1
|
Gong Y, Zhao Y, Li Y, Wang Q, Li C, Song K, Liu J, Chen F. Corin in cardiovascular diseases and stroke. Clin Chim Acta 2025; 574:120343. [PMID: 40316193 DOI: 10.1016/j.cca.2025.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Corin is a type II transmembrane serine protease highly expressed in the heart. It plays a critical role in regulating fluid balance and improving cardiac function by converting pro-atrial natriuretic peptide into mature atrial natriuretic peptide. CORIN variants have been identified in patients with hypertension, heart failure, atrial fibrillation, and stroke. In vivo and in vitro, corin deficiency increases blood pressure and impairs cardiac function. Circulating soluble corin appears to have potential as a stable and specific biomarker for the risk prediction and prognostic assessment of cardiovascular diseases (CVDs) and stroke. In this review, we summarize the current knowledge on corin physiology and circulating corin and discuss cardiac corin expression and function in CVDs. In the future, corin-related therapeutic approaches to increase corin activity and raise corin levels may offer new opportunities to treat CVDs.
Collapse
Affiliation(s)
- Yue Gong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yichang Zhao
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qianqian Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunkai Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Keyi Song
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinqiu Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feifei Chen
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Armstrong EE, Mooney JA, Solari KA, Kim BY, Barsh GS, Grant VB, Greenbaum G, Kaelin CB, Panchenko K, Pickrell JK, Rosenberg N, Ryder OA, Yokoyama T, Ramakrishnan U, Petrov DA, Hadly EA. Unraveling the genomic diversity and admixture history of captive tigers in the United States. Proc Natl Acad Sci U S A 2024; 121:e2402924121. [PMID: 39298482 PMCID: PMC11441546 DOI: 10.1073/pnas.2402924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024] Open
Abstract
Genomic studies of endangered species have primarily focused on describing diversity patterns and resolving phylogenetic relationships, with the overarching goal of informing conservation efforts. However, few studies have investigated genomic diversity housed in captive populations. For tigers (Panthera tigris), captive individuals vastly outnumber those in the wild, but their diversity remains largely unexplored. Privately owned captive tiger populations have remained an enigma in the conservation community, with some believing that these individuals are severely inbred, while others believe they may be a source of now-extinct diversity. Here, we present a large-scale genetic study of the private (non-zoo) captive tiger population in the United States, also known as "Generic" tigers. We find that the Generic tiger population has an admixture fingerprint comprising all six extant wild tiger subspecies. Of the 138 Generic individuals sequenced for the purpose of this study, no individual had ancestry from only one subspecies. We show that the Generic tiger population has a comparable amount of genetic diversity relative to most wild subspecies, few private variants, and fewer deleterious mutations. We observe inbreeding coefficients similar to wild populations, although there are some individuals within both the Generic and wild populations that are substantially inbred. Additionally, we develop a reference panel for tigers that can be used with imputation to accurately distinguish individuals and assign ancestry with ultralow coverage (0.25×) data. By providing a cost-effective alternative to whole-genome sequencing (WGS), the reference panel provides a resource to assist in tiger conservation efforts for both ex- and in situ populations.
Collapse
Affiliation(s)
| | - Jazlyn A. Mooney
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA90089
| | | | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
- Department of Genetics, School of Medine, Stanford University, Stanford, CA94305
| | | | - Gili Greenbaum
- Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Jerusalem9190500, Israel
| | | | - Katya Panchenko
- Department of Biology, Stanford University, Stanford, CA94305
| | | | - Noah Rosenberg
- Department of Biology, Stanford University, Stanford, CA94305
| | | | - Tsuya Yokoyama
- Department of Biology, Stanford University, Stanford, CA94305
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore560065, India
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA94305
- Chan Zuckerberg BioHub, San Francisco, CA94158
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Earth System Science, Stanford University, Stanford, CA94305
- Woods Institute for the Environment, Stanford University, Stanford, CA94305
- Center for Innovation in Global Health, Stanford University, Stanford, CA94305
| |
Collapse
|
3
|
Sharp TR, Garshelis DL, Larson W. A most aggressive bear: Safari videos document sloth bear defense against tiger predation. Ecol Evol 2024; 14:e11524. [PMID: 39005887 PMCID: PMC11239324 DOI: 10.1002/ece3.11524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024] Open
Abstract
Sloth bears are non-carnivorous yet they attack more people than any other bear. They often stand up and charge explosively if a person mistakenly gets too close. Here, we argue that their aggression toward humans is an extension of their behavior toward tigers, which are their only natural predator. Interactions between sloth bears and tigers have not previously been studied because scientists have rarely observed such events. We collected and examined 43 videos or photo documentations of sloth bear-tiger interactions posted on the internet or social media from 2011 to 2023, mainly by tourists visiting tiger parks in India. We observed that sloth bears were most likely to stand up and charge if they first became aware of the tiger at close range (<3 m away). This aggressive-defensive strategy, intended to dissuade the tiger from attacking, appeared to be successful, in that 86% of interactions ended with no contact, whereas four (9%) culminated in the bear's death. We propose that a myrmecophagous diet led to this species' aggressive behavior: (1) their long, blunt front claws, well adapted for digging termites and ants, hamper their ability to climb trees for escape, and (2) they walk with their head down focused on scents underground, and make considerable noise digging and blowing soil, enabling tigers to approach quite closely without being detected. Sloth bears have coexisted with tigers or other (now extinct) large felid predators for their entire evolutionary history. Whereas their aggressive behavior has served them well for millions of years, more recently, people's fear of and retaliation against sloth bears represents a major threat to their survival. Understanding how sloth bears react to tigers provides guidance for reducing attacks on humans, thereby contributing to sloth bear conservation. Our investigation was made possible by passive citizen scientists, who unknowingly collected valuable data.
