1
|
Zhu Q, Hao H, Gao Y, Li N, Liu Z, Shu L, Wang Q, Zhang L. Dapagliflozin ameliorates kidney injury following limb ischemia-reperfusion via the AMPK/SIRT1/NLRP3 pathway. Ren Fail 2025; 47:2495111. [PMID: 40264429 PMCID: PMC12020146 DOI: 10.1080/0886022x.2025.2495111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Limb ischemia-reperfusion (I/R) results in both localized tissue harm and injury to distant organs, particularly affecting the kidneys and leading to acute kidney injury. This study evaluates the renoprotective effect of dapagliflozin, a drug frequently prescribed for type 2 diabetes management, in relation to kidney injury caused by limb I/R. The extent of kidney injury was detected through serum marker testing in the rat model. Oxidative stress indicators and inflammatory factors were evaluated in rat and cellular models. Histological changes in the kidneys were examined using HE staining and electron microscopy. Cell pyroptosis was quantified using both TUNEL staining and flow cytometry. Cellular mitochondrial function was analyzed with JC-1 staining. AMPK/SIRT1/NLRP3 pathway-related proteins and their mRNAs were assessed via western blotting and RT-qPCR techniques. We showed that dapagliflozin reduced serum CRE, BUN, NGAL and KIM-1 levels and improved renal pathology in rat. Additionally, dapagliflozin significantly raised the concentrations of GSH-Px and SOD, concurrently reduced MDA and ROS levels in vivo and in vitro. It also lowered the levels of IL-6 and TNF-α and reduced cell pyroptosis. Furthermore, it was observed that dapagliflozin elevated AMPK and SIRT1 expressions, while decreasing NLRP3, ASC, GSDMD, IL-1β, and caspase-1 expressions. Notably, these effects of dapagliflozin were diminished in the presence of AMPK siRNA. Taken together, dapagliflozin exhibits a significant protective effect against kidney injury resulting from limb I/R. This protective effect operates through the inhibition of pyroptosis by activating the AMPK/SIRT1/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Qiuxiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyao Hao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zibo Liu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Linyi Shu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qian Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lihui Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Qiao M, Xue T, Zhu Y, Yang J, Hu J. Polysaccharides from Cistanche deserticola mitigate inflammatory bowel disease via modulating intestinal microbiota and SRC/EGFR/PI3K/AKT signaling pathways. Int J Biol Macromol 2025; 308:142452. [PMID: 40139591 DOI: 10.1016/j.ijbiomac.2025.142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Polysaccharides of Cistanche deserticola Ma (CDPS), with high safety and low toxicity have been reported to possess anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anti-osteoporosis, antidepressant, intestinal flora regulatory and hepatoprotective properties. Nevertheless, the effects of CDPS on inflammatory bowel disease (IBD) and its underlying mechanisms have never been reported. To estimate its therapeutic potential on IBD, the extracted CDPS were characterized via utilizing a series of chemical, spectroscopic, and instrumental analyses, and the protective effects and mechanisms of CDPS in colitis mice was investigated. Our results indicated that CDPS were identified as acidic heteropolysaccharides. CDPS alleviated dextran sodium sulfate-induced IBD mice characterized by decreasing disease activity index, improving colon length and body weight, restoring histopathological lesions, inhibiting the expression of pro-inflammatory cytokine (IL-6, IL-1β, TNF-α) and MPO activity, elevating the expression of anti-inflammatory cytokine (IL-10) in colon tissue. The findings manifested CDPS could mitigate the inflammation of colon. Simultaneously, CDPS inhibited the expression of genes and proteins associated with SRC/EGFR/PI3K/AKT signaling pathways, and reduced the diversity and abundance of harmful gut microbiota, including Helicobacter, Bacteroides and Colidextribacter, while descending the relative abundance of Lachnospiraceae_NK4A136_group at genus level. In summary, this work elucidated that CDPS alleviates IBD symptoms via mitigating the inflammation of colon, and modulating intestinal microbiota and SRC/EGFR/PI3K/AKT signaling pathways. It underscores the promise of CDPS as a functional food ingredient or preventive drugs for IBD.
Collapse
Affiliation(s)
- Ming Qiao
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Zhu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
3
|
Wang J, Zhao X, Han B, Meng K, Gao L. The up-regulation of PTBP1 expression level in patients with Insomnia by senile dementia and promote cuproptosis of nerve cell by SLC31A1. Sleep Med 2025; 128:206-218. [PMID: 39985973 DOI: 10.1016/j.sleep.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD), often referred to as the modern-day scourge, stands as a significant health challenge characterized by high rates of disability and mortality, particularly among the geriatric population. Thus, the present study investigated the precise details of PTBP1 involvement in cuproptosis of nerve cell of patients with Insomnia by senile dementia (ISD). Patients with ISD, early mild cognitive impairment (EMCI) and Normal healthy volunteers were obtained. In the context of ISD, the elevated PTBP1 mRNA expressions were observed in patient samples, correlating positively with diminished cognitive function as measured by the Mini-Mental State Examination (MMSE) and increased geriatric depression scale scores. The pivotal role of PTBP1 was further underscored by its inhibitory effects in a mice model, which prevented the development of senile dementia, and its influence on neuronal cell proliferation and ROS-induced oxidative stress in vitro. Additionally, PTBP1's regulatory capacity on the cuproptosis of nerve cells and its modulation of SLC31A1 expression, through effects on ubiquitination, were revealed. The stability of PTBP1, critical for its function, was enhanced by the m6A modification mediated by METTL3, highlighting a complex regulatory network in the pathogenesis of ISD. These data confirmed that PTBP1 plays a pivotal role in promoting the oxidative response and cuproptosis in Alzheimer's disease models via the SLC31A1 pathway. The findings suggest that PTBP1 could serve as a potential biomarker for the diagnosis and prognostic evaluation of ISD and AD, paving the way for the development of novel therapeutic strategies targeting this protein.
Collapse
Affiliation(s)
- Jing Wang
- Department of Psychiatry, Shanxi Provincial People's Hospital, Taiyuan, 030012, China.
| | - Xiaoli Zhao
- Department of Geriatrics, Xi'an No. 1 Hospital, Xi'an, 710002, China
| | - Bin Han
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Kun Meng
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Lan Gao
- Department of Clinical Psychological, Beijing Huilognguan Hospital, Beijing, 100096, China
| |
Collapse
|
4
|
Lai Y, Liu J, Hu X, Zeng X, Gao P. N6-methyladenosine (m6A)-forming enzyme METTL3 controls UAF1 stability to promote inflammation in a model of colitis by stimulating NLRP3. Sci Rep 2025; 15:5876. [PMID: 39966502 PMCID: PMC11836354 DOI: 10.1038/s41598-025-88435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The rising incidence of ulcerative colitis (UC) in China poses a noticeable health challenge. This study aimed to assess the pivotal role of USP1-associated factor 1 (UAF1) in colitis. UC was induced in male C57BL/6 mice using 2.0% dextran sulfate sodium (DSS). In an in vitro model, RAW264.7 cells were exposed to 200 ng/ml of LPS + ATP. UAF1 expression level was evaluated in colonic tissues, macrophages, and serum samples using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The study assessed weight, disease activity index (DAI) score, myeloperoxidase (MPO) activity, crypt length, inflammatory factors, and epithelial cell function in a mouse model of colitis treated with a UAF1 inhibitor. Microarray analysis identified potential UAF1 targets. Gene interference investigated NLR family pyrin domain containing 3 (NLRP3) involvement in UAF1-induced colitis inflammation. Immunoprecipitation, ubiquitination, and luciferase assays examined the effects of methyltransferase-like 3 (METTL3) methylation on the expression levels of NLRP3 and UAF1. UAF1 expression level was upregulated in colon tissues, RAW264.7 macrophages, and serum samples of colitis mice (P < 0.01). The UAF1 inhibitor (ML-323) enhanced weight and reduced DAI score in colitis mice (P < 0.01). It also decreased MPO activity and ulcer area, and restored crypt length (P < 0.01). UAF1 inhibitor improved epithelial cell function by suppressing NLRP3 activity (P < 0.01). UAF1 promoted inflammation in RAW264.7 macrophages via NLRP3 inflammasome induction (P < 0.01). UAF1 modulated NLRP3 protein expression, leading to reduced NLRP3 ubiquitination induced by LPS + ATP. The m6A-forming enzyme METTL3 enhanced UAF1 stability (P < 0.01) to facilitate UAF1 expression. The findings suggested that METTL3, as an m6A-forming enzyme, could regulate UAF1 mRNA, promoting inflammation in colitis through NLRP3 induction. Inhibiting UAF1 emerges as a potential therapeutic strategy for colitis.
Collapse
Affiliation(s)
- Yongqiang Lai
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Institute of Chest Wall Surgery, Guangzhou, 510700, China.
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China.
| | - Junhao Liu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Xiao Hu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Xiancheng Zeng
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Peng Gao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| |
Collapse
|
5
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Zhu J, Wang H, Aisikaer M, Yisimayili Z, Yang T, Zhou W, Zhao J, Yunusi K, Aximujiang K. L.acidophilus HSCC LA042 and HKL suspension ameliorate DSS-induced ulcerative colitis in mice by improving the intestinal barrier inhibiting the NLRP3 inflammasome and pathogenic bacteria. Heliyon 2024; 10:e33053. [PMID: 39027449 PMCID: PMC11254534 DOI: 10.1016/j.heliyon.2024.e33053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Ulcerative Colitis(UC) is a chronic intestinal inflammation affecting the intestines, yet its underlying causes remain unclear. In recent decades, the global prevalence of UC has been on the rise, leading to an increasing demand for therapeutic drugs with minimal side effects. Huan Kui Le (HKL), a traditional Chinese medicine compound, has demonstrated promising efficacy when combined with Lactobacillus acidophilus (Lac.) for UC intervention. However, the precise therapeutic mechanism of this combination remains unknown. The study focused on understanding the mechanisms of UC by examining the effects of Lac. and HKL (LH) treatment. The outcomes discovered that the disruption of gut microbiota, triggered by the activation of the NLRP3 inflammasome, plays a crucial role in UC development. This disruption exacerbates UC symptoms by causing disturbances in inflammatory cytokines and mucosal permeability. We investigated the dynamic changes following the application of this treatment using 16S rRNA sequencing, HE, WB, IHC, and ELISA. Compared with the UC group, LH treatment reduced colon pathological injury, improved colon length, and decreased IL-1 β serum levels. Furthermore, it restored the expression of TJs and preserved mucosal barrier integrity. LH treatment also mitigated colon injury by attenuating the expression of pyroptosis-related genes and proteins, such as NLRP3 and Caspase-1. Additionally, LH treatment altered the gut microbiota's microecology, characterized by a reduction in pathogenic bacteria abundance like Escherichia-shigella and an increase in beneficial bacteria abundance like Akkermansia and Erysipelatoclostridium. Overall, our findings indicate that LH therapy may be associated with intestinal barrier repair, inflammasome inhibition, and gut microbiota regulation, suggesting its potential as a UC treatment.
