1
|
Chacko LA, Nakaoka H, Morris R, Marshall W, Ananthanarayanan V. Mitochondrial function regulates cell growth kinetics to actively maintain mitochondrial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646474. [PMID: 40236014 PMCID: PMC11996537 DOI: 10.1101/2025.03.31.646474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Mitochondria are not produced de novo in newly divided daughter cells, but are inherited from the mother cell during mitosis. While mitochondrial homeostasis is crucial for living cells, the feedback responses that maintain mitochondrial volume across generations of dividing cells remain elusive. Here, using a microfluidic yeast 'mother machine', we tracked several generations of fission yeast cells and observed that cell size and mitochondrial volume grew exponentially during the cell cycle. We discovered that while mitochondrial homeostasis relied on the 'sizer' mechanism of cell size maintenance, mitochondrial function was a critical determinant of the timing of cell division: cells born with lower than average amounts of mitochondria grew slower and thus added more mitochondria before they divided. Thus, mitochondrial addition during the cell cycle was tailored to the volume of mitochondria at birth, such that all cells ultimately contained the same mitochondrial volume at cell division. Quantitative modelling and experiments with mitochondrial DNA-deficient rho0 cells additionally revealed that mitochondrial function was essential for driving the exponential growth of cells. Taken together, we demonstrate a central role for mitochondrial activity in dictating cellular growth rates and ensuring mitochondrial volume homeostasis.
Collapse
|
2
|
Tan C, Lanz MC, Swaffer M, Skotheim J, Chang F. Intracellular diffusion in the cytoplasm increases with cell size in fission yeast. Mol Biol Cell 2025; 36:ar51. [PMID: 39969966 PMCID: PMC12005113 DOI: 10.1091/mbc.e24-11-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Diffusion in the cytoplasm can greatly impact cellular processes, yet regulation of macromolecular diffusion remains poorly understood. There is increasing evidence that cell size affects the density and macromolecular composition of the cytoplasm. Here, we studied whether cell size affects diffusion at the scale of macromolecules tens of microns in diameter. We analyzed the diffusive motions of intracellular genetically-encoded multimeric 40 nm nanoparticles (cytGEMs) in the cytoplasm of the fission yeast Schizosaccharomyces pombe. Using cell size mutants, we showed that cytGEMs diffusion coefficients decreased in smaller cells and increased in larger cells. This increase in diffusion in large cells may be due to a decrease in the DNA-to-cytoplasm ratio, as diffusion was not affected in large multinucleate cytokinesis mutant cells. In investigating the underlying causes of altered cytGEMs diffusion, we found that the proteomes of large and small cells exhibited size-specific changes, including the subscaling of ribosomal proteins in large cells. Comparison with a similar dataset from human cells revealed that features of size-dependent proteome remodeling were conserved. These studies demonstrate that cell size is an important parameter in determining the biophysical properties and the composition of the cytoplasm.
Collapse
Affiliation(s)
- Catherine Tan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Michael C. Lanz
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jan Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
3
|
Tan C, Lanz MC, Swaffer M, Skotheim J, Chang F. Intracellular diffusion in the cytoplasm increases with cell size in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.613766. [PMID: 39386641 PMCID: PMC11463555 DOI: 10.1101/2024.09.21.613766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Diffusion in the cytoplasm can greatly impact cellular processes, yet regulation of macromolecular diffusion remains poorly understood. There is increasing evidence that cell size affects the density and macromolecular composition of the cytoplasm. Here, we studied whether cell size affects diffusion at the scale of macromolecules tens of microns in diameter. We analyzed the diffusive motions of intracellular genetically-encoded multimeric 40 nm nanoparticles (cytGEMs) in the cytoplasm of the fission yeast Schizosaccharomyces pombe . Using cell size mutants, we showed that cytGEMs diffusion coefficients decreased in smaller cells and increased in larger cells. This increase in diffusion in large cells may be due to a decrease in the DNA-to-Cytoplasm ratio, as diffusion was not affected in large multinucleate cytokinesis mutants. In investigating the underlying causes of altered cytGEMs diffusion, we found that the proteomes of large and small cells exhibited size-specific changes, including the sub-scaling of ribosomal proteins in large cells. Comparison with a similar dataset from human cells revealed that features of size-dependent proteome remodeling were conserved. These studies demonstrate that cell size is an important parameter in determining the biophysical properties and the composition of the cytoplasm.