Collapse
Affiliation(s)
- Thomas R Sharp
- Wildlife SOS Salt Lake City Utah USA
- International Union for Conservation of Nature, Species Survival Commission Bear Specialist Group Gland Switzerland
| | - David L Garshelis
- International Union for Conservation of Nature, Species Survival Commission Bear Specialist Group Gland Switzerland
- Cohasset Minnesota USA
| | | |
Collapse
|
4
|
Das A, Suvo MSH, Shaha M, Gupta MD. Genome sequencing of captive white tigers from Bangladesh. BMC Genom Data 2024; 25:52. [PMID: 38844863 PMCID: PMC11155014 DOI: 10.1186/s12863-024-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVES The Bengal tiger Panthera tigris tigris, is an emblematic animal for Bangladesh. Despite being the apex predator in the wild, their number is decreasing due to anthropogenic activities such as hunting, urbanization, expansion of agriculture and deforestation. By contrast, captive tigers are flourishing due to practical conservation efforts. Breeding within the small captive population can produce inbreeding depression and genetic bottlenecks, which may limit the success of conservation efforts. Despite past decades of research, a comprehensive database on genetic variation in the captive and wild Bengal tigers in Bangladesh still needs to be included. Therefore, this research aimed to investigate the White Bengal tiger genome to create a resource for future studies to understand variation underlying important functional traits. DATA DESCRIPTION Blood samples from Chattogram Zoo were collected for three white Bengal tigers. Genomic DNA for all collected samples were extracted using a commercial DNA extraction kit. Whole genome sequencing was performed using a DNBseq platform. We generated 77 Gb of whole-genome sequencing (WGS) data for three white Bengal tigers (Average 11X coverage/sample). The data we generated will establish a paradigm for tiger research in Bangladesh by providing a genomic resource for future functional studies on the Bengal white tiger.
Collapse
Affiliation(s)
- Ashutosh Das
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram-4225, Bangladesh.
| | | | - Mishuk Shaha
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram-4225, Bangladesh
| | - Mukta Das Gupta
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram-4225, Bangladesh
| |
Collapse
|
5
|
Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, Driscoll CA, Pang Y, Li C, Pan Y, Velasco MS, Gopalakrishnan S, Yang RZ, Li BG, Jin K, Xu X, Uphyrkina O, Huang Y, Wu XH, Gilbert MTP, O'Brien SJ, Yamaguchi N, Luo SJ. Ancient DNA reveals genetic admixture in China during tiger evolution. Nat Ecol Evol 2023; 7:1914-1929. [PMID: 37652999 DOI: 10.1038/s41559-023-02185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
Collapse
Affiliation(s)
- Xin Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mikhail P Tiunov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Dmitry O Gimranov
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Ural Federal University, Yekaterinburg, Russia
| | - Yan Zhuang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Han
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Carlos A Driscoll
- Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD, USA
| | - Yuhong Pang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Chunmei Li
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yan Pan
- School of Archaeology and Museology, Peking University, Beijing, China
| | - Marcela Sandoval Velasco
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui-Zheng Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Jin
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Olga Uphyrkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, China
| | - Xiao-Hong Wu
- School of Archaeology and Museology, Peking University, Beijing, China
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University of Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
6
|
Wang C, Wu DD, Yuan YH, Yao MC, Han JL, Wu YJ, Shan F, Li WP, Zhai JQ, Huang M, Peng SM, Cai QH, Yu JY, Liu QX, Liu ZY, Li LX, Teng MS, Huang W, Zhou JY, Zhang C, Chen W, Tu XL. Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC Biol 2023; 21:64. [PMID: 37069598 PMCID: PMC10111772 DOI: 10.1186/s12915-023-01552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Among six extant tiger subspecies, the South China tiger (Panthera tigris amoyensis) once was widely distributed but is now the rarest one and extinct in the wild. All living South China tigers are descendants of only two male and four female wild-caught tigers and they survive solely in zoos after 60 years of effective conservation efforts. Inbreeding depression and hybridization with other tiger subspecies were believed to have occurred within the small, captive South China tiger population. It is therefore urgently needed to examine the genomic landscape of existing genetic variation among the South China tigers. RESULTS In this study, we assembled a high-quality chromosome-level genome using long-read sequences and re-sequenced 29 high-depth genomes of the South China tigers. By combining and comparing our data with the other 40 genomes of six tiger subspecies, we identified two significantly differentiated genomic lineages among the South China tigers, which harbored some rare genetic variants introgressed from other tiger subspecies and thus maintained a moderate genetic diversity. We noticed that the South China tiger had higher FROH values for longer runs of homozygosity (ROH > 1 Mb), an indication of recent inbreeding/founder events. We also observed that the South China tiger had the least frequent homozygous genotypes of both high- and moderate-impact deleterious mutations, and lower mutation loads than both Amur and Sumatran tigers. Altogether, our analyses indicated an effective genetic purging of deleterious mutations in homozygous states from the South China tiger, following its population contraction with a controlled increase in inbreeding based on its pedigree records. CONCLUSIONS The identification of two unique founder/genomic lineages coupled with active genetic purging of deleterious mutations in homozygous states and the genomic resources generated in our study pave the way for a genomics-informed conservation, following the real-time monitoring and rational exchange of reproductive South China tigers among zoos.
Collapse
Affiliation(s)
- Chen Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | | | - Meng-Cheng Yao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Wan-Ping Li
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jun-Qiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Mian Huang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Shi-Ming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Qin-Hui Cai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | | | | | | | - Lin-Xiang Li
- Suzhou Shangfangshan Forest Zoo, Suzhou, 215009, China
| | | | - Wei Huang
- Nanchang Zoo, Nanchang, 330025, China
| | - Jun-Ying Zhou
- Chinese Association of Zoological Gardens, Beijing, 100037, China
| | - Chi Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China.
| | - Xiao-Long Tu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
7
|
Zhang L, Lan T, Lin C, Fu W, Yuan Y, Lin K, Li H, Sahu SK, Liu Z, Chen D, Liu Q, Wang A, Wang X, Ma Y, Li S, Zhu Y, Wang X, Ren X, Lu H, Huang Y, Yu J, Liu B, Wang Q, Zhang S, Xu X, Yang H, Liu D, Liu H, Xu Y. Chromosome-scale genomes reveal genomic consequences of inbreeding in the South China tiger: A comparative study with the Amur tiger. Mol Ecol Resour 2023; 23:330-347. [PMID: 35723950 PMCID: PMC10084155 DOI: 10.1111/1755-0998.13669] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023]
Abstract
The South China tiger (Panthera tigris amoyensis, SCT) is the most critically endangered subspecies of tiger due to functional extinction in the wild. Inbreeding depression is observed among the captive population descended from six wild ancestors, resulting in high juvenile mortality and low reproduction. We assembled and characterized the first SCT genome and an improved Amur tiger (P. t. altaica, AT) genome named AmyTig1.0 and PanTig2.0. The two genomes are the most continuous and comprehensive among any tiger genomes yet reported at the chromosomal level. By using the two genomes and resequencing data of 15 SCT and 13 AT individuals, we investigated the genomic signature of inbreeding depression of the SCT. The results indicated that the effective population size of SCT experienced three phases of decline, ~5.0-1.0 thousand years ago, 100 years ago, and since captive breeding in 1963. We found 43 long runs of homozygosity fragments that were shared by all individuals in the SCT population and covered a total length of 20.63% in the SCT genome. We also detected a large proportion of identical-by-descent segments across the genome in the SCT population, especially on ChrB4. Deleterious nonsynonymous single nucleotide polymorphic sites and loss-of-function mutations were found across genomes with extensive potential influences, despite a proportion of these loads having been purged by inbreeding depression. Our research provides an invaluable resource for the formulation of genetic management policies for the South China tiger such as developing genome-based breeding and genetic rescue strategy.