Collapse
Affiliation(s)
- Jiwei Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Hanming Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Muaitaer Aisikaer
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | | | - Tongtong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Wenjun Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jianfeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, 830017, China
| | - Kasimujiang Aximujiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Disease, Urumqi, Xinjiang, 830017, China
| |
Collapse
|
8
|
Chen Y, Zhao Y, Lu H, Zhang W, Gai Y, Niu G, Meng X, Lv H, Qian X, Ding X, Chen J. Protective effect of short-chain fructo-oligosaccharides from chicory on alcohol-induced injury in GES-1 cells via Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Front Nutr 2024; 11:1374579. [PMID: 38807640 PMCID: PMC11132183 DOI: 10.3389/fnut.2024.1374579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Numerous studies have demonstrated that polysaccharides derived from chicory possess the ability to regulate host signaling and modify mucosal damage. Yet, the effect and mechanism of short-chain fructo-oligosaccharides (scFOS) on gastric mucosa remain unclear. Hence, the protective effect of three scFOS (1-Kestose, Nystose, and 1F-Fructofuranosylnystose) against ethanol-induced injury in gastric epithelial (GES-1) cells, and the underlying molecular mechanism involved was investigated in this study. Treatment with 7% ethanol decreased the cell viability of GES-1 cells, resulting in oxidative stress and inflammation. However, pretreatment with scFOS exhibited significant improvements in cell viability, and mitigated oxidative stress and inflammation. scFOS markedly elevated the protein expression of Nrf2, HO-1, SOD1 and SOD2, while suppressing the expression of Keap1. scFOS pretreatment could also maintain mitochondrial membrane potential balance and reduce apoptosis. In addition, scFOS was observed to reduce the protein level of NLRP3, Caspase-1 and ASC. In conclusion, scFOS served a preventive function in mitigating oxidative stress and inflammation in ethanol-exposed GES-1 cells through modulation of the Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Collectively, the results indicated that scFOS could significantly mitigate ethanol-induced gastric cell damage, suggesting its potential for safeguarding gastrointestinal health.
Collapse
Affiliation(s)
- Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yanan Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hao Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaoguo Qian
- Fengning PingAn High-Tech Industrial Co., Ltd, Chengde, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
10
|
Yuan Y, Deng S, Yang J, Shou Z, Wei C, Zhang L, Zhu F, Gao F, Liu X, Liu Y, Chen Q, Fan H. Antagomir of miR-31-5p modulates macrophage polarization via the AMPK/SIRT1/NLRP3 signaling pathway to protect against DSS-induced colitis in mice. Aging (Albany NY) 2024; 16:5336-5353. [PMID: 38466649 PMCID: PMC11006482 DOI: 10.18632/aging.205651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Macrophage-driven immune dysfunction of the intestinal mucosa is involved in the pathophysiology of ulcerative colitis (UC). Emerging evidence indicates that there is an elevation in miR-31-5p levels in UC, which is accompanied by a downregulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) expression. Nevertheless, the precise influence of miR-31-5p on macrophage polarization and the integrity of the intestinal epithelial barrier in UC remains to be fully elucidated. This study explored the role of miR-31-5p and AMPK in UC through a bioinformatics investigation. It investigated the potential of miR-31-5p antagomir to shift macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype and enhance the intestinal mucosal barrier in DSS-induced UC mice. Additionally, RAW264.7 cells stimulated with LPS were employed to confirm the reversal of miR-31-5p antagomir's therapeutic effect under AMPK inhibition. The findings demonstrated that miR-31-5p antagomir penetrated colonic tissues and ameliorated DSS-induced experimental colitis. Transformation of spleen and mesenteric lymph node macrophages from M1 to M2 type was seen in the DSS+miR-31-5p antagomir group. AMPK/Sirt1 expression increased while NLRP3 expression decreased. Expression of M2-related genes and proteins was enhanced and that of the M1 phenotype suppressed. Tight junction proteins, ZO-1 and occludin, were increased. The therapeutic effects of miR-31-5p antagomir transfection into RAW264.7 cells were repressed when AMPK expression was inhibited. Therefore, our results suggest that suppression of miR-31-5p expression transformed macrophages from M1 to M2, ameliorated inflammation and repaired the intestinal epithelium to alleviate DSS-induced colitis. AMPK/Sirt1/NLRP3 was involved.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Wang L, Chen S, Liu S, Biu AM, Han Y, Jin X, Liang C, Liu Y, Li J, Fang S, Chang Y. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117397. [PMID: 37956915 DOI: 10.1016/j.jep.2023.117397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), belongs to the Rubiaceae family. It has abundant medicinal value, such as purging fire and eliminating annoyance, clearing heat and diuresis, cooling blood, and detoxifying. GF is usually used in combination with other drugs to treat diseases such as fever and jaundice in damp heat syndrome in traditional Chinese medicines (TCMs) clinical practice. THE AIM OF THE REVIEW This review comprehensively summarizes the research progress in botany, traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, pharmacokinetics, and toxicology, which aims to provide a scientific basis for the rational application and future research of GF. MATERIALS AND METHODS ScienceDirect, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Embase, Scopus etc. databases were retrieved to gain the comprehensive information of GF. RESULTS At present, more than 215 compounds were isolated and identified from GF, including iridoids, diterpenes, triterpenoids, flavonoids, organic esters, and so on. The traditional application of GF mainly focused on clearing heat and detoxification. Pharmacological studies proved that GF had anti-inflammatory, antioxidation, antifatigue, antithrombotic, liver and gallbladder protection, and other pharmacological effects. In addition, many improved processing methods can alleviate the side effects and toxic reactions caused by long-term use of GF, so controlling its quality through multi-component content measurement has become an important means of research. CONCLUSION GF has a wide range of applications, the mechanisms by which some effective substances exert their pharmacological effects have not been clearly explained due to the complexity and diversity of its components. This review systematically elaborates on the traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, and toxicology of GF, and it is expected to become a candidate drug for treating diseases, such as depression, pancreatitis, alcoholic or non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
12
|
Wang Y, Gong Q, Pan H, Wang X, Yan C. Gardenia jasminoides J. Ellis extract attenuates memory impairment in rats with Alzheimer's disease by suppressing NLRP3 inflammasome. Brain Res 2024; 1824:148687. [PMID: 38000495 DOI: 10.1016/j.brainres.2023.148687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Alzheimer's disease (AD) is characterized by degeneration of the central nervous system. Recently, many studies have emphasized the beneficial role of Gardenia jasminoides J. Ellis extract (GJ-4) in neuroprotection, which is considered a potential drug for treating AD. However, the mechanism underlying its neuroprotective effects is obscure. This research intended to analyze the effectiveness of GJ-4 to induce neuronal protective role on a rat model of neurotoxicity and probe the potential mechanism. An AD model was established by intraperitoneal injection of aluminum chloride (AlCl3). Then, AlCl3-induced rats were administered 25 mg/kg and 50 mg/kg of GJ-4 orally. This study indicated that GJ-4 (25 and 50 mg/kg) mitigated AD-like behaviors, as evidenced by enhanced ambulation frequency, rearing frequency, and time spent in the target quadrant and decreased grooming frequency, defecation frequency, and escape latency in AlCl3-challenged rats. Also, GJ-4 at 25 and 50 mg/kg exerted an anti-apoptosis effect in the hippocampus of AlCl3-treated rats. Furthermore, GJ-4 (25 and 50 mg/kg) exhibited an anti-inflammatory effect in the hippocampus by repressing the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, further inhibiting the activation of Caspase 1, ASC, IL-1β, and IL-18 in AD hippocampus. Altogether, GJ-4 mitigated AlCl3-triggered impairment of learning and memory in AD rats via repressing NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Qingmei Gong
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310000, Zhejiang Province, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China.
| |
Collapse
|
13
|
Cheng Z, Tu J, Wang K, Li F, He Y, Wu W. Wogonin alleviates NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/SIRT1. Brain Res Bull 2024; 207:110886. [PMID: 38253131 DOI: 10.1016/j.brainresbull.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Cerebral ischemia-reperfusion (IR) is the main pathophysiological process after stroke and can seriously impair neurological function. Wogonin, a natural flavonoid extracted from the roots of Scutellaria baicalensis, has potent anti-inflammatory properties. In this study, we investigated the protective mechanism of wogonin against middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) model-induced cerebral IR injury through adenosine 5'-monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome axis. Our results showed that wogonin (20 mg/kg, intraperitoneal injection) effectively reduced infarct size, attenuated brain edema, improved neurological deficits, and alleviated histopathological damage. In addition, wogonin reduced microglial cell activation and inflammatory factors, including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, in brain tissue and serum after cerebral IR injury. Wogonin also effectively activated the AMPK/SIRT1 signaling pathway and inhibited NLPR3 inflammasome-related molecules upregulation in cerebral IR injury as well as in OGD/R-stimulated HT-22 cells. Furthermore, inhibition of the AMPK/SIRT1 signaling pathway by Compound C, an AMPK inhibitor, significantly reversed the protective effect of wogonin on OGD/R-induced NLRP3 inflammasome. Meanwhile, the protective effect of wogonin against brain IR injury was also reversed in the presence of compound C. These results suggest that wogonin ameliorates cerebral IR injruy-induced inflammation by inhibiting NLRP3 inflammasome through the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Zhijuan Cheng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Kai Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Fang Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Yuan He
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang university, Jiangxi 330006, China.
