1
|
Schell T, Greve C, Podsiadlowski L. Establishing genome sequencing and assembly for non-model and emerging model organisms: a brief guide. Front Zool 2025; 22:7. [PMID: 40247279 PMCID: PMC12004614 DOI: 10.1186/s12983-025-00561-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
Reference genome assemblies are the basis for comprehensive genomic analyses and comparisons. Due to declining sequencing costs and growing computational power, genome projects are now feasible in smaller labs. De novo genome sequencing for non-model or emerging model organisms requires knowledge about genome size and techniques for extracting high molecular weight DNA. Next to quality, the amount of DNA obtained from single individuals is crucial, especially, when dealing with small organisms. While long-read sequencing technologies are the methods of choice for creating high quality genome assemblies, pure short-read assemblies might bear most of the coding parts of a genome but are usually much more fragmented and do not well resolve repeat elements or structural variants. Several genome initiatives produce more and more non-model organism genomes and provide rules for standards in genome sequencing and assembly. However, sometimes the organism of choice is not part of such an initiative or does not meet its standards. Therefore, if the scientific question can be answered with a genome of low contiguity in intergenic parts, missing the high standards of chromosome scale assembly should not prevent publication. This review describes how to set up an animal genome sequencing project in the lab, how to estimate costs and resources, and how to deal with suboptimal conditions. Thus, we aim to suggest optimal strategies for genome sequencing that fulfil the needs according to specific research questions, e.g. "How are species related to each other based on whole genomes?" (phylogenomics), "How do genomes of populations within a species differ?" (population genomics), "Are differences between populations relevant for conservation?" (conservation genomics), "Which selection pressure is acting on certain genes?" (identification of genes under selection), "Did repeats expand or contract recently?" (repeat dynamics).
Collapse
Affiliation(s)
- Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Lars Podsiadlowski
- LIB, Museum Koenig Bonn, Centre for Molecular Biodiversity Research (zmb), Adenauerallee 127, 53113, Bonn, Germany.
| |
Collapse
|
2
|
Lorenzana GP, Figueiró HV, Coutinho LL, Villela PMS, Eizirik E. Comparative assessment of genotyping-by-sequencing and whole-exome sequencing for estimating genetic diversity and geographic structure in small sample sizes: insights from wild jaguar populations. Genetica 2024; 152:133-144. [PMID: 39322785 DOI: 10.1007/s10709-024-00212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Biologists currently have an assortment of high-throughput sequencing techniques allowing the study of population dynamics in increasing detail. The utility of genetic estimates depends on their ability to recover meaningful approximations while filtering out noise produced by artifacts. In this study, we empirically compared the congruence of two reduced representation approaches (genotyping-by-sequencing, GBS, and whole-exome sequencing, WES) in estimating genetic diversity and population structure using SNP markers typed in a small number of wild jaguar (Panthera onca) samples from South America. Due to its targeted nature, WES allowed for a more straightforward reconstruction of loci compared to GBS, facilitating the identification of true polymorphisms across individuals. We therefore used WES-derived metrics as a benchmark against which GBS-derived indicators were compared, adjusting parameters for locus assembly and SNP filtering in the latter. We observed significant variation in SNP call rates across samples in GBS datasets, leading to a recurrent miscalling of heterozygous sites. This issue was further amplified by small sample sizes, ultimately impacting the consistency of summary statistics between genotyping methods. Recognizing that the genetic markers obtained from GBS and WES are intrinsically different due to varying evolutionary pressures, particularly selection, we consider that our empirical comparison offers valuable insights and highlights critical considerations for estimating population genetic attributes using reduced representation datasets. Our results emphasize the critical need for careful evaluation of missing data and stringent filtering to achieve reliable estimates of genetic diversity and differentiation in elusive wildlife species.
Collapse
Affiliation(s)
- Gustavo P Lorenzana
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil.
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA.
| | - Henrique V Figueiró
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Environmental Genomics Group, Vale Institute of Technology, Belem, Brazil
| | | | - Priscilla M S Villela
- Centro de Genômica Funcional, ESALQ-USP, Piracicaba, Brazil
- EcoMol Consultoria e Projetos, Piracicaba, Brazil
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Porto Alegre, Brazil
- Instituto Pró-Carnívoros, Atibaia, Brazil
| |
Collapse
|
3
|
Ma X, Wang WX. Unveiling osmoregulation and immunological adaptations in Eleutheronema tetradactylum gills through high-throughput single-cell transcriptome sequencing. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109878. [PMID: 39245186 DOI: 10.1016/j.fsi.2024.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The fourfinger threadfin fish (Eleutheronema tetradactylum) is an economically significant species renowned for its ability to adapt to varying salinity environments, with gills serving as their primary organs for osmoregulation and immune defense. Previous studies focused on tissue and morphological levels, whereas ignored the cellular heterogeneity and the crucial gene information related to core cell subsets within E. tetradactylum gills. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to analyze the gills of E. tetradactylum, characterizing 16 distinct cell types and identifying unique gene markers and enriched functions associated within each cell type. Additionally, we subdivided ionocyte cells into four distinct subpopulations for the first time in E. tetradactylum gills. By employing weighted gene co-expression network analysis (WGCNA), we further investigated the cellular heterogeneity and specific response mechanisms to salinity fluctuant. Our findings revealed the intricate osmoregulation and immune functions of gill cells, highlighting their crucial roles in maintaining homeostasis and adapting to fluctuating salinity levels. This comprehensive cell-type atlas provides valuable insights into the species adaptive strategies, contributing to the conservation and management of this commercially significant fish as well as other euryhaline species.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Tan HZ, Scherer P, Stuart KC, Bailey S, Lee KD, Brekke P, Ewen JG, Whibley A, Santure AW. A high-density linkage map reveals broad- and fine-scale sex differences in recombination in the hihi (stitchbird; Notiomystis cincta). Heredity (Edinb) 2024; 133:262-275. [PMID: 39095652 PMCID: PMC11437212 DOI: 10.1038/s41437-024-00711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Recombination, the process of DNA exchange between homologous chromosomes during meiosis, plays a major role in genomic diversity and evolutionary change. Variation in recombination rate is widespread despite recombination often being essential for progression of meiosis. One such variation is heterochiasmy, where recombination rates differ between sexes. Heterochiasmy has been observed across broad taxonomic groups, yet it remains an evolutionary enigma. We used Lep-MAP3, a pedigree-based software that is efficient in handling large datasets, to generate linkage maps for the hihi or stitchbird (Notiomystis cincta), utilising information from >36 K SNPs and 36 families. We constructed 29 linkage maps, including for the previously unscaffolded Z chromosome. The hihi is an endangered passerine endemic to Aotearoa New Zealand that is sexually dimorphic and exhibits high levels of sexual conflict, including sperm competition. Patterns in recombination in the hihi are consistent with those in other birds, including higher recombination rates in micro-chromosomes. Heterochiasmy in the hihi is male-biased, in line with predictions of the Haldane-Huxley rule, with the male linkage map being 15% longer. Micro-chromosomes exhibit heterochiasmy to a greater extent, contrary to that reported in other birds. At the intra-chromosomal level, heterochiasmy is higher nearer to chromosome ends and in gene-rich regions. Regions of extreme heterochiasmy are enriched for genes implicated in cell structure. This study adds an important contribution in assessing evolutionary theories of heterochiasmy and provides a framework for future studies investigating fine-scale heterochiasmy.
Collapse
Affiliation(s)
- Hui Zhen Tan
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Biodiversity and Biosecurity (CBB), School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Phoebe Scherer
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Katarina C Stuart
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah Bailey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kate D Lee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Bragato Research Institute, Lincoln, New Zealand
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Biodiversity and Biosecurity (CBB), School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Gu T, Hu J, Yu L. Evolution and conservation genetics of pangolins. Integr Zool 2024; 19:426-441. [PMID: 38146613 DOI: 10.1111/1749-4877.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Pangolins (Pholidota, Manidae) are classified as an evolutionarily distinct and globally endangered mammal due to their unique morphology (nail-like scales and a myrmecophagous diet) and being the victim of heavy poaching and worldwide trafficking. As such, pangolins serve as a textbook example for studying the special phenotypic evolutionary adaptations and conservation genetics of an endangered species. Recent years have demonstrated significant advancements in the fields of molecular genetics and genomics, which have translated to a series of important research achievements and breakthroughs concerning the evolution and conservation genetics of pangolins. This review comprehensively presents the hitherto advances in phylogeny, adaptive evolution, conservation genetics, and conservation genomics that are related to pangolins, which will provide an ample understanding of their diversity, molecular adaptation mechanisms, and evolutionary potentials. In addition, we highlight the priority of investigating species/population diversity among pangolins and suggest several avenues of research that are highly relevant for future pangolin conservation.