Collapse
Affiliation(s)
- Le Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, Shenzhen, China.,BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen, China
| | - Wenyuan Fu
- Longyan Geopark Protection and Development Center, Longyan, China.,Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, China
| | | | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Daqing Chen
- Suzhou Shangfangshan Forest Zoo, Suzhou, China
| | - Qunxiu Liu
- Shanghai Zoological Park, Shanghai, China
| | | | | | - Yue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shizhou Li
- Shaoguan Research Base of South China Tiger, Shaoguan, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Xiaotong Ren
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Haorong Lu
- China National GeneBank, Shenzhen, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | | | - Jieyao Yu
- China National GeneBank, Shenzhen, China
| | - Boyang Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Xun Xu
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Huanming Yang
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Dan Liu
- Heilongjiang Siberian Tiger Park, Harbin, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Shenzhen, China.,BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin, China
| |
Collapse
|
8
|
Shukla H, Suryamohan K, Khan A, Mohan K, Perumal RC, Mathew OK, Menon R, Dixon MD, Muraleedharan M, Kuriakose B, Michael S, Krishnankutty SP, Zachariah A, Seshagiri S, Ramakrishnan U. Near-chromosomal de novo assembly of Bengal tiger genome reveals genetic hallmarks of apex predation. Gigascience 2022; 12:giac112. [PMID: 36576130 PMCID: PMC9795480 DOI: 10.1093/gigascience/giac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022] Open
Abstract
The tiger, a poster child for conservation, remains an endangered apex predator. Continued survival and recovery will require a comprehensive understanding of genetic diversity and the use of such information for population management. A high-quality tiger genome assembly will be an important tool for conservation genetics, especially for the Indian tiger, the most abundant subspecies in the wild. Here, we present high-quality near-chromosomal genome assemblies of a female and a male wild Indian tiger (Panthera tigris tigris). Our assemblies had a scaffold N50 of >140 Mb, with 19 scaffolds corresponding to the 19 numbered chromosomes, containing 95% of the genome. Our assemblies also enabled detection of longer stretches of runs of homozygosity compared to previous assemblies, which will help improve estimates of genomic inbreeding. Comprehensive genome annotation identified 26,068 protein-coding genes, including several gene families involved in key morphological features such as the teeth, claws, vision, olfaction, taste, and body stripes. We also identified 301 microRNAs, 365 small nucleolar RNAs, 632 transfer RNAs, and other noncoding RNA elements, several of which are predicted to regulate key biological pathways that likely contribute to the tiger's apex predatory traits. We identify signatures of positive selection in the tiger genome that are consistent with the Panthera lineage. Our high-quality genome will enable use of noninvasive samples for comprehensive assessment of genetic diversity, thus supporting effective conservation and management of wild tiger populations.
Collapse
Affiliation(s)
- Harsh Shukla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Kushal Suryamohan
- MedGenome Inc., Department of Research and Development, Foster City, CA 94404, USA
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
| | - Anubhab Khan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Krishna Mohan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Rajadurai C Perumal
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Oommen K Mathew
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Ramesh Menon
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Mandumpala Davis Dixon
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Megha Muraleedharan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Boney Kuriakose
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Saju Michael
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Sajesh P Krishnankutty
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Arun Zachariah
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- Wayanad Wildlife Sanctuary, Sultan Bathery, Kerala 673592, India
| | - Somasekar Seshagiri
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
9
|
Zhang X, Liao Y, Qin T, Ma J, Liu J, Zou J, Huang H, Zhong X, Yang M. Developmental stage variation in the gut microbiome of South China tigers. Front Microbiol 2022; 13:962614. [PMID: 36439793 PMCID: PMC9682017 DOI: 10.3389/fmicb.2022.962614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2024] Open
Abstract
South China tigers (Panthera tigris amoyensis, SC) are the most threatened tiger subspecies in the world. All the living SCs are captive in zoos or reserves and depend on artificial feeding. The composition of the gut microbiome plays an important role in sustaining the health of the host. A comprehensive understanding of the composition and development of the microbial community of SC is helpful to improve the feeding of captive SC. In this study, we collected 47 fecal samples, 37 of which were from SC of three developmental stages, 5 from adult Amur tigers (Am), and 5 from adult Bengal tigers (Bg), which were all housed in the same zoo. We investigated the diversity, richness, and composition of the bacterial microbiomes and we found that the gut microbiome of SC is strongly affected by host aging. The composition of the gut microbiome of juvenile SC experienced dramatic changes from 5 months old to 1 year old, and it showed much less difference when compared to the samples of 1 year old and the subadult. No significant differences were observed between the samples of subadult and the adult groups. The predominant phylum of 5-month-old SC is Fusobacteriota (33.99%) when the juvenile tigers were older than 5 months, and Firmicutes, but not Fusobacteriota, became the predominant phylum of bacteria in their gut. The gut microbiome of SC, Am, and Bg is possibly affected by their genetic variation; however, the core microbiome of these three subspecies is the same. Our data suggest that the gut microbiome of SC undergoes a developmental progression: a developmental phase (cub), a transitional phase (subadult), and a stable phase (adult). These results expand our understanding of the role of age in the development of the gut microbiome of SC.