| |
Collapse
|
14
|
Li Q, Xiang Y, Zhang Z, Qu X, Wu J, Fu J, Zhu F, Tang H. An integrated RNA-Seq and network pharmacology approach for exploring the preventive effect of Corydalis bungeana Turcz. Extract and Acetylcorynoline on LPS-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117048. [PMID: 37586441 DOI: 10.1016/j.jep.2023.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis bungeana Turcz. (KDD) is a Chinese herbal medicine with anti-inflammatory, lung cleansing, detoxification and other functions. Clinically, it is commonly used to treat respiratory infections. This study uses ALI as the research model, which is consistent with the clinical use of KDD. Acetylcorynoline (AC) is the main alkaloid component of the KDD extracts, and network pharmacology studies suggest that it may be the main active ingredient in the prevention of ALI. AIM OF THE STUDY The aim of this study is to explore the underlying mechanisms and to study the efficacy material basis of KDD in anti-ALI effect by LPS-induced mice and using a combination of RNA sequencing (RNA-Seq) technology and network pharmacology. MATERIALS AND METHODS Establish a mouse model of ALI by intraperitoneal injection of LPS (5 mg/kg). The main active ingredients of KDD were identified and analyzed by high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) and network pharmacology. IL-18, IL-1β, and IL-6 levels in serum and bronchoalveolar lavage fluid (BALF), lung histopathological changes, and lung myeloperoxidase (MPO) activity were assessed. We investigated the possible molecular mechanisms of KDD and AC in an LPS-induced mouse ALI models with RNA-Seq technology. In addition, the anti-inflammatory effect of AC was verified in vitro by establishing an LPS-stimulated RAW264.7 inflammation model. Molecular docking further validated AC as the efficacy material basis of KDD in anti-ALI. RESULTS Based on HPLC-QTOF-MS technology and network pharmacology, KDD is more strongly associated with lung tissue, and that AC may be the main active ingredient of KDD. Subsequently, in vivo experiments results showed that KDD and AC reduced the levels of pro-inflammatory cytokines in serum and BALF, reduced MPO levels and reduced inflammatory damage in the lungs. To elucidate its underlying mechanism, based on RNA-Seq analysis techniques performed in lung tissue, enrichment analysis showed that KDD and AC intervened through the NLR signaling pathway, thereby mitigating LPS-induced ALI. Then, RT-qPCR, IF, WB and other technologies were used to verify the anti-ALI core difference genes of KDD and AC from the gene transcription and protein expression levels of the NLR signaling pathway, and confirmed the anti-ALI. In vitro experimental results also showed that AC has anti-inflammatory effects in RAW264.7. Finally, the biotransformation and molecular docking results also further indicated that AC is the active ingredient of KDD in anti-ALI. CONCLUSIONS Studies have shown that KDD has a good therapeutic effect on ALI, and AC is the main pharmacodynamic material basis for its therapeutic effect in ALI.
Collapse
Affiliation(s)
- Qinning Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yan Xiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zhenxu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyang Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jie Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jun Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Hao Tang
- Department of Pharmacy, Jinling Hospital, Nanjing, 210002, China.
| |
Collapse
|
15
|
Feng X, Zhang H, Hu K, Shi G, Wu D, Shao J, Wang T, Wang C. Longdan Xiegan decoction ameliorates vulvovaginal candidiasis by inhibiting the NLRP3 inflammasome via the Toll-like receptor /MyD88 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116869. [PMID: 37390876 DOI: 10.1016/j.jep.2023.116869] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Longdan Xiegan decoction (LXD) is a standardized herbal prescription originally documented in the "Medical Formula Collection" by the eminent physician Wang Ang during the Qing dynasty. It has been used extensively to treat vulvovaginal candidiasis (VVC). However, despite its effectiveness, the mechanism of action remains unknown. AIM OF THE STUDY To elucidate the mechanism by which LXD relieves VVC via the Toll-like receptor/MyD88 pathway and activation of the NLRP3 inflammasome. MATERIALS AND METHODS Female Kunming mice (n = 96) were randomly divided into six groups: control, VVC model, LXD (10/20/40 mL/kg), and positive drug fluconazole. Mice were vaginally administered Candida albicans (C. albicans) solution (20 μL; 1 × 108 colony-forming units/mL), suspended for 5 min, and observed daily for changes in their condition. Continuous dilution was used to determine the number of colony-forming units. Gram, periodic acid-Schiff, Papanicolaou, and hematoxylin and eosin staining were used to determine the extent of infection. Enzyme-linked immunosorbent assay(ELISA) was used to determine the levels of proinflammatory cytokines IL-1β and IL-18. TLR2, TLR4, MyD88, NF-κB, NLRP3, ASC, and caspase-1 protein expression were determined using western blotting. RESULTS C. albicans infection destroyed the integrity of the vaginal mucosa, increased fungal burden and the influx of neutrophils into the vaginal cavity, and promoted the secretion of proinflammatory cytokines. C. albicans stimulated the expression of TLR2, TLR4, MyD88, NF-κB, NLRP3, ASC, and caspase-1 in vaginal tissue. Fungal burden, hyphal formation, and C. albicans adhesion were reduced in the 20 and 40 mL/kg LXD groups. Hematoxylin and eosin staining showed that inflammation was reduced and the stratum corneum had recovered in the 20 and 40 mL/kg LXD groups. LXD (20 and 40 mL/kg) significantly reduced IL-1β, IL-18 levels and the number of neutrophils in vaginal lavage and decreased TLR2, TLR4, MyD88, NF-κB, NLRP3, ASC, and caspase-1 expression. CONCLUSIONS This study systematically demonstrated the therapeutic effect of LXD on protein expression and pathological conditions in VVC mice. The results showed that LXD could eliminate the invasion of vaginal hyphae in mice, reduce the recruitment of neutrophils, and reduce the expression of TLR/MyD88 pathway-related proteins and NLRP3 inflammasome. The above results clearly indicate that LXD may profoundly regulate NLRP3 inflammasome through the TLR/MyD88 pathway and play a therapeutic role in VVC.
Collapse
Affiliation(s)
- Xin Feng
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hao Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Kaifan Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Gaoxiang Shi
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| |
Collapse
|
16
|
Liu D, Luo R, Zhou Q, Li M. RNF20 Reduces Cell Proliferation and Warburg Effect by Promoting NLRP3 Ubiquitination in Liver Cancer. J Environ Pathol Toxicol Oncol 2024; 43:69-80. [PMID: 38608146 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
The present study explored that the effects and its possible mechanisms of ring finger protein 20 (RNF20) in Postoperative survival rate of liver cancer in clinical. All the serum samples were collected from our hospital. Quantitative polymerase chain reaction (PCR) and microarray analysis, and RNA pull down assay were used in this study. We found that the serum RNF20 mRNA expression level in patients with liver cancer were down-regulated. Postoperative survival rate of RNF20 high expression was higher than that of RNF20 low expression. Then, over-expression of RNF20 diminished liver cancer cell proliferation and metastasis. RNF20 reduced Warburg effect of liver cancer. RNF20 expression regulated NOD-like receptor protein 3 (NLRP3) expression and increased NLRP3 Ubiquitination. NLRP3 participated in the effects of RNF20 on cell proliferation, and not affected on Warburg effect of liver cancer. Our study demonstrated that the serum RNF20 expression level was down-regulated in liver cancer, and promoted postoperative survival rate. RNF20 can reduce cancer progression of liver cancer by NLRP3 signal pathway, suggesting that it may prove to be a potential therapeutic target for postoperative survival rate of liver cancer.
Collapse
Affiliation(s)
- Deqin Liu
- Department of Hepatobiliary Surgery, Dayi County People's Hospital, Chengdu City, Sichuan Province, China
| | - Renyin Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Panzhihua University, Panzhihua City, Sichuan Province, China
| | - Qian Zhou
- Operating Room, BOE Hospital, Chengdu, Sichuan Province, China
| | - Mei Li
- Panzhihua Central Hospital
| |
Collapse
|
17
|
Xu CQ, Li J, Liang ZQ, Zhong YL, Zhang ZH, Hu XQ, Cao YB, Chen J. Sirtuins in macrophage immune metabolism: A novel target for cardiovascular disorders. Int J Biol Macromol 2024; 256:128270. [PMID: 38000586 DOI: 10.1016/j.ijbiomac.2023.128270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Sirtuins (SIRT1-SIRT7), as a family of NAD+-dependent protein modifying enzymes, have various catalytic functions, such as deacetylases, dealkalylases, and deribonucleases. The Sirtuins family is directly or indirectly involved in pathophysiological processes such as glucolipid metabolism, oxidative stress, DNA repair and inflammatory response through various pathways and assumes an important role in several cardiovascular diseases such as atherosclerosis, myocardial infarction, hypertension and heart failure. A growing number of studies supports that metabolic and bioenergetic reprogramming directs the sequential process of inflammation. Failure of homeostatic restoration leads to many inflammatory diseases, and that macrophages are the central cells involving the inflammatory response and are the main source of inflammatory cytokines. Regulation of cellular metabolism has emerged as a fundamental process controlling macrophage function, but its exact signaling mechanisms remain to be revealed. Understanding the precise molecular basis of metabolic control of macrophage inflammatory processes may provide new approaches for targeting immune metabolism and inflammation. Here, we provide an update of studies in cardiovascular disease on the function and role of sirtuins in macrophage inflammation and metabolism, as well as drug candidates that may interfere with sirtuins, pointing to future prospects in this field.