Collapse
Affiliation(s)
- Tongtong Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Sopniewski J, Catullo RA. Estimates of heterozygosity from single nucleotide polymorphism markers are context-dependent and often wrong. Mol Ecol Resour 2024; 24:e13947. [PMID: 38433491 DOI: 10.1111/1755-0998.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Genetic diversity is frequently described using heterozygosity, particularly in a conservation context. Often, it is estimated using single nucleotide polymorphisms (SNPs); however, it has been shown that heterozygosity values calculated from SNPs can be biased by both study design and filtering parameters. Though solutions have been proposed to address these issues, our own work has found them to be inadequate in some circumstances. Here, we aimed to improve the reliability and comparability of heterozygosity estimates, specifically by investigating how sample size and missing data thresholds influenced the calculation of autosomal heterozygosity (heterozygosity calculated from across the genome, i.e. fixed and variable sites). We also explored how the standard practice of tri- and tetra-allelic site exclusion could bias heterozygosity estimates and influence eventual conclusions relating to genetic diversity. Across three distinct taxa (a frog, Litoria rubella; a tree, Eucalyptus microcarpa; and a grasshopper, Keyacris scurra), we found heterozygosity estimates to be meaningfully affected by sample size and missing data thresholds, partly due to the exclusion of tri- and tetra-allelic sites. These biases were inconsistent both between species and populations, with more diverse populations tending to have their estimates more severely affected, thus having potential to dramatically alter interpretations of genetic diversity. We propose a modified framework for calculating heterozygosity that reduces bias and improves the utility of heterozygosity as a measure of genetic diversity, whilst also highlighting the need for existing population genetic pipelines to be adjusted such that tri- and tetra-allelic sites be included in calculations.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Renee A Catullo
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
7
|
Hu Y, Hu Y, Zhou W, Wei F. Conservation Genomics and Metagenomics of Giant and Red Pandas in the Wild. Annu Rev Anim Biosci 2024; 12:69-89. [PMID: 37863091 DOI: 10.1146/annurev-animal-021022-054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Giant pandas and red pandas are endangered species with similar specialized bamboo diet and partial sympatric distribution in China. Over the last two decades, the rapid development of genomics and metagenomics research on these species has enriched our knowledge of their biology, ecology, physiology, genetics, and evolution, which is crucial and useful for their conservation. We describe the evolutionary history, endangerment processes, genetic diversity, and population structure of wild giant pandas and two species of red pandas (Chinese and Himalayan red pandas). In addition, we explore how genomics and metagenomics studies have provided insight into the convergent adaptation of pandas to the specialized bamboo diet. Finally, we discuss how these findings are applied to effective conservation management of giant and red pandas in the wild and in captivity to promote the long-term persistence of these species.
Collapse
Affiliation(s)
- Yisi Hu
- College of Forestry, Jiangxi Agricultural University, Nanchang, China;
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fuwen Wei
- College of Forestry, Jiangxi Agricultural University, Nanchang, China;
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Domínguez S, Cervantes I, Gutiérrez JP, Moreno E. Pedigree analysis in the mhorr gazelle ( Nanger dama mhorr): Genetic variability evolution of the captive population. Ecol Evol 2024; 14:e10876. [PMID: 38371855 PMCID: PMC10873689 DOI: 10.1002/ece3.10876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Breeding programs have an essential role in the recovery of threatened populations through optimal genetic management and mating strategies. The dama gazelle (Nanger dama) is a North African ungulate listed as critically endangered. The mhorr subspecies is extinct in the wild and currently survives thanks to the creation in 1971 of an ex situ breeding program. The aim of the present study was to assess the evolution of genetic variability in this mhorr gazelle captive population, as well as the mating strategy used in two reference populations studied (Almeria and Europe). The entire pedigree, with 2739 animals, was analyzed to measure demographic characters, pedigree completeness level, probability of gene origin, level of relatedness and genetic structure of the population. The population size has been progressively increasing, with up to 264 individuals alive in Europe at the time of the study. The average number of equivalent complete generations was 5.55. The effective number of founders and ancestors was both 3, and the founder genome equivalent was 1.99. The genetic contributions of the four main ancestors were unbalanced. The average values of inbreeding and average relatedness for the whole pedigree were, respectively, 28.34% and 50.14%. The effective population size was 8.7 by individual increase in inbreeding and 9.8 by individual increase in coancestry. F-statistics evidenced a very small level of population subdivision (F ST = 0.033370). The mating strategy used, based on the minimum coancestry of the individuals, has minimized the losses of genetic variability and helped to balance the genetic contributions between ancestors. The strategy also avoided large subdivisions within the population and the appearance of new bottlenecks. This study shows how pedigree analysis can both be used to determine the genetic variability of the population and to assess the influence of the mating strategy used in the breeding program on such variability.
Collapse
Affiliation(s)
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de VeterinariaUCMMadridSpain
| | | | | |
Collapse
|
9
|
Pečnerová P, Lord E, Garcia-Erill G, Hanghøj K, Rasmussen MS, Meisner J, Liu X, van der Valk T, Santander CG, Quinn L, Lin L, Liu S, Carøe C, Dalerum F, Götherström A, Måsviken J, Vartanyan S, Raundrup K, Al-Chaer A, Rasmussen L, Hvilsom C, Heide-Jørgensen MP, Sinding MHS, Aastrup P, Van Coeverden de Groot PJ, Schmidt NM, Albrechtsen A, Dalén L, Heller R, Moltke I, Siegismund HR. Population genomics of the muskox' resilience in the near absence of genetic variation. Mol Ecol 2024; 33:e17205. [PMID: 37971141 DOI: 10.1111/mec.17205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.
Collapse
Affiliation(s)
- Patrícia Pečnerová
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Zoo, Frederiksberg, Denmark
| | - Edana Lord
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Malthe Sebro Rasmussen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Cindy G Santander
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Long Lin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Biodiversity Research Institute (CSIC-UO-PA), Mieres, Spain
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johannes Måsviken
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Russian Academy of Sciences, Magadan, Russia
| | | | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linett Rasmussen
- Copenhagen Zoo, Frederiksberg, Denmark
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mads Peter Heide-Jørgensen
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Greenland Institute of Natural Resources, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Peter Aastrup
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Redlef Siegismund
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Skorupski J, Brandes F, Seebass C, Festl W, Śmietana P, Balacco J, Jain N, Tilley T, Abueg L, Wood J, Sims Y, Formenti G, Fedrigo O, Jarvis ED. Prioritizing Endangered Species in Genome Sequencing: Conservation Genomics in Action with the First Platinum-Standard Reference-Quality Genome of the Critically Endangered European Mink Mustela lutreola L., 1761. Int J Mol Sci 2023; 24:14816. [PMID: 37834264 PMCID: PMC10573602 DOI: 10.3390/ijms241914816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The European mink Mustela lutreola (Mustelidae) ranks among the most endangered mammalian species globally, experiencing a rapid and severe decline in population size, density, and distribution. Given the critical need for effective conservation strategies, understanding its genomic characteristics becomes paramount. To address this challenge, the platinum-quality, chromosome-level reference genome assembly for the European mink was successfully generated under the project of the European Mink Centre consortium. Leveraging PacBio HiFi long reads, we obtained a 2586.3 Mbp genome comprising 25 scaffolds, with an N50 length of 154.1 Mbp. Through Hi-C data, we clustered and ordered the majority of the assembly (>99.9%) into 20 chromosomal pseudomolecules, including heterosomes, ranging from 6.8 to 290.1 Mbp. The newly sequenced genome displays a GC base content of 41.9%. Additionally, we successfully assembled the complete mitochondrial genome, spanning 16.6 kbp in length. The assembly achieved a BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness score of 98.2%. This high-quality reference genome serves as a valuable genomic resource for future population genomics studies concerning the European mink and related taxa. Furthermore, the newly assembled genome holds significant potential in addressing key conservation challenges faced by M. lutreola. Its applications encompass potential revision of management units, assessment of captive breeding impacts, resolution of phylogeographic questions, and facilitation of monitoring and evaluating the efficiency and effectiveness of dedicated conservation strategies for the European mink. This species serves as an example that highlights the paramount importance of prioritizing endangered species in genome sequencing projects due to the race against time, which necessitates the comprehensive exploration and characterization of their genomic resources before their populations face extinction.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| | - Florian Brandes
- Wildtier- und Artenschutzstation e.V., Hohe Warte 1, 31553 Sachsenhagen, Germany
| | | | - Wolfgang Festl
- EuroNerz e.V., Kleine Gildewart 3, 49074 Osnabrück, Germany
| | - Przemysław Śmietana
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Nivesh Jain
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Jonathan Wood
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Ying Sims
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| | - Erich D. Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Avenue, Box 366, New York, NY 10065, USA
| |
Collapse
|
11
|
Zhu X, Tang J, Jiang H, Yang Y, Chen Z, Zou R, Xu A, Luo Y, Deng Z, Wei X, Chai S. Genomic evidence reveals high genetic diversity in a narrowly distributed species and natural hybridization risk with a widespread species in the genus Geodorum. BMC PLANT BIOLOGY 2023; 23:317. [PMID: 37316828 PMCID: PMC10265804 DOI: 10.1186/s12870-023-04285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Understanding genetic diversity is a core issue in conservation genetics. However, previous genetic diversity evaluations of narrowly distributed species have rarely used closely related widespread species as a reference. Furthermore, identifying natural hybridization signals between narrowly and widely distributed sympatric species is of great importance for the development of species conservation programs. METHODS In this study, population genotyping by sequencing (GBS) was performed for a narrowly distributed species, Geodorum eulophioides (endemic and endangered in Southwest China), and a widespread species, G. densiflorum. A total of 18,490 high-quality single nucleotide polymorphisms (SNPs) were identified at the whole-genome level. RESULTS The results showed that the nucleotide diversity and heterozygosity of G. eulophioides were significantly higher than those of G. densiflorum, confirming that narrowly distributed species can still preserve high genetic diversity. Consistent with taxonomic boundaries, all sampled individuals from the two species were divided into two genetic clusters and showed high genetic differentiation between species. However, in a sympatric population, a few G. eulophioides individuals were detected with genetic components from G. densiflorum, suggesting potential interspecific natural hybridization. This hypothesis was supported by Treemix analysis and hand-hybridization trials. Invasion of the habitat of G. eulophioides invasion by G. densiflorum under anthropogenic disturbance may be the main factor causing interspecific hybridization. CONCLUSIONS Therefore, reducing or avoiding habitat disturbance is a key measure to protect the G. eulophioides populations. This study provides valuable information for future conservation programs for narrowly distributed species.
