1
|
Zhu X, Dong W, Zhao Y, Chen P, Li M, Chen M, Li W, Fei C. Integrated electronic eye, electronic nose and high performance liquid chromatography for identification of raw and salt-processed Psoralea corylifolia fructus. J Pharm Biomed Anal 2025; 263:116915. [PMID: 40300314 DOI: 10.1016/j.jpba.2025.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Psoralea corylifolia fructus (PF), a traditional drug widespread use in China, is available in two forms: raw Psoralea corylifolia fructus (RPF) and salt-processed Psoralea corylifolia fructus. (SPF). Despite the distinct therapeutic efficacies of RPF and SPF, their morphological similarities pose a challenge for their rapid and accurate differentiation. To investigate the differences in color, volatile, and non-volatile compounds between RPF and SPF, and to develop a novel, rapid method for their differentiation. An integrated strategy combined electronic eye (E-eye), electronic nose (E-nose), and high-performance liquid chromatography (HPLC) was employed. E-eye was employed to quantify the visual color attributes. Concurrently, E-nose was used to analyze the odor profiles. The non-volatile compounds were identified using HPLC. Additionally, the practicality of these methods was evaluated using the Blue Applicability Grade Index (BAGI). Chemometric analysis was conducted to identify markers capable of distinguishing between RPF and SPF. The parameters L* and b* were selected as chromaticity markers. Additionally, 14 compounds, including 1-butanol, 1,2-dimethylbenzene, and β-pinene etc., were identified as volatile markers. The compounds bakuchiol and bavachin were identified as potential non-volatile markers. The performance scores for the E-eye, E-nose, and HPLC methods were 77.5, 80.0, and 72.5, respectively, suggesting their applicability. This study elucidated differences in color, volatile, and non-volatile compounds between RPF and SPF. It not only improves the quality control of PF but also introduces an innovative approach for the rapid differentiation of RPF and SPF.
Collapse
Affiliation(s)
- Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing, Jiangsu, 210023, China
| | - Wenhao Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuwei Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing, Jiangsu, 210023, China
| | - Peng Chen
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingxuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Meihui Chen
- Pharmacy Department of Jinling Hospital Affiliated to Nanjing University School of Medicine, Eastern Theater Command General Hospital, Zhongshan road 305, Nanjing, Jiangsu 210016, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing, Jiangsu, 210023, China.
| | - Chenghao Fei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Nille GC, Bhuyan M, Gupta LN, Chaudhary AK. Safe and effective management of psoriasis through Ayurveda: A case report. J Ayurveda Integr Med 2025; 16:101091. [PMID: 40158496 PMCID: PMC11994298 DOI: 10.1016/j.jaim.2024.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 04/02/2025] Open
Abstract
Ayurveda, an ancient system, offers in-depth insights into various skin disorders. It provides detailed understanding of causative factors and pathomechanisms, along with time-tested traditional treatments based on its principles. We report a 16-year chronic case of psoriasis (36-year-old male patient) with plaques and peeling erythrodermic skin rashes over the back and front of the trunk area and both legs. The scalp area and nail beds were also affected. The early involvement of joints was also noted. A two-year multimodal Ayurveda treatment has shown notable efficacy in managing chronic plaque and erythrodermic psoriasis, with no reported adverse events or side effects. The progressive events were documented in the form of photographs with the proper consent of the patient. The Ayurveda medicines, strict dietary regimen, and regular follow-ups together resulted in promising outcomes, revalidating the potential of Ayurveda in controlling psoriasis and its complications.
Collapse
Affiliation(s)
- Guruprasad C Nille
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
| | | | - Laxmi Narayan Gupta
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anand Kumar Chaudhary
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
3
|
Zeng J, Wu W, Gao H, Li M, Zhou B, Mo Y, Guan Y, Qi T, Wu X, Liu D, Jia X. Enhanced hepatic exposure and toxicity from concurrent administration of coumarin and bakuchiol in psoralea corylifolia L. under LPS-induced immune stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119520. [PMID: 39978446 DOI: 10.1016/j.jep.2025.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L., known as "Bu Gu Zhi" in traditional Chinese medicine, is widely used for its antioxidant and anti-inflammatory properties. It is traditionally employed to treat conditions such as vitiligo, osteoporosis, and various skin diseases. Despite its therapeutic benefits, there are safety concerns due to reports of liver injury associated with its use, especially under conditions of immune stress. AIM OF THE STUDY This study aimed to investigate the hepatotoxic effects of coumarin and bakuchiol-the key bioactive components of Psoralea corylifolia L.-under lipopolysaccharide (LPS)-induced immune stress in mice. MATERIALS AND METHODS Mouse models were used to evaluate liver injury. coumarin (139.91 mg/kg), bakuchiol (280.00 mg/kg), and LPS (6.00 mg/kg) were administered individually and in combination. Liver toxicity was assessed through histopathological examinations and liver enzyme assays. Transcriptomic analyses were performed to identify dysregulated genes and pathways. Pharmacokinetic studies measured hepatic exposure, and molecular dynamics simulations examined intermolecular interactions between the compounds. RESULTS While coumarin and bakuchiol alone did not induce significant liver toxicity at the administered doses, their concurrent administration under immune stress significantly exacerbated liver injury. This was evidenced by pronounced histopathological changes and elevated liver enzyme levels. Transcriptomic analysis revealed dysregulation of genes related to inflammation, oxidative stress, and metabolic processes, with significant overlap in affected pathways, suggesting shared mechanisms underlying the enhanced liver injury. Pharmacokinetic studies demonstrated increased hepatic exposure during co-administration, with coumarin enhancing the solubility and absorption of bakuchiol. Molecular dynamics simulations supported these findings by illustrating enhanced intermolecular interactions between the two compounds. CONCLUSIONS The study demonstrates that co-administration of coumarin and bakuchiol under immune stress conditions exacerbates hepatotoxicity, highlighting potential risks associated with the use of Psoralea corylifolia L. in individuals with underlying inflammation. These findings emphasize the need for cautious therapeutic use and consideration of immune status when prescribing this traditional medicine, as well as the development of safer combination strategies.
Collapse
Affiliation(s)
- Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Wei Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Hongrui Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Mengyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Binbin Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yulin Mo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yuxin Guan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tianhao Qi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Chang TS, Wu JY, Ding HY, Tayo LL, Suratos KS, Tsai PW, Wang TY, Fong YN, Ting HJ. Predictive Production of a New Highly Soluble Glucoside, Corylin-7-O-β-Glucoside with Potent Anti-inflammatory and Anti-melanoma Activities. Appl Biochem Biotechnol 2025; 197:1174-1191. [PMID: 39377873 DOI: 10.1007/s12010-024-05071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
Computational tools can now facilitate screening precursors and selecting suitable biotransformation enzymes for producing new bioactive compounds. This study applied the data-mining approach to screen for candidate precursors of glycosyltransferases to produce new glucosides from 412 commercial natural compounds. Among five candidates, experimental results showed that only corylin could be glycosylated by the bacterial glycosyltransferase, BsUGT489. Analysis of interaction potential between candidates and glycosyltransferase by molecular docking tools also found that corylin was the only compatible substrate. The new glucoside was purified and confirmed to be corylin-7-O-β-glucoside. The aqueous solubility of corylin-7-O-β-glucoside was 14.2 times more than its precursor aglycone, corylin. Corylin-7-O-β-glucoside retained anti-inflammatory activity in lipopolysaccharide-induced nitric oxide production of murine macrophage RAW 264.7 cells, with an IC50 value of 121.1 ± 9.5 µM. Further, corylin-7-O-β-glucoside exhibited more potent anti-melanoma activity against murine B16 and human A2058 melanoma cells than corylin. Together, predictive studies facilitate the production of a new glucoside, corylin-7-O-β-glucoside, which is highly soluble and possesses anti-inflammatory and anti-melanoma activities and therefore has promising future applications in pharmacology.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, 1002, Manila, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, 1200, Makati, Philippines
| | - Khyle S Suratos
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, 1002, Manila, Philippines
- School of Graduate Studies, Mapúa University, 1002, Manila, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ning Fong
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan.
| |
Collapse
|
5
|
Zeng JL, Lan JX, Dai W, Liu SL, Huang H, Shu GZ, Huang LJ, Kang SS, Chen B, Hou W. A Review of Bavachinin and Its Derivatives as Multi-Therapeutic Agents. Chem Biodivers 2025:e202402762. [PMID: 39874061 DOI: 10.1002/cbdv.202402762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia (PC) is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of PC. Among them, bavachinin is a type of flavonoid with various biological activities. In this article, the biological activities and mechanisms of action of bavachinin and its derivatives are reviewed. It includes the pharmacokinetic characteristics of bavachinin and its derivatives, as well as its prominent anti-inflammatory, antitumor, antibacterial, and antiviral pharmacological activities and related metabolic studies. Bavachinin displayed these activities through different receptors, such as peroxisome proliferator-activated receptors (PPARs), as well as multiple signaling pathways and enzyme systems. In summary, bavachinin and its derivatives have potential drug development value in many fields, such as anti-inflammatory, antitumor, nervous system disease, and diabetes. We believe that this review will lay a foundation for bavachinin-based drug development throughout the world.
Collapse
Affiliation(s)
- Jun Lin Zeng
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
- HuanKui Academy, Nanchang University, Nanchang, P. R. China
| | - Jin Xia Lan
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Wei Dai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Sheng Lan Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Guang Zhao Shu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Le Jun Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Si Shuang Kang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Bin Chen
- Department of Chinese Medicine, Jiangxi Management Vocational College, Nanchang, P. R. China
| | - Wen Hou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| |
Collapse
|
6
|
Li Y, Zhou W, Cui Y, Zhou P, Shan Y, Jin N, Ye S. A safe antiparasitic extract from Psoralea corylifolia for Tetrahymeniasis control. Vet Parasitol 2025; 333:110341. [PMID: 39556990 DOI: 10.1016/j.vetpar.2024.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Tetrahymeniasis is a ciliate disease that presents significant economic challenges for the aquaculture industry. Previous research has shown promising control effects on Tetrahymena pyriformis using flavonoids from Psoralea corylifolia (P. corylifolia), but their high cost hinders practical application. This study aims to find an affordable and safe alternative antiparasitic extract derived from P. corylifolia. Initially, six different solvent extracts from P. corylifolia were compared for in vitro antiparasitic activity and toxicity, with ethyl acetate (EtOAc) extract selected for in vivo testing. In vivo tests revealed that effective concentrations of the EtOAc extract approached toxic levels. Chemical analysis identified bakuchiol as the most abundant and toxic compound in these extracts, with the highest solubility in n-hexane. Two optimized extraction protocols, yielding extract I and extract II, were developed based on these findings. Extract II successfully reduced the level of bakuchiol and overall toxicity while maintaining efficacy. At a concentration of 40 mg/L for 24 h, extract II achieved a 100 % antiparasitic effect with a therapeutic index of 2.121, nearly double that before optimization, leading to an increase in survival rate of diseased guppies from 15 % to over 65 %. These results suggest that this bath therapy could be a practical and cost-effective alternative for treating tetrahymeniasis in aquaculture. Futhermore, the optimized extraction method employed in this study offers new possibilities for reducing toxicity and enhancing the effects of Chinese herbal medicine. In summary, this study demonstrated that extract II derived from P. corylifolia has the potential to be developed into a novel commercial drug for the control of Tetrahymena infections in fish.