Collapse
Affiliation(s)
- Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Hui Zhang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xue-Qing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
18
|
Yuan Y, Wang F, Liu X, Shuai B, Fan H. The Role of AMPK Signaling in Ulcerative Colitis. Drug Des Devel Ther 2023; 17:3855-3875. [PMID: 38170149 PMCID: PMC10759424 DOI: 10.2147/dddt.s442154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulcer formation of the intestinal mucosa. Due to its high recurrence rate, prolonged course, limited curative options, and significant impact on patients' quality of life, along with a notable potential for malignant transformation, UC is designated as a refractory global health challenge by the World Health Organization (WHO). The elucidation of the pathogenesis and therapeutic strategies for UC requires further in-depth investigation. AMP-activated protein kinase (AMPK) serves as a central regulator of cellular energy metabolic homeostasis. Emerging evidence indicates that interventions involving traditional Chinese medicine (TCM) components, as well as other pharmacological measures, exert beneficial effects on the intestinal mucosal inflammation and epithelial barrier dysfunction in UC by modulating AMPK signaling, thereby influencing biological processes such as cellular autophagy, apoptosis, inflammatory responses, macrophage polarization, and NLRP3 inflammasome-mediated pyroptosis. The role of AMPK in UC is of significant importance. This manuscript provides a comprehensive overview of the mechanisms through which AMPK is involved in UC, as well as a compilation of pharmacological agents capable of activating the AMPK signaling pathway within the context of UC. The primary objective is to facilitate a deeper comprehension of the pivotal role of AMPK in UC among researchers and clinical practitioners, thereby advancing the identification of novel therapeutic targets for interventions in UC.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fang Wang
- Department of Rehabilitation Medicine, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Jingshan, Hubei, 431800, People’s Republic of China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
19
|
Jiang L, Zhang W, Zhao W, Cai Y, Qin X, Wang B, Xue J, Wen Y, Wei Y, Hua Y, Yao W. Optimization of Ethanol Extraction Technology for Yujin Powder Using Response Surface Methodology with a Box-Behnken Design Based on Analytic Hierarchy Process-Criteria Importance through Intercriteria Correlation Weight Analysis and Its Safety Evaluation. Molecules 2023; 28:8124. [PMID: 38138612 PMCID: PMC10746038 DOI: 10.3390/molecules28248124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we aimed to optimize the ethanol extraction technology for Yujin powder (YJP) and evaluate its safety. The ultrasonic-assisted ethanol reflux extraction method refluxing was used to extract YJP. The parameters were optimized through a combination of single-factor and response surface methodology (RSM). The comprehensive Y value score calculated using the content of 13 active ingredients in YJP ethanolic extracts (YEEs) and the yield of the dry extract were used as measuring criteria. RSM with a Box-Behnken design using three factors and three levels was adopted to optimize the ethanol extraction technology for YJP. Finally, acute and subchronic toxicity tests were performed to evaluate its safety. The results revealed the best technological parameters: a liquid-material ratio of 24:1, an ethanol concentration of 69%, assistance of ultrasound (40 °C, 50 kHZ, 30 min), reflux time of 53 min, and reflux temperature of 50 °C. In acute toxicity tests, the maximum administration dosage in mice was 28.21 g/kg, which is higher than 10 times the clinical dosage. Adverse effects in the acute and subchronic toxicity tests were not observed. All clinical indexes were normal. In conclusion, the RSM based on AHP-CRITIC weight analysis could be used to optimize the ethanol extraction technology for YJP and YEEs prepared under the above conditions and ensure high safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (W.Z.); (W.Z.); (Y.C.); (X.Q.); (B.W.); (J.X.); (Y.W.); (Y.W.); (Y.H.)
| |
Collapse
|
20
|
Wang X, Shen C, Wang X, Tang J, Wu Z, Huang Y, Shao W, Geng K, Xie H, Pu Z. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice. Chin Med 2023; 18:112. [PMID: 37674245 PMCID: PMC10481484 DOI: 10.1186/s13020-023-00815-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND According to the Chinese Pharmacopoeia, the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese medicine that can be used to treat diarrhea. Despite the increasing research on the anti-inflammatory and anti-oxidant aspects of SC, the studies on the anti-ulcerative colitis of Schisandrin (SCH), the main constituent of SC, are relatively few. METHODS The mice used in the study were randomly distributed into 6 groups: control, model, 5-ASA, and SCH (20, 40, 80 mg/kg/d). The mice in the model group were administered 3% (w/v) dextran sulfate sodium (DSS) through drinking water for 7 days, and the various parameters of disease activity index (DAI) such as body weight loss, stool consistency, and gross blood were measured. ELISA was used to detect inflammatory factors, and bioinformatics combined with transcriptome analysis was done to screen and verify relevant targets. 16S rDNA high-throughput sequencing was used to analyze the composition of the gut microbiota(GM), while mass spectrometry was done to analyze the changes in the content of bile acids (BAs) in the intestine. RESULTS Mice treated with SCH experienced significant weight gain, effectively alleviating the severity of colitis, and decreasing the levels of inflammatory factors such as TNF-α, IL-1β, IL-18, IL-6, and other related proteins (NLRP3, Caspase-1, SGK1) in UC mice. Furthermore, the analysis of GM and BAs in mice revealed that SCH increased the relative abundance of Lactobacilli spp, reduced the relative abundance of Bacteroides, and promoted the conversion of primary BAs to secondary BAs. These effects contributed to a significant improvement in the DSS-induced GM imbalance and the maintenance of intestinal homeostasis. CONCLUSION It seems that there is a close relationship between the SCH mechanism and the regulation of SGK1/NLRP3 pathway and the restoration of GM balance. Therefore, it can be concluded that SCH could be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Jin Tang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Zijing Wu
- Department of Pharmacy, Bengbu First People's Hospital, Bengbu, 233000, China
| | - Yunzhe Huang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| | - Zhichen Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
21
|
Direito R, Barbalho SM, Figueira ME, Minniti G, de Carvalho GM, de Oliveira Zanuso B, de Oliveira Dos Santos AR, de Góes Corrêa N, Rodrigues VD, de Alvares Goulart R, Guiguer EL, Araújo AC, Bosso H, Fornari Laurindo L. Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites 2023; 13:728. [PMID: 37367886 DOI: 10.3390/metabo13060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Ongoing research explores the underlying causes of ulcerative colitis and Crohn's disease. Many experts suggest that dysbiosis in the gut microbiota and genetic, immunological, and environmental factors play significant roles. The term "microbiota" pertains to the collective community of microorganisms, including bacteria, viruses, and fungi, that reside within the gastrointestinal tract, with a particular emphasis on the colon. When there is an imbalance or disruption in the composition of the gut microbiota, it is referred to as dysbiosis. Dysbiosis can trigger inflammation in the intestinal cells and disrupt the innate immune system, leading to oxidative stress, redox signaling, electrophilic stress, and inflammation. The Nod-like Receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome, a key regulator found in immunological and epithelial cells, is crucial in inducing inflammatory diseases, promoting immune responses to the gut microbiota, and regulating the integrity of the intestinal epithelium. Its downstream effectors include caspase-1 and interleukin (IL)-1β. The present study investigated the therapeutic potential of 13 medicinal plants, such as Litsea cubeba, Artemisia anomala, Piper nigrum, Morus macroura, and Agrimonia pilosa, and 29 phytocompounds such as artemisitene, morroniside, protopine, ferulic acid, quercetin, picroside II, and hydroxytyrosol on in vitro and in vivo models of inflammatory bowel diseases (IBD), with a focus on their effects on the NLRP3 inflammasome. The observed effects of these treatments included reductions in IL-1β, tumor necrosis factor-alpha, IL-6, interferon-gamma, and caspase levels, and increased expression of antioxidant enzymes, IL-4, and IL-10, as well as regulation of gut microbiota. These effects could potentially provide substantial advantages in treating IBD with few or no adverse effects as caused by synthetic anti-inflammatory and immunomodulated drugs. However, additional research is necessary to validate these findings clinically and to develop effective treatments that can benefit individuals who suffer from these diseases.
Collapse
Affiliation(s)
- Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Gabriel Magno de Carvalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Ana Rita de Oliveira Dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Natália de Góes Corrêa
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Henrique Bosso
- Medical Department, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| |
Collapse
|
22
|
Pu Z, Sui B, Wang X, Wang W, Li L, Xie H. The effects and mechanisms of the anti-COVID-19 traditional Chinese medicine, Dehydroandrographolide from Andrographis paniculata (Burm.f.) Wall, on acute lung injury by the inhibition of NLRP3-mediated pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154753. [PMID: 37084628 PMCID: PMC10060206 DOI: 10.1016/j.phymed.2023.154753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS Liposaccharide (LPS) was injected into a C57BL/6 mouse model of ALI, and LPS + adenosine triphosphate (ATP) was used to stimulate BMDMs in an in vitro model of ALI. RESULTS In an in vivo and in vitro model of ALI, Deh considerably reduced inflammation and oxidative stress by inhibiting NLRP3-mediated pyroptosis and attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis through the suppression of ROS production by inhibiting the Akt/Nrf2 pathway. Deh inhibited the interaction between Akt at T308 and PDPK1 at S549 to promote Akt protein phosphorylation. Deh directly targeted PDPK1 protein and accelerated PDPK1 ubiquitination. 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP and 223-ASP may be the reason for the interaction between PDPK1 and Deh. CONCLUSION Deh from Andrographis paniculata (Burm.f.) Wall presented NLRP3-mediated pyroptosis in a model of ALI through ROS-induced mitochondrial damage through inhibition of the Akt/Nrf2 pathway by PDPK1 ubiquitination. Therefore, it can be concluded that Deh may be a potential therapeutic drug for the treatment of ALI in COVID-19 or other respiratory diseases.
