastructural damage of mitochondria was improved. Flow cytometry proved that after treatment with the YiQi GuBen capsule, the level of ROS in the mitochondria was effectively reduced, while the mitochondrial membrane potential decreased and the number increased significantly. Moreover, we found that the copy number of mtDNA was significantly increased and the expression levels of PGC-1α and TFAM were significantly upgraded.Conclusion: This study suggests YiQi GuBen capsule can effectively improve mitochondrial dysfunction in the OVA-induced mouse model.
Collapse
Affiliation(s)
- Xiaoting Ren
- College of Traditional Chinese Medicine, Changchun University of Chinese Medical, Changchun, China
| | - Yibu Kong
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongjun Yu
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Aiai Dong
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongji Wang
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lina Wei
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongfu Song
- College of Traditional Chinese Medicine, Changchun University of Chinese Medical, Changchun, China
| | - Zhongtian Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medical, Changchun, China
| | - Lie Wang
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yinan Guo
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liping Sun
- Department of Pediatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
8
|
Prakash V, Bose C, Sunilkumar D, Cherian RM, Thomas SS, Nair BG. Resveratrol as a Promising Nutraceutical: Implications in Gut Microbiota Modulation, Inflammatory Disorders, and Colorectal Cancer. Int J Mol Sci 2024; 25:3370. [PMID: 38542344 PMCID: PMC10970219 DOI: 10.3390/ijms25063370] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 12/20/2024] Open
Abstract
Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Robin Mathew Cherian
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| |
Collapse
|
9
|
Liu YJ, Gao KX, Peng X, Wang Y, Wang JY, Hu MB. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int J Biol Macromol 2024; 260:129431. [PMID: 38237839 DOI: 10.1016/j.ijbiomac.2024.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Despite significant progress in diagnosis and treatment, asthma remains a serious public health challenge. The conventional therapeutic drugs for asthma often have side effects and unsatisfactory clinical efficacy. Therefore, it is very urgent to develop new drugs to overcome the shortcomings of conventional drugs. Natural polysaccharides provide enormous resources for the development of drugs or health products, and they are receiving a lot of attention from scientists around the world due to their safety, effective anti-inflammatory and immune regulatory properties. Increasing evidence shows that polysaccharides have favorable biological activities in the respiratory disease, including asthma. This review provides an overview of primary literature on the recent advances of polysaccharides from natural resources in the treatment of asthma. The mechanisms and practicability of polysaccharides, including polysaccharides from plants, fungus, bacteria, alga, animals and others are reviewed. Finally, the further research of polysaccharides in the treatment of asthma are discussed. This review can provide a basis for further study of polysaccharides in the treatment of asthma and provides guidance for the development and clinical application of novel asthma treatment drugs.
Collapse
Affiliation(s)
- Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|
10
|
Jiang L, Xu L, Liu H, Chen H, Wang W. Rhizoma Dioscoreae Nipponicae Relieves Asthma by Inducing the Ferroptosis of Eosinophils and Inhibiting the p38 MAPK Signaling Pathway. Crit Rev Immunol 2024; 44:77-87. [PMID: 38305338 DOI: 10.1615/critrevimmunol.2023050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rhizoma Dioscoreae Nipponicae (RDN) is a traditional Chinese medicine that widely applied in the treatment of human diseases. This study aims to explore the therapeutic potential of RDN in asthma and the underlying mechanisms. A mouse model of asthma was established by the stimulation of ovalbumin (OVA). HE staining was performed to detect the pathological injuries of tracheal tissues. The protein expression of collagen I, FN1, α-SMA (airway remodeling markers), and p-p38 (a marker of the p38 MAPK pathway) were detected by Western blot. Eosinophils were then isolated from the model mice. Cell viability and ROS level were measured by CCK-8 and Flow cytometry, respectively. The mRNA expression of GPX4 and ACSL4 (ferroptosis markers) in eosinophils were measured by qRT-PCR. RDN significantly reduced the numbers of total cells and eosnophils in bronchoalveolar lavage fluid (BALF), inhibited inflammatory cell infiltration, and down-regulated remodeling markers (Collagen I, FN1, and α-SMA) in OVA-induced mice. The p38 MAPK pathway was blocked by the intervention of RDN in the model mice, and its blocking weakens the poor manifestations of OVA-induced asthma. In addition, RDN induced the ferroptosis of eosnophils both in vitro and in vivo. Blocking of the p38 MAPK pathway also enhanced the ferroptosis of eosnophils in vitro, evidenced by the decreased cell viability and GPX4 expression, and increased ROS level and ACSL4 expression. RDN induced the ferroptosis of eosinophils through inhibiting the p38 MAPK pathway, contributing to the remission of asthma.
Collapse
Affiliation(s)
- Libin Jiang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Huazuo Liu
- Department of Respiratory Medicine, Nanxun District Hospital of Traditional Chinese Medicine in Huzhou City, Huzhou, Zhejiang, China
| | - Hanwen Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Weiyi Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)
| |
Collapse
|
11
|
Gururani R, Patel S, Bisht A, Jain S, Paliwal S, Dwivedi J, Sharma S. Tylophora indica (Burm. f.) Merr alleviates tracheal smooth muscle hyperresponsiveness in ovalbumin-induced allergic-asthma model in guinea-pigs: Evidences from ex vivo, in silico and in vivo studies. Fundam Clin Pharmacol 2023; 37:1153-1169. [PMID: 37354029 DOI: 10.1111/fcp.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Tylophora indica (Burm. f.) Merr is a climbing perennial plant reported in Indian traditional system of medicine for its use in allergy and asthma. However, only few scientific studies have been performed in the past to validate its antiasthmatic potential. OBJECTIVES The present study deals with investigation of airway smooth muscle relaxant and antiasthmatic potential of extract and subsequent fractions prepared from T. indica. METHODS The most active fraction of T. indica leaves selected through bio-guided activity was subjected to liquid chromatography-mass spectrometry (LC-MS) analysis for chemical profiling. The binding affinity of identified compounds in fraction towards M3 and H1 receptors was determined by molecular docking study. F-2 (chloroform fraction prepared from methanolic extract of T. indica leaves) was examined for its smooth muscle relaxant properties using isolated trachea of guinea-pig. Further, F-2 was evaluated through in vivo studies employing ovalbumin-induced asthma model in guinea-pigs. RESULTS F-2 was found most effective in bioassay-guided fractionation. Characterization by LC-MS analysis revealed presence of five major bioactive compounds in F-2 that showed good docking interactions with M3 and H1 receptors. The ex vivo study demonstrated that F-2 could significantly relax tracheal rings via targeting multiple signalling pathways videlicet, namely, noncompetitive antagonism of the histamine and muscarinic receptors, β2-adrenergic stimulation and activation of soluble guanylyl cyclase. In in vivo studies, F-2 ameliorated airway hyperresponsiveness and decreased broncho alveolar lavage fluid (BALF) levels of inflammatory cytokines and immunoglobulin E (IgE). CONCLUSION These results confirm the traditional use of T. indica as an antiasthmatic agent which are evidenced through ex vivo, in silico and in vivo studies.
Collapse
Affiliation(s)
- Ritika Gururani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Saraswati Patel
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
12
|
Wu C, Zhang R, Wang J, Chen Y, Zhu W, Yi X, Wang Y, Wang L, Liu P, Li P. Dioscorea nipponica Makino: A comprehensive review of its chemical composition and pharmacology on chronic kidney disease. Biomed Pharmacother 2023; 167:115508. [PMID: 37716118 DOI: 10.1016/j.biopha.2023.115508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Chronic kidney disease (CKD) is a widespread ailment that significantly impacts global health. It is characterized by high prevalence, poor prognosis, and substantial healthcare costs, making it a major public health concern. The current clinical treatments for CKD are not entirely satisfactory, leading to a high demand for alternative therapeutic options. Chinese herbal medicine, with its long history, diverse varieties, and proven efficacy, offers a promising avenue for exploration. One such Chinese herbal medicine, Dioscorea nipponica Makino (DNM), is frequently used to treat kidney diseases. In this review, we have compiled studies examining the mechanisms of action of DNM in the context of CKD, focusing on five primary areas: improvement of oxidative stress, inhibition of renal fibrosis, regulation of metabolism, reduction of inflammatory response, and regulation of autophagy.