Collapse
Affiliation(s)
- Yihao Li
- Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China.
| | - Weijia Zhou
- Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China.
| | - Yanhong Cui
- Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China.
| | - Peilin Zhou
- Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China.
| | - Yunmeng Shan
- Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China.
| | - Nanlin Jin
- Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China.
| | - Shigen Ye
- Centers for Fish Disease Control and Prevention, Dalian Ocean University, Dalian, China.
| |
Collapse
|
7
|
Tripathi N, Shah H, Bhardwaj N, Sarkar R, Jain SK. In silico analysis, isolation, and cytotoxicity evaluation of the coumestans from Cullen corylifolium (L.) Medik. Nat Prod Res 2024; 38:4419-4426. [PMID: 38012958 DOI: 10.1080/14786419.2023.2285875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Cullen corylifolium is well known for diverse phytoconstituents that possess multifaceted pharmacology, and one such less explored class is coumestans, which have not been well explored for their anticancer activities. One of the popular cancer targets is the Epidermal Growth Factor Receptor, a tyrosine kinase involved in various cancers, especially breast and lung cancer hence, a crucial cancer target. This work is focussed on molecular docking and molecular simulation studies on coumestans against EGFR. The rigorous docking studies resulted in two coumestans (1 and 5) with binding energy less than Gefitinib and Erlotinib. Compounds 1 and 5 were subjected to molecular simulation, binding free energy calculation, per-residue energy decomposition, and in silico ADMET prediction. The best hit, compound 1 was evaluated for its cytotoxicity against MDA-MB-231 and A549 cells via in vitro assay. The ligand-protein complex exhibited good stability, binding free energies, better in silico pharmacokinetics, low toxicity, and good cytotoxicity.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Himisa Shah
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Gujarat, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ruma Sarkar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Gujarat, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
8
|
Zhang ML, Li WX, Wang XY, Chen XF, Zhang H, Meng GQ, Chen YL, Wu YL, Yang LQ, Zhang SQ, Feng KR, Niu L, Tang JF. Characterizing metabolomic and transcriptomic changes, and investigating the therapeutic mechanism of Psoralea corylifolia linn. In the treatment of kidney-yang deficiency syndrome in rats. Heliyon 2024; 10:e39006. [PMID: 39524713 PMCID: PMC11550036 DOI: 10.1016/j.heliyon.2024.e39006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney-yang deficiency syndrome (KYDS) is characterized by a metabolic disorder stemming from neuroendocrine dysregulation, often associated with hepatic dysfunction. In traditional Chinese medicine, Psoralea corylifolia Linn. (BGZ) is commonly utilized for treating KYDS. However, the specific therapeutic effects of BGZ on liver function regulation remain unclear. To evaluate the protective effects of BGZ against KYDS in rats, organ index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and other biochemical indices were analyzed. Hematoxylin and eosin (HE) staining was utilized to assess liver histopathology. Additionally, transcriptomic and metabolomic analyses were conducted to identify potential biomarkers. BGZ treatment led to a significant reduction in ALT and AST levels, accompanied by improvements in liver histopathology in rats with KYDS. Moreover, BGZ induced significant alterations in 92 differentially expressed genes (DEGs) and 20 metabolites in the KYDS rat model. The comprehensive examination of metabolites and DEGs identified potential mechanisms underlying the therapeutic effects of BGZ, highlighting the neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway, and cytokine-cytokine receptor interaction as key mechanisms. Validation of key targets within the cAMP pathway was substantiated through enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. The cAMP pathway emerges as a plausible mechanism through which BGZ exerts protective effects against KYDS. The findings of this study contribute to an improved understanding of the therapeutic actions of BGZ and establish a groundwork for further research into the complex pathways involved, as well as the potential for drug-targeted therapies for KYDS.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Wei-Xia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Xiao-Fei Chen
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Hui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Gao-Quan Meng
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ya-Li Wu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Liu-Qing Yang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Shu-Qi Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Ke-Ran Feng
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Lu Niu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Jin-Fa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Huang K, Cai C, He H, Yi B, Xu W, Lin Z, Lv X, Liu R, Zheng C, Zhou Y, Lin J. Promotion of Raf-1/ASK1 complex formation by corylin inhibits cell apoptosis in myocardial ischemia/reperfusion injury. Int Immunopharmacol 2024; 140:112921. [PMID: 39133953 DOI: 10.1016/j.intimp.2024.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024]
Abstract
Effective treatment of myocardial ischemia-reperfusion (MIR) injury remains an unmet clinical need. Cardiomyocyte apoptosis is common at this stage and poses a significant risk. Corylin, a flavonoid compound extracted from Psoralea corylifolia L., has been shown to have anti-inflammatory, anticancer, and antiatherosclerotic properties. However, whether and how corylin affects MIR injury remain unclear. In this study, we explored the mechanism of corylin as a potent therapeutic agent for MI/R injury, using a left anterior descending (LAD) coronary artery ligation and oxygen-glucose deprivation and reperfusion (OGD/R) model in vivo and in vitro. TUNEL, Annexin-V/PI double staining,Ki67 immunohistochemistry, western blot analysis, and immunofluorescence were used to validate cell apoptosis level and Raf-1/ASK1 complex activity. The interaction between corylin and Raf-1/ASK1 complex was detected using molecular docking, corylin-Raf-1 binding assays, and coimmunoprecipitation (Co-IP). Moreover, TTC staining, echocardiography, HE staining, Masson trichrome staining and serological testing were performed to assess the cardioprotective effects of corylin in vivo. These findings showed that corylin reduces MIR injury-induced cardiomyocyte apoptosis and improves cardiac function. Mechanistically, corylin can interact with Raf-1 and promote the formation of the Raf-1/ASK1 complex, thus inhibiting cardiomyocyte apoptosis. In conclusion, our results demonstrate that corylin ameliorated cardiac dysfunction after MIR injury by reducing myocardial apoptosis.
Collapse
Affiliation(s)
- Kaiyu Huang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenchen Cai
- Department of Physical Medicine and Rehabilitation, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hualing He
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binghua Yi
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wencai Xu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhonghao Lin
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Lv
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ronghua Liu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Zheng
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Zhou
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiafeng Lin
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Xia N, Chen QH, Meng ZJ, Ma SY, Huang JL, Shen R, Dong YT, Du HW, Zhou K. Isobavachin induces autophagy-mediated cytotoxicity in AML12 cells via AMPK and PI3K/Akt/mTOR pathways. Toxicol In Vitro 2024; 100:105919. [PMID: 39154867 DOI: 10.1016/j.tiv.2024.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Isobavachin (IBA) is a dihydroflavonoid compound with various pharmacological effects. However, further investigation into the hepatotoxicity of IBA is necessary. This study aims to identify the hepatotoxic effects of IBA and explore its potential mechanisms. The study assessed the impact of IBA on the viability of AML12, HepG2, LO2, rat, and mouse primary hepatocytes using MTT and LDH assays. Autophagy was detected in AML12 cells after IBA treatment using electron microscopy, MDC, and Ad-mCherry-GFP-LC3B fluorescence. The effect of IBA on autophagy-related proteins was examined using Western blot. The results showed that IBA had dose-dependent inhibitory effects on five cells, induced autophagy in AML12 cells, and promoted autophagic flux. The study found that IBA treatment inhibited phosphorylation of PI3K, Akt, and mTOR, while increasing phosphorylation levels of AMPK and ULK1. Treatment with both AMPK and PI3K inhibitors reversed the expression of AMPK and PI3K-Akt-mTOR signaling pathway proteins. These results suggest that IBA may have hepatocytotoxic effects but can also prevent IBA hepatotoxicity by inhibiting the AMPK and PI3K/Akt/mTOR signaling pathways. This provides a theoretical basis for preventing and treating IBA hepatotoxicity in clinical settings.
Collapse
Affiliation(s)
- Ning Xia
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing-Hai Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhao-Jun Meng
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu-Yue Ma
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Li Huang
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Shen
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-Tong Dong
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hai-Wei Du
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Kun Zhou
- Center of Drug Safety Evaluation, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
12
|
Song X, Shen L, Contreras JM, Liu Z, Ma K, Ma B, Liu X, Wang DO. New potential selective estrogen receptor modulators in traditional Chinese medicine for treating menopausal syndrome. Phytother Res 2024; 38:4736-4756. [PMID: 39120263 DOI: 10.1002/ptr.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/19/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.