Collapse
Affiliation(s)
- Xianliang Zhu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Jianmin Tang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Haidu Jiang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Yishan Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Zongyou Chen
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Rong Zou
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Aizhu Xu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
- College of Tourism and Landscape Architecture, Guilin University of Technology, Guilin, Guangxi 541006 China
| | - Yajin Luo
- Yachang Orchid National Nature Reserve Management Center, Baise, Guangxi 533209 China
| | - Zhenhai Deng
- Yachang Orchid National Nature Reserve Management Center, Baise, Guangxi 533209 China
| | - Xiao Wei
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Shengfeng Chai
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| |
Collapse
|
12
|
Xiao J, Tsim KWK, Hajisamae S, Wang WX. Chromosome-level genome and population genomics provide novel insights into adaptive divergence in allopatric Eleutheronema tetradactylum. Int J Biol Macromol 2023:125299. [PMID: 37315663 DOI: 10.1016/j.ijbiomac.2023.125299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Understanding the adaptive ecological divergence provides important information for revealing biodiversity generation and maintenance. Adaptive ecology divergence in populations occurs in various environments and locations, but its genetic underpinnings remain elusive. We generated a chromosome-level genome of Eleutheronema tetradactylum (~582 Mb) and re-sequenced 50 allopatric E. tetradactylum in two independent environmental axes in China and Thailand Coastal waters as well as 11 cultured relatives. A low level of whole genome-wide diversity explained their decreased adaptive potential in the wild environment. Demographic analysis showed evidence of historically high abundance followed by a continuous distinct decline, plus signs of recent inbreeding and accumulation of deleterious mutations. Extensive signals of selective sweeps with signs of local adaptation to environmental differentiation between China and Thailand at genes related to thermal and salinity adaptation were discovered, which might be the driving factors of the geographical divergence of E. tetradactylum. Many genes and pathways subjected to strong selection under artificial breeding were associated with fatty acids and immunity (ELOVL6L, MAPK, p53/NF-kB), likely contributing to the eventual adaptation of artificial selective breeding. Our comprehensive study provided crucial genetic information for E. tetradactylum, with implications for the further conservation efforts of this threatened and ecologically valuable fish.
Collapse
Affiliation(s)
- Jie Xiao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Karl W K Tsim
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sukree Hajisamae
- Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Kuang W, Zinner D, Li Y, Yao X, Roos C, Yu L. Recent Advances in Genetics and Genomics of Snub-Nosed Monkeys ( Rhinopithecus) and Their Implications for Phylogeny, Conservation, and Adaptation. Genes (Basel) 2023; 14:985. [PMID: 37239345 PMCID: PMC10218336 DOI: 10.3390/genes14050985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The snub-nosed monkey genus Rhinopithecus (Colobinae) comprises five species (Rhinopithecus roxellana, Rhinopithecus brelichi, Rhinopithecus bieti, Rhinopithecus strykeri, and Rhinopithecus avunculus). They are range-restricted species occurring only in small areas in China, Vietnam, and Myanmar. All extant species are listed as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) Red List, all with decreasing populations. With the development of molecular genetics and the improvement and cost reduction in whole-genome sequencing, knowledge about evolutionary processes has improved largely in recent years. Here, we review recent major advances in snub-nosed monkey genetics and genomics and their impact on our understanding of the phylogeny, phylogeography, population genetic structure, landscape genetics, demographic history, and molecular mechanisms of adaptation to folivory and high altitudes in this primate genus. We further discuss future directions in this research field, in particular how genomic information can contribute to the conservation of snub-nosed monkeys.
Collapse
Affiliation(s)
- Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-University of Göttingen, 37077 Göttingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Xueqin Yao
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Christian Roos
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| |
Collapse
|
14
|
Hogg CJ, Silver L, McLennan EA, Belov K. Koala Genome Survey: An Open Data Resource to Improve Conservation Planning. Genes (Basel) 2023; 14:genes14030546. [PMID: 36980819 PMCID: PMC10048327 DOI: 10.3390/genes14030546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Genome sequencing is a powerful tool that can inform the management of threatened species. Koalas (Phascolarctos cinereus) are a globally recognized species that captured the hearts and minds of the world during the 2019/2020 Australian megafires. In 2022, koalas were listed as ‘Endangered’ in Queensland, New South Wales, and the Australian Capital Territory. Populations have declined because of various threats such as land clearing, habitat fragmentation, and disease, all of which are exacerbated by climate change. Here, we present the Koala Genome Survey, an open data resource that was developed after the Australian megafires. A systematic review conducted in 2020 demonstrated that our understanding of genomic diversity within koala populations was scant, with only a handful of SNP studies conducted. Interrogating data showed that only 6 of 49 New South Wales areas of regional koala significance had meaningful genome-wide data, with only 7 locations in Queensland with SNP data and 4 locations in Victoria. In 2021, we launched the Koala Genome Survey to generate resequenced genomes across the Australian east coast. We have publicly released 430 koala genomes (average coverage: 32.25X, range: 11.3–66.8X) on the Amazon Web Services Open Data platform to accelerate research that can inform current and future conservation planning.
Collapse
|
15
|
Lesturgie P, Braun CD, Clua E, Mourier J, Thorrold SR, Vignaud T, Planes S, Mona S. Like a rolling stone: Colonization and migration dynamics of the gray reef shark ( Carcharhinus amblyrhynchos). Ecol Evol 2023; 13:e9746. [PMID: 36644707 PMCID: PMC9831972 DOI: 10.1002/ece3.9746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Designing appropriate management plans requires knowledge of both the dispersal ability and what has shaped the current distribution of the species under consideration. Here, we investigated the evolutionary history of the endangered gray reef shark (Carcharhinus amblyrhynchos) across its range by sequencing thousands of RADseq loci in 173 individuals in the Indo-Pacific (IP). We first bring evidence of the occurrence of a range expansion (RE) originating close to the Indo-Australian Archipelago (IAA) where two stepping-stone waves (east and westward) colonized almost the entire IP. Coalescent modeling additionally highlighted a homogenous connectivity (Nm ~ 10 per generation) throughout the range, and isolation by distance model suggested the absence of barriers to dispersal despite the affinity of C. amblyrhynchos to coral reefs. This coincides with long-distance swims previously recorded, suggesting that the strong genetic structure at the IP scale (F ST ~ 0.56 between its ends) is the consequence of its broad current distribution and organization in a large number of demes. Our results strongly suggest that management plans for the gray reef shark should be designed on a range-wide rather than a local scale due to its continuous genetic structure. We further contrasted these results with those obtained previously for the sympatric but strictly lagoon-associated Carcharhinus melanopterus, known for its restricted dispersal ability. Carcharhinus melanopterus exhibits a similar RE dynamic but is characterized by a stronger genetic structure and a nonhomogeneous connectivity largely dependent on local coral reefs availability. This sheds new light on shark evolution, emphasizing the roles of IAA as source of biodiversity and of life-history traits in shaping the extent of genetic structure and diversity.
Collapse
Affiliation(s)
- Pierre Lesturgie
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE‐PSLUniversité PSL, CNRS, SU, UAParisFrance
| | - Camrin D. Braun
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Eric Clua
- Laboratoire d'Excellence CORAILPapetoaiFrench Polynesia
- EPHE, PSL Research UniversityParisFrance
| | - Johann Mourier
- Laboratoire d'Excellence CORAILPapetoaiFrench Polynesia
- Université de Corse Pasquale Paoli, UMS 3514 Plateforme Marine Stella MareBigugliaFrance
| | - Simon R. Thorrold
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Serge Planes
- Laboratoire d'Excellence CORAILPapetoaiFrench Polynesia
- EPHE, PSL Research UniversityParisFrance
| | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE‐PSLUniversité PSL, CNRS, SU, UAParisFrance
- EPHE, PSL Research UniversityParisFrance
| |
Collapse
|
16
|
Population structure of threatened caribou in western Canada inferred from genome-wide SNP data. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Liu G, Zhang BF, Chang J, Hu XL, Li C, Xu TT, Liu SQ, Hu DF. Population genomics reveals moderate genetic differentiation between populations of endangered Forest Musk Deer located in Shaanxi and Sichuan. BMC Genomics 2022; 23:668. [PMID: 36138352 PMCID: PMC9503231 DOI: 10.1186/s12864-022-08896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Many endangered species exist in small, genetically depauperate, or inbred populations, hence promoting genetic differentiation and reducing long-term population viability. Forest Musk Deer (Moschus berezovskii) has been subject to illegal hunting for hundreds of years due to the medical and commercial values of musk, resulting in a significant decline in population size. However, it is still unclear to what extent the genetic exchange and inbreeding levels are between geographically isolated populations. By using whole-genome data, we reconstructed the demographic history, evaluated genetic diversity, and characterized the population genetic structure of Forest Musk Deer from one wild population in Sichuan Province and two captive populations from two ex-situ centers in Shaanxi Province. RESULTS SNP calling by GATK resulted in a total of 44,008,662 SNPs. Principal component analysis (PCA), phylogenetic tree (NJ tree), ancestral component analysis (ADMIXTURE) and the ABBA-BABA test separated Sichuan and Shaanxi Forest Musk Deer as two genetic clusters, but no obvious genetic differentiation was observed between the two captive populations. The average pairwise FST value between the populations in Sichuan and Shaanxi ranged from 0.05-0.07, suggesting a low to moderate genetic differentiation. The mean heterozygous SNPs rate was 0.14% (0.11%-0.15%) for Forest Musk Deer at the genomic scale, and varied significantly among three populations (Chi-square = 1.22, p < 0.05, Kruskal-Wallis Test), with the Sichuan population having the lowest (0.11%). The nucleotide diversity of three populations varied significantly (p < 0.05, Kruskal-Wallis Test), with the Sichuan population having the lowest genetic θπ (1.69 × 10-3). CONCLUSIONS Genetic diversity of Forest Musk Deer was moderate at the genomic scale compared with other endangered species. Genetic differentiation between populations in Sichuan and Shaanxi may not only result from historical biogeographical factors but also be associated with contemporary human disturbances. Our findings provide scientific aid for the conservation and management of Forest Musk Deer. They can extend the proposed measures at the genomic level to apply to other musk deer species worldwide.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China.