Collapse
Affiliation(s)
- Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiang Yi
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
13
|
Wang R, Zeng M, Zhang B, Zhang Q, Jia J, Cao B, Liu M, Guo P, Zhang Y, Zheng X, Feng W. β-Sitosterol inhibits ovalbumin-induced asthma-related inflammation by regulating dendritic cells. Immunopharmacol Immunotoxicol 2022; 44:1013-1021. [PMID: 35850599 DOI: 10.1080/08923973.2022.2102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To investigate the effects of β-sitosterol (B-SIT) and the underlying mechanisms of action in an ovalbumin-induced rat model of asthma. METHODS The pathological and morphological changes in lung and tracheal tissues were observed by H&E, PAS, and Masson's staining. The levels of IgE, TNF-α, and IFN-γ in the bronchoalveolar lavage fluid (BALF) and those of IL-6, TGF-β1, and IL-10 in serum were measured by ELISA. The relative expression levels of IL-5, IL-13, IL-21, CD11c, CD80, and CD86 mRNA in lung tissue were examined by RT-qPCR. Flow cytometry was performed to assess the levels of immune cells, including macrophages and neutrophils in spleen tissue and Th cells, Tc cells, NK cells, and DCs in peripheral blood. The protein expression levels of CD68, MPO, CD11c, CD80, and CD86 were detected by western blotting or immunohistochemistry. RESULTS B-SIT improved the injury in OVA-induced pathology, decreased the levels of inflammatory factors of IgE, TNF-α, IL-6, TGF-β1, IL-5, IL-13, and IL-21 and increased the levels of IFN-γ and IL-10. In addition, B-SIT decreased the number of macrophages and neutrophils and the relative expression levels of CD68 and MPO in the spleen. Moreover, B-SIT increased the number of Th cells, Tc cells, NK cells, and DCs in peripheral blood and upregulated the levels of CD11c, CD80, and CD86 in the spleen and lung. CONCLUSION B-SIT improved symptoms in a rat model of asthma likely via the inhibition of inflammation by regulating dendritic cells.
Collapse
Affiliation(s)
- Ru Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Bing Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuhan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Wang W, Xu L, Zhou L, Wan S, Jiang L. Dioscorea nipponica Makino Relieves Ovalbumin-Induced Asthma in Mice through Regulating RKIP-Mediated Raf-1/MEK/MAPK/ERK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8077058. [PMID: 35757465 PMCID: PMC9217531 DOI: 10.1155/2022/8077058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Purpose Dioscorea nipponica Makino (DNM) is a traditional herb with multiple medicinal functions. This study is aimed at exploring the therapeutic effects of DNM on asthma and the underlying mechanisms involving RKIP-mediated MAPK signaling pathway. Methods An ovalbumin-induced asthma model was established in mice, which was further administrated with DNM and/or locostatin (RKIP inhibitor). ELISA was performed to detect the serum titers of OVA-IgE and OVA-IgG1, bronchoalveolar lavage fluid (BALF) levels of inflammation-related biomarkers, and tissue levels of oxidative stress-related biomarkers. The expression of RKIP was measured by quantitative real-time PCR, Western blot, immunohistochemistry, and immunofluorescence. HE staining was used to observe the pathological morphology of lung tissues. The protein expression of MAPK pathway-related proteins was detected by Western blot. Results Compared with the controls, the model mice exhibited significantly higher serum titers of OVA-IgE and OVA-IgG1, BALF levels of IL-6, IL-8, IL-13, TGF-β1, and MCP-1, tissue levels of MDA and ROS, lower BALF levels of IL-10 and IFN-γ, and tissue level of GSH. DNM relieved the allergic inflammatory response and oxidative stress in the model mice. DNM also recovered the downregulation of RKIP and the pathological injury of lung tissues in asthma mice. In addition, the Raf-1/MEK/MAPK/ERK pathway in the model mice was blocked by DNM. Silencing of RKIP by locostatin weakened the relieving effects of DNM on asthma through activating the Raf-1/MEK/MAPK/ERK pathway. Conclusion DNM relieves asthma via blocking the Raf-1/MEK/MAPK/ERK pathway that mediated by RKIP upregulation.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| | - Lingming Zhou
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shanhong Wan
- Department of Respiratory Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Libin Jiang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310003, China
| |
Collapse
|
15
|
Wang MC, Huang WC, Chen LC, Yeh KW, Lin CF, Liou CJ. Sophoraflavanone G from Sophora flavescens Ameliorates Allergic Airway Inflammation by Suppressing Th2 Response and Oxidative Stress in a Murine Asthma Model. Int J Mol Sci 2022; 23:ijms23116104. [PMID: 35682783 PMCID: PMC9181790 DOI: 10.3390/ijms23116104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR) and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory response in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms by decreasing airway-inflammation-related oxidative stress.
Collapse
Affiliation(s)
- Meng-Chun Wang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan;
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Correspondence: (C.-F.L.); (C.-J.L.); Tel.: +886-3-2118999 (ext. 5707) (C.-F.L.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (L.-C.C.); (K.-W.Y.)
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: (C.-F.L.); (C.-J.L.); Tel.: +886-3-2118999 (ext. 5707) (C.-F.L.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| |
Collapse
|
16
|
PM2.5 Exposure and Asthma Development: The Key Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3618806. [PMID: 35419163 PMCID: PMC9001082 DOI: 10.1155/2022/3618806] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Oxidative stress is defined as the imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant defense system, leading to cellular damage. Asthma is a common chronic inflammatory airway disease. The presence of asthma tends to increase the production of reactive oxygen species (ROS), and the antioxidant system in the lungs is insufficient to mitigate it. Therefore, asthma can lead to an exacerbation of airway hyperresponsiveness and airway inflammation. PM2.5 exposure increases ROS levels. Meanwhile, the accumulation of ROS will further enhance the oxidative stress response, resulting in DNA, protein, lipid, and other cellular and molecular damage, leading to respiratory diseases. An in-depth study on the relationship between oxidative stress and PM2.5-related asthma is helpful to understand the pathogenesis and progression of the disease and provides a new direction for the treatment of the disease. This paper reviews the research progress of oxidative stress in PM2.5-induced asthma as well as highlights the therapeutic potentials of antioxidant approaches in treatment of asthma.
Collapse
|
17
|
Zhou L, Li ZK, Li CY, Liang YQ, Yang F. Anticancer properties and pharmaceutical applications of ginsenoside compound K: A review. Chem Biol Drug Des 2021; 99:286-300. [PMID: 34793617 PMCID: PMC9541358 DOI: 10.1111/cbdd.13983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
Ginsenoside compound K (CK) is the major intestinal bacterial metabolite of ginsenosides that exhibits anticancer potential in various cancer cells both in vitro and in vivo. The anticancer types, mechanisms, and effects of CK in the past decade have been summarized in this review. Briefly, CK exerts anticancer effects via multiple molecular mechanisms, including the inhibition of proliferation, invasion, and migration, the induction of apoptosis and autophagy, and anti‐angiogenesis. Some signaling pathways play a significant role in related processes, such as PI3K/Akt/mTOR, JNK/MAPK pathway, and reactive oxygen species (ROS). Moreover, the effects of CK combined with nanocarriers for anticancer efficiency are discussed in this review. Furthermore, we aimed to review the research progress of CK against cancer in the past decade, which might provide theoretical support and effective reference for further research on the medicinal value of small molecules, such as CK.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Zhong-Kun Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Cong-Yuan Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yue-Qin Liang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| |
Collapse
|
18
|
The Therapeutic Effect of Traditional LiuJunZi Decoction on Ovalbumin-Induced Asthma in Balb/C Mice. Can Respir J 2021; 2021:6406295. [PMID: 34630778 PMCID: PMC8494547 DOI: 10.1155/2021/6406295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Aim To investigate the therapeutic effect of LiuJunZi decoction (LJZD) in an experimental model of asthma and uncover its potential mechanism. Materials and Methods The ovalbumin (OVA) was applied to induce asthma in Balb/C mice, and LJZD was orally administrated to asthmatic mice. The lung function and histological lesion were evaluated by airway hyperresponsiveness assay, lung edema assay, and hematoxylin and eosin staining. The amounts of CD4+CD25+Foxp3+ TReg cells were analyzed through combining fluorescent antibody staining with flow cytometry assay. The levels of inflammatory factors and immunoglobulins were detected by enzyme-linked immuno sorbent assay (ELISA). The expression of miR-21 and miR-146a was investigated by real-time PCR. The protein expression of activating protein-1 (AP-1), nuclear factor kappa-B (NF-κB), and NF-κB inhibitor alpha (IκBα) was determined by western blotting. Results LJZD improves OVA-induced asthma in Balb/C mice, which is manifested by decreasing lung edema, Penh levels, lung histological lesion, and inflammatory cell infiltration. LJZD increased the number of CD4+CD25+Foxp3+ TReg cells in blood mononuclear cells from asthmatic mice. Furthermore, LJZD reduced the levels of tumor necrosis factor-α (TNF-α), interleukin- (IL-) 4, IL-6, IgG1, and IgE, but increased interferon gamma (IFN-γ) expression, in serum of asthmatic mice, and also decreased the expression of IL-17a, IL-23, IL-25, and thymic stromal lymphopoietin (Tslp) in lung tissues. In addition, miR-21 and miR-146a expression and phospho (p)-NF-κB, p-IκBα, and AP-1 protein expression were inhibited by LJZD in lung tissues from asthmatic mice. Conclusion LJZD improved OVA-induced asthma in Balb/C mice by inhibiting allergic inflammation and Th2 immunoreaction, which might be associated with the inactivation of the NF-κB signaling pathway.