Collapse
Affiliation(s)
- Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Shen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | | | - Zhiyuan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Japan
| | - Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Guo Y, Xu S, Pan X, Xin W, Cao W, Ma W, Li L, Shen Q, Li Z. Psoralen protects neurons and alleviates neuroinflammation by regulating microglial M1/M2 polarization via inhibition of the Fyn-PKCδ pathway. Int Immunopharmacol 2024; 137:112493. [PMID: 38897126 DOI: 10.1016/j.intimp.2024.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Microglia-mediated neuroinflammation is closely associated with many neurodegenerative diseases. Psoralen has potential for the treatment of many diseases, however, the anti-neuroinflammatory and neuroprotective effects of psoralen have been unclear. This study investigated the anti-neuroinflammatory and neuroprotective effects of psoralen and its regulation of microglial M1/M2 polarization. The LPS-induced mice model was used to test anti-neuroinflammatory effects, regulatory effects on microglia polarization, and neuroprotective effects of psoralen in vivo. The LPS-induced BV2 model was used to test the anti-neuroinflammatory effects and the regulatory effects and mechanisms on microglial M1/M2 polarization of psoralen in vitro. PC12 cell model induced by conditioned medium of BV2 cells was used to validate the protective effects of psoralen against neuroinflammation-induced neuronal damage. These results showed that psoralen inhibited the expression of iNOS, CD86, and TNF-α, and increased the expression of Arg-1, CD206, and IL-10. These results indicated that psoralen inhibited the M1 microglial phenotype and promoted the M2 microglial phenotype. Further studies showed that psoralen inhibited the phosphorylation of Fyn and PKCδ, thereby inhibiting activation of the MAPKs and NF-κB pathways and suppressing the expression of pro-inflammatory cytokines in microglia. Furthermore, psoralen reduced oxidative stress, neuronal damage, and apoptosis via inhibition of neuroinflammation. For the first time, this study showed that psoralen protected neurons and alleviated neuroinflammation by regulating microglial M1/M2 polarization, which may be mediated by inhibition of the Fyn-PKCδ pathway. Thus, psoralen may be a potential agent in the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Yaping Guo
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Sai Xu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wenyu Xin
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wenli Cao
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wenya Ma
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Li Li
- Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013, Zhejiang, China
| | - Qi Shen
- Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013, Zhejiang, China.
| | - Zhipeng Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
14
|
Chen HQ, Zhang QG, Zhang XY, Zeng XB, Xu JW, Ling S. 4'-O-methylbavachalcone alleviates ischemic stroke injury by inhibiting parthanatos and promoting SIRT3. Eur J Pharmacol 2024; 972:176557. [PMID: 38574839 DOI: 10.1016/j.ejphar.2024.176557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.
Collapse
Affiliation(s)
- Hong-Qing Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing-Guang Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin-Yuan Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiang-Bing Zeng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
15
|
Son JL, Oh S, Kim SH, Bae JM. Antibacterial activities of phytochemicals against Porphyromonas gingivalis with and without experimental fluoride varnish for periodontal disease prevention. Dent Mater J 2024; 43:477-484. [PMID: 38719582 DOI: 10.4012/dmj.2023-294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We aimed to evaluate the antibacterial activity of phytochemicals with or without an experimental fluoride varnish against Porphyromonas gingivalis. Five phytochemicals, chrysophanol (CHR), emodin (EMO), anthrarufin (ANT), bavachalcone (BCC), and isobavachromene (IBC), were tested using agar diffusion, minimal inhibition concentration (MIC), and minimum bacterial concentration (MBC) assays. We also assessed the cell viability and cytotoxicity of phytochemicals. All phytochemicals showed clear inhibition zones in the agar diffusion test. The inhibition zones of all phytochemical-containing fluoride varnishes were similar to or larger than that of the positive control, excluding that of 1 mM EMO. With or without the fluoride varnish, BCC exhibited the lowest MIC and MBC levels. Cell viability was high in the presence of all phytochemicals except 200 μM EMO. In conclusion, BCC was most effective as a phytochemical alone, while all phytochemical-containing fluoride varnishes inhibited P. gingivalis growth without cytotoxicity.
Collapse
Affiliation(s)
- Ju-Lee Son
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Seunghan Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Institute of Biomaterials & Implant, Wonkwang University
| | - Seong Hwan Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology
| | - Ji-Myung Bae
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
- Institute of Biomaterials & Implant, Wonkwang University
- Musculoskeletal and Immune Disease Research Institute, Wonkwang University
| |
Collapse
|
16
|
Yu X, Wang Y, Wu Z, Jia M, Xu Y, Qu H, Zhao X, Wang S, Jing L, Lou Y, Fan G, Gui Y. Multi-technology integrated network pharmacology-based study on phytochemicals, active metabolites, and molecular mechanism of Psoraleae Fructus to promote melanogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117755. [PMID: 38218502 DOI: 10.1016/j.jep.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica (Shizhen Li, Ming dynasty) and Welfare Pharmacy (Song dynasty), Psoraleae Fructus (PF), a traditional Chinese medicine (TCM) has a bitter taste and warm nature, which has the effect of treating spleen and kidney deficiency and skin disease. Although PF has been widely used since ancient times and has shown satisfactory efficacy in treating vitiligo, the active substances and the mechanism of PF in promoting melanogenesis remain unclear. AIM OF THE STUDY To explore the active substances and action mechanisms of PF in promoting melanogenesis. MATERIALS AND METHODS Firstly, UPLC-UV-Q-TOF/MS was used to characterize the components in PF extract and identify the absorption components and metabolites of PF after oral administration at usual doses in rats. Secondly, the active substances and related targets and pathways were predicted by network pharmacology and molecular docking. Finally, pharmacodynamic and molecular biology experiments were used to verify the prediction results. RESULTS The experimental results showed that 15 compounds were identified in PF extract, and 44 compounds, consisting of 8 prototype components and 36 metabolites (including isomers) were identified in rats' plasma. Promising action targets (MAPK1, MAPK8, MAPK14) and signaling pathways (MAPK signaling pathway) were screened and refined to elucidate the mechanism of PF against vitiligo based on network pharmacology. Bergaptol and xanthotol (the main metabolites of PF), psoralen (prototype drug), and PF extract significantly increased melanin production in zebrafish embryos. Furthermore, bergaptol could promote the pigmentation of zebrafish embryos more than psoralen and PF extract. Bergaptol significantly increased the protein expression levels of p-P38 and decreased ERK phosphorylation in B16F10 cells, which was also supported by the corresponding inhibitor/activator combination study. Moreover, bergaptol increased the mRNA expression levels of the downstream microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells. Our data elucidate that bergaptol may promote melanogenesis by regulating the p-P38 and p-ERK signaling pathway. CONCLUSIONS This study will lay a foundation for discovering potential new drugs for treating vitiligo and provide feasible ideas for exploring the mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xuemei Yu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Ying Xu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Han Qu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Xin Zhao
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yaxing Gui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
17
|
Gao SY, Zhao JC, Xia Q, Sun C, Aili M, Talifu A, Huo SX, Zhang Y, Li ZJ. Evaluation of the hepatotoxicity of Psoralea corylifolia L. based on a zebrafish model. Front Pharmacol 2024; 15:1308655. [PMID: 38449808 PMCID: PMC10914953 DOI: 10.3389/fphar.2024.1308655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Objective: Psoralea corylifolia L. (FP) has received increasing attention due to its potential hepatotoxicity. Methods: In this study, zebrafish were treated with different concentrations of an aqueous extract of FP (AEFP; 40, 50, or 60 μg/mL), and the hepatotoxic effects of tonicity were determined by the mortality rate, liver morphology, fluorescence area and intensity of the liver, biochemical indices, and pathological tissue staining. The mRNA expression of target genes in the bile acid metabolic signaling pathway and lipid metabolic pathway was detected by qPCR, and the mechanism of toxicity was initially investigated. AEFP (50 μg/mL) was administered in combination with FXR or a peroxisome proliferator-activated receptor α (PPARα) agonist/inhibitor to further define the target of toxicity. Results: Experiments on toxic effects showed that, compared with no treatment, AEFP administration resulted in liver atrophy, a smaller fluorescence area in the liver, and a lower fluorescence intensity (p < 0.05); alanine transaminase (ALT), aspartate transaminase (AST), and γ-GT levels were significantly elevated in zebrafish (p < 0.01), and TBA, TBIL, total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were elevated to different degrees (p < 0.05); and increased lipid droplets in the liver appeared as fatty deposits. Molecular biological validation revealed that AEFP inhibited the expression of the FXR gene, causing an increase in the expression of the downstream genes SHP, CYP7A1, CYP8B1, BSEP, MRP2, NTCP, peroxisome proliferator-activated receptor γ (PPARγ), ME-1, SCD-1, lipoprotein lipase (LPL), CPT-1, and CPT-2 and a decrease in the expression of PPARα (p < 0.05). Conclusion: This study demonstrated that tonic acid extracts are hepatotoxic to zebrafish through the inhibition of FXR and PPARα expression, thereby causing bile acid and lipid metabolism disorders.
Collapse
Affiliation(s)
- Shu-Yan Gao
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Jing-Cheng Zhao
- College of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Maimaiti Aili
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Ainiwaer Talifu
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Shi-Xia Huo
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhi-Jian Li
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| |
Collapse
|
18
|
Tripathi N, Parmar A, Pandey N, Bhardwaj N, Chakrabarty S, Sarkar R, Kumar H, Jain SK. Isolation, Cytotoxicity, and In-silico Screening of Coumarins from Psoralea corylifolia Linn. Chem Biodivers 2024; 21:e202301841. [PMID: 38226737 DOI: 10.1002/cbdv.202301841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Psoralea corylifolia (syn. Cullen corylifolium), commonly called bawachi, is a medicinal plant extensively used for skin conditions like leukoderma, vitiligo, and psoriasis. It is notably rich in valuable bioactive compounds, particularly coumarins and furanocoumarins. This study isolated fourteen coumarins from P. corylifolia which were tested for cytotoxicity using the MTT assay, with compound 10 showing good cytotoxicity against A549 cells (IC50 0.9 μM), while compound 1, compound 2, and compound 3 displaying potential cytotoxicity against MDA-MB-231 cells (IC50 0.49 μM, 0.56 μM, and 0.84 μM respectively). Additionally, the compounds' interaction with Epidermal Growth Factor Receptor (EGFR) protein, highly expressed in both cell lines, was investigated through molecular modeling studies, that aligned well with cytotoxicity results. The findings revealed the remarkable cytotoxic potential of four coumarins 1, 2, 3, and 10 against A549 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| | - Aarati Parmar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nilesh Pandey
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| | - Sanheeta Chakrabarty
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| | - Ruma Sarkar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Hemant Kumar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
19
|
Wang L, Yin X, Liu H, Wang Y, Li Z, Zhao Y, Xu H, Huang C, Diao X. Development and validation of a sensitive liquid chromatography-tandem mass spectrometry method for the assay of 12 substances in rat plasma and its application to rat pharmacokinetics of Epimedium and Psoraleae Fructus herb pair after oral administration. J Sep Sci 2024; 47:e2300786. [PMID: 38234027 DOI: 10.1002/jssc.202300786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Epimedium (EM) and Psoraleae Fructus (PF) are a traditional herb combination often used as a fixed form to treat osteoporosis disease in the clinic. However, the intricate interactions of this pair remain unknown. In our study, we undertook a comprehensive examination of their compatibility behaviors. Concurrently, a precise and sensitive quantitation method was successfully developed and validated using liquid chromatography-tandem mass spectrometry for the determination of 12 components. This method was applied in analyzing herbal extracts and biological samples (both in the portal vein and systemic plasma), which was also used to study the pharmacokinetics of the herb pair. The results indicated that the combination of EM and PF enhanced the dissolution of chemical components from PF in extracts, but it had a negligible influence on the contents of the components from EM. On the contrary, the in vivo exposure of the lowly exposed EM flavonoids significantly increased following the combination of EM and PF, whereas the highly exposed psoralen and isopsoralen were greatly reduced. These interactions might be crucial for the synergy and toxicity reduction of the herbal pair in disease treatment, which pave the way for further exploration into the clinical application and pharmacological mechanisms of EM and PF.