| | - Bao-Feng Zhang
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao-Long Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330022, China
| | - Chao Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
| | - Tin-Tao Xu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shu-Qiang Liu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China
| | - De-Fu Hu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China.
| |
Collapse
|
18
|
Mohr JJ, Harrison PA, Stanhope J, Breed MF. Is the genomics 'cart' before the restoration ecology 'horse'? Insights from qualitative interviews and trends from the literature. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210381. [PMID: 35757881 PMCID: PMC9234818 DOI: 10.1098/rstb.2021.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Harnessing new technologies is vital to achieve global imperatives to restore degraded ecosystems. We explored the potential of genomics as one such tool. We aimed to understand barriers hindering the uptake of genomics, and how to overcome them, via exploratory interviews with leading scholars in both restoration and its sister discipline of conservation-a discipline that has successfully leveraged genomics. We also conducted an examination of research trends to explore some insights that emerged from the interviews, including publication trends that have used genomics to address restoration and conservation questions. Our qualitative findings revealed varied perspectives on harnessing genomics. For example, scholars in restoration without genomics experience felt genomics was over-hyped. Scholars with genomics experience emphatically emphasized the need to proceed cautiously in using genomics in restoration. Both genomics-experienced and less-experienced scholars called for case studies to demonstrate the benefits of genomics in restoration. These qualitative data contrasted with our examination of research trends, which revealed 70 restoration genomics studies, particularly studies using environmental DNA as a monitoring tool. We provide a roadmap to facilitate the uptake of genomics into restoration, to help the restoration sector meet the monumental task of restoring huge areas to biodiverse and functional ecosystems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Jakki J. Mohr
- College of Business, Institute on Ecosystems, University of Montana, Missoula, MT 59812, USA
| | - Peter A. Harrison
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
19
|
Seeber PA, Epp LS. Environmental
DNA
and metagenomics of terrestrial mammals as keystone taxa of recent and past ecosystems. Mamm Rev 2022. [DOI: 10.1111/mam.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A. Seeber
- Limnological Institute University of Konstanz Konstanz Germany
| | - Laura S. Epp
- Limnological Institute University of Konstanz Konstanz Germany
| |
Collapse
|
20
|
Aylward M, Sagar V, Natesh M, Ramakrishnan U. How methodological changes have influenced our understanding of population structure in threatened species: insights from tiger populations across India. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200418. [PMID: 35430878 PMCID: PMC9014192 DOI: 10.1098/rstb.2020.0418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Unprecedented advances in sequencing technology in the past decade allow a better understanding of genetic variation and its partitioning in natural populations. Such inference is critical to conservation: to understand species biology and identify isolated populations. We review empirical population genetics studies of Endangered Bengal tigers within India, where 60-70% of wild tigers live. We assess how changes in marker type and sampling strategy have impacted inferences by reviewing past studies, and presenting three novel analyses including a single-nucleotide polymorphism (SNP) panel, genome-wide SNP markers, and a whole-mitochondrial genome network. At a broad spatial scale, less than 100 SNPs revealed the same patterns of population clustering as whole genomes (with the exception of one additional population sampled only in the SNP panel). Mitochondrial DNA indicates a strong structure between the northeast and other regions. Two studies with more populations sampled revealed further substructure within Central India. Overall, the comparison of studies with varied marker types and sample sets allows more rigorous inference of population structure. Yet sampling of some populations is limited across all studies, and these should be the focus of future sampling efforts. We discuss challenges in our understanding of population structure, and how to further address relevant questions in conservation genetics. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.
Collapse
Affiliation(s)
- Megan Aylward
- National Centre for Biological Sciences, TIFR, Bangalore, India, 560065
| | - Vinay Sagar
- National Centre for Biological Sciences, TIFR, Bangalore, India, 560065
| | - Meghana Natesh
- Indian Institute of Science Education and Research, Tirupati, India, 517507
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TIFR, Bangalore, India, 560065
- Senior Fellow, DBT Wellcome Trust India Alliance, Hyderabad, Telangana, India, 500034
| |
Collapse
|
21
|
Kazyak DC, Aunins AW, White SL, Eackles MS, Knisley CB. Population genetics of three at-risk tiger beetles Habroscelimorpha dorsalis dorsalis, H. d. media, and Ellipsoptera puritana. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Contextualizing enigmatic extinctions using genomic DNA from fluid-preserved museum specimens of Desmognathus salamanders. CONSERV GENET 2022. [DOI: 10.1007/s10592-021-01424-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Chen C, Parejo M, Momeni J, Langa J, Nielsen RO, Shi W, SMARTBEES WP3 DIVERSITY CONTRIBUTORS, Vingborg R, Kryger P, Bouga M, Estonba A, Meixner M. Population Structure and Diversity in European Honey Bees ( Apismellifera L.)-An Empirical Comparison of Pool and Individual Whole-Genome Sequencing. Genes (Basel) 2022; 13:182. [PMID: 35205227 PMCID: PMC8872436 DOI: 10.3390/genes13020182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Whole-genome sequencing has become routine for population genetic studies. Sequencing of individuals provides maximal data but is rather expensive and fewer samples can be studied. In contrast, sequencing a pool of samples (pool-seq) can provide sufficient data, while presenting less of an economic challenge. Few studies have compared the two approaches to infer population genetic structure and diversity in real datasets. Here, we apply individual sequencing (ind-seq) and pool-seq to the study of Western honey bees (Apis mellifera). METHODS We collected honey bee workers that belonged to 14 populations, including 13 subspecies, totaling 1347 colonies, who were individually (139 individuals) and pool-sequenced (14 pools). We compared allele frequencies, genetic diversity estimates, and population structure as inferred by the two approaches. RESULTS Pool-seq and ind-seq revealed near identical population structure and genetic diversities, albeit at different costs. While pool-seq provides genome-wide polymorphism data at considerably lower costs, ind-seq can provide additional information, including the identification of population substructures, hybridization, or individual outliers. CONCLUSIONS If costs are not the limiting factor, we recommend using ind-seq, as population genetic structure can be inferred similarly well, with the advantage gained from individual genetic information. Not least, it also significantly reduces the effort required for the collection of numerous samples and their further processing in the laboratory.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Melanie Parejo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
- Swiss Bee Research Center, Agroscope, 3003 Bern, Switzerland
| | - Jamal Momeni
- Eurofins Genomics, 8200 Aarhus, Denmark; (J.M.); (R.O.N.); (R.V.)
| | - Jorge Langa
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
| | | | - Wei Shi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | | | - Rikke Vingborg
- Eurofins Genomics, 8200 Aarhus, Denmark; (J.M.); (R.O.N.); (R.V.)
| | - Per Kryger
- Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark;
| | - Maria Bouga
- Lab of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
| | | |
Collapse
|
24
|
Skorupski J. Characterisation of the Complete Mitochondrial Genome of Critically Endangered Mustela lutreola (Carnivora: Mustelidae) and Its Phylogenetic and Conservation Implications. Genes (Basel) 2022; 13:genes13010125. [PMID: 35052465 PMCID: PMC8774856 DOI: 10.3390/genes13010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and harboured a putative control region. The A+T content of the entire genome was 60.06% (A > T > C > G), and the AT-skew and GC-skew were 0.093 and −0.308, respectively. The encoding-strand identity of genes and their order were consistent with a collinear gene order characteristic for vertebrate mitogenomes. The start codons of all protein-coding genes were the typical ATN. In eight cases, they were ended by complete stop codons, while five had incomplete termination codons (TA or T). All tRNAs had a typical cloverleaf secondary structure, except tRNASer(AGC) and tRNALys, which lacked the DHU stem and had reduced DHU loop, respectively. Both rRNAs were capable of folding into complex secondary structures, containing unmatched base pairs. Eighty-one single nucleotide variants (substitutions and indels) were identified. Comparative interspecies analyses confirmed the close phylogenetic relationship of the European mink to the so-called ferret group, clustering the European polecat, the steppe polecat and the black-footed ferret. The obtained results are expected to provide useful molecular data, informing and supporting effective conservation measures to save M. lutreola.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-91-444-16-85
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
- The European Mink Centre, 71-415 Szczecin, Poland
| |
Collapse
|
25
|
Hauser SS, Athrey G, Leberg PL. Waste not, want not: Microsatellites remain an economical and informative technology for conservation genetics. Ecol Evol 2021; 11:15800-15814. [PMID: 34824791 PMCID: PMC8601879 DOI: 10.1002/ece3.8250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022] Open
Abstract
Comparisons of microsatellites and single-nucleotide polymorphisms (SNPs) have found that SNPs outperform microsatellites in population genetic analyses, questioning the continued utility of microsatellites in population and landscape genetics. Yet, highly polymorphic markers may be of value in species that have reduced genetic variation. This study repeated previous analyses that used microsatellites with SNPs developed from ddRAD sequencing in the black-capped vireo source-sink system. SNPs provided greater resolution of genetic diversity, population differentiation, and migrant detection but could not reconstruct parentage relationships due to insufficient heterozygosities. The biological inferences made by both sets of markers were similar: asymmetrical gene flow from source sites to the remaining sink sites. With the landscape genetic analyses, we found different results between the two molecular markers, but associations of the top environmental features (riparian, open habitat, agriculture, and human development) with dispersal estimates were shared between marker types. Despite the higher precision of SNPs, we find that microsatellites effectively uncover population processes and patterns and are superior for parentage analyses in this species with reduced genetic diversity. This study illustrates the continued applicability and relevance of microsatellites in population genetic research.