Collapse
|
4
|
Vidal PJ, Pérez AP, Yahya G, Aldea M. Transcriptomic balance and optimal growth are determined by cell size. Mol Cell 2024; 84:3288-3301.e3. [PMID: 39084218 DOI: 10.1016/j.molcel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
Collapse
Affiliation(s)
- Pedro J Vidal
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Alexis P Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, 44511 Zagazig, Egypt.
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
5
|
Park JM, Forsburg SL. Analysis of transcriptional response in haploid and diploid Schizosaccharomyces pombe under genotoxic stress. G3 (BETHESDA, MD.) 2024; 14:jkae177. [PMID: 39120426 PMCID: PMC11373635 DOI: 10.1093/g3journal/jkae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Whole genome duplications are implicated in genome instability and tumorigenesis. Human and yeast polyploids exhibit increased replication stress and chromosomal instability, both hallmarks of cancer. In this study, we investigate the transcriptional response of Schizosaccharomyces pombe to increased ploidy generally, and in response to treatment with the genotoxin methyl methanesulfonate (MMS). We find that treatment of MMS induces upregulation of genes involved in general response to genotoxins, in addition to cell cycle regulatory genes. Downregulated genes are enriched in transport and sexual reproductive pathways. We find that the diploid response to MMS is muted compared to the haploid response, although the enriched pathways remain largely the same. Overall, our data suggests that the global S. pombe transcriptome doubles in response to increased ploidy but undergoes modest transcriptional changes in both unperturbed and genotoxic stress conditions.
Collapse
Affiliation(s)
- Joshua M Park
- Section of Molecular & Computational Biology, University of Southern California, 1050 Childs Way, RRI 108, Los Angeles, CA 90089, USA
| | - Susan L Forsburg
- Section of Molecular & Computational Biology, University of Southern California, 1050 Childs Way, RRI 108, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Li M, Zhang M, Meng B, Miao L, Fan Y. Genome-Wide Identification and Evolutionary and Expression Analyses of the Cyclin B Gene Family in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1709. [PMID: 38931141 PMCID: PMC11207893 DOI: 10.3390/plants13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclin B (CYCB) is a regulatory subunit of cyclin-dependent kinase (CDK), the concentration of which fluctuates to regulate cell cycle progression. Extensive studies have been performed on cyclins in numerous species, yet the evolutionary relationships and biological functions of the CYCB family genes in Brassica napus remain unclear. In this study, we identified 299 CYCB genes in 11 B. napus accessions. Phylogenetic analysis suggests that CYCB genes could be divided into three subfamilies in angiosperms and that the CYCB3 subfamily members may be a newer group that evolved in eudicots. The expansion of BnaCYCB genes underwent segmental duplication and purifying selection in genomes, and a number of drought-responsive and light-responsive cis-elements were found in their promoter regions. Additionally, expression analysis revealed that BnaCYCBs were strongly expressed in the developing seed and silique pericarp, as confirmed by the obviously reduced seed size of the mutant cycb3;1 in Arabidopsis thaliana compared with Col-0. This study provides a comprehensive evolutionary analysis of CYCB genes as well as insight into the biological function of CYCB genes in B. napus.
Collapse
Affiliation(s)
- Mingyue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
- Hanhong College, Institute of Innovation and Entrepreneurship, Southwest University, Beibei, Chongqing 400715, China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Likai Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| |
Collapse
|
7
|
Pinto SC, Stojilković B, Zhang X, Sablowski R. Plant cell size: Links to cell cycle, differentiation and ploidy. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102527. [PMID: 38484440 DOI: 10.1016/j.pbi.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Cell size affects many processes, including exchange of nutrients and external signals, cell division and tissue mechanics. Across eukaryotes, cells have evolved mechanisms that assess their own size to inform processes such as cell cycle progression or gene expression. Here, we review recent progress in understanding plant cell size regulation and its implications, relating these findings to work in other eukaryotes. Highlights include use of DNA contents as reference point to control the cell cycle in shoot meristems, a size-dependent cell fate decision during stomatal development and insights into the interconnection between ploidy, cell size and cell wall mechanics.