Collapse
Affiliation(s)
- Linwei Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- Shanghai Frontiers Science Research Center for Drug ability of Cardiovascular noncoding RNA, Shanghai, China
| | - Huan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuxuan Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haibo Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- XenoFinder Co. Ltd, Suzhou, China
| |
Collapse
|
20
|
Gao HTY, Li B, Ma J, Zang YD, Li CJ, Zhang DM. New monoterpene phenol dimers from the fruits of Psoralea corylifolia. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:120-129. [PMID: 38509697 DOI: 10.1080/10286020.2023.2300368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 03/22/2024]
Abstract
Three new monoterpene phenol dimers, bisbakuchiols V-X (1-3), and two bakuchiol ethers (4 and 5), along with four known compounds (6-9) were isolated from the fruits of Psoralea corylifolia. Their structures were elucidated based on extensive spectral analysis. The absolute configurations of 1, 2, 4, and 5 were specified by quantum chemical calculations of ECD spectra.
Collapse
Affiliation(s)
- Hu-Tong-Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying-Da Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chuang-Jun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Tripathi N, Bhardwaj N, Kumar S, Jain SK. Phytochemical and Pharmacological Aspects of Psoralen - A Bioactive Furanocoumarin from Psoralea corylifolia Linn. Chem Biodivers 2023; 20:e202300867. [PMID: 37752710 DOI: 10.1002/cbdv.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Since long ago, medicinal plants have played a vital role in drug discovery. Being blessed and rich in chemovars with diverse scaffolds, they have unique characteristics of evolving based on the need. The World Health Organization also mentions that medicinal plants remain at the center for meeting primary healthcare needs as the population relies on them. The plant-derived natural products have remained an attractive choice for drug development owing to their specific biological functions relevant to human health and also the high degree of potency and specificity they offer. In this context, one such esteemed phytoconstituent with inexplicable biological potential is psoralen, a furanocoumarin. Psoralen was the first constituent isolated from the plant Psoralea corylifolia, commonly known as Bauchi. Despite being a life-saver for psoriasis, vitiligo, and leukoderma, it also showed immense anticancer, anti-inflammatory, and anti-osteoporotic potential. This review brings attention to the possible application of psoralen as an attractive target for rational drug design and medicinal chemistry. It discusses the various methods for the total synthesis of psoralen, its extraction, the pharmacological spectrum of psoralen, and the derivatization done on psoralen.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Sanjay Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| |
Collapse
|
22
|
Zhang ML, Zhao X, Li WX, Wang XY, Niu M, Zhang H, Chen YL, Kong DX, Gao Y, Guo YM, Bai ZF, Zhao YL, Tang JF, Xiao XH. Yin/Yang associated differential responses to Psoralea corylifolia Linn. In rat models: an integrated metabolomics and transcriptomics study. Chin Med 2023; 18:102. [PMID: 37592331 PMCID: PMC10433582 DOI: 10.1186/s13020-023-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia Linn. (BGZ) is a commonly used traditional Chinese medicine (TCM) for the treatment of kidney-yang deficiency syndrome (Yangsyn) with good curative effect and security. However, BGZ was also reported to induce liver injury in recent years. According to TCM theory, taking BGZ may induce a series of adverse reactions in patients with kidney-yin deficiency syndrome (Yinsyn), which suggests that BGZ-induced liver damage may be related to its unreasonable clinical use. AIM OF THE STUDY Liver injury caused by TCM is a rare but potentially serious adverse drug reaction, and the identification of predisposed individuals for drug-induced liver injury (DILI) remains challenging. The study aimed to investigate the differential responses to BGZ in Yangsyn and Yinsyn rat models and identify the corresponding characteristic biomarkers. MATERIALS AND METHODS The corresponding animal models of Yangsyn and Yinsyn were induced by hydrocortisone and thyroxine + reserpine respectively. Body weight, organ index, serum biochemistry, and Hematoxylin and Eosin (HE) staining were used to evaluate the liver toxicity effect of BGZ on rats with Yangsyn and Yinsyn. Transcriptomics and metabonomics were used to screen the representative biomarkers (including metabolites and differentially expressed genes (DEGs)) changed by BGZ in Yangsyn and Yinsyn rats, respectively. RESULTS The level changes of liver organ index, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), suggested that BGZ has liver-protective and liver-damaging effects on Yangsyn and Yinsyn rats, respectively, and the results also were confirmed by the pathological changes of liver tissue. The results showed that 102 DEGs and 27 metabolites were significantly regulated related to BGZ's protective effect on Yangsyn, which is mainly associated with the glycerophospholipid metabolism, arachidonic acid metabolism, pantothenate, and coenzyme A (CoA) biosynthesis pathways. While 28 DEGs and 31 metabolites, related to the pathway of pantothenate and CoA biosynthesis, were significantly regulated for the BGZ-induced liver injury in Yinsyn. Furthermore, 4 DEGs (aldehyde dehydrogenase 1 family member B1 (Aldh1b1), solute carrier family 25 member 25 (Slc25a25), Pim-3 proto-oncogene, serine/threonine kinase (Pim3), out at first homolog (Oaf)) and 4 metabolites (phosphatidate, phosphatidylcholine, N-Acetylleucine, biliverdin) in the Yangsyn group and 1 DEG [galectin 5 (Lgals5)] and 1 metabolite (5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate) in Yinsyn group were significantly correlated to the ALT and AST levels of BGZ treated and untreated groups (receiver operating characteristic (ROC) ≥ 0.9). CONCLUSIONS Yinsyn and Yangsyn are the predisposed syndromes for BGZ to exert liver damage and liver protection respectively, which are mainly related to the regulation of amino acid metabolism, lipid metabolism, energy metabolism, and metabolism of cofactors and vitamins. The results further suggest that attention should be paid to the selection of predisposed populations when using drugs related to the regulation of energy metabolism, and the Yinsyn/Yangsyn animal models based on the theory of TCM syndromes may be a feasible method for identifying the susceptible population to receive TCM.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wei-Xia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ming Niu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - De-Xin Kong
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu-Ming Guo
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Ling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Jin-Fa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Xiao-He Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
23
|
Ouyang L, Fan Z, He Y, Tan L, Deng G, He Q, He Y, Ouyang T, Li C, Zhang Q, Liu H, Zuo Y. 4-hydroxylonchocarpin and corylifol A: The potential hepatotoxic components of Psoralea corylifolia L. Toxicol Lett 2023; 385:31-41. [PMID: 37598872 DOI: 10.1016/j.toxlet.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Psoralea corylifolia L. (P. corylifolia) has attracted increasing attention because of its potential hepatotoxicity. In this study, we used network analysis (toxic component and hepatotoxic target prediction, proteinprotein interaction, GO enrichment analysis, KEGG pathway analysis, and molecular docking) to predict the components and mechanism of P. corylifolia-induced hepatotoxicity and then selected 4-hydroxylonchocarpin and corylifol A for experimental verification. HepG2 cells were treated with low, medium, and high concentrations of 4-hydroxylonchocarpin or corylifol A. The activities of ALT, AST, and LDH in cell culture media and the MDA level, SOD activity, and GSH level in cell extracts were measured. Moreover, apoptosis, ROS levels, and mitochondrial membrane potential were evaluated. The results showed that the activities of ALT, AST, and LDH in the culture medium increased, and hepatocyte apoptosis increased. The level of MDA increased, and the activity of SOD and level of GSH decreased, and the ROS level increased with 4-hydroxylonchocarpin and corylifol A intervention. Furthermore, the mitochondrial membrane potential decreased in the 4-hydroxylonchocarpin and corylifol A groups. This study suggests that 4-hydroxylonchocarpin and corylifol A cause hepatocyte injury and apoptosis by inducing oxidative stress and mitochondrial dysfunction, suggesting that these compounds may be the potential hepatotoxic components of P. corylifolia.
Collapse
Affiliation(s)
- Linqi Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhiqiang Fan
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Long Tan
- Department of Pharmacy, People's Hospital of Yizhang County, Chenzhou, China
| | - Guoyan Deng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qin He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yiran He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ting Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Congjie Li
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qin Zhang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hongyu Liu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| | - Yajie Zuo
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
24
|
Chen Y, Tang L, Wu M, Shu L, Xu Y, Yao Y, Li Y. A practical method for rapid discrimination of constituents in Psoraleae Fructus by UPLC-Q-Orbitrap MS. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4966. [PMID: 37464553 DOI: 10.1002/jms.4966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Psoraleae Fructus (PF) is one of the most frequently used traditional Chinese medicine, which has good efficacy in warming kidney to activate yang, promoting inspiration to relieve asthma and warming spleen to stop diarrhea. However, the chemical composition of PF is complex, which makes it difficult to determine its active and toxic components. In order to rapidly classify and identify the chemical components of the extracts from PF, this research was processed with CNKI, PubMed, and PubChem databases and data post-processing technique basing on ultrahigh performance liquid chromatography quadrupole orbitrap mass spectrometry (UPLC-Q-Orbitrap MS) technique. Finally, 73 chemical components were discriminated, including 44 flavonoids, 18 coumarins, and 11 terpenoids, with the cleavage rules of each chemical component summarized. This study established a UPLC-Q-Orbitrap MS method for the separation and discrimination of the chemical constituents of PF, which can lay a foundation for the further study of its medicinal substances and quality control.