Collapse
Affiliation(s)
- Samantha S. Hauser
- Department of BiologyUniversity of Louisiana at LafayetteLafayetteLouisianaUSA
| | - Giridhar Athrey
- Faculty of Ecology and Evolutionary BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Paul L. Leberg
- Department of BiologyUniversity of Louisiana at LafayetteLafayetteLouisianaUSA
| |
Collapse
|
26
|
Zhang S, Li C, Li Y, Chen Q, Hu D, Cheng Z, Wang X, Shan Y, Bai J, Liu G. Genetic Differentiation of Reintroduced Père David's Deer ( Elaphurus davidianus) Based on Population Genomics Analysis. Front Genet 2021; 12:705337. [PMID: 34557217 PMCID: PMC8452920 DOI: 10.3389/fgene.2021.705337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
The reintroduction is an important conservation tool to restore a species in its historically distribution area, but the rate of reintroduction success varies across species or regions due to different reasons. Genetic evaluation is important to the conservation management of reintroduced species. Conservation concerns relate to genetic threats for species with a small population size or severely historically bottle-necked species, such as negative consequences associated with loss of genetic diversity and inbreeding. The last 40years have seen a rapid increasing of population size for Père David's deer (Elaphurus davidianus), which originated from a limited founder population. However, the genetic structure of reintroduced Père David's deer has not been investigated in terms of population genomics, and it is still not clear about the evolutionary history of Père David's deer and to what extent the inbreeding level is. Conservation genomics methods were used to reconstruct the demographic history of Père David's deer, evaluate genetic diversity, and characterize genetic structure among 18 individuals from the captive, free-ranging and wild populations. The results showed that 1,456,457 single nucleotide polymorphisms (SNPs) were obtained for Père David's deer, and low levels of genome-wide genetic diversity were observed in Père David's deer compared with Red deer (Cervus elaphus) and Sika deer (Cervus nippon). A moderate population genetic differentiation was detected among three populations of Père David's deer, especially between the captive population in Beijing Père David's deer park and the free-ranging population in Jiangsu Dafeng National Nature Reserve. The effective population size of Père David's deer started to decline ~25.8ka, and the similar levels of three populations' LD reflected the genetic impacts of long-term population bottlenecks in the Père David's deer. The findings of this study could highlight the necessity of individual exchange between different facilities, and genetic management should generally be integrated into conservation planning with other management considerations.
Collapse
Affiliation(s)
- Shumiao Zhang
- Beijing Milu Ecological Research Center, Beijing, China
| | - Chao Li
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Yiping Li
- Beijing Milu Ecological Research Center, Beijing, China
| | - Qi Chen
- Beijing Milu Ecological Research Center, Beijing, China
| | - Defu Hu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zhibin Cheng
- Beijing Milu Ecological Research Center, Beijing, China
| | - Xiao Wang
- Beijing Milu Ecological Research Center, Beijing, China
| | - Yunfang Shan
- Beijing Milu Ecological Research Center, Beijing, China
| | - Jiade Bai
- Beijing Milu Ecological Research Center, Beijing, China
| | - Gang Liu
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
27
|
Tao Y, Chen B, Kang M, Liu Y, Wang J. Genome-Wide Evidence for Complex Hybridization and Demographic History in a Group of Cycas From China. Front Genet 2021; 12:717200. [PMID: 34527022 PMCID: PMC8435751 DOI: 10.3389/fgene.2021.717200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Cycads represent one of the most ancestral living seed plants as well as one of the most threatened plant groups in the world. South China is a major center and potential origin of Cycas, the most rapidly diversified lineage of cycads. However, genomic-wide diversity of Cycas remains poorly understood due to the challenge of generating genomic markers associated with their inherent large genomes. Here, we perform a comprehensive conservation genomic study based on restriction-site associated DNA sequencing (RADseq) data in six representative species of Cycas in South China. Consistently low genetic diversity and strong genetic differentiation were detected across species. Both phylogenetic inference and genetic structure analysis via several methods revealed generally congruent groups among the six Cycas species. The analysis with ADMIXTURE showed low mixing of genetic composition among species, while individuals of C. dolichophylla exhibited substantial genetic admixture with C. bifida, C. changjiangensis, and C. balansae. Furthermore, the results from Treemix, f4-statistic, and ABBA-BABA test were generally consistent and revealed the complex patterns of interspecific gene flow. Relatively strong signals of hybridization were detected between C. dolichophylla and C. szechuanensis, and the ancestor of C. taiwaniana and C. changjiangensis. Distinct patterns of demographic history were inferred for these species by Stairway Plot, and our results suggested that both climate fluctuation and frequent geological activities during the late Pleistocene exerted deep impacts on the population dynamics of these species in South China. Finally, we explore the practical implications of our findings for the development of conservation strategies in Cycas. The present study demonstrates the efficiency of RADseq for conservation genomic studies on non-model species with large and complex genomes. Given the great significance of cycads as a radical transition in the evolution of plant biodiversity, our study provides important insights into the mechanisms of diversification in such recently radiated living fossil taxa.
Collapse
Affiliation(s)
- Yueqi Tao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Chen
- Shanghai Chenshan Botanical Garden, Shanghai, China.,Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Yongbo Liu
- State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
28
|
Kostanjšek R, Diderichsen B, Recknagel H, Gunde-Cimerman N, Gostinčar C, Fan G, Kordiš D, Trontelj P, Jiang H, Bolund L, Luo Y. Toward the massive genome of Proteus anguinus-illuminating longevity, regeneration, convergent evolution, and metabolic disorders. Ann N Y Acad Sci 2021; 1507:5-11. [PMID: 34480358 DOI: 10.1111/nyas.14686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Deciphering the genetic code of organisms with unusual phenotypes can help answer fundamental biological questions and provide insight into mechanisms relevant to human biomedical research. The cave salamander Proteus anguinus (Urodela: Proteidae), also known as the olm, is an example of a species with unique morphological and physiological adaptations to its subterranean environment, including regenerative abilities, resistance to prolonged starvation, and a life span of more than 100 years. However, the structure and sequence of the olm genome is still largely unknown owing to its enormous size, estimated at nearly 50 gigabases. An international Proteus Genome Research Consortium has been formed to decipher the olm genome. This perspective provides the scientific and biomedical rationale for exploring the olm genome and outlines potential outcomes, challenges, and methodological approaches required to analyze and annotate the genome of this unique amphibian.
Collapse
Affiliation(s)
- Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Børge Diderichsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Guangyi Fan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Dušan Kordiš
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Peter Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Shauli T, Brandes N, Linial M. Evolutionary and functional lessons from human-specific amino acid substitution matrices. NAR Genom Bioinform 2021; 3:lqab079. [PMID: 34541526 PMCID: PMC8445205 DOI: 10.1093/nargab/lqab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Human genetic variation in coding regions is fundamental to the study of protein structure and function. Most methods for interpreting missense variants consider substitution measures derived from homologous proteins across different species. In this study, we introduce human-specific amino acid (AA) substitution matrices that are based on genetic variations in the modern human population. We analyzed the frequencies of >4.8M single nucleotide variants (SNVs) at codon and AA resolution and compiled human-centric substitution matrices that are fundamentally different from classic cross-species matrices (e.g. BLOSUM, PAM). Our matrices are asymmetric, with some AA replacements showing significant directional preference. Moreover, these AA matrices are only partly predicted by nucleotide substitution rates. We further test the utility of our matrices in exposing functional signals of experimentally-validated protein annotations. A significant reduction in AA transition frequencies was observed across nine post-translational modification (PTM) types and four ion-binding sites. Our results propose a purifying selection signal in the human proteome across a diverse set of functional protein annotations and provide an empirical baseline for interpreting human genetic variation in coding regions.
Collapse
Affiliation(s)
- Tair Shauli
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Nadav Brandes
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
30
|
Escoda L, Castresana J. The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species. Evol Appl 2021; 14:1898-1913. [PMID: 34295371 PMCID: PMC8288019 DOI: 10.1111/eva.13249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 01/23/2023] Open
Abstract
The Pyrenean desman (Galemys pyrenaicus) is a small semiaquatic mammal endemic to the Iberian Peninsula. Despite its limited range, this species presents a strong genetic structure due to past isolation in glacial refugia and subsequent bottlenecks. Additionally, some populations are highly fragmented today as a consequence of river barriers, causing substantial levels of inbreeding. These features make the Pyrenean desman a unique model in which to study the genomic footprints of differentiation, bottlenecks and extreme isolation in an endangered species. To understand these processes, the complete genome of the Pyrenean desman was sequenced and assembled using a Bloom filter-based approach. An analysis of the 1.83 Gb reference genome and the sequencing of five additional individuals from different evolutionary units allowed us to detect its main genomic characteristics. The population differentiation of the species was reflected in highly distinctive demographic trajectories. In addition, a severe population bottleneck during the postglacial recolonization of the eastern Pyrenees created one of the lowest genomic heterozygosity values recorded in a mammal. Moreover, isolation and inbreeding gave rise to a high proportion of runs of homozygosity (ROH). Despite these extremely low levels of genetic diversity, two key multigene families from an eco-evolutionary perspective, the major histocompatibility complex and olfactory receptor genes, showed heterozygosity excess in the majority of individuals, revealing that functional diversity can be maintained up to a certain extent. Furthermore, these two classes of genes were significantly less abundant than expected within ROH. In conclusion, the genomic landscape of each analysed Pyrenean desman turned out to be strikingly distinctive and was a clear reflection of its recent ancestry and current conservation conditions. These results may help characterize the genomic health of each individual, and can be crucial for the conservation and management of the species.