Collapse
|
19
|
Hsu WH, Lin LJ, Lu CK, Kao ST, Lin YL. Effect of You-Gui-Wan on House Dust Mite-Induced Mouse Allergic Asthma via Regulating Amino Acid Metabolic Disorder and Gut Dysbiosis. Biomolecules 2021; 11:biom11060812. [PMID: 34070764 PMCID: PMC8229888 DOI: 10.3390/biom11060812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal remedies have long been used for enhancing immunity and treating asthma. However, the evidence-based efficacy remains to be supported. This study aimed to explore the potential bio-signatures in allergic asthma and the effect of You-Gui-Wan (YGW), a traditional Chinese herbal prescription, on dust mite-induced mouse allergic asthma. Extract of Dermatophagoides pteronyssinus (Der p), a dust mite, was intratracheally administered to induce allergic asthma in mice. Serum metabolomic and 16S rRNA-based microbiome profiling were used to analyze untargeted metabolites with levels significantly changed and gut microbiota composition, respectively. Results indicated that 10 metabolites (acetylcarnitine, carnitine, hypoxanthine, tryptophan, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine), mainly associated with branched-chain amino acid (BCAA) metabolism, aromatic amino acid (AAA) biosynthesis, and phenylalanine metabolism were markedly elevated after Der p treatment. YGW administration reversed the levels for 7 of the 10 identified metabolites, chiefly affecting BCAA metabolism. On 16S DNA sequencing, disordered Der p-induced gut microbiota was significantly alleviated by YGW. Multiple correlation analysis showed a good correlation between gut microbiota composition and levels of selected metabolites. Our study showed YGW administration effectively alleviated BCAA metabolic disorder and improved gut dysbiosis. This study provides support for YGW administration with benefits for allergic asthma.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan;
| | - Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (L.-J.L.); (S.-T.K.)
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan;
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (L.-J.L.); (S.-T.K.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan;
- Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5520)
| |
Collapse
|
20
|
Fucoxanthin Ameliorates Oxidative Stress and Airway Inflammation in Tracheal Epithelial Cells and Asthmatic Mice. Cells 2021; 10:cells10061311. [PMID: 34070405 PMCID: PMC8227140 DOI: 10.3390/cells10061311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.
Collapse
|
21
|
Perilla Leaf Extract Attenuates Asthma Airway Inflammation by Blocking the Syk Pathway. Mediators Inflamm 2021; 2021:6611219. [PMID: 34045925 PMCID: PMC8128618 DOI: 10.1155/2021/6611219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 12/02/2022] Open
Abstract
Perilla frutescens (L.) Britton is a classic herbal plant used widely against asthma in China. But its mechanism of beneficial effect remains undermined. In the study, the antiallergic asthma effects of Perilla leaf extract (PLE) were investigated, and the underlying mechanism was also explored. Results showed that PLE treatment significantly attenuated airway inflammation in OVA-induced asthma mice, by ameliorating lung pathological changes, inhibiting recruitment of inflammatory cells in lung tissues and bronchoalveolar lavage fluid (BALF), decreasing the production of inflammatory cytokines in the BALF, and reducing the level of immunoglobulin in serum. PLE treatment suppressed inflammatory response in antigen-induced rat basophilic leukemia 2H3 (RBL-2H3) cells as well as in OVA-induced human peripheral blood mononuclear cells (PBMCs). Furthermore, PLE markedly inhibited the expression and phosphorylation of Syk, NF-κB, PKC, and cPLA2 both in vivo and in vitro. By cotreating with inhibitors (BAY61-3606, Rottlerin, BAY11-7082, and arachidonyl trifluoromethyl ketone) in vitro, results revealed that PLE's antiallergic inflammatory effects were associated with the inhibition of Syk and its downstream signals NF-κB, PKC, and cPLA2. Collectively, the present results suggested that PLE could attenuate allergic inflammation, and its mechanism might be partly mediated through inhibiting the Syk pathway.
Collapse
|
22
|
Molecular mechanisms of An-Chuan Granule for the treatment of asthma based on a network pharmacology approach and experimental validation. Biosci Rep 2021; 41:228000. [PMID: 33645621 PMCID: PMC7990088 DOI: 10.1042/bsr20204247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
An-Chuan Granule (ACG), a traditional Chinese medicine (TCM) formula, is an effective treatment for asthma but its pharmacological mechanism remains poorly understood. In the present study, network pharmacology was applied to explore the potential mechanism of ACG in the treatment of asthma. The tumor necrosis factor (TNF), Toll-like receptor (TLR), and Th17 cell differentiation-related, nucleotide-binding oligomerization domain (NOD)-like receptor, and NF-kappaB pathways were identified as the most significant signaling pathways involved in the therapeutic effect of ACG on asthma. A mouse asthma model was established using ovalbumin (OVA) to verify the effect of ACG and the underlying mechanism. The results showed that ACG treatment not only attenuated the clinical symptoms, but also reduced inflammatory cell infiltration, mucus secretion and MUC5AC production in lung tissue of asthmatic mice. In addition, ACG treatment notably decreased the inflammatory cell numbers in bronchoalveolar lavage fluid (BALF) and the levels of pro-inflammatory cytokines (including IL-6, IL-17, IL-23, TNF-alpha, IL-1beta and TGF-beta) in lung tissue of asthmatic mice. In addition, ACG treatment remarkably down-regulated the expression of TLR4, p-P65, NLRP3, Caspase-1 and adenosquamous carcinoma (ASC) in lung tissue. Further, ACG treatment decreased the expression of receptor-related orphan receptor (RORγt) in lung tissue but increased that of Forkhead box (Foxp3). In conclusion, the above results demonstrate that ACG alleviates the severity of asthma in a ´multi-compound and multi-target’ manner, which provides a basis for better understanding of the application of ACG in the treatment of asthma.
Collapse
|
23
|
Active ingredients from Chinese medicine plants as therapeutic strategies for asthma: Overview and challenges. Biomed Pharmacother 2021; 137:111383. [PMID: 33761604 DOI: 10.1016/j.biopha.2021.111383] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Although considerable advance has been made in diagnosing and treating, asthma is still a serious public health challenge. Traditional Chinese medicine (TCM) is an effective therapy of complementary and alternative medicine. More and more scientific evidences support the use of TCM for asthma treatment, and active ingredients from Chinese medicine plants are becoming a hot issue. PURPOSE OF REVIEW To summarize the frontier knowledge on the function and underlying mechanisms of the active ingredients in asthma treatments and provide a fully integrated, reliable reference for exploring innovative treatments for asthma. METHODS The cited literature was obtained from the PubMed and CNIK databases (up to September 2020). Experimental studies on the active ingredients of Chinese medicine and their therapeutic mechanisms were identified. The key words used in the literature retrieval were "asthma" and "traditional Chinese medicine" or "Chinese herbal medicine". The literature on the active ingredients was then screened manually. RESULTS We summarized the effect of these active ingredients on asthma, primarily including the effect through which these ingredients can regulate the immunologic equilibrium mechanism by acting on a number of signalling pathways, such as Notch, JAK-STAT-MAPK, adiponectin-iNOS-NF-κB, PGD2-CRTH2, PI3K/AKT, Keap1-Nrf2/HO-1, T-bet/Gata-3 and Foxp3-RORγt, thereby regulating the progression of asthma. CONCLUSION The active ingredients from Chinese medicine have multilevel effects on asthma by regulating the immunologic equilibrium mechanism or signalling pathways, giving them great clinical value. However, the safety and functional mechanism of these ingredients still must be further determined.
Collapse
|
24
|
Wuniqiemu T, Qin J, Teng F, Nabijan M, Cui J, Yi L, Tang W, Zhu X, Abduwaki M, Nurahmat M, Wei Y, Dong JC. Quantitative proteomic profiling of targeted proteins associated with Loki Zupa Decoction Treatment in OVA-Induced asthmatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113343. [PMID: 32991972 DOI: 10.1016/j.jep.2020.113343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loki Zupa (LKZP) decoction is one of the herbal prescriptions in traditional Uyghur medicine, which is commonly used for treating airway abnormality. However, underlying pathological mechanism and pathways involved has not been well studied. OBJECTIVES In this paper, we aim to further confirmed the anti-inflammatory and anti-fibrotic role of LKZP decoction in airway, and uncover the passible mechanism involved via comprehensive quantitative proteomic DIA-MS analysis. MATERIALS AND METHODS Mice asthmatic model was established with sensitizing and challenging with OVA. Lung function, pathological status, and inflammatory cytokines were assessed. Total of nine lung tissues were analyzed using proteomic DIA-MS analysis and 18 lung tissues were subjected to PRM validation. RESULTS Total of 704 differentially expressed proteins (DEPs) (363 up regulated, 341 down regulated) were quantified in comparison of asthmatic and healthy mice, while 152 DEPs (91 up regulated, 61 down regulated) were quantified in LKZP decoction treated compared to asthmatic mice. Total of 21 proteins were overlapped between three groups. ECM-receptor interaction was significantly enriched and commonly shared between downregulated DEPs in asthma and upregulated DEPs in LKZP decoction treated mice. Total of 20 proteins were subjected to parallel reaction monitoring (PRM) analysis and 16 of which were quantified. At last, two proteins, RMB 10 and COL6A6, were validated with significant difference (P < 0.001) in protein abundance. CONCLUSIONS Our results suggest that attenuated airway inflammation and fibrosis caused by LKZP decoction may associated with ECM-receptor interaction and RMB 10 and COL6A6 may be targeted by LKZP decoction in OVA-induced asthmatic mice.