Collapse
Affiliation(s)
- Yanyan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luhuan Tang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengru Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Chen XW, Hou ZC, Chen C, Zhang LH, Chen ME, Zhang FM. Enantioselective total syntheses of six natural and two proposed meroterpenoids from Psoralea corylifolia. Chem Sci 2023; 14:5699-5704. [PMID: 37265714 PMCID: PMC10231314 DOI: 10.1039/d3sc00582h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
The first enantioselective total syntheses of six natural and two proposed meroterpenoids isolated from Psoralea corylifolia have been achieved in 7-9 steps from 2-methylcyclohexanone. The current synthetic approaches feature a high level of synthetic flexibility, stereodivergent fashion and short synthetic route, thereby providing a potential platform for the preparation of numerous this-type meroterpenoids and their pseudo-natural products.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Zi-Chao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chi Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Ling-Hui Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
26
|
Liu B, Fang S, Zhou K, Ma L, Shi Y, Wang Y, Gao X. Unveiling hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in Fructus Psoraleae by integrating UPLC-Q-TOF-MS and high content analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023:116664. [PMID: 37253395 DOI: 10.1016/j.jep.2023.116664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Psoraleae (FP), the dried and ripe fruit of Cullen corylifolium (L.) Medik., is widely used due to its various clinical pharmacological effects, but its hepatotoxicity restricts its clinical application. So far, its hepatotoxic components and their underlying mechanism have not been systematically elucidated. AIM OF THE STUDY This study was undertaken to reveal the hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in FP and elucidate their potential mechanism. METHODS Rats were administrated with the aqueous extract of Fructus Psoraleae (AEFP), in which eight coumarin-related compounds were focused. Subsequently, compounds exposed in rats' livers were detected by UPLC-Q-TOF-MS, and the identified hepatotoxic compounds were evaluated to elaborate their possible mechanism by the aid of high content analysis (HCA). RESULTS Eight coumarin-related compounds were identified, among which psoralenoside (PO), isopsoralenoside (IPO), psoralen (P), and isopsoralen (IP) were the principally exposed compounds in rats' livers. Furocoumarinic acid glucoside (FAG), (E)-3-(4-(((2S, 3R, 4S, 5S, 6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) oxy) benzofuran-5-yl) acrylic acid (isofurocoumarinic acid glucoside, IFAG), furocoumarinic acid (FA), and (E)-3-(4-hydroxybenzofuran-5-yl) acrylic acid (isofurocoumarinic acid, IFA) were also detected in low abundance. P, IP, FA, and IFA were identified as the hepatotoxic compounds, while their glycosides were almost non-hepatotoxic. The HCA's results showed that hepatotoxic compounds disrupted the balance in reactive oxygen species (ROS), nuclear area, and mitochondrial membrane potential of HepG2 cells, leading to the occurrence of hepatotoxicity. CONCLUSIONS P, IP, FA, and IFA were identified as hepatotoxic compounds, from which P and IP were proposed as the important risk components for hepatotoxicity. The conversion from glycosides to aglycones played an essential role in FP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Benyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kun Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lulu Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yaling Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
27
|
Lee A, Chung YC, Song KH, Ryuk JA, Ha H, Hwang YH. Network pharmacology-based identification of bioavailable anti-inflammatory agents from Psoralea corylifolia L. in an experimental colitis model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116534. [PMID: 37127140 DOI: 10.1016/j.jep.2023.116534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional oriental medicine, the dried seeds of Psoralea corylifolia L. (PC) have been used to treat various diseases, including gastrointestinal, urinary, orthopedic, diarrheal, ulcer, and inflammatory disorders. AIM OF THE STUDY Although its various biological properties are well-known, there is no information on the therapeutic effects and bioavailable components of PC against inflammatory bowel disease. Therefore, we focused on the relationship between hydroethanolic extract of PC (EPC) that ameliorates colitis in mice and bioactive constituents of EPC that suppress pro-inflammatory cytokines in macrophages. MATERIALS AND METHODS We investigated the therapeutic effects of EPC in a dextran sulfate sodium-induced colitis mouse model and identified the orally absorbed components of EPC using UPLC-MS/MS analysis. In addition, we evaluated and validated the mechanism of action of the bioavailable constituents of EPC using network pharmacology analysis. The effects on nitric oxide (NO) and inflammatory cytokines were measured by Griess reagent and enzyme linked immunosorbent assay in lipopolysaccharide (LPS)-induced macrophages. RESULTS In experimental colitis, EPC improved body weight loss, colon length shortening, and disease activity index. Moreover, EPC reduced the serum levels of pro-inflammatory cytokines and histopathological damage to the colon. Network pharmacological analysis identified 13 phytochemicals that were bioavailable following oral administration of EPC, as well as their potential anti-inflammatory effects. 11 identified EPC constituents markedly reduced the overproduction of NO, tumor necrosis factor-α, and/or interleukin-6 in macrophages induced by LPS. The LPS-induced expression of the nuclear factor kappa-light-chain-enhancer of activated B cells reporter gene was reduced by the 4 EPC constituents. CONCLUSIONS The results indicate that the protective activity of EPC against colitis is a result of the additive effects of each constituent on the expression of inflammatory cytokines. Therefore, it suggests that 11 bioavailable phytochemicals of EPC could aid in the management of intestinal inflammation, and also provides useful insights into the clinical application of PC for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Kwang Hoon Song
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Jin Ah Ryuk
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
| |
Collapse
|
28
|
Wang J, Chen T, Li X, Zhang Y, Fu S, Huo R, Duan Y. A study on the anti-osteoporosis mechanism of isopsoralen based on network pharmacology and molecular experiments. J Orthop Surg Res 2023; 18:304. [PMID: 37069639 PMCID: PMC10108469 DOI: 10.1186/s13018-023-03689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/07/2023] [Indexed: 04/19/2023] Open
Abstract
OBJECTIVE Osteoporosis (OP) is a disease caused by multiple factors. Studies have pointed out that isopsoralen (IPRN) is one of the most effective drugs for the treatment of OP. Based on network pharmacological and molecular experimental analysis, the molecular mechanism of IPRN in osteoporosis is clarified. METHODS IPRN target genes and OP-related genes were predicted from the databases. Intersections were obtained and visualized. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on target genes, which was confirmed by experiments internal and external experiments. Molecular docking was used to verify the binding between IPRN and target proteins. Molecular dynamics (MD) simulates the binding affinity of protein targets and active compounds. RESULTS 87 IPRN target genes and 242 disease-related targets were predicted. The protein-protein interaction (PPI) network identified 18 IPRN target proteins for the treatment of OP. GO analysis indicated that target genes were involved in biological processes. KEGG analysis showed that pathways such as PI3K/AKT/mTOR were associated with OP. Cell experiments (qPCR and WB) found that the expressions of PI3K, AKT, and mTOR in MC3T3-E1 cells at 10 μM, 20 μM, and 50 μM IPRN concentrations, especially at 20 μM IPRN treatment, were higher than those in the control group at 48 h. Animal experiments also showed that compared with the control group, 40 mg/kg/time IPRN could promote the expression of the PI3K gene in chondrocytes of SD rats. CONCLUSIONS This study predicted the target genes of IPRN in the treatment of OP and preliminarily verified that IPRN plays an anti-OP role through the PI3K/AKT/mTOR pathway, which provides a new drug for the treatment of OP.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Xiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, Inner Mongolia Autonomous Region, 010110, China
| | - Yu Zhang
- Department of Surgery, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Shuang Fu
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Ruikun Huo
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Yan Duan
- Department of Surgery, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China.
| |
Collapse
|
29
|
Cheng HM, Xing M, Zhou YP, Zhang W, Liu Z, Li L, Zheng Z, Ma Y, Li P, Liu X, Li P, Xu X. HSP90β promotes osteoclastogenesis by dual-activation of cholesterol synthesis and NF-κB signaling. Cell Death Differ 2023; 30:673-686. [PMID: 36198833 PMCID: PMC9984383 DOI: 10.1038/s41418-022-01071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90β (Hsp90β, encoded by Hsp90ab1 gene) is the most abundant proteins in the cells and contributes to variety of biological processes including metabolism, cell growth and neural functions. However, genetic evidences showing Hsp90β in vivo functions using tissue specific knockout mice are still lacking. Here, we showed that Hsp90β exerted paralogue-specific role in osteoclastogenesis. Using myeloid-specific Hsp90ab1 knockout mice, we provided the first genetic evidence showing the in vivo function of Hsp90β. Hsp90β binds to Ikkβ and reduces its ubiquitylation and proteasomal degradation, thus leading to activated NF-κB signaling. Meanwhile, Hsp90β increases cholesterol biosynthesis by activating Srebp2. Both pathways promote osteoclastogenic genes expression. Genetic deletion of Hsp90ab1 in osteoclast or pharmacological inhibition of Hsp90β alleviates bone loss in ovariectomy-induced mice. Therefore, Hsp90β is a promising druggable target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Mingming Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zeyu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Lan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zuguo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China.