Collapse
Affiliation(s)
- Lídia Escoda
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| | - Jose Castresana
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
31
|
Kessler C, Brambilla A, Waldvogel D, Camenisch G, Biebach I, Leigh DM, Grossen C, Croll D. A robust sequencing assay of a thousand amplicons for the high-throughput population monitoring of Alpine ibex immunogenetics. Mol Ecol Resour 2021; 22:66-85. [PMID: 34152681 PMCID: PMC9292246 DOI: 10.1111/1755-0998.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Polymorphism for immune functions can explain significant variation in health and reproductive success within species. Drastic loss in genetic diversity at such loci constitutes an extinction risk and should be monitored in species of conservation concern. However, effective implementations of genome‐wide immune polymorphism sets into high‐throughput genotyping assays are scarce. Here, we report the design and validation of a microfluidics‐based amplicon sequencing assay to comprehensively capture genetic variation in Alpine ibex (Capra ibex). This species represents one of the most successful large mammal restorations recovering from a severely depressed census size and a massive loss in diversity at the major histocompatibility complex (MHC). We analysed 65 whole‐genome sequencing sets of the Alpine ibex and related species to select the most representative markers and to prevent primer binding failures. In total, we designed ~1,000 amplicons densely covering the MHC, further immunity‐related genes as well as randomly selected genome‐wide markers for the assessment of neutral population structure. Our analysis of 158 individuals shows that the genome‐wide markers perform equally well at resolving population structure as RAD‐sequencing or low‐coverage genome sequencing data sets. Immunity‐related loci show unexpectedly high degrees of genetic differentiation within the species. Such information can now be used to define highly targeted individual translocations. Our design strategy can be realistically implemented into genetic surveys of a large range of species. In conclusion, leveraging whole‐genome sequencing data sets to design targeted amplicon assays allows the simultaneous monitoring of multiple genetic risk factors and can be translated into species conservation recommendations.
Collapse
Affiliation(s)
- Camille Kessler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alice Brambilla
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Alpine Wildlife Research Center, Gran Paradiso National Park, Italy
| | - Dominique Waldvogel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Iris Biebach
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Deborah M Leigh
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
32
|
Podsiadlowski L, Tunström K, Espeland M, Wheat CW. The genome assembly and annotation of the Apollo butterfly Parnassius apollo, a flagship species for conservation biology. Genome Biol Evol 2021; 13:6296838. [PMID: 34115121 PMCID: PMC8536933 DOI: 10.1093/gbe/evab122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Conservation genomics has made dramatic improvements over the past decade, leveraging the power of genomes to infer diverse parameters central to conservation management questions. However, much of this effort has focused upon vertebrate species, despite insects providing similar flagship status with the added benefit of smaller genomes, shorter generation times and extensive historical collections in museums. Here we present the genome of the Apollo butterfly (Parnassius apollo, Papilionidae), an iconic endangered butterfly, which like many species in this genus, needs conservation genomic attention yet lacks a genome. Using 68.7 Gb of long-read data (N50 = 15.2 kb) we assembled a 1.4 Gb genome for the Apollo butterfly, making this the largest sequenced Lepidopteran genome to date. The assembly was highly contiguous (N50 = 7.1 Mb) and complete (97% of Lepidopteran BUSCOs were single-copy and complete) and consisted of 1,707 contigs. Using RNAseq data and Arthropoda proteins, we annotated 28.3K genes. Alignment with the closest-related chromosome-level assembly, Papilio bianor, reveals a highly conserved chromosomal organization, albeit genome size is highly expanded in the Apollo butterfly, due primarily to a dramatic increase in repetitive element content. Using this alignment for superscaffolding places the P. apollo genome in to 31 chromosomal scaffolds, and together with our functional annotation, provides an essential resource for advancing conservation genomics in a flagship species for insect conservation.
Collapse
Affiliation(s)
| | - Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Tarlinton RE, Fabijan J, Hemmatzadeh F, Meers J, Owen H, Sarker N, Seddon JM, Simmons G, Speight N, Trott DJ, Woolford L, Emes RD. Transcriptomic and genomic variants between koala populations reveals underlying genetic components to disorders in a bottlenecked population. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01340-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractHistorical hunting pressures on koalas in the southern part of their range in Australia have led to a marked genetic bottleneck when compared with their northern counterparts. There are a range of suspected genetic disorders such as testicular abnormalities, oxalate nephrosis and microcephaly reported at higher prevalence in these genetically restricted southern animals. This paper reports analysis of differential expression of genes from RNAseq of lymph nodes, SNPs present in genes and the fixation index (population differentiation due to genetic structure) of these SNPs from two populations, one in south east Queensland, representative of the northern genotype and one in the Mount Lofty Ranges South Australia, representative of the southern genotype. SNPs that differ between these two populations were significantly enriched in genes associated with brain diseases. Genes which were differentially expressed between the two populations included many associated with brain development or disease, and in addition a number associated with testicular development, including the androgen receptor. Finally, one of the 8 genes both differentially expressed and with a statistical difference in SNP frequency between populations was SLC26A6 (solute carrier family 26 member 6), an anion transporter that was upregulated in SA koalas and is associated with oxalate transport and calcium oxalate uroliths in humans. Together the differences in SNPs and gene expression described in this paper suggest an underlying genetic basis for several disorders commonly seen in southern Australian koalas, supporting the need for further research into the genetic basis of these conditions, and highlighting that genetic selection in managed populations may need to be considered in the future.
Collapse
|
34
|
Genome Size Estimation of Callipogon relictus Semenov (Coleoptera: Cerambycidae), an Endangered Species and a Korea Natural Monument. INSECTS 2021; 12:insects12020111. [PMID: 33513896 PMCID: PMC7910860 DOI: 10.3390/insects12020111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary The longhorned beetle Calipogon relictus has been considered as a class I endangered species since 2012 in Korea. In an attempt towards beetle conservation, we estimated its genome size at 1.8 ± 0.2 Gb, representing one of the largest cerambycid genomes. This study provides useful insight at the genome level and facilitates the development of an effective conservation strategy. Abstract We estimated the genome size of a relict longhorn beetle, Callipogon relictus Semenov (Cerambycidae: Prioninae)—the Korean natural monument no. 218 and a Class I endangered species—using a combination of flow cytometry and k-mer analysis. The two independent methods enabled accurate estimation of the genome size in Cerambycidae for the first time. The genome size of C. relictus was 1.8 ± 0.2 Gb, representing one of the largest cerambycid genomes studied to date. An accurate estimation of genome size of a critically endangered longhorned beetle is a major milestone in our understanding and characterization of the C. relictus genome. Ultimately, the findings provide useful insight into insect genomics and genome size evolution, particularly among beetles.
Collapse
|
35
|
Undin M, Lockhart PJ, Hills SFK, Castro I. Genetic Rescue and the Plight of Ponui Hybrids. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2020.622191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long-term sustainable and resilient populations is a key goal of conservation. How to best achieve this is controversial. There are, for instance, polarized views concerning the fitness and conservation value of hybrid populations founded through multi-origin translocations. A classic example concerns Apteryx (kiwi) in New Zealand. The A. mantelli of Ponui Island constitute a hybrid population where the birds are highly successful in their island habitat. A key dilemma for managers is understanding the reason for this success. Are the hybrid birds of Ponui Island of “no future conservation value” as recently asserted, or do they represent an outstanding example of genetic rescue and an important resource for future translocations? There has been a paradigm shift in scientific thinking concerning hybrids, but the ecological significance of admixed genomes remains difficult to assess. This limits what we can currently predict in conservation science. New understanding from genome science challenges the sufficiency of population genetic models to inform decision making and suggests instead that the contrasting outcomes of hybridization, “outbreeding depression” and “heterosis,” require understanding additional factors that modulate gene and protein expression and how these factors are influenced by the environment. We discuss these findings and the investigations that might help us to better understand the birds of Ponui, inform conservation management of kiwi and provide insight relevant for the future survival of Apteryx.
Collapse
|
36
|
Fontsere C, Alvarez-Estape M, Lester J, Arandjelovic M, Kuhlwilm M, Dieguez P, Agbor A, Angedakin S, Ayuk Ayimisin E, Bessone M, Brazzola G, Deschner T, Eno-Nku M, Granjon AC, Head J, Kadam P, Kalan AK, Kambi M, Langergraber K, Lapuente J, Maretti G, Jayne Ormsby L, Piel A, Robbins MM, Stewart F, Vergnes V, Wittig RM, Kühl HS, Marques-Bonet T, Hughes DA, Lizano E. Maximizing the acquisition of unique reads in noninvasive capture sequencing experiments. Mol Ecol Resour 2020; 21:745-761. [PMID: 33217149 DOI: 10.1111/1755-0998.13300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Noninvasive samples as a source of DNA are gaining interest in genomic studies of endangered species. However, their complex nature and low endogenous DNA content hamper the recovery of good quality data. Target capture has become a productive method to enrich the endogenous fraction of noninvasive samples, such as faeces, but its sensitivity has not yet been extensively studied. Coping with faecal samples with an endogenous DNA content below 1% is a common problem when prior selection of samples from a large collection is not possible. However, samples classified as unfavourable for target capture sequencing might be the only representatives of unique specific geographical locations, or to answer the question of interest. To explore how library complexity may be increased without repeating DNA extractions and generating new libraries, in this study we captured the exome of 60 chimpanzees (Pan troglodytes) using faecal samples with very low proportions of endogenous content (<1%). Our results indicate that by performing additional hybridizations of the same libraries, the molecular complexity can be maintained to achieve higher coverage. Also, whenever possible, the starting DNA material for capture should be increased. Finally, we specifically calculated the sequencing effort needed to avoid exhausting the library complexity of enriched faecal samples with low endogenous DNA content. This study provides guidelines, schemes and tools for laboratories facing the challenges of working with noninvasive samples containing extremely low amounts of endogenous DNA.