Collapse
Affiliation(s)
- Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mohammadtursun Nabijan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Muhammadjan Abduwaki
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mammat Nurahmat
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jing Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Huang XP, Qin CY, Gao YM. miR-135a inhibits airway inflammatory response in asthmatic mice via regulating JAK/STAT signaling pathway. ACTA ACUST UNITED AC 2021; 54:e10023. [PMID: 33470387 PMCID: PMC7812909 DOI: 10.1590/1414-431x202010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the inhibitory effect of miR-135a in regulating JAK/STAT signaling pathway on airway inflammation in asthmatic mice. An asthma model was established by sensitization and stimulation with ovalbumin (OVA), and the corresponding drug intervention was given from the day of stimulation by means of nasal drops. Airway hyperresponsiveness was tested. The content of miR-135a in the lung tissue of mice was detected by RT-PCR. The pathological changes of lung tissue were evaluated by HE staining. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-5, and eotaxin in bronchoalveolar lavage fluid (BALF) and lung tissue were detected by ELISA and immunohistochemistry, respectively. The expression of JAK/STAT signaling pathway-related protein in lung tissue was detected by western blot. To further validate the effect of miR-135a overexpression on the JAK/STAT signaling pathway, pathway activators and inhibitors were added. Compared with the OVA group, the airway hyperresponsiveness of the mice was significantly decreased after treatment with the miR-135a agonist. The expression of miR-135a was significantly increased in the lung tissue and the pathological changes of the lung tissue were alleviated. The contents of TNF-α, IL-6, IL-5, and eotaxin in BALF and lung tissues were decreased. The expression of JAK/STAT signaling pathway-related proteins p-JAK3/JAK3, p-STAT1/STAT1, and p-STAT3/STAT3 were significantly reduced in lung tissue (P<0.05). Addition of JAK inhibitor AG490 reduced airway inflammation in asthmatic mice. miR-135a agonists inhibit airway inflammation in asthmatic mice by regulating the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xue-Peng Huang
- Respiratory Department, People's Hospital of Rizhao Lanshan, Rizhao, Shandong, China
| | - Cheng-Yu Qin
- Respiratory Department, People's Hospital of Rizhao Lanshan, Rizhao, Shandong, China
| | - Yue-Ming Gao
- Respiratory Department, People's Hospital of Rizhao Lanshan, Rizhao, Shandong, China
| |
Collapse
|
26
|
Luo G, Zhang Y, Yan LS, Wang L, Cheng BY, Ding Y, Kong J, Wang Q, Fu XQ, Zhang SF. Total flavonoids from Saussurea involucrata attenuate inflammation in lipopolysaccharide-stimulated RAW264.7 macrophages via modulating p65, c-Jun, and IRF3 signaling pathways. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.314053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Abstract
PURPOSE OF REVIEW This paper purports to review recent relevant publications on the efficacy of traditional Chinese medicine in treating allergic diseases, to illustrate the pertinent mechanisms of action of TCM, and to explore the possible role of TCM in the management of allergic diseases in the foreseeable future. As TCM embodies multiple treatment modalities, only the most popular two, namely CHM (Chinese herbal medicine) and acupuncture, were discussed. Publications, especially reviews involving randomized controlled trials (RCTs) on the use of TCM on allergic diseases, published up to June 2019 were reviewed and analyzed. Papers reporting the mechanisms of action of TCM in allergic diseases were also included. Other publications in Chinese were also discussed. RECENT FINDINGS A startling escalation in the incidence of allergic diseases in the last several decades has posed tremendous social and financial burdens on the community. Failing to locate a cure for these chronic diseases, patients have resorted to using alternative medications of which traditional Chinese medicine (TCM) is a popular one. Thus CHM has been extensively employed for treating allergic diseases. Some investigations have been conducted to ascertain the therapeutic efficacy of CHM for allergic diseases. Although CHM has been widely deployed for treating allergic diseases, it appears from the published data that there is a dearth of conclusive evidence to establish the effectiveness of CHM for allergic diseases. It is recommended that more large- scale RCTs with prolonged durations be carried out to corroborate the efficacy of CHM for allergic diseases. On the other hand, there is ample evidence indicating that acupuncture is useful when administered alone in allergic rhinitis and asthma or when applied as an adjunct to conventional western therapy. Evidence of its utility in atopic eczema and urticaria is not definitive. It is recommended that acupuncture be integrated into the therapy of allergic rhinitis and asthma, and that CHM be used as an adjunct in the treatment of allergic diseases on an individual basis.
Collapse
|
28
|
Chen Y, Wu H, Li Y, Liu J, Jia Z, Xu W, Xiao H, Wang W. Aster tataricus attenuates asthma efficiently by simultaneously inhibiting tracheal ring contraction and inflammation. Biomed Pharmacother 2020; 130:110616. [PMID: 32784051 DOI: 10.1016/j.biopha.2020.110616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an airway chronic inflammatory disease with significant morbidity, mortality and huge social economic burden. Previous research demonstrated that the root of Aster tataricus (RA) may have the potential to treat asthma, but the efficacy and mechanism were not clear. In this study, preliminary results in vitro showed that Fr-75 eluted from RA extract could not only completely inhibit the tracheal ring contraction raised by KCl in 20 min, but also effectively affect the tracheal ring contraction induced by KCl-, Ach- and His in a concentration-dependent manner (3.91-250 μg/mL). Further results on cells exhibited that Fr-75 could decrease the concentration of intracellular Ca2+ as well. These results revealed the underlying mechanism in vitro that the inhibition of tracheal ring contraction might be due to the decline of the intracellular Ca2+ concentration, which caused by suppressing calcium channel, antagonizing the muscarinic and histamine receptors. Also, results in vivo exhibited that Fr-75 could distinctly ease the symptoms of ovalbumin-sensitized mice, including relieving the pathological injury, increasing the latency to preconvulsive dyspnea and to enhanced pause, reducing the inflammatory cells, chemokines and cytokines in BALF and lung tissue. In general, it could be speculated that RA fraction may attenuate asthma through dilating the tracheal ring contraction and alleviating the lung inflammation simultaneously.
Collapse
Affiliation(s)
- Yijun Chen
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China; Beijing Key Laboratory of Syndrome Prescription Basic Research, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hao Wu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhixin Jia
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenjuan Xu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China; Beijing Key Laboratory of Syndrome Prescription Basic Research, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wei Wang
- Beijing Key Laboratory of Syndrome Prescription Basic Research, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
29
|
Ting NC, Huang WC, Chen LC, Yang SH, Kuo ML. Descurainia sophia Ameliorates Eosinophil Infiltration and Airway Hyperresponsiveness by Reducing Th2 Cytokine Production in Asthmatic Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 47:1507-1522. [PMID: 31752525 DOI: 10.1142/s0192415x19500770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Chinese medicine, Descurainia sophia is used to treat cough by removing the phlegm in asthma and inflammatory airway disease, but the mechanism is not clear. In this study, we evaluated whether D. sophia water extract (DSWE) can alleviate airway inflammation and airway hyperresponsiveness (AHR) in the lungs of a murine asthma model. Female BALB/c mice were divided into five groups: normal controls, ovalbumin (OVA)-sensitized asthmatic mice, and OVA-sensitized mice treated with DSWE (2, 4, 8 g/day) by intraperitoneal injection. After sacrificing the mice, serum was collected to detect OVA-specific antibodies by ELISA, as well as bronchoalveolar lavage fluid (BALF) to detect cytokine levels. We also detected gene expression and histopathologically evaluated the lungs of asthmatic mice. DSWE reduced AHR, goblet cell hyperplasia, eosinophil infiltration, and collagen aggregation in the lungs of asthmatic mice. DSWE also suppressed the gene expression of Th2-associated cytokines and chemokines in lung tissue and inhibited serum OVA-IgE and Th2-associated cytokine levels in the BALF of OVA-sensitized mice. Our findings suggest that DSWE is a powerful immunomodulator for ameliorated allergic reactions by suppressing Th2 cytokine expression in asthmatic mice.