| |
Collapse
|
30
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
31
|
Gao J, Zhang Y, Yu L, Li Y, Liao S, Wang J, Guan L. Identification of Enolase 1 as a Potential Target for Magnaporthe oryzae: Integrated Proteomic and Molecular Dynamics Simulation. J Chem Inf Model 2023; 63:619-632. [PMID: 36580498 DOI: 10.1021/acs.jcim.2c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rice blast is an essential factor affecting rice yield and quality, which is caused by Magnaporthe oryzae (M. oryzae). Isobavachalcone (IBC) is a botanical fungicide derived from the seed extract of the Leguminosae plant Psoralea corylifolia L. and has shown an excellent rice blast control effect in field applications. To explore the potential targets of rice blast control, the analysis of the differentially expressed proteins (DEPs) between the liquid culture medium of mycelium treated by 10 mg/L of IBC for 2 h and the control group indicated that Enolase 1 (ENO1) was the most significantly down-regulated DEP with a fold change value of 0.305. In vitro experiments showed that after treating liquid culture mycelium with 10 mg/L of IBC for 0.5, 1, 2, 4, and 8 h, the enzymatic activity of ENO1 in the IBC experimental groups was 0.97, 0.75, 0.52, 0.44, and 0.39 times as much as in the control groups, respectively. To further explore the molecular interaction and binding mode between IBC and ENO1, the three-dimensional structure of ENO1 was established based on homology modeling. Molecular docking and molecular dynamics simulation showed that IBC had a pi-pi stacking effect with the residue TYR_365, a hydrogen bond interaction with the residue ARG_393, and hydrophobic interactions with non-polar residues ALA_361, LYS_362, and VAL_371 of ENO1. These findings indicated that ENO1 is a potential target of M. oryzae, which would pave the way for screening novel effective fungicides targeting ENO1.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Yaoliang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lin Yu
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Yuejuan Li
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Shumin Liao
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lijie Guan
- Department of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang110142, China
| |
Collapse
|
32
|
Wang M, Tian B, Shen J, Xu S, Liu C, Guan L, Guo M, Dou J. Bavachin induces apoptosis in colorectal cancer cells through Gadd45a via the MAPK signaling pathway. Chin J Nat Med 2023; 21:36-46. [PMID: 36641231 DOI: 10.1016/s1875-5364(23)60383-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Bavachin is a dihydroflavonoid compound isolated from Psoralea corylifolia, and exhibits anti-bacterial, anti-inflammatory, anti-tumor and lipid-lowering activities. Recent attention has gradually drawn on bavachin-induced apoptosis in many human cancer cell lines. However, the anti-cancer effects and related mechanisms in colorectal cancer remain unknown. Here, we investigated the effects of bavachin on colorectal cancer in vivo and in vitro. The results showed that bavachin inhibited the proliferation of human colorectal cancer cells and induce apoptosis. These changes were mediated by activating the MAPK signaling pathway, which significantly up-regulated the expression of Gadd45a. Furthermore, Gadd45a silencing obviously attenuated bavachin-mediated cell apoptosis. Inhibition of the MAPK signaling pathway by JNK/ERK/p38 inhibitors also weakened the up-regulation of Gadd45a by bavachin. The anticancer effect of bavachin was also validated using a mouse xenograft model of human colorectal cancer. In conclusion, these findings suggest that bavachin induces the apoptosis of colorectal cancer cells through activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengru Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Baopeng Tian
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shilin Xu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Cong Liu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Guan
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Min Guo
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Jie Dou
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
33
|
Bandyopadhyay S, Abiodun OA, Ogboo BC, Kola-Mustapha AT, Attah EI, Edemhanria L, Kumari A, Jaganathan R, Adelakun NS. Polypharmacology of some medicinal plant metabolites against SARS-CoV-2 and host targets: Molecular dynamics evaluation of NSP9 RNA binding protein. J Biomol Struct Dyn 2022; 40:11467-11483. [PMID: 34370622 DOI: 10.1080/07391102.2021.1959401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Medicinal plants as rich sources of bioactive compounds are now being explored for drug development against COVID-19. 19 medicinal plants known to exhibit antiviral and anti-inflammatory effects were manually curated, procuring a library of 521 metabolites; this was virtually screened against NSP9, including some other viral and host targets and were evaluated for polypharmacological indications. Leads were identified via rigorous scoring thresholds and ADMET filtering. MM-GBSA calculation was deployed to select NSP9-Lead complexes and the complexes were evaluated for their stability and protein-ligand communication via MD simulation. We identified 5 phytochemical leads for NSP9, 23 for Furin, 18 for ORF3a, and 19 for IL-6. Ochnaflavone and Licoflavone B, obtained from Lonicera japonica (Japanese Honeysuckle) and Glycyrrhiza glabra (Licorice), respectively, were identified to have the highest potential polypharmacological properties for the aforementioned targets and may act on multiple pathways simultaneously to inhibit viral entry, replication, and disease progression. Additionally, MD simulation supports the robust stability of Ochnaflavone and Licoflavone B against NSP9 at the active sites via hydrophobic interactions, H-bonding, and H-bonding facilitated by water. This study promotes the initiation of further experimental analysis of natural product-based anti-COVID-19 therapeutics.
Collapse
Affiliation(s)
- Suritra Bandyopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), BARC Training School Complex, Mumbai, India
| | | | - Blessing Chinweotito Ogboo
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka
| | - Adeola Tawakalitu Kola-Mustapha
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria.,College of Pharmacy, Alfaisal University Riyadh, Saudi Arabia
| | - Emmanuel Ifeanyi Attah
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka
| | - Lawrence Edemhanria
- Department of Chemical Sciences, Samuel Adegboyega University, Ogwa, Nigeria
| | | | - Ravindran Jaganathan
- SriSamraj Health Services Pvt. Ltd, Tindivanam, Tamilnadu, India.,Pre-clinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL-RCMP), Malaysia
| | - Niyi S Adelakun
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria.,Bio-Assay and Cheminformatics Unit, Molecular and Simulations, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
34
|
Li L, Dong F, Wang B, Song J, Zhang H, Wang P, Wang F, Yan Y, Zhang X. Metabolites Identification and Mechanism Prediction of Neobavaisoflavone In Vitro and In Vivo of Rats through UHPLC-Q-Exactive Plus Orbitrap MS Integrated Network Pharmacology. Molecules 2022; 27:molecules27238413. [PMID: 36500506 PMCID: PMC9736981 DOI: 10.3390/molecules27238413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Neobavaisoflavone is an important isoflavone component isolated from Psoraleae Fructus. It is used extensively worldwide because of its antibacterial, antioxidant, anti-inflammatory, anticancer, and anti-osteoporotic activities. However, there is no systematic and comprehensive research on the metabolism of neobavaisoflavone in vivo and in vitro. The study aimed to analyze the metabolic characteristics and mechanism of neobavaisoflavone for the first time. Firstly, biological samples were pretreated by the solid-phase extraction (SPE) method, methanol precipitation, and acetonitrile precipitation. Secondly, the samples were analyzed on UHPLC-Q-Exactive Plus Orbitrap MS. Thirdly, metabolites were tentatively identified based on retention time, parallel reaction monitoring strategy, diagnostic product ions, and neutral loss fragments. A total of 72 metabolites of neobavaisoflavone were tentatively identified, including 28 in plasma, 43 in urine, 18 in feces, six in the liver, and four in the liver microsome. The results suggested that neobavaisoflavone mainly underwent glucuronidation, sulfation, hydroxylation, methylation, cyclization, hydration, and their composite reactions in vivo and in vitro. In addition, nine active components with high bioavailability and 191 corresponding targets were predicted by the Swiss Drug Design database. The 1806 items of GO and 183 KEGG signaling pathways were enriched. These results showed that metabolites expanded the potential effects of neobavaisoflavone. The present study would provide the scientific basis for the further exploitation and application of neobavaisoflavone.
Collapse
Affiliation(s)
- Linlin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Fan Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Bianli Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Jian Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (J.S.); (H.Z.)
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
- Correspondence: (J.S.); (H.Z.)
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Feiran Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yingying Yan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
35
|
Mu L, Dai H, Fei C, Li W, Xue Q, Xu Y, Li L, Li W, Yin W, Yin F. Study on the processing chemistry of Fructus Psoraleae by a combination of untargeted and targeted metabolomics. J Sep Sci 2022; 45:4280-4291. [PMID: 36168848 DOI: 10.1002/jssc.202200504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 12/13/2022]
Abstract
Fructus Psoralea is widely used to treat osteoporosis and skin inflammatory diseases. Because of the side effects on the liver, renal and cardiovascular systems, it is processed to salt-processed Fructus Psoraleae to meet the requirements of clinical use. However, the mechanisms involved in the transformation of the chemical components are unclear. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the chemical profiles of this herbal medicine and the chemical transformation mechanism involved during the salt processing was studied. A total of 83 compounds were identified. Principal component analysis and orthogonal partial least squares discriminate analysis were used to observe the distribution trend of all samples and visualize the difference. Raw and processed Fructus Psoraleae were clearly clustered into two groups. Furthermore, 17 marker compounds were identified as primary contributors to their differences based on t-test analysis (p < 0.01) and orthogonal partial least squares discriminate analysis (variable importance for the projection > 1). Finally, ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was used to evaluate the quality of Fructus Psoraleae by simultaneous analysis of 13 components highly related to efficacy. There were variations in the contents of 13 chemicals of Fructus Psoraleae and salt-processed products. The results of untargeted and targeted metabolomics revealed that salt processing affected the chemical composition of Fructus Psoraleae.