Collapse
Affiliation(s)
- Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China; State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Bangzhi Sui
- Department of Pediatric surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xingwen Wang
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Wusuan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Lingling Li
- Department of Pulmonary and Critical Care Medicine, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
23
|
Kimura Y, Sumiyoshi M, Taniguchi M. Geniposide prevents tumor growth by inhibiting colonic interleukin-1β and monocyte chemoattractant protein-1 via down-regulated expression of cyclooxygenase-2 and thymocyte selection-associated high mobility box proteins TOX/TOX2 in azoxymethane/dextran sulfate sodium-treated mice. Int Immunopharmacol 2023; 118:110077. [PMID: 37011499 DOI: 10.1016/j.intimp.2023.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Colon cancer was the second leading cause of cancer-related deaths in Japan in 2019. The effects of geniposide isolated from Gardenia jasminoides fructus (Rubiaceae) on the azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced growth of colon tumors and changes in interleukin (IL)-1 β, monocyte chemoattractant protein (MCP)-1, IL-10, and programmed cell death-1 (PD-1) levels in the colon were investigated. The intraperitoneal administration of AOM (10 mg/kg) on days 0 and 27 induced colorectal carcinogenesis. Free access to 1% (w/v) DSS drinking water was given to mice on days 7-15, 32-33, and 35-38. Geniposide (30 and 100 mg/kg) was orally administered on days 1-16, discontinued for 11 days (days 16 to 26), and then administered again on days 27-41. Colonic levels of cytokines, chemokine, and PD-1 were measured using by enzyme-linked immunosorbent assay (ELISA). Increases in colorectal tumor numbers and areas were significantly inhibited by geniposide. In addition, geniposide (100 mg/kg) reduced colonic levels of IL-1 β, MCP-1, PD-1 and IL-10 by 67.4, 57.2, 100%, and 100% respectively. Cyclooxygenase (COX)-2- and thymocyte selection high mobility group box proteins (TOX/TOX2)-positive cell numbers were significantly reduced by geniposide. Geniposide (30 and 100 mg/kg) decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) expressions in immunohistochemical analysis by 64.2 and 98.2%, respectively. Thus, the inhibitory effects of geniposide on colon tumor growth may be associated with reductions in the colonic levels of IL-1 β, MCP-1, IL-10, and PD-1 via the down-regulated expression of COX-2 and TOX/TOX2 through the inhibition of Phospho-STAT3 expression (in vivo and in vitro).
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Department of Functional Biomedicine, Ehime University Graduate School of Medicine, Japan; Department of Natural Product Science, Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmacology University, Nasahara, Takatsuki City, Osaka 569-1094, Japan.
| | - Maho Sumiyoshi
- Division of Functional Histology, Department of Functional Biomedicine, Ehime University Graduate School of Medicine, Japan
| | - Masahiko Taniguchi
- Department of Natural Product Science, Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmacology University, Nasahara, Takatsuki City, Osaka 569-1094, Japan
| |
Collapse
|
24
|
Zhou W, Yu C, Long Y. Myo-inositol oxygenase (MIOX) accelerated inflammation in the model of infection-induced cardiac dysfunction by NLRP3 inflammasome. Immun Inflamm Dis 2023; 11:e829. [PMID: 37249295 PMCID: PMC10161780 DOI: 10.1002/iid3.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Cardiac dysfunction is an important component of multiple organ failure caused by sepsis, and an important cause of high mortality in patients with sepsis. Herein, we attempted to determine whether myo-inositol oxygenase (MIOX) has proinflammation enzyme in infection-induced cardiac dysfunction (IICD) and its underlying mechanism. METHODS Patients with IICD were collected by our hospital. A mouse model of IICD was induced into male db/db mice by cecal ligation and puncture (CLP). All mice were injected with 20 μL of LV-MIOX or LV-control short hairpin RNA using a 0.5-mL insulin syringe. On the second day, all mice were induced by CLP. H9C2 cell was also induced with lipopolysaccharide and adenosine triphosphate. Quantitative analysis of messenger RNAs (mRNAs) and gene microarray hybridization was used to analyze the mRNA expression levels. Enzyme-linked immunosorbent assay, immunofluorescence, and Western blot analysis were used to analyze the protein expression levels. RESULTS The serum expressions of MIOX mRNA level in patients with IICD were upregulated compared to normal healthy volunteers. MIOX promoted inflammation levels in the in vitro model of IICD. Si-MIOX inhibited inflammation levels in the in vitro model of IICD. MIOX accelerated inflammation and cardiac dysfunction in infection-induced mice. MIOX interacted with NLR family pyrin domain containing 3 (NLRP3) protein to reduce the degradation of NLRP3. The inhibition of MIOX reversed the effects of NLRP3 in the in vitro model of cardiac dysfunction. CONCLUSIONS Taken together, these findings demonstrate that MIOX accelerates inflammation in the model of IICD, which may be, at least in part, attributable to NLRP3 activity by the suppression of NLRP3 degradation in IICD.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Congyi Yu
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yiwen Long
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
26
|
Qi A, Liu Y, Zhai J, Wang Y, Li W, Wang T, Chai Y. RNF20 deletion causes inflammation in model of sepsis through the NLRP3 activation. Immunopharmacol Immunotoxicol 2023:1-10. [PMID: 36650938 DOI: 10.1080/08923973.2023.2170241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aim: Sepsis is an extremely complex, threatening and difficult-to-treat disease, which can occur at any age and under any underlying disease. RNF20 regulate NF-kappaB (NF-κB) signaling pathway and the transcription of inflammatory factors of target genes. Therefore, it is of great significance to study the function of RNF20 in the clinical treatment of sepsis and its underlying mechanisms.Methods: C57BL/6 mice were subjected to cecal ligation and puncture (CLP) surgery. THP-1 cells were induced with Lipopolysaccharide for 4 h.Results: RNF20 gene, mRNA expression and protein expression were reduced in patients with sepsis and mice with sepsis. Based on RNF20 deletion (RNF20-/-) mice, these were found to be increased inflammation reactions in RNF20-/- mice. However, the RNF20 human protein reduced inflammation reactions in mice with sepsis. In vitro model of sepsis, over-expression of RNF20 inhibited inflammation reactions by inducing Vitamin D Receptor (VDR), while down-regulation of RNF20 promoted inflammation reactions through the suppression of VDR. RNF20 protein was interlinked with VDR protein, and VDR protein was also interlinked with NLRP3. Furthermore, VDR promoted NLRP3 ubiquitination and reduced NLRP3 function in vitro model of sepsis.Conclusion: These studies demonstrate that RNF20 suppressed inflammation reactions in models with sepsis through NLRP3 inflammasome and NLRP3 ubiquitination by activating VDR.
Collapse
Affiliation(s)
- Anlong Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jianhua Zhai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yongtao Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Wang Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, P.R. China
| | - Tong Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, P.R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
27
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
28
|
Yu TY, Feng YM, Kong WS, Li SN, Sun XJ, Zhou G, Xie RF, Zhou X. Gallic acid ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via inhibiting NLRP3 inflammasome. Front Pharmacol 2023; 14:1095721. [PMID: 36762118 PMCID: PMC9905138 DOI: 10.3389/fphar.2023.1095721] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease (IBD). The conventional drugs for UC may induce severe side effects. Herbal medicine is considered as a complementary and alternative choice for UC. Purpose: This study aims to estimate the effect of natural polyphenol gallic acid (GA) on the NLRP3 inflammasome with dextran sulfate sodium (DSS)-induced colitis in mice. Study design: The body weights and symptoms of BALB/c mice were recorded. Histological evaluation, ELISA, q-PCR, immunohistochemistry, and western blotting were carried out to observe the morphology, cytokine contents, mRNA expressions, and protein expressions, respectively. Lipopolysaccharide (LPS)-induced RAW264.7 macrophage was used to probe GA's effect on relative protein expression. Results: GA attenuated weight loss (p < 0.05), relieved symptoms, and ameliorated colonic morphological injury (p < 0.05) in mice with colitis induced by DSS. GA also lowered the contents of TNF-α, IL-1β, IL-18, IL-33, and IFN-γ in the serum and colon of mice, which were elevated by DSS, downregulated protein, and mRNA expressions of the NLRP3 pathway in the colon tissue. Furthermore, GA downregulated the expressions of NLRP3 (p < 0.05), iNOS (p < 0.01), COX2 (p < 0.01), and P-p65 (p < 0.05), and suppressed NO release (p < 0.001) in LPS-induced RAW264.7 cells. Conclusion: GA ameliorated DSS-induced UC in mice via inhibiting the NLRP3 inflammasome. These findings furnish evidence for the anti-inflammatory effect of herbal medicines containing GA on UC.
Collapse
Affiliation(s)
- Tian-Yuan Yu
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yi-Ming Feng
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Song Kong
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan-Ni Li
- Shanghai Nanyang Model Private High School, Shanghai, China
| | - Xue-Jiao Sun
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Fengdu County People’s Hospital of Chongqing, Chongqing, China
| | - Gui Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Fang Xie
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xin Zhou,
| |
Collapse
|
29
|
Lin D, Song Y. Dapagliflozin Presented Nonalcoholic Fatty Liver Through Metabolite Extraction and AMPK/NLRP3 Signaling Pathway. Horm Metab Res 2023; 55:75-84. [PMID: 36495240 DOI: 10.1055/a-1970-3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has been increasing year by year. The experiments conducted on rat elucidated the effect and underlying mechanism of dapagliflozin in NAFLD. Sprague Dawley rats were fed with HFD (Fat accounts for 52%, carbohydrate 34% and protein 14%) for 12 weeks as NAFLD model. Dapagliflozin presented NAFLD in rat model. Dapagliflozin reduced oxidative stress and inflammation in rat model of NAFLD. Dapagliflozin reduced oxidative stress and inflammation in vitro model of NAFLD. Dapagliflozin in a model of NAFLD metabolized into histamine H1 receptor, caffeine metabolism, mannose type O-glycan biosynthesis, choline metabolism in cancer, tryptophan metabolism, and glycerophospholipid metabolism. Dapagliflozin induced AMPK/NLRP3 signaling pathway. The regulation of AMPK/NLRP3 signaling pathway affected the effects of dapagliflozin on nonalcoholic fatty liver. In summary, dapagliflozin plays a preventative role in NAFLD through metabolite extraction, the inhibition of oxidative stress, and inflammation by AMPK/NLRP3 signaling pathway. Dapagliflozin may be a potential therapeutic agent for oxidative stress and inflammation in model of NAFLD.