Collapse
Affiliation(s)
- Nai-Chun Ting
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan City 33303, Taiwan
| | - Li-Chen Chen
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan
| | - Sien-Hung Yang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Division of Chinese Internal Medicine Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Guishan District, Taoyuan City 33303, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Graduate Institute of Health Industry Technology Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan City 33303, Taiwan
| |
Collapse
|
30
|
Bai J, Hui J, Lu Q, Yang A, Yuan J, Gao J, Wu Z, Li X, Tong P, Chen H. Effect of transglutaminase cross-linking on the allergenicity of tofu based on a BALB/c mouse model. Food Funct 2020; 11:404-413. [PMID: 31825421 DOI: 10.1039/c9fo02376c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soybean products are limited in terms of safe consumption because of the sensitization of raw materials. In this study, the allergenicity of cross-linked tofu with microbial transglutaminase (MTG) was evaluated on the basis of a BALB/c mouse model. The mice were randomly divided into five groups. Cholera toxin was used as an adjuvant to sensitize the mice through intragastric administration, and tofu was given orally to investigate its sensitization effect on the mice. The allergy symptoms, body temperature, and weight of the mice were detected. The immunoglobulin E (IgE), immunoglobulin G (IgG), and spleen cytokines of the mice were determined through an enzyme-linked immunosorbent assay. The regulation of the differentiation balance of the different subsets of splenic T lymphocyte (Th1, Th2) and regulatory T cells (Tregs) in the mice was measured through flow cytometry. Results showed that the mice administered with MTG-cross-linked tofu had fewer allergic symptoms compared with those of the control group. The concentrations of serum-specific IgE and IgG, plasma histamine, and mast cell protease 1 (mMCP-1) significantly decreased. The Th2-related cytokine levels reduced, and the IFN-γ levels increased. The proportion of Th2 cells decreased, and the proportion of CD4+CD25+Foxp+ Tregs increased as the percentage of Th1 cells increased. Therefore, the sensitization of enzymatic cross-linked tofu decreased.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stockert K. Synopsis. ALLERGIEPRÄVENTION 2020. [PMCID: PMC7121829 DOI: 10.1007/978-3-662-58140-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Akute entzündliche Reaktionen bzw. der akute Infekt mit Restitutio ad integrum laufen in einer perfekt modulierten Kaskade ab, bei dem eine akute inflammatorische Einleitungsphase von einer antiinflammatorischen Phase und einer Entzündungsauflösungsphase abgelöst werden.
Collapse
|
32
|
Yang H, Zhang C, Gan W, Chen J, Wu J, Xiao W, Yang Y, Zhao K, Sun Z, Xie X, Huang Q. A randomized controlled trial study protocol for Xiao-Qing-Long decoction in the treatment of refractory asthma: Study protocol clinical trial (spirit compliant). Medicine (Baltimore) 2020; 99:e18911. [PMID: 32000396 PMCID: PMC7004712 DOI: 10.1097/md.0000000000018911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION People with refractory asthma (RA) often seek help from Chinese medicine due to dissatisfaction with conventional treatments. External cold and internal fluid syndrome is the most common type of asthma and the Chinese herbal medicine formula Xiao-Qing-Long (XQL) decoction is commonly prescribed for patients with asthma with this syndrome. However, there is no direct evidence to support the efficacy and safety of XQL decoction for RA treatment and its potential mechanism is still unclear. METHODS We propose a double-blind, placebo-controlled, randomized superiority trial. After a 2-week run-in period, 112 eligible participants will be recruited and randomly allocated to an experimental group or control group in a 1:1 ratio. Patients in the experimental group will take XQL decoction, while patients in the control group will receive a matched placebo. Symbicort Turbuhaler and Montelukast sodium tablets will be provided as the basic treatment for the 2 groups. All participants will receive 4 weeks of treatment and 12 weeks of follow-up. The primary outcome is the mean change in the asthma control test score from the baseline to 4 weeks posttreatment. The secondary outcomes include quality of life, lung function, curative effect of traditional Chinese medicine, and rescue medication used. This trial will also include analyses of the associations between intestinal microbiota and RA treatment. Any side effects of the treatment will be recorded. DISCUSSION The results of this trial will provide consolidated evidence of the effect of XQL decoction for RA and the potential mechanism by which XQL decoction acts, which will inform treatment options for patients with RA.
Collapse
Affiliation(s)
| | | | | | - Jun Chen
- Department of Critical Care Medicine
| | - Jianying Wu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xiao
- Department of Respiratory Medicine
| | | | | | | | | | | |
Collapse
|
33
|
Ma J, Chan CC, Huang WC, Kuo ML. Berberine Inhibits Pro-inflammatory Cytokine-induced IL-6 and CCL11 Production via Modulation of STAT6 Pathway in Human Bronchial Epithelial Cells. Int J Med Sci 2020; 17:1464-1473. [PMID: 32624703 PMCID: PMC7330667 DOI: 10.7150/ijms.45400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Berberine is an isoquinoline alkaloid isolated from various Chinese herbs that has potential of anti-inflammatory, anti-lipidemic, anti-neoplastic, and anti-diabetic activity. In this study, we evaluated the anti-inflammatory efficacy of berberine on allergic airway inflammation by targeting epithelial cells. Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, elevated IgE production, and eosinophilic infiltration. For eosinophil recruitment, major chemoattractant CCL11 (eotaxin-1) was secreted by lung epithelial cells. BEAS-2B cells, a human bronchial epithelial cell line, were pre-treated with berberine and then activated by IL-4 plus TNF-α. The viability of BEAS-2B cells was assessed. Expression levels of IL-6 and CCL11 were determined using ELISA and real-time PCR. The signaling pathways of MAP kinases, NF-κB, and STAT6 were analyzed by western blot. Berberine treatment (≤1 μM) didn't significantly affect the viability of BEAS-2B cells with or without IL-4 plus TNF-stimulation. Berberine significantly inhibited the secretion of IL-6 and CCL11 from pro-inflammatory cytokine-activated BEAS-2B cells. NF-κB and MAP kinase pathways were seemingly unaffected in BEAS-2B cells with berberine treatment. Significant reduction of nuclear STAT6 protein expression in activated BEAS-2B cells with berberine treatment was observed. Current study reveals that berberine has inhibitory effect in pro-inflammatory cytokine-activated BEAS-2B cells through reducing IL-6 and CCL11 production, which is possibly modulated by suppressing STAT6 signaling pathway.
Collapse
Affiliation(s)
- Jason Ma
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chi Chan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
34
|
Shou Q, Lang J, Jin L, Fang M, Cao B, Cai Y, Ni Z, Qiu F, Li C, Cao G, Fu H. Total glucosides of peony improve ovalbumin-induced allergic asthma by inhibiting mast cell degranulation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112136. [PMID: 31377261 DOI: 10.1016/j.jep.2019.112136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (peony) is a medicinal plant used in the Xiaoqinglong decoction, a commonly prescribed traditional Chinese medicine for asthma. The main active ingredients of peony roots-described as the total glucosides of peony (TGP)-have anti-inflammatory, immunomodulatory, and protective effects on endothelial cells, and they are known to improve rheumatoid arthritis. This study explored the underlying mechanism of TGP activity in the treatment of allergic asthma. MATERIALS AND METHODS Allergic asthma was induced in BALB/c mice by administering injections of ovalbumin (OVA) mixed with aluminum hydroxide gel and inhaling nebulized OVA. The OVA-sensitized mice were treated with TGP by oral gavage, and the potentially anti-asthmatic treatment effect was studied by testing airway hyperresponsiveness, classifying and counting of leukocytes, performing cytokine assays, and analyzing the lung histopathology. The β-hexosaminidase activity was assayed as a biomarker to evaluate the effect of TGP on mast cell degranulation. The mechanism of TGP was explored by monitoring the Ca2+ influx level in mast cells (RBL-2H3) using a Ca2+ fluorescent probe technique. RESULTS In mice with OVA-induced allergic asthma, TGP reduced airway hyperresponsiveness and improved lung tissue pathology, which included a decrease in inflammatory cell infiltration and collagen deposition. TGP also significantly lowered BALF leukocyte, eosinophil, and neutrophil counts, along with chemokines and cytokines, such as eotaxin, TNF-α, IL-4, and MIP-1α, in serum and lungs of OVA-challenged mice. These effects were further confirmed with the decrease of β-hexosaminidase release and the inhibition of Ca2+ influx in mast cell degranulation. CONCLUSIONS Our findings suggest that TGP improved OVA-induced allergic asthma in mice mainly by suppressing Ca2+ influx-dependent mast cell degranulation.
Collapse
Affiliation(s)
- Qiyang Shou
- Second Clinical Medical College/Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Lang
- Second Clinical Medical College/Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Jin
- Second Clinical Medical College/Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingsun Fang
- Academy of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beibei Cao
- Second Clinical Medical College/Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueqin Cai
- Academy of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhunan Ni
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fengmei Qiu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Li
- Academy of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Huiying Fu
- Second Clinical Medical College/Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
35
|
Huo N, Qian J. Associations of Herbs and Nonvitamin Dietary Supplements Use with Clinical Outcomes Among Adult and Pediatric Patients with Asthma in the United States. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 6:936-943. [PMID: 29102746 DOI: 10.1016/j.jaip.2017.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Herbs and nonvitamin dietary supplements (NVDS) have been commonly used among patients with asthma, yet evidence of their impact on patients' clinical outcomes is limited. OBJECTIVE This study examined the associations of herbs and NVDS use with asthma episodes and asthma-related emergency department (ED) visits among US adults and pediatric patients with asthma. METHODS A cross-sectional analysis of the 2012 National Health Interview Survey data included 2,930 US adults and 1923 children with self-reported asthma. We estimated the prevalence and type of herbs and/or NVDS use and identified factors associated with their use. We then used multivariable logistic regression models to examine the associations between these supplemental medications use and asthma outcomes, controlling for patient-related covariates. All results were weighted to represent national estimates. RESULTS Approximately 7.20% of American children and 21.17% of adults with asthma used herbs and/or NVDS in 2012. Herb and/or NVDS users were more likely to be female, non-Hispanic white, living in the West region, having higher family income, and having comorbidities compared with nonusers. Herbs and/or NVDS use was associated with lower likelihood of having asthma-related ED visit (adjusted odds ratio = 0.48; 95% confidence interval: 0.31, 0.75) among adult patients with asthma, but not for pediatric patients with asthma. No association between herbs and/or NVDS use and having an asthma episode was observed in either adults or children. CONCLUSIONS This study found high prevalence of herbs and/or NVDS use among US patients with asthma. Potential benefit of these supplemental medications use on asthma-related ED visits might exist for adult patients with asthma.