Collapse
Affiliation(s)
- Sara C Pinto
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Xinyu Zhang
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
8
|
ElGamel M, Mugler A. Effects of Molecular Noise on Cell Size Control. PHYSICAL REVIEW LETTERS 2024; 132:098403. [PMID: 38489620 DOI: 10.1103/physrevlett.132.098403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Cells employ control strategies to maintain a stable size. Dividing at a target size (the "sizer" strategy) is thought to produce the tightest size distribution. However, this result follows from phenomenological models that ignore the molecular mechanisms required to implement the strategy. Here we investigate a simple mechanistic model for exponentially growing cells whose division is triggered at a molecular abundance threshold. We find that size noise inherits the molecular noise and is consequently minimized not by the sizer but by the "adder" strategy, where a cell divides after adding a target amount to its birth size. We derive a lower bound on size noise that agrees with publicly available data from six microfluidic studies on Escherichia coli bacteria.
Collapse
Affiliation(s)
- Motasem ElGamel
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
9
|
Sugiyama H, Goto Y, Kondo Y, Coudreuse D, Aoki K. Live-cell imaging defines a threshold in CDK activity at the G2/M transition. Dev Cell 2024; 59:545-557.e4. [PMID: 38228139 DOI: 10.1016/j.devcel.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
Cyclin-dependent kinase (CDK) determines the temporal ordering of the cell cycle phases. However, despite significant progress in studying regulators of CDK and phosphorylation patterns of CDK substrates at the population level, it remains elusive how CDK regulators coordinately affect CDK activity at the single-cell level and how CDK controls the temporal order of cell cycle events. Here, we elucidate the dynamics of CDK activity in fission yeast and mammalian cells by developing a CDK activity biosensor, Eevee-spCDK. We find that although CDK activity does not necessarily correlate with cyclin levels, it converges to the same level around mitotic onset in several mutant backgrounds, including pom1Δ cells and wee1 or cdc25 overexpressing cells. These data provide direct evidence that cells enter the M phase when CDK activity reaches a high threshold, consistent with the quantitative model of cell cycle progression in fission yeast.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Damien Coudreuse
- Institute of Biochemistry and Cellular Genetics, UMR 5095, CNRS, Bordeaux University, 33077 Bordeaux, France
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
10
|
Takado M, Yamamoto TG, Chikashige Y, Matsumoto T. Fission yeast Wee1 is required for stable kinetochore-microtubule attachment. Open Biol 2024; 14:230379. [PMID: 38166399 PMCID: PMC10762435 DOI: 10.1098/rsob.230379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
Wee1 is a cell cycle regulator that phosphorylates Cdk1/Cdc2 and inhibits G2/M transition. Loss of Wee1 in fission yeast results in an early onset of mitosis. Interestingly, we found that cells lacking Wee1 require the functional spindle checkpoint for their viability. Genetic analysis indicated that the requirement is not attributable to the early onset of mitosis. Live-cell imaging revealed that some kinetochores are not attached or bioriented in the wee1 mutant. Furthermore, Mad2, a component of the spindle checkpoint known to recognize unattached kinetochores, accumulates in the vicinity of the spindle, representing activation of the spindle checkpoint in the mutant. It appears that the wee1 mutant cannot maintain stable kinetochore-microtubule attachment, and relies on the delay imposed by the spindle checkpoint for establishing biorientation of kinetochores. This study revealed a role of Wee1 in ensuring accurate segregation of chromosomes during mitosis, and thus provided a basis for a new principle of cancer treatment with Wee1 inhibitors.
Collapse
Affiliation(s)
- Masahiro Takado
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takaharu G. Yamamoto
- Kobe Frontier Research Center, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yuji Chikashige
- Kobe Frontier Research Center, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tomohiro Matsumoto
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Ji X, Lin J. Implications of differential size-scaling of cell-cycle regulators on cell size homeostasis. PLoS Comput Biol 2023; 19:e1011336. [PMID: 37506170 PMCID: PMC10411824 DOI: 10.1371/journal.pcbi.1011336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/09/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Accurate timing of division and size homeostasis is crucial for cells. A potential mechanism for cells to decide the timing of division is the differential scaling of regulatory protein copy numbers with cell size. However, it remains unclear whether such a mechanism can lead to robust growth and division, and how the scaling behaviors of regulatory proteins influence the cell size distribution. Here we study a mathematical model combining gene expression and cell growth, in which the cell-cycle activators scale superlinearly with cell size while the inhibitors scale sublinearly. The cell divides once the ratio of their concentrations reaches a threshold value. We find that the cell can robustly grow and divide within a finite range of the threshold value with the cell size proportional to the ploidy. In a stochastic version of the model, the cell size at division is uncorrelated with that at birth. Also, the more differential the cell-size scaling of the cell-cycle regulators is, the narrower the cell-size distribution is. Intriguingly, our model with multiple regulators rationalizes the observation that after the deletion of a single regulator, the coefficient of variation of cell size remains roughly the same though the average cell size changes significantly. Our work reveals that the differential scaling of cell-cycle regulators provides a robust mechanism of cell size control.