Collapse
Affiliation(s)
- Xianfu Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Yanxin Liao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | | | | | | | | | - Xiaojun Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
10
|
Hu J, Westbury MV, Yuan J, Wang C, Xiao B, Chen S, Song S, Wang L, Lin H, Lai X, Sheng G. An extinct and deeply divergent tiger lineage from northeastern China recognized through palaeogenomics. Proc Biol Sci 2022; 289:20220617. [PMID: 35892215 PMCID: PMC9326283 DOI: 10.1098/rspb.2022.0617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tigers (Panthera tigris) are flagship big cats and attract extensive public attention due to their charismatic features and endangered status. Despite this, little is known about their prehistoric lineages and detailed evolutionary histories. Through palaeogenomic analyses, we identified a Pleistocene tiger from northeastern China, dated to beyond the limits of radiocarbon dating (greater than 43 500 years ago). We used a simulated dataset and different reads processing pipelines to test the validity of our results and confirmed that, in both mitochondrial and nuclear phylogenies, this ancient individual belongs to a previously unknown lineage that diverged prior to modern tiger diversification. Based on the mitochondrial genome, the divergence time of this ancient lineage was estimated to be approximately 268 ka (95% CI: 187-353 ka), doubling the known age of tigers' maternal ancestor to around 125 ka (95% CI: 88-168 ka). Furthermore, by combining our findings with putative mechanisms underlying the discordant mito-nuclear phylogenetic placement for the South China tigers, we proposed a more complex scenario of tiger evolution that would otherwise be missed using data from modern tigers only. Our study provides the first glimpses of the genetic antiquity of tigers and demonstrates the utility of aDNA-based investigation for further understanding tiger evolution.
Collapse
Affiliation(s)
- Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, People's Republic of China,School of Earth Sciences, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Michael V. Westbury
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Junxia Yuan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, People's Republic of China
| | - Chunxue Wang
- School of Archaeology, Jilin University, Changchun 130012, People's Republic of China
| | - Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, People's Republic of China,School of Earth Sciences, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Shungang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, People's Republic of China
| | - Shiwen Song
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, People's Republic of China
| | - Linying Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, People's Republic of China
| | - Haifeng Lin
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, People's Republic of China
| | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, People's Republic of China,School of Earth Sciences, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, People's Republic of China,School of Environmental Studies, China University of Geosciences, Wuhan 430078, People's Republic of China
| |
Collapse
|
11
|
Virrueta Herrera S, Johnson KP, Sweet AD, Ylinen E, Kunnasranta M, Nyman T. High levels of inbreeding with spatial and host-associated structure in lice of an endangered freshwater seal. Mol Ecol 2022; 31:4593-4606. [PMID: 35726520 PMCID: PMC9544963 DOI: 10.1111/mec.16569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/02/2023]
Abstract
Host-specialist parasites of endangered large vertebrates are in many cases more endangered than their hosts. In particular, low host population densities and reduced among-host transmission rates are expected to lead to inbreeding within parasite infrapopulations living on single host individuals. Furthermore, spatial population structures of directly-transmitted parasites should be concordant with those of their hosts. Using population genomic approaches, we investigated inbreeding and population structure in a host-specialist seal louse (Echinophthirius horridus) infesting the Saimaa ringed seal (Phoca hispida saimensis), which is endemic to Lake Saimaa in Finland, and is one of the most endangered pinnipeds in the world. We conducted genome resequencing of pairs of lice collected from 18 individual Saimaa ringed seals throughout the Lake Saimaa complex. Our analyses showed high genetic similarity and inbreeding between lice inhabiting the same individual seal host, indicating low among-host transmission rates. Across the lake, genetic differentiation among individual lice was correlated with their geographic distance, and assignment analyses revealed a marked break in the genetic variation of the lice in the middle of the lake, indicating substantial population structure. These findings indicate that movements of Saimaa ringed seals across the main breeding areas of the fragmented Lake Saimaa complex may in fact be more restricted than suggested by previous population-genetic analyses of the seals themselves.
Collapse
Affiliation(s)
- Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA.,Program in Ecology, Evolution, and Conservation, University of Illinois, Urbana, Illinois, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA
| | - Andrew D Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Eeva Ylinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.,Natural Resources Institute Finland, Joensuu, Finland
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
12
|
Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. BIOLOGY 2022; 11:biology11050717. [PMID: 35625445 PMCID: PMC9138375 DOI: 10.3390/biology11050717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is an important hormone that regulates many physiological and pathological processes, including electrolyte and body fluid balance, blood volume and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy, atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure. Abstract Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.
