1
|
Stephens K, Bentley WE. Quorum Sensing from Two Engineers’ Perspectives. Isr J Chem 2023. [DOI: 10.1002/ijch.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kristina Stephens
- Thayer School of Engineering Dartmouth College Hanover NH USA
- Center for Bioenergy Innovation Oak Ridge National Laboratory Oak Ridge TN USA
| | - William E. Bentley
- Fischell Department of Bioengineering University of Maryland College Park MD USA
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD USA [e]Robert E. Fischell Institute for Biomedical Devices University of Maryland College Park MD USA
| |
Collapse
|
3
|
Torres-Cerna CE, Morales JA, Hernandez-Vargas EA. Modeling Quorum Sensing Dynamics and Interference on Escherichia coli. Front Microbiol 2019; 10:1835. [PMID: 31481938 PMCID: PMC6710385 DOI: 10.3389/fmicb.2019.01835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/25/2019] [Indexed: 01/16/2023] Open
Abstract
Bacteria control the expression of specific genes by Quorum Sensing (QS). This works using small signaling molecules called Autoinducers (AIs), for example, the Autoinducer-2 (AI-2). In this work, we present a mathematical model that represents the AI-2 dynamics on Escherichia coli, which is linked to the cell growth and the lsr operon expression. The model is adjusted using experimental data. Our results suggest that the extracellular AI-2 activity level depends on the cell growth rate, and this activity depends on the cell exponential growth phase. The model was adapted to simulate the interference of QS mechanisms in a co-culture of two E. coli strains: a wild type strain and a knock out strain that detects AI-2 but does not produce it. Co-culture simulations unveiled two conditions to avoid the QS on the wild strain: when the knock out takes control of the growth medium and overcomes the wild strain, or when is pre-cultured to its mid-exponential phase and then added to the wild strain culture. Model simulations unveiled new insights about the interference of bacterial communication and offer new tools for QS control.
Collapse
Affiliation(s)
| | - J Alejandro Morales
- Computer Science Department, Universidad de Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
4
|
Ueda H, Stephens K, Trivisa K, Bentley WE. Bacteria Floc, but Do They Flock? Insights from Population Interaction Models of Quorum Sensing. mBio 2019; 10:e00972-19. [PMID: 31138754 PMCID: PMC6538791 DOI: 10.1128/mbio.00972-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022] Open
Abstract
Quorum sensing (QS) enables coordinated, population-wide behavior. QS-active bacteria "communicate" their number density using autoinducers which they synthesize, collect, and interpret. Tangentially, chemotactic bacteria migrate, seeking out nutrients and other molecules. It has long been hypothesized that bacterial behaviors, such as chemotaxis, were the primordial progenitors of complex behaviors of higher-order organisms. Recently, QS was linked to chemotaxis, yet the notion that these behaviors can together contribute to higher-order behaviors has not been shown. Here, we mathematically link flocking behavior, commonly observed in fish and birds, to bacterial chemotaxis and QS by constructing a phenomenological model of population-scale QS-mediated phenomena. Specifically, we recast a previously developed mathematical model of flocking and found that simulated bacterial behaviors aligned well with well-known QS behaviors. This relatively simple system of ordinary differential equations affords analytical analysis of asymptotic behavior and describes cell position and velocity, QS-mediated protein expression, and the surrounding concentrations of an autoinducer. Further, heuristic explorations of the model revealed that the emergence of "migratory" subpopulations occurs only when chemotaxis is directly linked to QS. That is, behaviors were simulated when chemotaxis was coupled to QS and when not. When coupled, the bacterial flocking model predicts the formation of two distinct groups of cells migrating at different speeds in their journey toward an attractant. This is qualitatively similar to phenomena spotted in our Escherichiacoli chemotaxis experiments as well as in analogous work observed over 50 years ago.IMPORTANCE Our modeling efforts show how cell density can affect chemotaxis; they help to explain the roots of subgroup formation in bacterial populations. Our work also reinforces the notion that bacterial mechanisms are at times exhibited in higher-order organisms.
Collapse
Affiliation(s)
- Hana Ueda
- Department of Mathematics, University of Maryland College Park, College Park, Maryland, USA
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| | - Konstantina Trivisa
- Department of Mathematics, University of Maryland College Park, College Park, Maryland, USA
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
| | - William E Bentley
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Ha JH, Hauk P, Cho K, Eo Y, Ma X, Stephens K, Cha S, Jeong M, Suh JY, Sintim HO, Bentley WE, Ryu KS. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. SCIENCE ADVANCES 2018; 4:eaar7063. [PMID: 29868643 PMCID: PMC5983913 DOI: 10.1126/sciadv.aar7063] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/18/2018] [Indexed: 05/30/2023]
Abstract
Quorum sensing (QS), a bacterial process that regulates population-scale behavior, is mediated by small signaling molecules, called autoinducers (AIs), that are secreted and perceived, modulating a "collective" phenotype. Because the autoinducer AI-2 is secreted by a wide variety of bacterial species, its "perception" cues bacterial behavior. This response is mediated by the lsr (LuxS-regulated) operon that includes the AI-2 transporter LsrACDB and the kinase LsrK. We report that HPr, a phosphocarrier protein central to the sugar phosphotransferase system of Escherichia coli, copurifies with LsrK. Cocrystal structures of an LsrK/HPr complex were determined, and the effects of HPr and phosphorylated HPr on LsrK activity were assessed. LsrK activity is inhibited when bound to HPr, revealing new linkages between QS activity and sugar metabolism. These findings help shed new light on the abilities of bacteria to rapidly respond to changing nutrient levels at the population scale. They also suggest new means of manipulating QS activity among bacteria and within various niches.
Collapse
Affiliation(s)
- Jung-Hye Ha
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
- New Drug Development Center, 80 Cheombok-ro, Dong-gu, Daegu-si 41061, South Korea
| | - Pricila Hauk
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kun Cho
- Biomedical Omics Group, Korea Basic Science Institute, Chungcheongbuk-do 28119, South Korea
| | - Yumi Eo
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
| | - Xiaochu Ma
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Soyoung Cha
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
| | - Migyeong Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Herman O. Sintim
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kyoung-Seok Ryu
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|