Collapse
Affiliation(s)
- Xiangrui Ji
- Yuanpei College, Peking University, Beijing, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
12
|
Chaillot J, Cook MA, Sellam A. Novel determinants of cell size homeostasis in the opportunistic yeast Candida albicans. Curr Genet 2023; 69:67-75. [PMID: 36449086 DOI: 10.1007/s00294-022-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
The basis for commitment to cell division in late G1 phase, called Start in yeast, is a critical but still poorly understood aspect of eukaryotic cell proliferation. Most dividing cells accumulate mass and grow to a critical cell size before traversing the cell cycle. This size threshold couples cell growth to division and thereby establishes long-term size homeostasis. At present, mechanisms involved in cell size homeostasis in fungal pathogens are not well described. Our previous survey of the size phenome in Candida albicans focused on 279 unique mutants enriched mainly in kinases and transcription factors (Sellam et al. PLoS Genet 15:e1008052, 2019). To uncover novel size regulators in C. albicans and highlight potential innovation within cell size control in pathogenic fungi, we expanded our genetic survey of cell size to include 1301 strains from the GRACE (Gene Replacement and Conditional Expression) collection. The current investigation uncovered both known and novel biological processes required for cell size homeostasis in C. albicans. We also confirmed the plasticity of the size control network as few C. albicans size genes overlapped with those of the budding yeast Saccharomyces cerevisiae. Many new size genes of C. albicans were associated with biological processes that were not previously linked to cell size control and offer an opportunity for future investigation. Additional work is needed to understand if mitochondrial activity is a critical element of the metric that dictates cell size in C. albicans and whether modulation of the onset of actomyosin ring constriction is an additional size checkpoint.
Collapse
Affiliation(s)
- Julien Chaillot
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600, Pessac, France
| | - Michael A Cook
- Department of Biochemistry and Biomedical Sciences, David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada.
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
13
|
Tabeta H, Gunji S, Kawade K, Ferjani A. Leaf-size control beyond transcription factors: Compensatory mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1024945. [PMID: 36756231 PMCID: PMC9901582 DOI: 10.3389/fpls.2022.1024945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve via a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli. Decades of work on Arabidopsis thaliana have revisited the compensatory phenomena that might reflect a general and primary size-regulatory mechanism in leaves. This review focuses on key molecular and cellular events behind the organ-wide scale regulation of compensatory mechanisms. Lastly, emerging novel mechanisms of metabolic and hormonal regulation are discussed, based on recent advances in the field that have provided insights into, among other phenomena, leaf-size regulation.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
14
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
15
|
Liu S, Tan C, Tyers M, Zetterberg A, Kafri R. What programs the size of animal cells? Front Cell Dev Biol 2022; 10:949382. [PMID: 36393871 PMCID: PMC9665425 DOI: 10.3389/fcell.2022.949382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023] Open
Abstract
The human body is programmed with definite quantities, magnitudes, and proportions. At the microscopic level, such definite sizes manifest in individual cells - different cell types are characterized by distinct cell sizes whereas cells of the same type are highly uniform in size. How do cells in a population maintain uniformity in cell size, and how are changes in target size programmed? A convergence of recent and historical studies suggest - just as a thermostat maintains room temperature - the size of proliferating animal cells is similarly maintained by homeostatic mechanisms. In this review, we first summarize old and new literature on the existence of cell size checkpoints, then discuss additional advances in the study of size homeostasis that involve feedback regulation of cellular growth rate. We further discuss recent progress on the molecules that underlie cell size checkpoints and mechanisms that specify target size setpoints. Lastly, we discuss a less-well explored teleological question: why does cell size matter and what is the functional importance of cell size control?