Collapse
|
13
|
Hogg CJ, Ottewell K, Latch P, Rossetto M, Biggs J, Gilbert A, Richmond S, Belov K. Threatened Species Initiative: Empowering conservation action using genomic resources. Proc Natl Acad Sci U S A 2022; 119:e2115643118. [PMID: 35042806 PMCID: PMC8795520 DOI: 10.1073/pnas.2115643118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species. Conservation practitioners can use these tools to inform their decision-making. But, at present there is an implementation gap between the release of genome information and the use of genomic data in applied conservation by conservation practitioners. In May 2020, we launched the Threatened Species Initiative and brought a consortium of genome biologists, population biologists, bioinformaticians, population geneticists, and ecologists together with conservation agencies across Australia, including government, zoos, and nongovernment organizations. Our objective is to create a foundation of genomic data to advance our understanding of key Australian threatened species, and ultimately empower conservation practitioners to access and apply genomic data to their decision-making processes through a web-based portal. Currently, we are developing genomic resources for 61 threatened species from a range of taxa, across Australia, with more than 130 collaborators from government, academia, and conservation organizations. Developed in direct consultation with government threatened-species managers and other conservation practitioners, herein we present our framework for meeting their needs and our systematic approach to integrating genomics into threatened species recovery.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Kym Ottewell
- Conservation Science Centre, Department of Biodiversity, Conservation, & Attractions, Kensington, WA 6151, Australia
| | - Peter Latch
- Australian Government Department of Agriculture, Water & Environment, Canberra, ACT 2600, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - James Biggs
- Zoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia
| | | | | | - Katherine Belov
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Sherkow JS, Barker KB, Braverman I, Cook-Deegan R, Durbin R, Easter CL, Goldstein MM, Hudson M, Kress WJ, Lewin HA, Mathews DJH, McCarthy C, McCartney AM, da Silva M, Torrance AW, Greely HT. Ethical, legal, and social issues in the Earth BioGenome Project. Proc Natl Acad Sci U S A 2022; 119:e2115859119. [PMID: 35042809 PMCID: PMC8795529 DOI: 10.1073/pnas.2115859119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Earth BioGenome Project (EBP) is an audacious endeavor to obtain whole-genome sequences of representatives from all eukaryotic species on Earth. In addition to the project's technical and organizational challenges, it also faces complicated ethical, legal, and social issues. This paper, from members of the EBP's Ethical, Legal, and Social Issues (ELSI) Committee, catalogs these ELSI concerns arising from EBP. These include legal issues, such as sample collection and permitting; the applicability of international treaties, such as the Convention on Biological Diversity and the Nagoya Protocol; intellectual property; sample accessioning; and biosecurity and ethical issues, such as sampling from the territories of Indigenous peoples and local communities, the protection of endangered species, and cross-border collections, among several others. We also comment on the intersection of digital sequence information and data rights. More broadly, this list of ethical, legal, and social issues for large-scale genomic sequencing projects may be useful in the consideration of ethical frameworks for future projects. While we do not-and cannot-provide simple, overarching solutions for all the issues raised here, we conclude our perspective by beginning to chart a path forward for EBP's work.
Collapse
Affiliation(s)
- Jacob S Sherkow
- College of Law, University of Illinois at Urbana-Champaign, Champaign, IL 61820;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Advanced Studies in Biomedical Innovation Law, University of Copenhagen Faculty of Law DK-2300 Copenhagen S, Denmark
| | - Katharine B Barker
- Global Genome Initiative and Global Genome Biodiversity Network, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Irus Braverman
- University at Buffalo School of Law, The State University of New York at Buffalo, Buffalo, NY 14260
| | - Robert Cook-Deegan
- School for the Future of Innovation in Society and Consortium for Science, Policy & Outcomes, College of Global Futures, Arizona State University, Washington, DC 20006
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Carla L Easter
- Education and Community Involvement Branch, National Human Genome Research Institute, Bethesda, MD 20892
| | - Melissa M Goldstein
- Department of Health Policy and Management, Milken Institute School of Public Health, George Washington University, Washington, DC 20052
| | - Maui Hudson
- Te Kotahi Research Institute, University of Waikato, Hamilton 3216, New Zealand
- Genomics Aotearoa, University of Otago, Dunedin 9016, New Zealand
| | - W John Kress
- The Arnold Arboretum, Harvard University, Jamaica Plain, MA 02130
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Harris A Lewin
- Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, CA 95616
- Department of Population Health and Reproduction, University of California, Davis, CA 95616
| | - Debra J H Mathews
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Ann M McCartney
- Genome Informatics Section, National Human Genomics Research Institute, Bethesda, MD 20892
| | - Manuela da Silva
- Fiocruz Covid-19 Biobank, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil
| | | | - Henry T Greely
- Center for Law and the Biosciences, Stanford Law School, Stanford University, Stanford, CA 94305
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
15
|
Broad tiger stripes in a small habitat patch. Proc Natl Acad Sci U S A 2021; 118:2114685118. [PMID: 34620715 DOI: 10.1073/pnas.2114685118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
|
16
|
Sagar V, Kaelin CB, Natesh M, Reddy PA, Mohapatra RK, Chhattani H, Thatte P, Vaidyanathan S, Biswas S, Bhatt S, Paul S, Jhala YV, Verma MM, Pandav B, Mondol S, Barsh GS, Swain D, Ramakrishnan U. High frequency of an otherwise rare phenotype in a small and isolated tiger population. Proc Natl Acad Sci U S A 2021; 118:e2025273118. [PMID: 34518374 PMCID: PMC8488692 DOI: 10.1073/pnas.2025273118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in Transmembrane Aminopeptidase Q (Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise FST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.