Collapse
Affiliation(s)
- Claudia Fontsere
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Marina Alvarez-Estape
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Jack Lester
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tobias Deschner
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | - Josephine Head
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Parag Kadam
- School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Liverpool, UK
| | - Ammie K Kalan
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mohamed Kambi
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kevin Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Comoé Chimpanzee Conservation Project, Kakpin, Comoé National Park, Ivory Coast, Côte d'Ivoire
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alex Piel
- Department of Anthropology, University College London, London, UK
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fiona Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Liverpool, UK.,Department of Anthropology, University College London, London, UK
| | | | - Roman M Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Hjalmar S Kühl
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David A Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Esther Lizano
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
37
|
Hohenlohe PA, Funk WC, Rajora OP. Population genomics for wildlife conservation and management. Mol Ecol 2020; 30:62-82. [PMID: 33145846 PMCID: PMC7894518 DOI: 10.1111/mec.15720] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic features of wildlife populations, such as effective population size, inbreeding, demographic history and population structure, that are critical for conservation efforts. Moreover, population genomics studies can identify particular genetic loci and variants responsible for inbreeding depression or adaptation to changing environments, allowing for conservation efforts to estimate the capacity of populations to evolve and adapt in response to environmental change and to manage for adaptive variation. While connections from basic research to applied wildlife conservation have been slow to develop, these connections are increasingly strengthening. Here we review the primary areas in which population genomics approaches can be applied to wildlife conservation and management, highlight examples of how they have been used, and provide recommendations for building on the progress that has been made in this field.
Collapse
Affiliation(s)
- Paul A Hohenlohe
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
38
|
Skorupski J. Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals? Genes (Basel) 2020; 11:E1332. [PMID: 33187363 PMCID: PMC7696698 DOI: 10.3390/genes11111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this review is to present the current state of knowledge about the genetics of European mink Mustela lutreola L., 1761, which is one of the most endangered mammalian species in the world. This article provides a comprehensive description of the studies undertaken over the last 50 years in terms of cytogenetics, molecular genetics, genomics (including mitogenomics), population genetics of wild populations and captive stocks, phylogenetics, phylogeography, and applied genetics (including identification by genetic methods, molecular ecology, and conservation genetics). An extensive and up-to-date review and critical analysis of the available specialist literature on the topic is provided, with special reference to conservation genetics. Unresolved issues are also described, such as the standard karyotype, systematic position, and whole-genome sequencing, and hotly debated issues are addressed, like the origin of the Southwestern population of the European mink and management approaches of the most distinct populations of the species. Finally, the most urgent directions of future research, based on the research questions arising from completed studies and the implementation of conservation measures to save and restore M. lutreola populations, are outlined. The importance of the popularization of research topics related to European mink genetics among scientists is highlighted.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-914-441-685
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| |
Collapse
|
39
|
Sun Y, Deng T, Zhang A, Moore MJ, Landis JB, Lin N, Zhang H, Zhang X, Huang J, Zhang X, Sun H, Wang H. Genome Sequencing of the Endangered Kingdonia uniflora (Circaeasteraceae, Ranunculales) Reveals Potential Mechanisms of Evolutionary Specialization. iScience 2020; 23:101124. [PMID: 32428861 PMCID: PMC7232092 DOI: 10.1016/j.isci.2020.101124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Kingdonia uniflora, an alpine herb, has an extremely narrow distribution and represents a model for studying evolutionary mechanisms of species that have adapted to undisturbed environments for evolutionarily long periods of time. We assembled a 1,004.7-Mb draft genome (encoding 43,301 genes) of K. uniflora and found significant overrepresentation in gene families associated with DNA repair, underrepresentation in gene families associated with stress response, and loss of most plastid ndh genes. During the evolutionary process, the overrepresentation of gene families involved in DNA repair could help asexual K. uniflora reduce the accumulation of deleterious mutations, while reducing genetic diversity, which is important in responding to environment fluctuations. The underrepresentation of gene families related to stress response and functional loss of ndh genes could be due to lack or loss of ability to respond to environmental changes caused by long-term adaptation to a relatively stable ecological environment.
Collapse
Affiliation(s)
- Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | - Jacob B Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA; School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Natesh M, Taylor RW, Truelove NK, Hadly EA, Palumbi SR, Petrov DA, Ramakrishnan U. Empowering conservation practice with efficient and economical genotyping from poor quality samples. Methods Ecol Evol 2019; 10:853-859. [PMID: 31511786 PMCID: PMC6738957 DOI: 10.1111/2041-210x.13173] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
Abstract
Moderate- to high-density genotyping (100 + SNPs) is widely used to determine and measure individual identity, relatedness, fitness, population structure and migration in wild populations.However, these important tools are difficult to apply when high-quality genetic material is unavailable. Most genomic tools are developed for high-quality DNA sources from laboratory or medical settings. As a result, most genetic data from market or field settings is limited to easily amplified mitochondrial DNA or a few microsatellites.To enable genotyping in conservation contexts, we used next-generation sequencing of multiplex PCR products from very low-quality DNA extracted from faeces, hair and cooked samples. We demonstrated utility and wide-ranging potential application in endangered wild tigers and tracking commercial trade in Caribbean queen conch.We genotyped 100 SNPs from degraded tiger samples to identify individuals, discern close relatives and detect population differentiation. Co-occurring carnivores do not amplify (e.g. Indian wild dog/dhole) or are monomorphic (e.g. leopard). Sixty-two SNPs from conch fritters and field-collected samples were used to test relatedness and detect population structure.We provide proof of concept for a rapid, simple, cost-effective and scalable method (for both samples and number of loci), a framework that can be applied to other conservation scenarios previously limited by low-quality DNA samples. These approaches provide a critical advance for wildlife monitoring and forensics, open the door to field-ready testing, and will strengthen the use of science in policy decisions and wildlife trade.
Collapse
Affiliation(s)
- Meghana Natesh
- National Centre for Biological Sciences, TIFR, Bangalore, India
- Sastra University, Tirumalaisamudram, Thanjavur, India
| | - Ryan W. Taylor
- Department of Biology, Stanford University, Stanford, California
- End2End Genomics LLC, Davis, California
| | | | | | - Stephen R. Palumbi
- Department of Biology, Stanford University, Stanford, California
- Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California
| | | |
Collapse
|
41
|
Huang JP. Holocene Population Decline and Conservation Implication for the Western Hercules Beetle, Dynastes grantii (Coleoptera, Scarabaeidae). J Hered 2019; 110:629-637. [DOI: 10.1093/jhered/esz036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
The Western Hercules beetle (Dynastes grantii) is endemic to the highland forest habitats of southwestern United States and northern Mexico. The habitats harbor many endemic species, but are being threatened by rapid climate change and urban development. In this study, the genetic structure of D. grantii populations from southwestern United States was investigated. Specifically, genomic data from double-digest restriction-site-associated DNA sequencing libraries were utilized to test whether geographically distant populations from the Mogollon Rim (Arizona [N = 12 individuals] and New Mexico [N = 10 individuals]) are genetically structured. The study also estimated the effective population size of the Mogollon Rim populations based on genetic diversity. The results indicated that the 2 geographic populations from the Mogollon Rim were not genetically structured. A population size reduction was detected since the end of the last glacial period, which coincided with a reduction of forest habitat in the study area. The results implied that the connectivity and the size of highland forest habitats in the Mogollon Rim could have been the major factors shaping the population genetic structure and demographic history of D. grantii. The Western Hercules beetle could be a useful flagship species for local natural history education and to promote the conservation of highland forest habitats.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
- Integrative Research Center, The Field Museum of Natural History, Chicago, IL
| |
Collapse
|
42
|
Westbury MV, Hartmann S, Barlow A, Wiesel I, Leo V, Welch R, Parker DM, Sicks F, Ludwig A, Dalén L, Hofreiter M. Extended and Continuous Decline in Effective Population Size Results in Low Genomic Diversity in the World's Rarest Hyena Species, the Brown Hyena. Mol Biol Evol 2019. [PMID: 29528428 PMCID: PMC5913678 DOI: 10.1093/molbev/msy037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started ∼1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species.