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Ceryl Tan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Anders Zetterberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
16
|
Curran S, Dey G, Rees P, Nurse P. A quantitative and spatial analysis of cell cycle regulators during the fission yeast cycle. Proc Natl Acad Sci U S A 2022; 119:e2206172119. [PMID: 36037351 PMCID: PMC9457408 DOI: 10.1073/pnas.2206172119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
We have carried out a systems-level analysis of the spatial and temporal dynamics of cell cycle regulators in the fission yeast Schizosaccharomyces pombe. In a comprehensive single-cell analysis, we have precisely quantified the levels of 38 proteins previously identified as regulators of the G2 to mitosis transition and of 7 proteins acting at the G1- to S-phase transition. Only 2 of the 38 mitotic regulators exhibit changes in concentration at the whole-cell level: the mitotic B-type cyclin Cdc13, which accumulates continually throughout the cell cycle, and the regulatory phosphatase Cdc25, which exhibits a complex cell cycle pattern. Both proteins show similar patterns of change within the nucleus as in the whole cell but at higher concentrations. In addition, the concentrations of the major fission yeast cyclin-dependent kinase (CDK) Cdc2, the CDK regulator Suc1, and the inhibitory kinase Wee1 also increase in the nucleus, peaking at mitotic onset, but are constant in the whole cell. The significant increase in concentration with size for Cdc13 supports the view that mitotic B-type cyclin accumulation could act as a cell size sensor. We propose a two-step process for the control of mitosis. First, Cdc13 accumulates in a size-dependent manner, which drives increasing CDK activity. Second, from mid-G2, the increasing nuclear accumulation of Cdc25 and the counteracting Wee1 introduce a bistability switch that results in a rapid rise of CDK activity at the end of G2 and thus, brings about an orderly progression into mitosis.
Collapse
Affiliation(s)
- Scott Curran
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Gautam Dey
- Medical Research Council Laboratory for Molecular Cell Biology, London, WC1E 6BT, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University, Swansea, SA1 8EN, United Kingdom
- Imaging Platform Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065
| |
Collapse
|
17
|
Castañeda-Sampedro A, Calvin-Cejudo L, Martin F, Gomez-Diaz C, Alcorta E. The Ntan1 gene is expressed in perineural glia and neurons of adult Drosophila. Sci Rep 2022; 12:14749. [PMID: 36042338 PMCID: PMC9427837 DOI: 10.1038/s41598-022-18999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The Drosophila Ntan1 gene encodes an N-terminal asparagine amidohydrolase that we show is highly conserved throughout evolution. Protein isoforms share more than 72% of similarity with their human counterparts. At the cellular level, this gene regulates the type of glial cell growth in Drosophila larvae by its different expression levels. The Drosophila Ntan1 gene has 4 transcripts that encode 2 protein isoforms. Here we describe that although this gene is expressed at all developmental stages and adult organs tested (eye, antennae and brain) there are some transcript-dependent specificities. Therefore, both quantitative and qualitative cues could account for gene function. However, widespread developmental stage and organ-dependent expression could be masking cell-specific constraints that can be explored in Drosophila by using Gal4 drivers. We report a new genetic driver within this gene, Mz317-Gal4, that recapitulates the Ntan1 gene expression pattern in adults. It shows specific expression for perineural glia in the olfactory organs but mixed expression with some neurons in the adult brain. Memory and social behavior disturbances in mice and cancer and schizophrenia in humans have been linked to the Ntan1 gene. Therefore, these new tools in Drosophila may contribute to our understanding of the cellular basis of these alterations.
Collapse
Affiliation(s)
- Ana Castañeda-Sampedro
- Facultad de Medicina y Ciencias de la Salud, Departamento de Biología Funcional (Área de Genética), Universidad de Oviedo, c/Julián Clavería S/N, 33006, Oviedo, Asturias, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Laura Calvin-Cejudo
- Facultad de Medicina y Ciencias de la Salud, Departamento de Biología Funcional (Área de Genética), Universidad de Oviedo, c/Julián Clavería S/N, 33006, Oviedo, Asturias, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Fernando Martin
- Facultad de Medicina y Ciencias de la Salud, Departamento de Biología Funcional (Área de Genética), Universidad de Oviedo, c/Julián Clavería S/N, 33006, Oviedo, Asturias, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Carolina Gomez-Diaz
- Facultad de Medicina y Ciencias de la Salud, Departamento de Biología Funcional (Área de Genética), Universidad de Oviedo, c/Julián Clavería S/N, 33006, Oviedo, Asturias, Spain. .,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Asturias, Spain.