Collapse
Affiliation(s)
- Vinay Sagar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
| | - Christopher B Kaelin
- Department of Genetics, Stanford University, Palo Alto, CA 94309
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Meghana Natesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Biology Department, Indian Institute of Science Education and Research, Tirupati 411008, India
| | - P Anuradha Reddy
- Laboratory for Conservation of Endangered Species, Center for Cellular & Molecular Biology, Hyderabad 500048, India
| | | | - Himanshu Chhattani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Prachi Thatte
- World Wide Fund for Nature - India, New Delhi 110003 India
| | - Srinivas Vaidyanathan
- Foundation for Ecological Research, Advocacy and Learning, Auroville Post, Tamil Nadu 605101 India
| | | | | | - Shashi Paul
- Odisha Forest Department, Bhubaneswar 751023, India
| | - Yadavendradev V Jhala
- Wildlife Institute of India, Dehradun 248001, India
- National Tiger Conservation Authority, Wildlife Institute of India Tiger Cell, Wildlife Institute of India, Dehradun 248001, India
| | | | | | | | - Gregory S Barsh
- Department of Genetics, Stanford University, Palo Alto, CA 94309
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Debabrata Swain
- Former Member Secretary, National Tiger Conservation Authority, New Delhi 110003, India
- Former Principal Chief Conservator of Forest and Head of Forest Force, Indian Forest Service, Bhubaneswar 751023, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
- DBT - Wellcome Trust India Alliance, Hyderabad 500034, India
| |
Collapse
|
17
|
Function and regulation of corin in physiology and disease. Biochem Soc Trans 2021; 48:1905-1916. [PMID: 33125488 DOI: 10.1042/bst20190760] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) is of major importance in the maintenance of electrolyte balance and normal blood pressure. Reduced plasma ANP levels are associated with the increased risk of cardiovascular disease. Corin is a type II transmembrane serine protease that converts the ANP precursor to mature ANP. Corin deficiency prevents ANP generation and alters electrolyte and body fluid homeostasis. Corin is synthesized as a zymogen that is proteolytically activated on the cell surface. Factors that disrupt corin folding, intracellular trafficking, cell surface expression, and zymogen activation are expected to impair corin function. To date, CORIN variants that reduce corin activity have been identified in hypertensive patients. In addition to the heart, corin expression has been detected in non-cardiac tissues, where corin and ANP participate in diverse physiological processes. In this review, we summarize the current knowledge in corin biosynthesis and post-translational modifications. We also discuss tissue-specific corin expression and function in physiology and disease.
Collapse
|
18
|
Snow Leopard (Panthera uncia) Genetics: The Knowledge Gaps, Needs, and Implications for Conservation. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00236-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Armstrong EE, Khan A, Taylor RW, Gouy A, Greenbaum G, Thiéry A, Kang JT, Redondo SA, Prost S, Barsh G, Kaelin C, Phalke S, Chugani A, Gilbert M, Miquelle D, Zachariah A, Borthakur U, Reddy A, Louis E, Ryder OA, Jhala YV, Petrov D, Excoffier L, Hadly E, Ramakrishnan U. Recent Evolutionary History of Tigers Highlights Contrasting Roles of Genetic Drift and Selection. Mol Biol Evol 2021; 38:2366-2379. [PMID: 33592092 PMCID: PMC8136513 DOI: 10.1093/molbev/msab032] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world's wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.