Collapse
Affiliation(s)
- Nan Huo
- Department of Health Outcomes Research and Policy, Auburn University Harrison School of Pharmacy, Auburn, Ala.
| | - Jingjing Qian
- Department of Health Outcomes Research and Policy, Auburn University Harrison School of Pharmacy, Auburn, Ala
| |
Collapse
|
36
|
Shi Q, Si D, Bao H, Yan Y, Kong Y, Li C, He W, Damchaaperenlei D, Yu M, Li Y. Efficacy and safety of Chinese medicines for asthma: A systematic review protocol. Medicine (Baltimore) 2019; 98:e16958. [PMID: 31441897 PMCID: PMC6716730 DOI: 10.1097/md.0000000000016958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Asthma is a complex disease associated with many factors such as immunologic, environmental, genetic, and other factors. Common medicines used to treat asthma include β-agonist and glucocorticoid. However, in the long-term treatment, the effect of the above-mentioned drugs is not satisfactory, so many patients choose oral Chinese medicines instead of western medicines. The introduction of Chinese medicines therapies, a rapid proliferation of the literature on management of asthma in general, call for novel ways of evidence synthesis in this area. This systematic review is to systematically summarize and evaluate a large number of evidences for Chinese herbal interventions for asthma. Evaluate the efficacy and safety of Chinese medicines in the treatment of asthma and inform a decision aid for the clinical encounter between patients and clinicians. In addition, it helps to establish a future research agenda. METHODS Five English databases (PubMed, Web of science, EBASE, Springer Cochrane Library, and WHO International Clinical Trials Registry Platform) and 4 Chinese databases (Wanfang Database, Chinese Scientific Journal Database, China National Knowledge Infrastructure Database, and Chinese Biomedical Literature Database) will be searched normatively according to the rule of each database from the inception to the present. The literature screening, data extraction, and quality assessment will be conducted by 2 researchers independently. Data will be synthesized by either the fixed-effects or random-effects model according to a heterogeneity test. Asthma control test symptom score will be assessed as the primary outcome. The curative effect of single symptom and sign; Withdrawal and reduction of western medicines in a course of treatment, including: time, type, and quantity; Maintenance of western medicines after the course of treatment, including: type, quantity; Asthma Quality of Life Questionnaire; laboratory efficacy indexes as the secondary outcome. General physical examination; routine examination of blood, urine, and stool; electrocardiogram; liver and kidney function examination; possible adverse reactions and related detection indicators as the security indexes. Meta-analysis will be performed using RevMan5.3.5 software provided by the Cochrane Collaboration. RESULTS This study will provide high-quality synthesis based on current evidence of Chinese medicines treatment for asthma in several aspects, including asthma control score, side effects and laboratory examination such as lung-function test, serum total immunoglobulin, and so on. CONCLUSION The results of this study will provide updated evidence for whether Chinese medicines is an effective and safe intervention for asthma. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019136074.
Collapse
Affiliation(s)
- Qi Shi
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Dongxu Si
- Beijing University of Chinese Medicine, Beijing
| | - Haipeng Bao
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Yue Yan
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Yanhua Kong
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Chunlei Li
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| | - Wenfeng He
- Beijing University of Chinese Medicine, Beijing
| | | | - Mingxia Yu
- Beijing University of Chinese Medicine, Beijing
| | - Youlin Li
- The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases with TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases
| |
Collapse
|
37
|
Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells 2019; 8:cells8070685. [PMID: 31284537 PMCID: PMC6678278 DOI: 10.3390/cells8070685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in the immune system and the inflammatory response to asthma. Abnormal cytokine expression may lead to the development of asthma, which may contribute to pathologies of this disease. As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according to their biologic activity in asthma development. We classified cytokines in three stages as follows: Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs (pure compounds, single herb, or natural formula) have been discussed in this review. Studies of the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can be applied for patients who did not respond to standard treatments. For traditional medicinal herbs, anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes: alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive strategies may provide appropriate treatment for patients with asthma in the future.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan.
| |
Collapse
|
38
|
Li J, Aipire A, Zhao H, Yuan P, Li J. Pleurotus ferulae polysaccharides improve the antitumor efficacy of therapeutic human papillomavirus dendritic cell-based vaccine. Hum Vaccin Immunother 2018; 15:611-619. [PMID: 30427754 DOI: 10.1080/21645515.2018.1547604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously found that Pleurotus ferulae polysaccharides (PFPS) improved the maturation and function of dendritic cells (DCs). In this study, we investigated the effects of PFPS on the antitumor efficacy of therapeutic human papillomavirus (HPV) DC-based vaccine. PFPS stimulated DCs pulsed with HPV E6/E7 peptides were used to treat tumor mice on day 5 & 12 (HPV + PFPS-DCs early) and day 12 & 19 (HPV + PFPS-DCs late) after TC-1 cell injection. Compared to control group, both HPV + PFPS-DCs early and HPV + PFPS-DCs late strategies significantly inhibited tumor growth, which was significantly correlated with the increased activation status of both CD4+ and CD8+ T cells, the decreased frequencies of myeloid-derived suppressor cells, and the induction of HPV-specific CD8+ T cell responses. The survival of tumor mice was also greatly improved by HPV + PFPS-DCs early. Moreover, HPV + PFPS-DCs early completely inhibited the growth of second challenged TC-1 cells in tumor free mice. The results showed that PFPS improved the antitumor efficacy of therapeutic HPV DC-based vaccine, suggesting that PFPS might be a potential adjuvant for DC-based vaccines. This study provides a potential strategy for developing the therapeutic DC-based vaccine against cervical cancer.
Collapse
Affiliation(s)
- Jinyu Li
- a College of Life Science , Xinjiang Normal University , Urumqi , Xinjiang , China
| | - Adila Aipire
- b Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology , Xinjiang University , Urumqi , Xinjiang , China
| | - Huixin Zhao
- a College of Life Science , Xinjiang Normal University , Urumqi , Xinjiang , China
| | - Pengfei Yuan
- b Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology , Xinjiang University , Urumqi , Xinjiang , China
| | - Jinyao Li
- b Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology , Xinjiang University , Urumqi , Xinjiang , China
| |
Collapse
|
39
|
Cui W, Sun W, Mao-Ying QL, Mi W, Chu Y, Wang Y. Evaluation of catgut implantation at acupoints for asthma: A systematic review and meta-analysis. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018400025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objective: This study aims to systematically evaluate the efficacy and safety of catgut implantation at acupoints (CIA) treating asthma, extracting data from the published clinical trials. Methods: The Cochrane Library, PubMed, Chinese Biomedical Database (CBM), CNKI, WANFANG and VIP databases were searched up to February 2017. Randomized controlled trials (RCTs) involving CIA or CIA plus conventional medicine treatment (CMT) were selected with CMT as control. We assessed the methodological quality of RCTs using the Cochrane Handbook for Systematic Review of Interventions. The outcome data of trials were analyzed using RevMan5.3. Results: A total of 12 studies ([Formula: see text]) were included. Most of the included studies were assessed to have high risk of bias with low quality of methodology. CIA application significantly improved the overall therapeutic efficacy ([Formula: see text]) and pulmonary function (forced expiratory volume in 1[Formula: see text]s (FEV1) and FEV1%, [Formula: see text] and [Formula: see text]) and reduced the overall scores of TCM symptoms ([Formula: see text]). Further, it significantly relieved several TCM symptoms including shortness of breath, chest distress and cough ([Formula: see text]). However, CIA only exerted a protective tendency for expectoration and wheezing without significant difference and had no effects on recurrence rate (all [Formula: see text]). Conclusions: CIA treatment could improve the overall efficacy and pulmonary function and relief several symptoms. However, the evidence remains weak. Rigorous and larger trials will be the basis of the effectiveness and long-term effects of CIA therapies.