Collapse
Affiliation(s)
- Deng Lin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuling Song
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Ying G, Tang Z, Zhang J, Zeng J, Zheng Z, Zhang W, Ding L, Wen T, Yi D. Long noncoding RNA CASC2 protect ROS-induced oxidative stress in myocardial infarction by miR-18a/SIRT2. Biotechnol Appl Biochem 2022; 69:1857-1866. [PMID: 34505723 DOI: 10.1002/bab.2252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/23/2021] [Indexed: 01/28/2023]
Abstract
We aimed to investigate the function and its possible mechanisms of long noncoding RNA (lncRNA) in acute myocardial infarction (AMI) model. Patients with AMI and normal volunteers were selected from our hospital. Sprague-Dawley rats were induced into in vivo model of AMI. H9c2 cells were treated with H2 O2 to generate injury model. A significantly lower serum gene expression of lncRNA CASC2 was detected. In rat models of AMI, lncRNA CASC2 gene expressions in heart tissue of mice with AMI were decreased. In in vitro model, downregulation of lncRNA CASC2 increased reactive oxygen species (ROS)-induced oxidative stress; lncRNA CASC2 induced NADPH oxidase (NOX-2) expression and suppressed miR-18a expression; MiR-18a promoted ROS-induced oxidative stress; downregulation of miR-18a decreased ROS-induced oxidative stress. The inhibition of miR-18a reversed the effects of CASC2 downregulation on ROS-induced oxidative stress in in vitro model of AMI. The activation of miR-18a reversed the effects of CASC2 on ROS-induced oxidative stress in in vitro model of AMI. These data for the first time suggest that lncRNA CASC2 have better protective effects on AMI, which could reduce oxidative stress through their carried miR-18a and subsequently downregulating the SIRT2/ROS pathway.
Collapse
Affiliation(s)
- Guoqiu Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zijun Tang
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wan Zhang
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu Ding
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Dasong Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Liu J, Yu E. P2RY12 Increased Neuroinflammation to Accelerate Depression-like Behaviors by the NLPR3 Inflammasome. Curr Neurovasc Res 2022; 19:267-274. [PMID: 36043776 DOI: 10.2174/1567202619666220829110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Depression is a class of important mental illness, which has become a severe health problem perplexing the world due to its high morbidity rate, high disability rate, and great disease burden. This study aimed to evaluate the role and possible mechanisms of P2RY12 in the depression-like behaviors model. METHODS Serum samples of patients with depression-like behaviors were used to analyze the expression of P2RY12. Models of mice were given LPS via intraperitoneal injection for 7 days. Behavioral tests were executed in this experiment. RESULTS The expression of P2RY12 in models of depression-like behaviors or mice with depression- like behaviors were induced. The inhibition of P2RY12 presents depression-like behaviors and reduces inflammation in the model of depression-like behaviors. P2RY12 induced NLRP3 expression and suppressed NLRP3 ubiquitination in a model of depression-like behavior. The inhibition of NLRP3 reduced the effects of P2RY12 in mice model of depression-like behaviors. The regulation of NLRP3 controlled the effects of the P2RY12 in vitro model of depression-like behaviors. CONCLUSION We conclude that P2RY12 increased neuroinflammation to accelerate depression-like behaviors by NLPR3 inflammasome, providing novel information for the treatment of depressionlike behaviors.
Collapse
Affiliation(s)
- Jie Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hanzhou 310053, China
| | - Enyan Yu
- Department of Clinical Psychology, Zhejiang Cancer Hospital, Hanzhou 310012, China
| |
Collapse
|
32
|
Wang M, Xu B, Liu L, Wang D. Oridonin attenuates dextran sulfate sodium‑induced ulcerative colitis in mice via the Sirt1/NF‑κB/p53 pathway. Mol Med Rep 2022; 26:312. [PMID: 36004485 PMCID: PMC9437968 DOI: 10.3892/mmr.2022.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis (UC) is a serious chronic inflammatory bowel disease. Oridonin (Ori) has anti-inflammatory, antibacterial and antitumor activities. The current study aimed to investigate the regulatory role of Ori in UC. BALB/C mice were induced to form a model of UC using dextran sulfate sodium (DSS), after which UC mice received high-(Ori-H) and low-doses of Ori (Ori-L). Subsequently, the length of the colon was measured and hematoxylin and, eosin staining was performed to detect colonic injury. Western blot analysis was performed to detect expression level in tight junction-associated proteins in murine colon tissue. Additionally, myeloperoxidase activity and inflammatory factor concentration were detected in colon tissue using ELISA. TUNEL and western blot assays were also performed to detect cell apoptosis, and the expression level of Sirt1/NF-κB/p53 pathway-related proteins was also determined using western blot analysis. The results revealed that Ori ameliorated clinical symptoms and pathological lesions in mice with DSS-induced UC. Furthermore, Ori protected the integrity of the colonic mucosal barrier, reduced the inflammatory response and decreased oxidative stress levels in mice with DSS-induced UC. Ori treatment also inhibited intestinal mucosal cell apoptosis. These effects may have occurred via the Sirtuin-1/NF-κB/p53 pathway. In conclusion, Ori treatment inhibited DSS-induced inflammatory response, oxidative stress and intestinal mucosal apoptosis in UC mice.
Collapse
Affiliation(s)
- Maonan Wang
- General Surgery Department, Jilin Provincial People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Bo Xu
- General Surgery Department, Jilin Provincial People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Lintao Liu
- General Surgery Department, Jilin Provincial People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Dawei Wang
- Faculty of Medicine, Beihua University, Jilin, Jilin 132013, P.R. China
| |
Collapse
|
33
|
Human Umbilical Cord Mesenchymal Stem Cells Improve Premature Ovarian Failure through Cell Apoptosis of miR-100-5p/NOX4/NLRP3. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3862122. [PMID: 35845923 PMCID: PMC9283025 DOI: 10.1155/2022/3862122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Premature ovarian failure refers to a series of symptoms of perimenopausal hot flashes, night sweats, decreased libido, vaginal dryness, insomnia, reduced menstruation, sparse hair, even amenorrhea, and even infertility before the age of 40 due to the decline of ovarian function. Premature ovarian failure is a common and difficult disease in gynecology. Its prevalence is increasing gradually, and the trend is younger. The aim of this experiment was to elucidate the role of human umbilical cord mesenchymal stem cells (HUCMSCs) in premature ovarian failure and its mechanism. HUCMSCs, KGN cells, and HEK293T cells were used in this experiment. Quantitative PCR and microarray analysis, ELISA inflammation and oxidative stress kits, RNA pull-down assay, luciferase reporter assay, proliferation assay, EDU staining, and Western blot analysis were used. In an in vitro model of premature ovarian failure, HUCMSCs attenuated inflammatory response, oxidative stress, and apoptosis. HUCMSCs ameliorated the premature ovarian failure model. The miR-100-5p expression was induced by HUCMSCs through methylation. miR-100-5p regulation influenced the role of HUCMSCs in an in vitro model of premature ovarian failure. HUCMSCs inhibited the in vitro expression of NOX4, NLRP3, and GSDMD proteins in the model. NOX4/NLRP3 signaling pathway affects the role of HUCMSCs in an in vitro model of premature ovarian failure through miR-100-5p. This experiment elucidated the role of HUCMSCs in premature ovarian failure and its mechanism, with a view to providing a clinical reference.
Collapse
|
34
|
Sousa C, Mendes AF. Monoterpenes as Sirtuin-1 Activators: Therapeutic Potential in Aging and Related Diseases. Biomolecules 2022; 12:921. [PMID: 35883477 PMCID: PMC9313249 DOI: 10.3390/biom12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtuin 1 (SIRT) is a class III, NAD+-dependent histone deacetylase that also modulates the activity of numerous non-histone proteins through deacylation. SIRT1 plays critical roles in regulating and integrating cellular energy metabolism, response to stress, and circadian rhythm by modulating epigenetic and transcriptional regulation, mitochondrial homeostasis, proteostasis, telomere maintenance, inflammation, and the response to hypoxia. SIRT1 expression and activity decrease with aging, and enhancing its activity extends life span in various organisms, including mammals, and improves many age-related diseases, including cancer, metabolic, cardiovascular, neurodegenerative, respiratory, musculoskeletal, and renal diseases, but the opposite, that is, aggravation of various diseases, such as some cancers and neurodegenerative diseases, has also been reported. Accordingly, many natural and synthetic SIRT1 activators and inhibitors have been developed. Known SIRT1 activators of natural origin are mainly polyphenols. Nonetheless, various classes of non-polyphenolic monoterpenoids have been identified as inducers of SIRT1 expression and/or activity. This narrative review discusses current information on the evidence that supports the role of those compounds as SIRT1 activators and their potential both as tools for research and as pharmaceuticals for therapeutic application in age-related diseases.
Collapse
Affiliation(s)
- Cátia Sousa
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alexandrina Ferreira Mendes
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
35
|
Yu Y, Bian Y, Shi JX, Gu Y, Yuan DP, Yu B, Shi L, Dou DH. Geniposide promotes splenic Treg differentiation to alleviate colonic inflammation and intestinal barrier injury in ulcerative colitis mice. Bioengineered 2022; 13:14616-14631. [PMID: 36694912 PMCID: PMC9995132 DOI: 10.1080/21655979.2022.2092678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Geniposide has been proven to have a therapeutic effect on ulcerative colitis (UC) in animals, but its potential mechanism in UC remains to be clarified. The purpose of this study was to confirm the efficacy of geniposide in UC and to investigate the possible mechanism of geniposide in UC treatment. In vivo, geniposide relieved weight loss and reduced intestinal tissue damage in UC mice. Geniposide decreased the levels of IL-1β and TNF-α and increased IL-10 levels in the colon and serum of UC mice. Geniposide increased FOXP3 expression in the colon and the number of CD4+ FOXP3+ cells in the spleen of UC mice. BD750 abolished the above regulatory effect of GE on UC mice. In vitro, geniposide increased the number of CD4+ FOXP3+ cells in spleen cells from normal mice, decreased the levels of IL-1β, CCL2 and TNF-α in the supernatant of LPS-treated Caco-2 cells, and decreased the protein expression of Beclin-1 and Occludin in cacO-2 cells. Epirubicin inhibited the effect of geniposide on increasing the number of CD4+ FOXP3+ cells in spleen cells, attenuated the inhibitory effect of geniposide on proinflammatory factors and attenuated the upregulation of geniposide on tight junction proteins in LPS-treated Caco-2 cells in the coculture system. In conclusion, geniposide has an effective therapeutic effect on UC. Increasing Treg differentiation of spleen cells is the mechanism by which geniposide alleviates intestinal inflammation and barrier injury in UC.