Collapse
Affiliation(s)
| | - Anubhab Khan
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Ryan W Taylor
- Department of Biology, Stanford University, Stanford, CA, USA
- End2End Genomics, LLC, Davis, CA, USA
| | - Alexandre Gouy
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gili Greenbaum
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexandre Thiéry
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jonathan T Kang
- Department of Biology, Stanford University, Stanford, CA, USA
- Genome Institute of Singapore, A*STAR, Singapore
| | | | - Stefan Prost
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Gregory Barsh
- Hudsonalpha Institute, Hunstville, AL, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | | | - Martin Gilbert
- Wildlife Conservation Society, Russia Program, New York, NY, USA
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Dale Miquelle
- Wildlife Conservation Society, Russia Program, New York, NY, USA
| | | | | | - Anuradha Reddy
- Laboratory for Conservation of Endangered Species, CCMB, Hyderabad, India
| | - Edward Louis
- Department of Genetics, Omaha Zoo, Omaha, NE, USA
| | - Oliver A Ryder
- San Diego Zoo, Institute for Conservation Research, Escondido, CA, USA
| | | | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elizabeth Hadly
- Wildlife Conservation Society, Russia Program, New York, NY, USA
| | | |
Collapse
|
20
|
Jhala Y, Gopal R, Mathur V, Ghosh P, Negi HS, Narain S, Yadav SP, Malik A, Garawad R, Qureshi Q. Recovery of tigers in India: Critical introspection and potential lessons. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
| | | | - Vaibhav Mathur
- National Tiger Conservation Authority Ministry of Environment Forest and Climate Change Government of India New Delhi India
| | - Prodipto Ghosh
- The Energy and Resources Institute India Habitat Center New Delhi India
| | | | - Sunita Narain
- Center for Science and Environment India Habitat Center New Delhi India
| | - Satya Prakash Yadav
- National Tiger Conservation Authority Ministry of Environment Forest and Climate Change Government of India New Delhi India
| | - Amit Malik
- National Tiger Conservation Authority Ministry of Environment Forest and Climate Change Government of India New Delhi India
| | - Rajendra Garawad
- National Tiger Conservation Authority Ministry of Environment Forest and Climate Change Government of India New Delhi India
| | | |
Collapse
|
21
|
He M, Zhou T, Niu Y, Feng W, Gu X, Xu W, Zhang S, Wang Z, Zhang Y, Wang C, Dong L, Liu M, Dong N, Wu Q. The protease corin regulates electrolyte homeostasis in eccrine sweat glands. PLoS Biol 2021; 19:e3001090. [PMID: 33591965 PMCID: PMC7909636 DOI: 10.1371/journal.pbio.3001090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/26/2021] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism underlying such regulation is not fully understood. Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood volume and pressure. Here, we report an unexpected role of corin in sweat glands to promote sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an important regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.
Collapse
Affiliation(s)
- Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Department of Nephrology, the People’s Hospital of Suzhou New District, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wansheng Feng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenting Xu
- International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Can Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Liang Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| |
Collapse
|
22
|
Krüppel-like factor 17 upregulates uterine corin expression and promotes spiral artery remodeling in pregnancy. Proc Natl Acad Sci U S A 2020; 117:19425-19434. [PMID: 32719113 DOI: 10.1073/pnas.2003913117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spiral artery remodeling is an important physiological process in the pregnant uterus which increases blood flow to the fetus. Impaired spiral artery remodeling contributes to preeclampsia, a major disease in pregnancy. Corin, a transmembrane serine protease, is up-regulated in the pregnant uterus to promote spiral artery remodeling. To date, the mechanism underlying uterine corin up-regulation remains unknown. Here we show that Krüppel-like factor (KLF) 17 is a key transcription factor for uterine corin expression in pregnancy. In cultured human uterine endometrial cells, KLF17 binds to the CORIN promoter and enhances the promoter activity. Disruption of the KLF17 gene in the endometrial cells abolishes CORIN expression. In mice, Klf17 is up-regulated in the pregnant uterus. Klf17 deficiency prevents uterine Corin expression in pregnancy. Moreover, Klf17-deficient mice have poorly remodeled uterine spiral arteries and develop gestational hypertension and proteinuria. Together, our results reveal an important function of KLF17 in regulating Corin expression and uterine physiology in pregnancy.
Collapse
|
23
|
Opportunity for Thailand's forgotten tigers: assessment of the Indochinese tiger Panthera tigris corbetti and its prey with camera-trap surveys. ORYX 2020. [DOI: 10.1017/s0030605319000589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractDramatic population declines threaten the Endangered Indochinese tiger Panthera tigris corbetti with extinction. Thailand now plays a critical role in its conservation, as there are few known breeding populations in other range countries. Thailand's Dong Phayayen-Khao Yai Forest Complex is recognized as an important tiger recovery site, but it remains poorly studied. Here, we present results from the first camera-trap study focused on tigers and implemented across all protected areas in this landscape. Our goal was to assess tiger and prey populations across the five protected areas of this forest complex, reviewing discernible patterns in rates of detection. We conducted camera-trap surveys opportunistically during 2008–2017. We recorded 1,726 detections of tigers in 79,909 camera-trap nights. Among these were at least 16 adults and six cubs/juveniles from four breeding females. Detection rates of both tigers and potential prey species varied considerably between protected areas over the study period. Our findings suggest heterogeneity in tiger distribution across this relatively continuous landscape, potentially influenced by distribution of key prey species. This study indicates that the Dong Phayayen-Khao Yai Forest Complex is one of the few remaining breeding locations of the Indochinese tiger. Despite limitations posed by our study design, our findings have catalysed increased research and conservation interest in this globally important population at a critical time for tiger conservation in South-east Asia.
Collapse
|
24
|
Genetic structure of tigers (Panthera tigris tigris) in India and its implications for conservation. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|