Collapse
Affiliation(s)
- Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, P. R. China
| | - Wenshan Sun
- Department of Traditional Chinese Medicine, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, P. R. China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, P. R. China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, P. R. China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, P. R. China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
40
|
Zhang HP, Wang L, Wang Z, Xu XR, Zhou XM, Liu G, He LY, Wang J, Hsu A, Li WM, Wang G. Chinese herbal medicine formula for acute asthma: A multi-center, randomized, double-blind, proof-of-concept trial. Respir Med 2018; 140:42-49. [PMID: 29957279 DOI: 10.1016/j.rmed.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite advances in asthma management, exacerbations constitute a significant health economic burden. OBJECTIVE To observe the efficacy and safety of Chinese herbal medicine formula entitled PingchuanYiqi (PCYQ) granule, on acute asthma and to explore its possible mechanism. MATERIALS AND METHODS This proof-of-concept study consisted of a randomized, double-blind, placebo-controlled trial in patients with acute asthma (n = 300). Participants with acute mild-to-moderate asthma recruited from seven centers in China were randomly assigned to receive PCYQ or placebo. The primary outcomes were PEF (L/min) and total asthma symptom scores. Furthermore, a panel of cytokines including serum IL-4, IL-5, IL-6, IL-8, IL-1β, IL-17A, IFN-α, IFN-β, IFN-γ, CRP, CCL-5, IP-10, and PGD2 levels was detected using ELISA. RESULTS The PCYQ (n = 139) significantly improved the morning PEF on day 4 (349.73 ± 93.92 vs. 313.56 ± 92.91 L/min, P = 0.004) and day 7 (360.42 ± 94.39 vs. 329.52 ± 95.97 L/min, P = 0.023), and the evening PEF on day 4 (352.65 ± 95.47 vs. 320.58 ± 95.30 L/min, P = 0.012) and day 7 (360.42 ± 94.39 vs. 336.86 ± 95.59 L/min, P = 0.029) in comparison with the placebo (n = 143). The PCYQ also improved the clinical symptoms scores and reduced the puffs of short-acting β2-agonist (all P < 0.05). Furthermore, the PCYQ statistically reduced IL-5, IL-8, IL-1β and PGD2 in serum. CONCLUSION The PCYQ as the Chinese herbal medicine formula significantly improves lung function and symptoms of acute asthma, and reduces SABA dosage possibly via decrease of inflammatory biomarkers such as IL-5, IL-8, IL-1β and PGD2. TRIAL REGISTRATION ISRCTN61674768 (http://www.isrctn.com/).
Collapse
Affiliation(s)
- Hong Ping Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Centre for Biotherapy, Chengdu 610041, China
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Centre for Biotherapy, Chengdu 610041, China
| | - Zhen Wang
- Department of Respiratory Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Xian Rong Xu
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xian Mei Zhou
- Department of Respiratory Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Gang Liu
- Department of Respiratory Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou 325000, China
| | - Lv Yuan He
- Department of Respiratory Medicine, Jinhua Hospital of Traditional Chinese Medicine, Jinhua 321001, China
| | - Jun Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305 NSW, Australia
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Centre for Biotherapy, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
41
|
Liu L, Wang LP, He S, Ma Y. Immune Homeostasis: Effects of Chinese Herbal Formulae and Herb-Derived Compounds on Allergic Asthma in Different Experimental Models. Chin J Integr Med 2018; 24:390-398. [PMID: 29752613 DOI: 10.1007/s11655-018-2836-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Indexed: 12/18/2022]
Abstract
Allergic asthma is thought to arise from an imbalance of immune regulation, which is characterized by the production of large quantities of IgE antibodies by B cells and a decrease of the interferon-γ/interleukin-4 (Th1/Th2) ratio. Certain immunomodulatory components and Chinese herbal formulae have been used in traditional herbal medicine for thousands of years. However, there are few studies performing evidence-based Chinese medicine (CM) research on the mechanisms and effificacy of these drugs in allergic asthma. This review aims to explore the roles of Chinese herbal formulae and herb-derived compounds in experimental research models of allergic asthma. We screened published modern CM research results on the experimental effects of Chinese herbal formulae and herb-derived bioactive compounds for allergic asthma and their possible underlying mechanisms in English language articles from the PubMed and the Google Scholar databases with the keywords allergic asthma, experimental model and Chinese herbal medicine. We found 22 Chinese herb species and 31 herb-derived anti-asthmatic compounds as well as 12 Chinese herbal formulae which showed a reduction of airway hyperresponsiveness, allergen-specifific immunoglobulin E, inflflammatory cell infifiltration and a regulation of Th1 and Th2 cytokines in vivo, in vitro and ex vivo, respectively. Chinese herbal formulae and herbderived bioactive compounds exhibit immunomodulatory, anti-inflflammatory and anti-asthma activities in different experimental models and their various mechanisms of action are being investigated in modern CM research with genomics, proteomics and metabolomics technologies, which will lead to a new era in the development of new drug discovery for allergic asthma in CM.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.,University Course of Traditional Chinese Medicine, Medical University of Vienna, A-1090, Vienna, Austria
| | - Lin-Peng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Shan He
- Molecular Research in Traditional Chinese Medicine Group, Department of Pathophysiology and Allergy Research, Vienna General Hospital, Medical University of Vienna, A-1090, Vienna, Austria
| | - Yan Ma
- University Course of Traditional Chinese Medicine, Medical University of Vienna, A-1090, Vienna, Austria. .,Molecular Research in Traditional Chinese Medicine Group, Department of Pathophysiology and Allergy Research, Vienna General Hospital, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
42
|
Liu Y, Sun Y, Huang G. Preparation and antioxidant activities of important traditional plant polysaccharides. Int J Biol Macromol 2018; 111:780-786. [DOI: 10.1016/j.ijbiomac.2018.01.086] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 02/06/2023]
|
43
|
Lee CC, Lin CL, Leu SJ, Lee YL. Overexpression of Notch ligand Delta-like-1 by dendritic cells enhances their immunoregulatory capacity and exerts antiallergic effects on Th2-mediated allergic asthma in mice. Clin Immunol 2017; 187:58-67. [PMID: 29038036 DOI: 10.1016/j.clim.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, and Notch ligand Delta-like-1 (DLL1) on DCs was implicated in type 1T helper (Th1) differentiation. In this study, we produced genetically engineered bone marrow-derived DCs that expressed DLL1 (DLL1-DCs) by adenoviral transduction. DLL1-DCs exerted a fully mature phenotype, and had positive effects on expression levels of interleukin (IL)-12 and costimulatory molecules. Coculture of allogeneic T cells with ovalbumin (OVA)-pulsed DLL1-DCs enhanced T cell proliferative responses and promoted Th1 cell differentiation. Furthermore, adoptive transfer of OVA-stimulated DLL1-DCs into asthmatic mice alleviated the cardinal features of allergic asthma, including immunoglobulin E (IgE) production, airway hyperresponsiveness (AHR), airway inflammation, and production of Th2-type cytokines. Notably, enhanced levels of the Th1-biased IgG2a response and interferon (IFN)-γ production were observed in these mice. Taken together, these data indicate that DLL1-DCs promoted Th1 cell development to alter the Th1/Th2 ratio and ameliorate Th2-mediated allergic asthma in mice.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chu-Lun Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
44
|
Liu WY, Zhang JW, Yao XQ, Jiang C, He JC, Ni P, Liu JL, Chen QY, Li QR, Zang XJ, Yao L, Liu YZ, Wang ML, Shen PQ, Wang GJ, Zhou F. Shenmai injection enhances the cytotoxicity of chemotherapeutic drugs against colorectal cancers via improving their subcellular distribution. Acta Pharmacol Sin 2017; 38:264-276. [PMID: 27867186 DOI: 10.1038/aps.2016.99] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022]
Abstract
Shenmai injection (SMI) is a Chinese patent-protected injection, which was mainly made of Red Ginseng and Radix Ophiopogonis and widely used for treating coronary heart disease and tumors by boosting Qi and nourishing Yin. In this study we examined whether SMI could produce direct synergetic effects on the cytoxicity of adriamycin (ADR) and paclitaxel (PTX) in colorectal cancers in vivo and in vitro, and explored the underlying pharmacokinetic mechanisms. BALB/c nude mice with LoVo colon cancer xenografts were intraperitoneally injected with ADR (2 mg·kg-1·3d-1) or PTX (7.5 mg·kg-1·3d-1) with or without SMI (0.01 mL·g-1·d-1) for 13 d. Co-administration of SMI significantly enhanced the chemotherapeutic efficacy of ADR and PTX, whereas administration of SMI alone at the given dosage did not produce visible anti-cancer effects, The chemosensitizing action of SMI was associated with increased concentrations of ADR and PTX in the plasma and tumors. In Caco-2 and LoVo cells in vitro, co-treatment with SMI (2 μL/mL) significantly enhanced the cytotoxicity of ADR and PTX, and resulted in some favorable pharmacokinetic changes in the subcellular distribution of ADR and PTX. In addition, SMI-induced intracellular accumulation of ADR was closely correlated with the increased expression levels of P-glycoprotein in 4 colon cancer cell lines (r2=+0.8558). SMI enhances the anti-cancer effects of ADR and PTX in colon cancers in vivo and in vitro by improving the subcellular distributions of ADR and PTX.
Collapse
|
45
|
Dai D, Zhang CF, Williams S, Yuan CS, Wang CZ. Ginseng on Cancer: Potential Role in Modulating Inflammation-Mediated Angiogenesis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:13-22. [PMID: 28068835 DOI: 10.1142/s0192415x17500021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Angiogenesis is a regulated process integral to many physiological and pathological situations, including carcinogenesis and tumor growth. The majority of the angiogenic processes are related to inflammation. The interplay is not only important in the case of pathogen entry but also influential in chronic inflammatory diseases, tumor growth and tissue regeneration. Modulating the interaction between inflammation and angiogenesis could be an important target for cancer treatment and wound healing alike. Ginseng has a wide range of pharmacological effects, including anti-inflammatory and angiogenesis-modulating activities. This paper presents the recent research progresses on the inhibition of angiogenesis by ginseng and its active constituents, with a particular focus on processes mediated by inflammation. The modulatory role of ginseng compounds in inflammation-mediated angiogenesis involving hypoxia and microRNAs are also discussed. With the potential to modulate the angiogenesis at the transcriptional, translational and protein signaling level via various different mechanisms, ginseng could prove to be effective in cancer therapeutics.