Collapse
Affiliation(s)
- Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Xin Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Gu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong-Ping Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Hai Dou
- Department of Pharmacy, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
36
|
Kadono K, Kageyama S, Nakamura K, Hirao H, Ito T, Kojima H, Dery KJ, Li X, Kupiec-Weglinski JW. Myeloid Ikaros-SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver. J Hepatol 2022; 76:896-909. [PMID: 34871625 PMCID: PMC9704689 DOI: 10.1016/j.jhep.2021.11.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although Ikaros (IKZF1) is a well-established transcriptional regulator in leukocyte lymphopoiesis and differentiation, its role in myeloid innate immune responses remains unclear. Sirtuin 1 (SIRT1) is a histone/protein deacetylase involved in cellular senescence, inflammation, and stress resistance. Whether SIRT1 signaling is essential in myeloid cell activation remains uncertain, while the molecular communication between Ikaros and SIRT1, two major transcriptional regulators, has not been studied. METHODS We undertook molecular and functional studies to interrogate the significance of the myeloid Ikaros-SIRT1 axis in innate immune activation and whether it may serve as a homeostatic sentinel in human liver transplant recipients (hepatic biopsies) and murine models of sterile hepatic inflammation (liver warm ischemia-reperfusion injury in wild-type, myeloid-specific Sirt1-knockout, and CD11b-DTR mice) as well as primary bone marrow-derived macrophage (BMM) cultures (Ikaros silencing vs. overexpression). RESULTS In our clinical study, we identified increased post-reperfusion hepatic Ikaros levels, accompanied by augmented inflammasome signaling yet depressed SIRT1, as a mechanism of hepatocellular damage in liver transplant recipients. In our experimental studies, we identified infiltrating macrophages as the major source of Ikaros in IR-stressed mouse livers. Then, we demonstrated that Ikaros-regulated pyroptosis - induced by canonical inflammasome signaling in BMM cultures - was SIRT1 dependent. Consistent with the latter, myeloid-specific Ikaros signaling augmented hepatic pyroptosis to aggravate pro-inflammatory responses in vivo by negatively regulating SIRT1 in an AMPK-dependent manner. Finally, myeloid-specific SIRT1 was required to suppress pyroptosis, pro-inflammatory phenotype, and ultimately mitigate hepatocellular injury in ischemia-stressed murine livers. CONCLUSION These findings identify the Ikaros-SIRT1 axis as a novel mechanistic biomarker of pyroptosis and a putative checkpoint regulator of homeostasis in response to acute hepatic stress/injury in mouse and human livers. LAY SUMMARY This report describes how crosstalk between Ikaros and SIRT1, two major transcriptional regulators, influence acute hepatic inflammation in murine models of liver ischemia-reperfusion injury and liver transplant recipients. We show that the myeloid Ikaros-SIRT1 axis regulates inflammasome-pyroptotic cell death and hepatocellular damage in stressed livers. Thus, the Ikaros-SIRT1 axis may serve as a novel checkpoint regulator that is required for homeostasis in response to acute liver injury in mice and humans.
Collapse
Affiliation(s)
- Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shoichi Kageyama
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;,Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;,Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Takahiro Ito
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hidenobu Kojima
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;,Corresponding author. Address: Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095, USA. Tel: (310) 825-4196; Fax: (310) 267-2358. (J.W. Kupiec-Weglinski)
| |
Collapse
|
37
|
Zhu S, Chen Z, Liang Q. TRAF3 promoted ROS-induced oxidative stress in model of cardiac infarction through the regulation of ULK1 ubiquitination. Clin Exp Hypertens 2022; 44:403-410. [PMID: 35318880 DOI: 10.1080/10641963.2022.2055766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBEJECTIVES Cardiac infarction is a dynamic, nonlinear and unpredictable course of disease, and who die of acute myocardial infarction, and coronary thrombosis. TRAF3 provide novel targets for the clinical prevention and treatment for tumors, viral infection, and so on.We investigated the mechanisms of TRAF3 gene, which plays a possible role in cardiac infarction and contributes to the pathogenesis of cardiac infarction-induced oxidative stress. METHODS Serum samples of patients with cardiac infarction and normal healthy volunteers were obtained from the 920 Hospital of PLA joint service support force. C57BL/6 mice were ligated and H9C2 cells were induced with 1% O2,5%CO2 and 94% N2. RESULTS The mRNA expression levels of TRAF3 in patients with cardiac infarction were increased, compared to healthy volunteers. Serum mRNA of TRAF3 was in positive correlation with serum CK levels in patients with cardiac infarction. Over-expression of TRAF3 heightened ROS-induced oxidative stress in vitro model of cardiac infarction. Then, TRAF3 recombinant protein could promote oxidative stress and aggravated cardiac infarction in mice model. Over-expression of TRAF3 induced ULK1 protein expression and reduced ULK1 ubiquitination in vitro model. The activation of ULK1 reduced the effects of TRAF3 on oxidative stress in vitro model of cardiac infarction. Meanwhile, the inhibition of ULK1 reversed the effects of si-TRAF3 on oxidative stress in vitro model of cardiac infarction. CONCLUSIONS This study identified that TRAF3 promoted ROS-induced oxidative stress in model of cardiac infarction through the regulation of ULK1 ubiquitination, which could potentially give rise to a new strategy for the treatment of cardiac infarction.
Collapse
Affiliation(s)
- Shaobing Zhu
- Department of Emergency, 920 Hospital of PLA joint service support force, Kunming, YN, China
| | - Zhenyu Chen
- Department of Emergency, 920 Hospital of PLA joint service support force, Kunming, YN, China
| | - Qilin Liang
- Department of Emergency, 920 Hospital of PLA joint service support force, Kunming, YN, China
| |
Collapse
|
38
|
Qu L, Liu C, Ke C, Zhan X, Li L, Xu H, Xu K, Liu Y. Atractylodes lancea Rhizoma Attenuates DSS-Induced Colitis by Regulating Intestinal Flora and Metabolites. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:525-552. [PMID: 35114907 DOI: 10.1142/s0192415x22500203] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atractylodes lancea (Thunb.) DC. is a herb widely used traditionally for the treatment of gastrointestinal diseases such as gastric ulcer, spleen deficiency, and diarrhea. In China, people fry raw A. lancea (SCZ) together with wheat bran to make bran-fried A. lancea (FCZ). Ancient Chinese texts have documented that FCZ can enhance the function of regulating the intestines and stomach. Nevertheless, the effect and mechanism of SCZ and FCZ on ulcerative colitis (UC) are still unclear. The aim of this study was to compare the therapeutic effects of SCZ and FCZ and their mechanisms on dextran sulfate sodium (DSS)-induced UC in mice. The chemical constituents of SCZ and FCZ were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with six reference compounds. The effects of SCZ and FCZ were investigated based on their effects on weight loss, disease activity index (DAI) score, colon length shortening, goblet cell loss, and pathological changes using the colons from a mouse model of DSS-induced UC. The effects of SCZ and FCZ on levels of the inflammatory cytokines (tumor necrosis factor-[Formula: see text], interleukin-6, interleukin-1[Formula: see text], mucoprotein (MUC2), tight protein (ZO-1, occludin), and the activation of macrophages were determined using immunohistochemistry (IHC) and immunofluorescence (IF). 16s RNA sequencing technology was used to detect the composition of the intestinal flora in each group. Nontargeted metabonomics was used to detect the serum metabolite levels of mice in each group. Pearson analysis was used to determine the correlation between the intestinal flora, metabolites, and pathological indices. Reverse transcription-polymerase chain reaction was used to detect the genes of different metabolite-related enzymes. A pseudogerm free (PGF) mouse model was used to verify whether the effect of SCZ and FCZ in UC depends on the regulation of intestinal flora. SCZ and FCZ could inhibit weight loss and decrease the DAI score, colon length shortening, goblet cell loss, and the extent of pathological changes in the colons of mice with DSS-induced colitis. Moreover, SCZ and FCZ inhibited the decrease in MUC2, ZO-1, occludin, production of pro-inflammatory factors, and activation of pro-inflammatory macrophages in colonic tissue. The effect of FCZ was better than that of SCZ. SCZ and FCZ not only inhibited the abundance of harmful bacteria and increased the abundance of beneficial bacteria, but also regulated the metabolism of disease-related metabolites such as amino acid and cholesterol metabolism. Both preparations inhibited the gene expression (Slc6A7, PRODH, Sdsl, HMGCR, SREBP-2) of different metabolite-related enzymes. In the PGF mouse model, the above effects were not observed. Rhizoma Atractylodes was effective in alleviating DSS-induced UC in mice, and FCZ was found to be superior to SCZ. The mechanism of action of FCZ and SCZ is mainly related to the regulation of intestinal flora and their associated metabolites.
Collapse
Affiliation(s)
- Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Chunlian Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Xin Zhan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Lanqing Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Haiying Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Kang Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.,Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, P. R. China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China.,Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, P. R. China
| |
Collapse
|
39
|
Peng ZT, Liu H. Puerarin attenuates LPS-induced inflammatory injury in gastric epithelial cells by repressing NLRP3 inflammasome-mediated apoptosis. Toxicol In Vitro 2022; 81:105350. [PMID: 35331853 DOI: 10.1016/j.tiv.2022.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
The NLRP3 inflammasome plays a crucial role in microbially induced gastric epithelial injury, but the underlying mechanisms remain unclear. Here, we aimed to assess the impacts of puerarin on LPS-induced inflammatory damage and the involvement of the AMPK/SIRT1/NLRP3 signaling pathways in this process in GES-1 cells. Cell viability and cytotoxicity were determined using CCK-8 and lactate dehydrogenase assay kits. Apoptosis was measured using annexin staining followed by flow cytometry. Cytokine levels were detected by ELISA, and protein expression was analyzed using western blotting. Protein overexpression was achieved by transfection with relevant pcDNA3.1 vectors, and protein knockdown was achieved by transfection with relevant siRNAs. Puerarin ameliorated LPS-induced cytotoxicity and apoptosis, while repressing LPS-stimulated NLRP3 inflammasome-mediated pyroptosis in GES-1 cells, as evidenced by significantly decreased expression of NLRP3, ASC, cleaved caspase-1, IL-1β and IL-18. NLRP3 knockdown efficiently repressed LPS-induced inflammatory injury in GES-1 cells. Puerarin activated the AMPK/SIRT1 pathway in LPS-treated GES-1 cells, and knockdown of both AMPK and SIRT1 reversed the protective effects of puerarin against LPS-induced inflammatory damage. AMPK overexpression strengthened, while AMPK knockdown weakened, the ability of puerarin to inhibit NLRP3-mediated inflammatory injury in LPS-treated GES-1 cells. Our findings suggest that puerarin may ameliorate LPS-induced inflammatory injury in GES-1 cells by activating the AMPK/SIRT1 signaling pathway and thereby repressing NLRP3 inflammasome-mediated apoptosis.