Collapse
Affiliation(s)
- Michael V Westbury
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Stefanie Hartmann
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Axel Barlow
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ingrid Wiesel
- Brown Hyena Research Project Trust Fund, Lüderitz, Namibia.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Viyanna Leo
- Center of Ecosystem Science, University of New South Wales, NSW, Australia
| | - Rebecca Welch
- Wildlife and Reserve Management Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.,Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | - Daniel M Parker
- Wildlife and Reserve Management Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | | | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
43
|
Armstrong EE, Taylor RW, Prost S, Blinston P, van der Meer E, Madzikanda H, Mufute O, Mandisodza-Chikerema R, Stuelpnagel J, Sillero-Zubiri C, Petrov D. Cost-effective assembly of the African wild dog (Lycaon pictus) genome using linked reads. Gigascience 2019; 8:5140148. [PMID: 30346553 PMCID: PMC6350039 DOI: 10.1093/gigascience/giy124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/07/2018] [Indexed: 01/07/2023] Open
Abstract
Background A high-quality reference genome assembly is a valuable tool for the study of non-model organisms. Genomic techniques can provide important insights about past population sizes and local adaptation and can aid in the development of breeding management plans. This information is important for fields such as conservation genetics, where endangered species require critical and immediate attention. However, funding for genomic-based methods can be sparse for conservation projects, as costs for general species management can consume budgets. Findings Here, we report the generation of high-quality reference genomes for the African wild dog (Lycaon pictus) at a low cost (<$3000), thereby facilitating future studies of this endangered canid. We generated assemblies for three individuals using the linked-read 10x Genomics Chromium system. The most continuous assembly had a scaffold and contig N50 of 21 Mb and 83 Kb, respectively, and completely reconstructed 95% of a set of conserved mammalian genes. Additionally, we estimate the heterozygosity and demographic history of African wild dogs, revealing that although they have historically low effective population sizes, heterozygosity remains high. Conclusions We show that 10x Genomics Chromium data can be used to effectively generate high-quality genomes from Illumina short-read data of intermediate coverage (∼25x–50x). Interestingly, the wild dog shows higher heterozygosity than other species of conservation concern, possibly due to its behavioral ecology. The availability of reference genomes for non-model organisms will facilitate better genetic monitoring of threatened species such as the African wild dog and help conservationists to better understand the ecology and adaptability of those species in a changing environment.
Collapse
Affiliation(s)
- Ellie E Armstrong
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| | - Ryan W Taylor
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| | - Stefan Prost
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA.,Department of Integrative Biology, 3040 Valley Life Science Building, University of California, Berkeley, CA, 94720-3140, USA
| | - Peter Blinston
- Painted Dog Conservation, PO Box 72, Dete, 00263, Zimbabwe
| | | | | | - Olivia Mufute
- The Zimbabwe Parks & Wildlife Management Authority, Corner Sandringham & Borrowdale Roads, Botanical Gardens. Causeway, Harare, 00263, Zimbabwe
| | - Roseline Mandisodza-Chikerema
- The Zimbabwe Parks & Wildlife Management Authority, Corner Sandringham & Borrowdale Roads, Botanical Gardens. Causeway, Harare, 00263, Zimbabwe
| | - John Stuelpnagel
- 10x Genomics, Inc., 7068 Koll Center Pkwy #401, Pleasanton, CA, 94566, USA
| | - Claudio Sillero-Zubiri
- Wildlife Conservation Research Unit, Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, UK014
| | - Dmitri Petrov
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
44
|
Mowat FM. Naturally Occurring Inherited Forms of Retinal Degeneration in Vertebrate Animal Species: A Comparative and Evolutionary Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:239-243. [PMID: 31884618 DOI: 10.1007/978-3-030-27378-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The ability to noninvasively monitor retinal abnormalities using imaging and cognitive and electrophysiological assessment has made it possible to carefully characterize genetic influences on retinal health. Because genetic retinal traits in animal species are not commonly detrimental to survival beyond birth, it is possible to document the natural history of retinal disease. Human quality of life is greatly impacted by retinal disease, and blindness carries a significant financial burden to society. Because of these compelling reasons, there is an ongoing medical need to study the effect of genetic mutations on retinal health and to develop therapies to address them. Transgenic animal models have aided in these missions, but there are opportunities for novel gene discovery and a development of greater understanding of retinal physiology using animal models that develop naturally occurring heritable retinal disorders. In this chapter, the advantages and disadvantages of transgenic and spontaneous vertebrate animal models of human inherited retinal disease are debated, in particular those of carnivore species, and the potential resource of spontaneous heritable retinal disorders in inbred nondomestic carnivore species is discussed.
Collapse
Affiliation(s)
- Freya M Mowat
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
45
|
Mable BK. Conservation of adaptive potential and functional diversity: integrating old and new approaches. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1129-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Zhu L, Deng C, Zhao X, Ding J, Huang H, Zhu S, Wang Z, Qin S, Ding Y, Lu G, Yang Z. Endangered Père David's deer genome provides insights into population recovering. Evol Appl 2018; 11:2040-2053. [PMID: 30459847 PMCID: PMC6231465 DOI: 10.1111/eva.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 12/30/2022] Open
Abstract
The Milu (Père David's deer, Elaphurus davidianus) were once widely distributed in the swamps (coastal areas to inland areas) of East Asia. The dramatic recovery of the Milu population is now deemed a classic example of how highly endangered animal species can be rescued. However, the molecular mechanisms that underpinned this population recovery remain largely unknown. Here, different approaches (genome sequencing, resequencing, and salinity analysis) were utilized to elucidate the aforementioned molecular mechanisms. The comparative genomic analyses revealed that the largest recovered Milu population carries extensive genetic diversity despite an extreme population bottleneck. And the protracted inbreeding history might have facilitated the purging of deleterious recessive alleles. Seventeen genes that are putatively related to reproduction, embryonic (fatal) development, and immune response were under high selective pressure. Besides, SCNN1A, a gene involved in controlling reabsorption of sodium in the body, was positively selected. An additional 29 genes were also observed to be positively selected, which are involved in blood pressure regulation, cardiovascular development, cholesterol regulation, glycemic control, and thyroid hormone synthesis. It is possible that these genetic adaptations were required to buffer the negative effects commonly associated with a high-salt diet. The associated genetic adaptions are likely to have enabled increased breeding success and fetal survival. The future success of Milu population management might depend on the successful reintroduction of the animal to historically important distribution regions.
Collapse
Affiliation(s)
- Lifeng Zhu
- College of life SciencesNanjing Normal UniversityNanjingChina
- University of Nebraska at OmahaOmaha
| | - Cao Deng
- DNA Stories Bioinformatics CenterChengduChina
| | - Xiang Zhao
- PubBio‐Tech Services CorporationWuhanChina
| | | | - Huasheng Huang
- Shanghai Majorbio Bio‐pharm Biotechnology Co. Ltd.ShanghaiChina
| | - Shilin Zhu
- PubBio‐Tech Services CorporationWuhanChina
| | | | | | - Yuhua Ding
- Jiangsu Dafeng Milu National Nature ReserveDafengChina
| | | | - Zhisong Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (ministry of education)China West Normal UniversityNanchongChina
| |
Collapse
|
47
|
Fan H, Hu Y, Wu Q, Nie Y, Yan L, Wei F. Conservation genetics and genomics of threatened vertebrates in China. J Genet Genomics 2018; 45:593-601. [PMID: 30455039 DOI: 10.1016/j.jgg.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 10/27/2022]
Abstract
Conservation genetics and genomics are two independent disciplines that focus on using new techniques in genetics and genomics to solve problems in conservation biology. During the past two decades, conservation genetics and genomics have experienced rapid progress. Here, we summarize the research advances in the conservation genetics and genomics of threatened vertebrates (e.g., carnivorans, primates, ungulates, cetaceans, avians, amphibians and reptiles) in China. First, we introduce the concepts of conservation genetics and genomics and their development. Second, we review the recent advances in conservation genetics research, including noninvasive genetics and landscape genetics. Third, we summarize the progress in conservation genomics research, which mainly focuses on resolving genetic problems relevant to conservation such as genetic diversity, genetic structure, demographic history, and genomic evolution and adaptation. Finally, we discuss the future directions of conservation genetics and genomics.
Collapse
Affiliation(s)
- Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonggang Nie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Yan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
48
|
Hendricks SA, Schweizer RM, Wayne RK. Conservation genomics illuminates the adaptive uniqueness of North American gray wolves. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1118-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Leitwein M, Gagnaire PA, Desmarais E, Berrebi P, Guinand B. Genomic consequences of a recent three-way admixture in supplemented wild brown trout populations revealed by local ancestry tracts. Mol Ecol 2018; 27:3466-3483. [PMID: 30054960 DOI: 10.1111/mec.14816] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Understanding the evolutionary consequences of human-mediated introductions of domesticated strains into the wild and their subsequent admixture with natural populations is of major concern in conservation biology. However, the genomic impacts of stocking from distinct sources (locally derived vs. divergent) on the genetic integrity of wild populations remain poorly understood. We designed an approach based on estimating local ancestry along individual chromosomes to provide a detailed picture of genomic admixture in supplemented populations. We used this approach to document admixture consequences in the brown trout Salmo trutta, for which decades of stocking practices have profoundly impacted the genetic make-up of wild populations. In southern France, small local Mediterranean populations have been subject to successive introductions of domestic strains derived from the Atlantic and Mediterranean lineages. To address the impact of stocking, we evaluate the extent of admixture from both domestic strains within populations, using 75,684 mapped SNPs obtained from double-digested restriction site-associated DNA sequencing. Then, the chromosomal ancestry profiles of admixed individuals reveal a wider diversity of hybrid and introgressed genotypes than estimated using classical methods for inferring ancestry and hybrid pedigrees. In addition, the length distribution of introgressed tracts retained different timings of introgression between the two domestic strains. We finally reveal opposite consequences of admixture on the level of polymorphism of the recipient populations between domestic strains. Our study illustrates the potential of using the information contained in the genomic mosaic of ancestry tracts in combination with classical methods based on allele frequencies for analysing multiple-way admixture with population genomic data.
Collapse
Affiliation(s)
- Maeva Leitwein
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | | | - Erick Desmarais
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Patrick Berrebi
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Bruno Guinand
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.,Département Biologie-Ecologie, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
50
|
Abstract
Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.
Collapse
|