| | - Esther Alcorta
- Facultad de Medicina y Ciencias de la Salud, Departamento de Biología Funcional (Área de Genética), Universidad de Oviedo, c/Julián Clavería S/N, 33006, Oviedo, Asturias, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
18
|
Tyson JJ, Novák B. Time-keeping and decision-making in the cell cycle. Interface Focus 2022; 12:20210075. [PMID: 35860005 PMCID: PMC9184962 DOI: 10.1098/rsfs.2021.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Cell growth, DNA replication, mitosis and division are the fundamental processes by which life is passed on from one generation of eukaryotic cells to the next. The eukaryotic cell cycle is intrinsically a periodic process but not so much a ‘clock’ as a ‘copy machine’, making new daughter cells as warranted. Cells growing under ideal conditions divide with clock-like regularity; however, if they are challenged with DNA-damaging agents or mitotic spindle disrupters, they will not progress to the next stage of the cycle until the damage is repaired. These ‘decisions’ (to exit and re-enter the cell cycle) are essential to maintain the integrity of the genome from generation to generation. A crucial challenge for molecular cell biologists in the 1990s was to unravel the genetic and biochemical mechanisms of cell cycle control in eukaryotes. Central to this effort were biochemical studies of the clock-like regulation of ‘mitosis promoting factor’ during synchronous mitotic cycles of fertilized frog eggs and genetic studies of the switch-like regulation of ‘cyclin-dependent kinases' in yeast cells. In this review, we uncover some secrets of cell cycle regulation by mathematical modelling of increasingly more complex molecular regulatory networks of cell cycle ‘clocks’ and ‘switches’.
Collapse
Affiliation(s)
- John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Béla Novák
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Pérez AP, Artés MH, Moreno DF, Clotet J, Aldea M. Mad3 modulates the G 1 Cdk and acts as a timer in the Start network. SCIENCE ADVANCES 2022; 8:eabm4086. [PMID: 35522754 PMCID: PMC9075807 DOI: 10.1126/sciadv.abm4086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Cells maintain their size within limits over successive generations to maximize fitness and survival. Sizer, timer, and adder behaviors have been proposed as possible alternatives to coordinate growth and cell cycle progression. Regarding budding yeast cells, a sizer mechanism is thought to rule cell cycle entry at Start. However, while many proteins controlling the size of these cells have been identified, the mechanistic framework in which they participate to achieve cell size homeostasis is not understood. We show here that intertwined APC and SCF degradation machineries with specific adaptor proteins drive cyclic accumulation of the G1 Cdk in the nucleus, reaching maximal levels at Start. The mechanism incorporates Mad3, a centromeric-signaling protein that subordinates G1 progression to the previous mitosis as a memory factor. This alternating-degradation device displays the properties of a timer and, together with the sizer device, would constitute a key determinant of cell cycle entry.
Collapse
Affiliation(s)
- Alexis P. Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Marta H. Artés
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - David F. Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Josep Clotet
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| |
Collapse
|
20
|
Opalko HE, Miller KE, Kim HS, Vargas-Garcia CA, Singh A, Keogh MC, Moseley JB. Arf6 anchors Cdr2 nodes at the cell cortex to control cell size at division. J Cell Biol 2022; 221:e202109152. [PMID: 34958661 PMCID: PMC8931934 DOI: 10.1083/jcb.202109152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Fission yeast cells prevent mitotic entry until a threshold cell surface area is reached. The protein kinase Cdr2 contributes to this size control system by forming multiprotein nodes that inhibit Wee1 at the medial cell cortex. Cdr2 node anchoring at the cell cortex is not fully understood. Through a genomic screen, we identified the conserved GTPase Arf6 as a component of Cdr2 signaling. Cells lacking Arf6 failed to divide at a threshold surface area and instead shifted to volume-based divisions at increased overall size. Arf6 stably localized to Cdr2 nodes in its GTP-bound but not GDP-bound state, and its guanine nucleotide exchange factor (GEF), Syt22, was required for both Arf6 node localization and proper size at division. In arf6Δ mutants, Cdr2 nodes detached from the membrane and exhibited increased dynamics. These defects were enhanced when arf6Δ was combined with other node mutants. Our work identifies a regulated anchor for Cdr2 nodes that is required for cells to sense surface area.
Collapse
Affiliation(s)
- Hannah E. Opalko
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Kristi E. Miller
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY
| | - Cesar Augusto Vargas-Garcia
- Grupo de Investigación en Sistemas Agropecuarios Sostenibles, Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Bogotá, Colombia
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE
| | | | - James B. Moseley
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
21
|
Cole E, Gaertig J. Anterior-posterior pattern formation in ciliates. J Eukaryot Microbiol 2022; 69:e12890. [PMID: 35075744 PMCID: PMC9309198 DOI: 10.1111/jeu.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell‐wide axes: anterior–posterior and circumferential (left–right). We review our current understanding of intracellular patterning along the anterior–posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliate Tetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern‐regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (including Stentor) and interpret them in light of recent molecular findings in Tetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior‐posterior axis.