Collapse
Affiliation(s)
- Liyan Mu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Dai
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wenjing Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yan Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
36
|
Gupta N, Qayum A, Singh S, Mujwar S, Sangwan PL. Isolation, Anticancer Evaluation, Molecular Docking, Drug likeness and ADMET Studies of Secondary Metabolites from
Psoralea corylifolia
seeds. ChemistrySelect 2022. [DOI: 10.1002/slct.202202115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nidhi Gupta
- Natural Product and Medicinal Chemistry (NPMC) Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Department of Pharmaceutical Chemistry M. M. College of Pharmacy Maharishi Markandeshwar (Deemed to be University) Mullana Ambala Haryana India 133207
| | - Arem Qayum
- Cancer Pharmacology Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| | - Shashank Singh
- Cancer Pharmacology Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| | - Somdutt Mujwar
- Department of Pharmaceutical Chemistry M. M. College of Pharmacy Maharishi Markandeshwar (Deemed to be University) Mullana Ambala Haryana India 133207
| | - Payare L. Sangwan
- Natural Product and Medicinal Chemistry (NPMC) Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| |
Collapse
|
37
|
Flavonoids dimers from the fruits of Psoralea corylifolia and their cytotoxicity against MCF-7 cells. Bioorg Chem 2022; 130:106262. [DOI: 10.1016/j.bioorg.2022.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
38
|
Modulation of non-coding RNAs by natural compounds as a potential therapeutical approach in oral cancer: A comprehensive review. Pathol Res Pract 2022; 239:154166. [DOI: 10.1016/j.prp.2022.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022]
|
39
|
Zhang C, Zhao JQ, Sun JX, Li HJ. Psoralen and isopsoralen from Psoraleae Fructus aroused hepatotoxicity via induction of aryl hydrocarbon receptor-mediated CYP1A2 expression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115577. [PMID: 35872289 DOI: 10.1016/j.jep.2022.115577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoraleae Fructus (PF), a traditional Chinese medicine, has long been used to treat diseases such as cancer, osteoporosis and leukoderma. Psoralen and isopsoralen are main bioactive ingredients of PF with anti-tumor, anti-inflammatory, estrogen-like neuroprotection, etc., meanwhile they are also representative hepatotoxic components of PF. Hepatic CYP1A2 has been reported to be the important metabolic enzymes involved in psoralen and isopsoralen-induced hepatotoxicity. However, the relationship between the hepatotoxicity and CYP1A2 expression, and the underlying mechanism of regulating CYP1A2 expression remain unclear. AIM OF STUDY The aim of this study was to explore the associated mechanism between psoralen or isopsoralen induced hepatotoxicity and activated aryl hydrocarbon receptor (AhR)-mediated transcriptional induction of CYP1A2 in vitro and in vivo. MATERIALS AND METHODS Psoralen and isopsoralen at different doses were treated on HepG2 cells (10, 25, 50, 100, 200 μM for 2, 12, 24, 36, 48 h) and mice (20, 80, 160 mg/kg for 3, 7, 14 days) for different time, to assess the correlation of induced hepatotoxicity and CYP1A2 mRNA and protein expression in vivo and in vitro, as well as the effect on CYP1A2 enzyme activity evaluated by phenacetin metabolism. In addition, the potential mechanism of the regulation of CYP1A2 expression mediated by AhR was explored through nucleocytoplasmic shuttling, immunofluorescence, cellular thermal shift assay and molecular docking, etc. RESULTS: Psoralen and isopsoralen induced cytotoxicity in HepG2 cells, and hepatomegaly, biochemicals disorder and tissue pathological impairment in mice, respectively in dose- and time-dependent manners. Simultaneously accompanied with elevated levels of CYP1A2 mRNA and protein in the same trend, and the CYP1A2 activity was remarkably inhibited in vitro but significantly elevated overall in vivo. Besides, psoralen and isopsoralen bound to AhR and activated translocation of AhR from the cytoplasm to the nucleus, leading to the transcriptional induction of target gene CYP1A2. CONCLUSIONS Hepatotoxicities in HepG2 cells and mice aroused by psoralen and isopsoralen were related to the induction of CYP1A2 expression and activity, whose underlying mechanism might be psoralen or isopsoralen activated AhR translocation and induced increase of CYP1A2 transcriptional expression. Hopefully, these finding are conductive to propose an alert about the combined usage of psoralen or isopsoralen and AhR ligands or CYP1A2 substrates in clinical practice.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
40
|
Mahajan N, Koul B, Kaur J, Bishnoi M, Gupta P, Kumar A, Shah BA, Mubeen I, Rai AK, Prasad R, Singh J. Antiobesity Potential of Bioactive Constituents from Dichloromethane Extract of Psoralea corylifolia L. Seeds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9504787. [PMID: 36060144 PMCID: PMC9436577 DOI: 10.1155/2022/9504787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022]
Abstract
Purpose Effectively controlling the accumulation of adipose tissue can be a therapeutic strategy for treating obesity, which is a global problem. The present study was designed for comparative assessment of in vitro antiobesity activities of the Psoralea corylifolia-dichloromethane seed extract (DCME) and the isolated phytochemicals, bakuchiol, isopsoralen, and psoralen, through antiadipogenesis and pancreatic lipase (PL) inhibition assays. Material and Methods. In vitro pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm, and adipogenesis was assayed in 3 T3-L1 adipocytes (by using Oil Red O staining) using P. corylifolia-dichloromethane seed extract (DCME) and individual compounds, isolated from the extract. Result Antilipase as well as antiadipogenesis activity was displayed by both the DCME and the compounds. Maximum antilipase property was recorded in DCME (26.02 ± .041%) at 100 μg/ml, while, among the isolated compounds, bakuchiol exhibited a higher activity (24.2 ± 0.037%) at 100 μg/ml concentration, compared to other isolates. DCME was found to exhibit antiadipogenesis property, 75 ± 0.003% lipid accumulation, compared to the control at 100 μg/ml dose. Bakuchiol, isopsoralen, and psoralen inhibited the lipid accumulation in 3T3-L1 preadipocytes, 78.06 ± 0.002%, 80.91 ± 0.004%, and 80.91 ± 0.001%, respectively, lipid accumulation in comparison to control at 25 μM dose. Conclusion The present study highlights the antiobesity potential of P. corylifolia and its active constituents. Thus, it can be concluded that P. corylifolia has the potential to treat obesity and related diseases; however, further research on dose standardization and clinical trials are required.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
- Department of Biotechnology, Govt. Degree College Kathua, Affiliated to University of Jammu, 184104, J&K (UT), India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Jasleen Kaur
- National Agri-Food Biotechnology Institute, Knowledge City-Sector 81, SAS, Nagar, Punjab 140603, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Knowledge City-Sector 81, SAS, Nagar, Punjab 140603, India
| | - Pankaj Gupta
- Department of Chemistry, Govt. Degree College Kathua, Affiliated to University of Jammu, 184104, J&K (UT), India
| | - Amit Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, J&K (UT), Jammu 180001, India
| | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine, Canal Road, J&K (UT), Jammu 180001, India
| | - Iqra Mubeen
- College of Plant Health and Medicine, Key Lab of Integrated Crop Disease and Pest Management, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
| |
Collapse
|
41
|
Guo J, Shen Y, Hu S, Rui T, Liu J, Yuan Y. Neobavaisoflavone inhibits antitumor immunosuppression via myeloid-derived suppressor cells. Int Immunopharmacol 2022; 111:109103. [PMID: 35944461 DOI: 10.1016/j.intimp.2022.109103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Neobavaisoflavone (Neo), as a traditional Chinese medicine, is the active ingredient in the herb Psoralea corylifolial and has antitumor activity. Myeloid-derived suppressor cells (MDSCs), which are a heterogeneous population of haematopoietic cells of the myeloid lineage, have been reported to be closely related to the pathogenesis of tumour progression, but whether Neo can regulate MDSC expansion and function remains unclear. Here, we found that Neo could inhibit the expansion and suppressive function of MDSCs by targeting STAT3. Importantly, Neo inhibited the growth of 4T1 and LLC tumours in vivo, as well as lung metastasis of 4T1 tumours in vivo. Furthermore, we identified MDSCs as the direct targets by which Neo attenuated tumour progression. In addition, Neo notably enhanced anti-PD-1 efficacy in anti-PD-1-insensitive 4T1 tumours. Therefore, our study sheds light on the development of Neobased therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Jufeng Guo
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yingying Shen
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
42
|
Qi SZ, Li BB, Liu MS, Zhang Z, Miao S, Gong KK. Chemical constituents from the seeds of Cullen corylifolium and their inhibitory activity on diacylglycerol acyltransferase. Nat Prod Res 2022; 37:1601-1607. [PMID: 35876050 DOI: 10.1080/14786419.2022.2103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A large number of extracts of medicinal plants or natural products shows beneficial to combat obesity. In the present work, a new flavonoid named (2S,1″R,2″R)-4'-hydroxy-7-methoxy-6-(1,2,3-trihydroxy-3-methyl-butyl)-flavanone (1), along with seven known compounds (2-8) were isolated from the seeds of Cullen corylifolium. Their structures, including the absolute configurations, were determined by the analysis of comprehensive spectroscopic data and computational calculation methods. All isolates were evaluated for their diacylglycerol acyltransferase (DGAT) inhibitory activity. Compounds 1-4 exhibited different level of DGAT1 inhibitory activity with IC50 values ranging from 28.2 ± 1.1 to 127.3 ± 1.9 μM. In addition, 45 flavonoids which be evaluated for DGAT inhibitory activity were summarised and potential structure-activity relationships were discussed.
Collapse
Affiliation(s)
- Shi-Zhou Qi
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Ban-Ban Li
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, China
| | - Meng-Shan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Zhen Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Shuang Miao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Kai-Kai Gong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
43
|
Liu XW, Yang YJ, Qin Z, Li SH, Bai LX, Ge WB, Li JY. Isobavachalcone From Cullen corylifolium Presents Significant Antibacterial Activity Against Clostridium difficile Through Disruption of the Cell Membrane. Front Pharmacol 2022; 13:914188. [PMID: 35942219 PMCID: PMC9356235 DOI: 10.3389/fphar.2022.914188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background:Clostridium difficile infection (CDI) has been widely reported in human and animals around the world over the past few decades. The high relapse rate and increasing drug resistance of CDI make the discovery of new agents against C. difficile fairly urgent. This study aims to investigate the antibacterial activity against C. difficile from traditional Chinese herb medicine Cullen corylifolium and confirm its active components. Methods: Phenolic extract from the seeds of C. corylifolium was prepared routinely and the contents of relative flavonoids were determined by High Performance Liquid Chromatography (HPLC). In vitro antibacterial activities of the phenolic extract and its major components were tested. The influence of the major components on cell membrane was investigated with membrane integrity by SEM and propidium iodid uptake assay. Cytotoxicity of the extract and its active compounds on Caco-2 cell line was assessed by CCK-8 kit. The in vivo therapeutic efficacy of IBCL was evaluated on the mice model. Results: Phenolic extract was found to be active against C. difficile with minimum inhibitory concentrations (MIC) of 8 μg/mL. As the major component of the extract, IBCL was the most active compound against C. difficile. The MIC of IBCL and 4MBCL were 4 μg/ml and 4 μg/ml, respectively. Meanwhile, PFPE, IBCL, and 4MBCL showed rapid bactericidal effect against C. difficile in 1 h, which was significant compared to antibiotic vancomycin. Mechanism studies revealed that IBCL can disrupt the integrity of the cell membrane, which may lead to the death of bacteria. PFPE was low cytotoxic against Caco-2 cells, and the cytotoxicity of IBCL and 4MBCL were moderate. Symptoms of CDI were effectively alleviated by IBCL on the mice model and weight loss was reduced. From death rates, IBCL showed better efficacy compared to vancomycin at 50 mg/kg dosage. Conclusion: As the major component of phenolic extract of C. corylifolium seeds, IBCL showed significant antibacterial activity against C. difficile in vitro and rapidly killed the bacteria by disrupting the integrity of the cell membrane. IBCL can significantly prevent weight loss and reduce death caused by CDI on the mice model. Therefore, IBCL may be a promising lead compound or drug candidate for CDI.