Collapse
Affiliation(s)
- Daisy Dai
- * Tang Center for Herbal Medicine Research, Pritzker School of Medicine, USA.,† Department of Anesthesia & Critical Care, Pritzker School of Medicine, USA
| | - Chun-Feng Zhang
- * Tang Center for Herbal Medicine Research, Pritzker School of Medicine, USA.,† Department of Anesthesia & Critical Care, Pritzker School of Medicine, USA
| | - Stephanie Williams
- * Tang Center for Herbal Medicine Research, Pritzker School of Medicine, USA.,† Department of Anesthesia & Critical Care, Pritzker School of Medicine, USA
| | - Chun-Su Yuan
- * Tang Center for Herbal Medicine Research, Pritzker School of Medicine, USA.,† Department of Anesthesia & Critical Care, Pritzker School of Medicine, USA.,‡ Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- * Tang Center for Herbal Medicine Research, Pritzker School of Medicine, USA.,† Department of Anesthesia & Critical Care, Pritzker School of Medicine, USA
| |
Collapse
|
46
|
Capparis spinosa Fruit Ethanol Extracts Exert Different Effects on the Maturation of Dendritic Cells. Molecules 2017; 22:molecules22010097. [PMID: 28067853 PMCID: PMC6155734 DOI: 10.3390/molecules22010097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 11/20/2022] Open
Abstract
Capparis spinosa L. (C. spinosa) has been used as food and traditional medicine and shows anti-inflammatory and anti-oxidant activities. Here, we prepared the C. spinosa fruit ethanol extracts (CSEs) using different procedures and investigated the effects of CSE on the maturation of mouse bone marrow-derived dendritic cells (DCs) in the absence or presence of lipopolysaccharide (LPS). DC maturation and cytokine production were detected by flow cytometry and ELISA, respectively. We obtained three different CSEs and dissolved in water or DMSO, named CSE2W, CSEMW, CSE3W, CSE2D, CSEMD, and CSE3D, respectively. These CSEs showed different effects on DC maturation. CSEMW and CSEMD significantly increased the expressions of CD40, CD80, and CD86, in a dose-dependent manner. CSE2W and CSE2D also showed a modest effect on DC maturation, which enhanced the expression of CD40. CSE3W and CSE3D did not change DC maturation but suppressed LPS-induced DC maturation characterized by the decreased levels of CD40 and CD80. CSE3W and CSE3D also significantly inhibited the secretions of IL-12p40, IL-6, IL-1β, and TNF-α induced by LPS. CSE3W further increased the level of IL-10 induced by LPS. Moreover, CSE3D suppressed LPS-induced DC maturation in vivo, which decreased the expressions of CD40 and CD80. These results suggested that CSE3W and CSE3D might be used to treat inflammatory diseases.
Collapse
|
47
|
Wang ZY, Liu JG, Li H, Yang HM. Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1525-1541. [PMID: 27848250 DOI: 10.1142/s0192415x16500853] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, not only severely decreases the quality of life for its victims, but also brings a heavy economic burden to the family and society. Unfortunately, few chemical drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far, and combined with their significant side-effects, there is therefore an urgent need for new strategies to be developed for AD treatment. Traditional Chinese Medicine has accumulated many experiences in the treatment of dementia during thousands of years of practice; modern pharmacological studies have confirmed the therapeutic effects of many active components derived from Chinese herbal medicines (CHM). Ginsenoside Rg1, extracted from Radix Ginseng, exerts a [Formula: see text]-secretase inhibitor effect so as to decrease A[Formula: see text] aggregation. It can also inhibit the apoptosis of neuron cells. Tanshinone IIA, extracted from Radix Salviae miltiorrhizae, and baicalin, extracted from Radix Scutellariae[Formula: see text] can inhibit the oxidative stress injury in neuronal cells. Icariin, extracted from Epimedium brevicornum, can decrease A[Formula: see text] levels and the hyperphosphorylation of tau protein, and can also inhibit oxidative stress and apoptosis. Huperzine A, extracted from Huperzia serrata, exerts a cholinesterase inhibitor effect. Evodiamine, extracted from Fructus Evodiae, and curcumin, extracted from Rhizoma Curcumae Longae, exert anti-inflammatory actions. Curcumin can act on A[Formula: see text] and tau too. Due to the advantages of multi-target effects and fewer side effects, Chinese medicine is more appropriate for long-term use. In this present review, the pharmacological effects of commonly used active components derived from Chinese herbal medicines in the treatment of AD are discussed.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China.,† Graduate School, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jian-Gang Liu
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Hao Li
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Hui-Ming Yang
- ‡ Geriatric Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
48
|
Li S, Xutian S. New Development in Traditional Chinese Medicine: Symbolism-Digit Therapy as a Special Naturopathic Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1311-1323. [DOI: 10.1142/s0192415x16500737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese medicine (TCM) grew out of traditional Chinese culture. For example, the eight-diagram symbol is composed of the Yang and the Yin. According to oriental philosophy, everything in the universe has a two-sided property, namely an image (or symbol) and a number (or digit). This paper introduces the new concept and historical background of symbolism-digit therapy (SDT), which is a natural therapy for the treatment of various kinds of diseases. SDT is of TCM heritage, which can be traced back to the ancient publications such as Yi Jing, and this heritage has been incorporated into modern development and practices. The successful treatments using SDT presented in this paper use formulas and/or prescriptions in accordance with TCM. All materials presented in this paper come from first-hand clinical observations, which are supported by TCM theories. Effects of SDT treatments are straightforward and worthy of broader and deeper investigation. SDT and other relevant therapies motivate the further exploration of the essence of TCM to improve the understanding of TCM principles.
Collapse
Affiliation(s)
- Shanyu Li
- The Shanyu Naturopathic Institute, Qingdao, China
| | - Stevenson Xutian
- Canadian Institute of Complementary and Alternative Medicine, Edmonton, Canada
| |
Collapse
|
49
|
Li FS, Zhang YL, Li Z, Xu D, Liao CY, Ma H, Gong L, Su J, Sun Q, Xu Q, Gao Z, Wang L, Jing J, Wang J, Jiang M, Tian G, Hasan B. Randomized, double-blind, placebo-controlled superiority trial of the Yiqigubiao pill for the treatment of patients with chronic obstructive pulmonary disease at a stable stage. Exp Ther Med 2016; 12:2477-2488. [PMID: 27698749 PMCID: PMC5038223 DOI: 10.3892/etm.2016.3680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/15/2016] [Indexed: 11/06/2022] Open
Abstract
In traditional Chinese medicine (TCM), the Yiqigubiao pill is commonly used to enhance physical fitness. The current clinical trial was designed to evaluate the efficacy and safety of the Yiqigubiao pill as an adjuvant therapy for patients with stable chronic obstructive pulmonary disease (COPD). The current trial was a randomized, double-blind, placebo-controlled superiority trial. The participants were recruited from outpatients at the Traditional Chinese Medicine Hospital affiliated with Xinjiang Medical University (Ürümqi, China) between February and September 2012. All participants were patients with stable COPD that were randomized to the Yiqigubiao pill (YQGB; n=84) or placebo (Pb; n=87) groups. The occurrences of acute exacerbation (AE) of COPD during the trial were recorded. Lung function value assessments, scoring of life quality and exercise endurance, arterial blood gas analysis and serum inflammatory cytokines level determination were performed prior to and throughout the study. A total of 139 participants completed the intervention and 132 participants completed the study. The interval between the initial intervention and the first AECOPD was greater in the YQGB group compared with the Pb group (P<0.01). The incidence rate of AECOPD was lower in the YQGB group than in the Pb group (P<0.01). Subsequent to the intervention or at the end of the study, the 6-min walking distance difference was longer in the YQGB group compared with the Pb group (P<0.01). The scores reflecting life quality decline became lower in the YQGB group (P<0.01). The serum levels of proinflammatory factors were downregulated to a greater extent in the YQGB group compared with the Pb group. Thus, the Yiqigubiao pill is an efficient and safe adjuvant therapy for the treatment of stable patients with COPD.
Collapse
Affiliation(s)
- Feng-Sen Li
- Department of Integrated Pulmonology, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Yan-Li Zhang
- Department of Integrated Pulmonology, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Zheng Li
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Dan Xu
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Chun-Yan Liao
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Huan Ma
- Department of Integrated Pulmonology, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Li Gong
- Department of Geriatric Medicine, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Jun Su
- Department of Integrated Pulmonology, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Qi Sun
- Medical Research Design and Data Analysis Center, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Qian Xu
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Zhen Gao
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Ling Wang
- Department of Integrated Pulmonology, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Jing Jing
- National Clinical Research Base of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Ge Tian
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| | - Bilal Hasan
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated with Xinjiang Medical University, Ürümqi, Xinjiang 830000, P.R. China
| |
Collapse
|