Collapse
Affiliation(s)
- Eric Cole
- Biology Department, St. Olaf College, Northfield, MN, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
The Ceramide Synthase Subunit Lac1 Regulates Cell Growth and Size in Fission Yeast. Int J Mol Sci 2021; 23:ijms23010303. [PMID: 35008733 PMCID: PMC8745161 DOI: 10.3390/ijms23010303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cell division produces two viable cells of a defined size. Thus, all cells require mechanisms to measure growth and trigger cell division when sufficient growth has occurred. Previous data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals in budding yeast. However, the conservation of mechanisms that govern growth control is poorly understood. In fission yeast, ceramide synthase is encoded by two genes, Lac1 and Lag1. Here, we characterize them by using a combination of genetics, microscopy, and lipid analysis. We showed that Lac1 and Lag1 co-immunoprecipitate and co-localize at the endoplasmic reticulum. However, each protein generates different species of ceramides and complex sphingolipids. We further discovered that Lac1, but not Lag1, is specifically required for proper control of cell growth and size in Schizosaccharomyces pombe. We propose that specific ceramide and sphingolipid species produced by Lac1 are required for normal control of cell growth and size in fission yeast.
Collapse
|
23
|
Goshima G. Growth and division mode plasticity is dependent on cell density in marine-derived black yeasts. Genes Cells 2021; 27:124-137. [PMID: 34932251 DOI: 10.1111/gtc.12916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
The diversity and ecological contribution of the fungus kingdom in the marine environment remain understudied. A recent survey in the Atlantic (Woods Hole, MA, USA) brought to light the diversity and unique biological features of marine fungi. The study revealed that black yeast species undergo an unconventional cell division cycle, which has not been documented in conventional model yeast species such as Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast). The prevalence of this unusual property is unknown. Here, I collected and identified 65 marine fungi species across 40 genera from the surface ocean water, sediment, and the surface of macroalgae (seaweeds) in the Pacific (Sugashima, Toba, Japan). The Sugashima collection largely did not overlap with the Woods Hole collection and included several unidentifiable species, further illustrating the diversity of marine fungi. Three black yeast species were isolated, two of which were commonly found in Woods Hole (Aureobasidium pullulans and Hortaea werneckii). Surprisingly, their cell division mode was dependent on cell density, and the previously reported unconventional division mode was reproduced only at a certain cell density. For all three black yeast species, cells underwent filamentous growth with septations at low cell density and immediately formed buds at high cell density. At intermediate cell density, two black yeasts (H. werneckii and an unidentifiable species) showed rod cells undergoing septation at the cell equator. In contrast, all eight budding yeast species showed a consistent division pattern regardless of cell density. This study suggests the plastic nature of the growth/division mode of marine-derived black yeast.
Collapse
Affiliation(s)
- Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
24
|
Manivasagam VK, Popat KC. Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112315. [PMID: 34474866 DOI: 10.1016/j.msec.2021.112315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Implant surface plays a crucial role in improving osseointegration and long-term implant life. When the implant comes in contact with the bone tissue, the bone marrow mesenchymal cells interact with the implant surface and the surface properties such as morphology, wettability, mechanical properties and chemistry influences cell migration, proliferation and differentiation. Different surface modification strategies such as ceramic coatings, surface dealloying, and surface topography modifications for improving osteointegration have been investigated. However, studies have not yet established which of the surface property is more influential. In this study, titanium surfaces were treated hydrothermally with sodium hydroxide and sulfuric acid separately. This treatment led to the development of two unique surface topography at nanoscale. These modified surfaces were characterized for surface morphology, wettability, chemistry, and crystallinity. Cytotoxicity, cell adhesion, proliferation, morphology, and differentiation of adipose derived stem cells on modified surfaces was investigated. The results indicate that wettability does influence initial cell adhesion. However, the surface morphology can play major role in cell spreading, proliferation and differentiation. The results indicate that titanium surfaces treated hydrothermally with sodium hydroxide led to a nanoporous architecture that promoted appropriate cell interaction with the surface promoting osteoblastic lineage.