Collapse
Affiliation(s)
- Zi-Tan Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China
| | - Hui Liu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China.
| |
Collapse
|
40
|
Pu Z, Shen C, Zhang W, Xie H, Wang W. Avenanthramide C from Oats Protects Pyroptosis through Dependent ROS-Induced Mitochondrial Damage by PI3K Ubiquitination and Phosphorylation in Pediatric Pneumonia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2339-2353. [PMID: 35119859 DOI: 10.1021/acs.jafc.1c06223] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oat containing rich β-glucan, polyphenols, flavonoids, saponins, alkaloids, and other substances shows good biological activities. Therefore, the present study aimed to uncover the possible mechanism and therapeutic effect of Avenanthramide C in lessening inflammatory responses in pediatric pneumonia. Pediatric pneumonia was induced by liposaccharide (LPS) for vivo model and vitro model. Macrophage was performed to determine the mechanism and effects of Avenanthramide C in pediatric pneumonia. NLRP3 activity participated in the effects of Avenanthramide C in pediatric pneumonia. Avenanthramide C induced p-PI3K and p-Akt expressions and reduced ubiquitination of PI3K expression in pediatric pneumonia. On the other hand, Avenanthramide C integrated serine at 821 sites of the PI3K protein function. Avenanthramide C reduced ROS (reactive oxygen species)-induced mitochondrial damage by PI3K/AKT function in a model of pediatric pneumonia. Avenanthramide C protects pyroptosis in a model of pediatric pneumonia by PI3K/AKT/Nrf2/ROS signaling. Taken together, our results demonstrated that Avenanthramide C protects pyroptosis through dependent ROS-induced mitochondrial damage by PI3K ubiquitination and phosphorylation in a model of pediatric pneumonia, suggesting its potential use for the treatment of pediatric pneumonia and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Chaozhuang Shen
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Weiwei Zhang
- Department of Pharmacology, Second affiliated hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Wusan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui 241001, China
| |
Collapse
|
41
|
LRG1 expression reduced inflammation of sepsis-renal injury via activation of NLRP3 inflammasome by HIF-1 alpha. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
MI S, GU J, CAO X, LI Y, XU Q, CHEN W, ZHANG Y. Regulatory mechanism of fermented wheat germ on lipid metabolism in hyperlipidemia rats via activation of AMPK pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.57222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shengquan MI
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Junxia GU
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Xuelian CAO
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Yi LI
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Qile XU
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Wen CHEN
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| | - Yanzhen ZHANG
- Beijing Union University, China; Beijing Key Laboratory of Bioactive Substances and Functional Foods, China
| |
Collapse
|
43
|
Zhang W, Wang W, Shen C, Wang X, Pu Z, Yin Q. Network pharmacology for systematic understanding of Schisandrin B reduces the epithelial cells injury of colitis through regulating pyroptosis by AMPK/Nrf2/NLRP3 inflammasome. Aging (Albany NY) 2021; 13:23193-23209. [PMID: 34628369 PMCID: PMC8544312 DOI: 10.18632/aging.203611] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease with increasing incidence and prevalence in many countries. The purpose of this study is to explore the function of Schisandrin B and its underlying molecular mechanisms in colitis. In this study, mice with colitis were induced by giving 2.0% dextran sulfate sodium (DSS, MP) in the drinking water for seven days. Furthermore, TCMSP server and GEO DataSets were used to analyze the mechanism of Schisandrin B in colitis. It was found that Schisandrin B presented colitis in mice model. At the same time, Schisandrin B not only reduced inflammation in vivo and vitro model of colitis, but also suppressed the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome in vivo and vitro model of colitis. In addition, Schisandrin B induced AMP-activated protein kinase (AMPK) / Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in model of colitis, and regulated AMPK protein at 316 sites. The inhibition of AMPK reduced the anti-inflammation effects of Schisandrin B on NLRP3 inflammasome. Apart from that, Schisandrin B decreased reactive oxygen species (ROS)-induced mitochondrial damage and reduced epithelial cells damage of colitis through regulating pyroptosis. Collectively, our novel findings for first time showed that, Schisandrin B suppressed NLRP3 inflammasome activation-mediated interleukin-1beta (IL-1β) level and pyroptosis in intestinal epithelial cells of colitis model through the activation of AMPK/Nrf2 dependent signaling-ROS-induced mitochondrial damage, which may be a significant therapeutic approach in the treatment of acute colitis.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Wusan Wang
- Department of Pharmacology, Wannan Medical College, Wuhu 241001, Anhui, China
| | - Chaozhuang Shen
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Xiaohu Wang
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Qin Yin
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.,Wannan Medical College, Wuhu 241001, Anhui, China
| |
Collapse
|
44
|
USP38 protein alleviates neuroinflammation of cerebral ischemia–reperfusion injury via KDM5B expression. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
HU J, HE A, YUE X, ZHOU M, ZHOU Y. METRNL reduced inflammation in sepsis-induced renal injury via PPARδ-dependent pathways. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.61821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jin HU
- Chongqing University Cancer Hospital, China
| | - Aiting HE
- Chongqing University Cancer Hospital, China
| | | | | | | |
Collapse
|
46
|
Pu JL, Huang ZT, Luo YH, Mou T, Li TT, Li ZT, Wei XF, Wu ZJ. Fisetin mitigates hepatic ischemia-reperfusion injury by regulating GSK3β/AMPK/NLRP3 inflammasome pathway. Hepatobiliary Pancreat Dis Int 2021; 20:352-360. [PMID: 34024736 DOI: 10.1016/j.hbpd.2021.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury (IRI) represents a crucial challenge in liver transplantation. Fisetin has anti-inflammatory, anti-aging and anti-oxidative properties. This study aimed to examine whether fisetin mitigates hepatic IRI and examine its underlying mechanisms. METHODS Sham or warm hepatic I/R operated mice were pretreated with fisetin (5, 10 or 20 mg/kg). Hepatic histological assessments, TUNEL assays and serum aminotransferase measurements were performed. An in vitro hypoxia/reoxygenation (H/R) model using RAW264.7 macrophages pretreated with fisetin (2.5, 5 or 10 µmol/L) was also used. Serum and cell supernatant concentrations of interleukin-1β (IL-1β), IL-18 and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA). Protein levels of p-GSK3β, p-AMPK and NLR family pyrin domain-containing 3 (NLRP3)-associated proteins were detected by Western blotting. RESULTS Compared with the I/R group, fisetin pretreatment reduced pathological liver damage, serum aminotransferase levels, serum concentrations of IL-1β, IL-18 and TNF-α in the murine IRI model. Fisetin also reduced the expression of NLRP3 inflammasome-associated proteins (NLRP3, cleaved caspase-1, IL-1β and IL-18) in I/R-operated liver. The experiments in vitro showed that fisetin decreased the release of IL-1β, IL-18 and TNF-α, and reduced the expression of NLRP3 inflammasome-associated proteins in H/R-treated RAW264.7 cells. Moreover, fisetin increased the expressions of p-GSK3β and p-AMPK in both models, indicating that its anti-inflammatory effects were dependent on GSK3β/AMPK signaling. The anti-inflammatory effects of fisetin were partially inhibited by the AMPK specific inhibitor compound C. CONCLUSIONS Fisetin showed protective effects against hepatic IRI, countering inflammatory responses through mediating the GSK3β/AMPK/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Jun-Liang Pu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zuo-Tian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yun-Hai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting-Ting Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Tang Li
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Xu-Fu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
47
|
Wang T, Liu W, Li C, Si G, Liang Z, Yin J. Mist1 promoted inflammation in colitis model via K+-ATPase NLRP3 inflammasome by SNAI1. Pathol Res Pract 2021; 224:153511. [PMID: 34214845 DOI: 10.1016/j.prp.2021.153511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory intestinal disease. Genetic susceptibility, gut microbiota and mucosal immune dysfunction play important roles in the pathogenesis and development of UC. We investigate the effect of Mist1 in model of colitis and its underlying mechanism. The expressions of Mist1 in patients with colitis tissue were up-regulated. Meanwhile, Mist1 mRNA and protein expressions in DSS-induced colitis mice model were also induced and Mist1 mRNA and protein expressions of LPS induced THP-1 cell were also up-regulated. we found Mist1 human protein promoted inflammation in DSS-induced colitis mice by NLRP3. So, we up-regulated Mist1 expression and over-expression of Mist1 promoted IL-1β and NLRP3 protein expression levels in vitro model. However, down-regulation of Mist1 suppressed IL-1β and NLRP3 protein expression levels in vitro model. Next, SNAI1 is a shooting point of Mist1 in the effects of Mist1 in colitis. The inhibition of SNAI1 reduced the effects of Mist1 on NLRP3 inflammasome in vitro model. Activation of SNAI1 induced the effects of Mist1 on NLRP3 inflammasome in vitro model. Lastly, anti-SNAI1 human protein lowered the effects of Mist1 human protein on NLRP3 inflammasome in DSS-induced colitis mice. We demonstrated that Mist1 promoted inflammation in colitis model via NLRP3 inflammasome by SNAI1, whereas the absence of these macrophages led to a significant improvement in colitis treatment.
Collapse
Affiliation(s)
- Tao Wang
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China.
| | - Wenxiang Liu
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Chenyang Li
- Medical School of Chinese PLA, Beijing 100835, China
| | - Guowei Si
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Zhimin Liang
- Medical School of Chinese PLA, Beijing 100835, China
| | - Jian Yin
- Department of Gastroenterology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
48
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|