Collapse
|
44
|
Zhong Y, Gai Y, Gao J, Nie W, Bao Z, Wang W, Xu X, Wu J, He Y. Selection and validation of reference genes for quantitative real-time PCR normalization in Psoralea corylifolia (Babchi) under various abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153722. [PMID: 35605384 DOI: 10.1016/j.jplph.2022.153722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Psoralea corylifolia L. is a popular herb and has long been used in traditional Ayurvedic and Chinese medicine owing to its extensive pharmacological activities, especially in the treatment of various shin diseases. To date, the systematic evaluation and selection of the optimum reference genes for gene expression analysis of P. corylifolia were not reported. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a method for gene expression quantification. Selecting appropriate reference genes is the prerequisite for accurate normalization of RT-qPCR results. This study assessed the expression stability of 10 candidate reference genes under different abiotic stresses. First, amplification primers for RT-qPCR were designed and received testing and optimization. Then, expression data from each candidate gene were evaluated based on three statistical algorithms, and their results were further integrated into a comprehensive ranking based on the geometric mean. Additionally, one target gene, i.e., 1-aminocyclopropane-1-carboxylate oxidase (ACO), was used to validate the effectiveness of the selected reference. Our analysis suggested that thioredoxin-like protein YLS8 (YLS8), TIP41-like family protein (TIP41), and cyclophilin 2 (CYP2) genes provided superior expression normalization under different abiotic stresses. Overall, this work constitutes the first effort to select optimal endogenous controls for RT-qPCR studies of gene expression in P. corylifolia. It also provides a reasonable normalization standard and basis for further analysis of the gene expression of bioactive components in P. corylifolia.
Collapse
Affiliation(s)
- Yuan Zhong
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Jiajia Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Weifen Nie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhenzhen Bao
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Weiqi Wang
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Xiaoqing Xu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Jie Wu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yuedong He
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
45
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Zhang YL, Chen Q, Zheng L, Zhang ZW, Chen YJ, Dai YC, Tang ZP. Jianpi Qingchang Bushen decoction improves inflammatory response and metabolic bone disorder in inflammatory bowel disease-induced bone loss. World J Gastroenterol 2022; 28:1315-1328. [PMID: 35645540 PMCID: PMC9099185 DOI: 10.3748/wjg.v28.i13.1315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/17/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone loss and osteoporosis are commonly described as extra-intestinal manifestations of inflammatory bowel disease (IBD). Jianpi Qingchang Bushen decoction (JQBD) is a prescription used in clinical practice. However, further studies are needed to determine whether JQBD regulates the receptor activator of nuclear factor kappa B (NF-κB) (RANK)/receptor activator of NF-κB ligand (RANKL)/ osteoprotegerin (OPG) pathways and could play a role in treating IBD-induced bone loss. AIM To evaluate the therapeutic effect of JQBD in IBD-induced bone loss and explore the underlying mechanisms. METHODS An IBD-induced bone loss model was constructed by feeding 12 6-to-8-wk-old interleukin-10 (IL-10)-knockout mice with piroxicam for 10 d. The mice were randomly divided into model and JQBD groups. We used wild-type mice as a control. The JQBD group was administered the JQBD suspension for 2 wk by gavage, while the control and model groups were given normal saline at the corresponding time points. All mice were killed after the intervention. The effect of JQBD on body weight, disease activity index (DAI), and colon length was analyzed. Histopathological examination, colon ultrastructure observation, and micro-computed tomographic scanning of the lumbar vertebrae were performed. The gene expression of NF-κB, tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-8 in the colon was evaluated by real-time polymerase chain reaction. Colon samples were assessed by Western blot for the expression of RANKL, OPG, RANK, and NF-κB proteins. RESULTS The model group lost body weight, had a shorter colon, and showed a dramatic increase in DAI score, whereas JQBD had protective and therapeutic effects. Treatment with JQBD significantly improved inflammatory cell infiltration and reduced crypt abscess and ulcer formation. Three-dimensional imaging of the vertebral centrum in the model group revealed a lower bone mass, loose trabeculae, and "rod-shaped" changes in the structure compared to the control group and JQBD groups. The bone volume/total volume ratio and bone mineral density were significantly lower in the model group than in the control group. JQBD intervention downregulated the NF-κB, TNF-α, IL-1β, IL-6, and IL-8 mRNA expression levels. The RANKL and OPG protein levels were also improved. CONCLUSION JQBD reduces inflammation of the colonic mucosa and inhibits activation of the RANK/ RANKL/OPG signaling pathway, thereby reducing osteoclast activation and bone resorption and improving bone metabolism.
Collapse
Affiliation(s)
- Ya-Li Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qian Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lie Zheng
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi’an 710003, Shaanxi Province, China
| | - Zi-Wei Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Jun Chen
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Peng Tang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
47
|
Liu J, Zhang W, Li Y, Li X, Li Y, Guo F. Flavonoids extract from the seeds of Psoralea corylifolia L. (PFE) alleviates atherosclerosis in high-fat diet-induced LDLR -/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153983. [PMID: 35152088 DOI: 10.1016/j.phymed.2022.153983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The seeds of Psoralea corylifolia L., a traditional medicine popular used in China and India, have been recommended in the treatment of leucoderma, psoriasis, osteoporosis, and gynecological bleeding. Our previous studies have found that flavonoid extract from the seeds of Psoralea corylifolia L. could activate fat browning and correct the disorder of glucose and lipid metabolism in obese mice. PURPOSE The present study aimed to investigate the anti-atherosclerosis of flavonoids extract from the seeds of Psoralea corylifolia L. METHODS Leukocyte adhesion assay, RT-PCR, Western blot analysis, and immunofluorescent assay were carried out in ox-LDL induced endothelium injury and foam cells formation in vitro. Flavonoids from the seeds of P. corylifolia L. (PFE) was administrated 150 and 300 mg/kg/day in HFD-induced LDLR-/- mice for 12 weeks. RESULTS Flavonoids from the seeds of P. corylifolia L. (PFE) could prevent leukocyte adhesion to the endothelium by inhibiting mRNA and protein expression of these adhesion molecules (VCAM-1, ICAM-1, and E-selectin). PFE could also prevent ox-LDL stimulated inflammation in HUVECs by inhibiting the NF-κB pathway. In addition, PFE significantly ameliorated ox-LDL induced macrophages-oriented foam cells formation through inducing cholesterol efflux via PPARγ-ABCA1/ABCG1. In HFD-induced LDLR-/- mice, PFE reversed the serum profile and circulated inflammation level. Meanwhile, PFE could remarkably alleviate atherosclerotic lesion sizes and intraplaque macrophage infiltration in aortic roots. CONCLUSION Flavonoids from the seeds of P. corylifolia L. could alleviate atherosclerosis by preventing endothelium injury, attenuating vascular inflammation, and alleviating the formation of foam cells.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Wen Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yahui Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
48
|
Combined Modeling Study of the Binding Characteristics of Natural Compounds, Derived from Psoralea Fruits, to β-Amyloid Peptide Monomer. Int J Mol Sci 2022; 23:ijms23073546. [PMID: 35408917 PMCID: PMC8998326 DOI: 10.3390/ijms23073546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
A dysfunctional protein aggregation in the nervous system can lead to several neurodegenerative disorders that result in intracellular inclusions or extracellular aggregates. An early critical event within the pathogenesis of Alzheimer’s disease is the accumulation of amyloid beta peptide within the brain. Natural compounds isolated from Psoralea Fructus (PF) have significant anti-Alzheimer effects as strong inhibitors of Aβ42 aggregation. Computer simulations provide a powerful means of linking experimental findings to nanoscale molecular events. As part of this research four prenylated compounds, the active ingredients of Psoralea Fructus (PF), were studied as Aβ42 accumulation inhibitors using molecular simulations modeling. In order to resolve the binding modes of the ligands and identify the main interactions of Aβ42 residues, we performed a 100 ns molecular dynamics simulation and binding free energy calculations starting from the model of the compounds obtained from the docking study. This study was able to pinpoint the key amino acid residues in the Aβ42 active site and provide useful information that could benefit the development of new Aβ42 accumulation inhibitors.
Collapse
|
49
|
Sun C, Zhao L, Wang X, Hou Y, Guo X, Lu JJ, Chen X. Psoralidin, a natural compound from Psoralea corylifolia, induces oxidative damage mediated apoptosis in colon cancer cells. J Biochem Mol Toxicol 2022; 36:e23051. [PMID: 35315184 DOI: 10.1002/jbt.23051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 01/22/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Psoralidin (PSO) is a natural coumarin isolated from the seeds of Psoralea corylifolia Linn. Previous studies have reported that PSO exerts numerous pharmacological bioactivities including antitumor. The present study aimed to investigate its anticancer effect using colon cancer cells. Cultured HT-29 and HCT-116 colon cancer cells were treated with different concentrations of PSO, and the cell viability, the intracellular reactive oxygen species (ROS), the protein expression, and the apoptosis were determined by MTT assay, DCFH2 -DA fluorescence probe, Western blotting, and Annexin V/7-AAD staining, respectively. The activities of caspase 3/7 were determined by a commercial kit. Our study found that PSO effectively induces apoptotic cell death mediated by caspase 3/7 in HT-29 and HCT-116 colon cancer cells. PSO treatment rapidly boosts the ROS generation, which is responsible for the PSO-triggered DNA damage, mitochondria membrane potential decrease and caspase 3/7 activation, and c-Jun N-terminal kinase 1/2 activation. Collectively, these results showed that PSO triggered oxidative damage mediated apoptosis in colon cancer cells.
Collapse
Affiliation(s)
- Chong Sun
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Lin Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xianzhe Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ying Hou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuli Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jin-Jian Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
50
|
Adarsh Krishna TP, Edachery B, Athalathil S. Bakuchiol - a natural meroterpenoid: structure, isolation, synthesis and functionalization approaches. RSC Adv 2022; 12:8815-8832. [PMID: 35424800 PMCID: PMC8985110 DOI: 10.1039/d1ra08771a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bakuchiol is an emblematic meroterpene class of natural product extracted from Psoralea corylifolia. It has been reported to possess a broad range of biological and pharmacological properties and is considered as a leading biomolecule. It is highly desirable to devise an efficient approach to access bakuchiol and its chemical biology applications. In this review we provided structural features, isolation methods, various chemical routes and late-stage functionalization (LSF) approaches for bakuchiol and its derivatives. Moreover, this review encompasses the structure-activity relationships (SAR), value-added contributions and future perspectives of bakuchiol.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Baldev Edachery
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| | - Sunil Athalathil
- R & D Division, Sreedhareeyam Farmherbs India Pvt. Ltd Ernakulam (Dist.) Kerala India-686 662
| |
Collapse
|