Collapse
Affiliation(s)
- Vignesh K Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
25
|
Patterson JO, Basu S, Rees P, Nurse P. CDK control pathways integrate cell size and ploidy information to control cell division. eLife 2021; 10:64592. [PMID: 34114564 PMCID: PMC8248981 DOI: 10.7554/elife.64592] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Maintenance of cell size homeostasis is a property that is conserved throughout eukaryotes. Cell size homeostasis is brought about by the co-ordination of cell division with cell growth and requires restriction of smaller cells from undergoing mitosis and cell division, whilst allowing larger cells to do so. Cyclin-CDK is the fundamental driver of mitosis and therefore ultimately ensures size homeostasis. Here we dissect determinants of CDK activity in vivo to investigate how cell size information is processed by the cell cycle network in fission yeast. We develop a high-throughput single-cell assay system of CDK activity in vivo and show that inhibitory tyrosine phosphorylation of CDK encodes cell size information, with the phosphatase PP2A aiding to set a size threshold for division. CDK inhibitory phosphorylation works synergistically with PP2A to prevent mitosis in smaller cells. Finally, we find that diploid cells of equivalent size to haploid cells exhibit lower CDK activity in response to equal cyclin-CDK enzyme concentrations, suggesting that CDK activity is reduced by increased DNA levels. Therefore, scaling of cyclin-CDK levels with cell size, CDK inhibitory phosphorylation, PP2A, and DNA-dependent inhibition of CDK activity, all inform the cell cycle network of cell size, thus contributing to cell size homeostasis.
Collapse
Affiliation(s)
- James Oliver Patterson
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom.,College of Engineering, Swansea University, Swansea, United Kingdom
| | - Souradeep Basu
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University, Swansea, United Kingdom.,Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, United States
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom.,Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, United States
| |
Collapse
|
26
|
Machado M, Steinke S, Ganter M. Plasmodium Reproduction, Cell Size, and Transcription: How to Cope With Increasing DNA Content? Front Cell Infect Microbiol 2021; 11:660679. [PMID: 33898332 PMCID: PMC8062723 DOI: 10.3389/fcimb.2021.660679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium, the unicellular parasite that causes malaria, evolved a highly unusual mode of reproduction. During its complex life cycle, invasive or transmissive stages alternate with proliferating stages, where a single parasite can produce tens of thousands of progeny. In the clinically relevant blood stage of infection, the parasite replicates its genome up to thirty times and forms a multinucleated cell before daughter cells are assembled. Thus, within a single cell cycle, Plasmodium develops from a haploid to a polypoid cell, harboring multiple copies of its genome. Polyploidy creates several biological challenges, such as imbalances in genome output, and cells can respond to this by changing their size and/or alter the production of RNA species and protein to achieve expression homeostasis. However, the effects and possible adaptations of Plasmodium to the massively increasing DNA content are unknown. Here, we revisit and embed current Plasmodium literature in the context of polyploidy and propose potential mechanisms of the parasite to cope with the increasing gene dosage.
Collapse
Affiliation(s)
- Marta Machado
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Salome Steinke
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
27
|
Gerganova V, Bhatia P, Vincenzetti V, Martin SG. Direct and indirect regulation of Pom1 cell size pathway by the protein phosphatase 2C Ptc1. Mol Biol Cell 2021; 32:703-711. [PMID: 33625871 PMCID: PMC8108516 DOI: 10.1091/mbc.e20-08-0508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fission yeast cells Schizosaccharomyces pombe divide at constant cell size regulated by environmental stimuli. An important pathway of cell size control involves the membrane-associated DYRK-family kinase Pom1, which forms decreasing concentration gradients from cell poles and inhibits mitotic inducers at midcell. Here, we identify the phosphatase 2C Ptc1 as negative regulator of Pom1. Ptc1 localizes to cell poles in a manner dependent on polarity and cell-wall integrity factors. We show that Ptc1 directly binds Pom1 and can dephosphorylate it in vitro but modulates Pom1 localization indirectly upon growth in low-glucose conditions by influencing microtubule stability. Thus, Ptc1 phosphatase plays both direct and indirect roles in the Pom1 cell size control pathway.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Payal Bhatia
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Scotchman E, Kume K, Navarro FJ, Nurse P. Identification of mutants with increased variation in cell size at onset of mitosis in fission yeast. J Cell Sci 2021; 134:jcs251769. [PMID: 33419777 PMCID: PMC7888708 DOI: 10.1242/jcs.251769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Fission yeast cells divide at a similar cell length with little variation about the mean. This is thought to be the result of a control mechanism that senses size and corrects for any deviations by advancing or delaying onset of mitosis. Gene deletions that advance cells into mitosis at a smaller size or delay cells entering mitosis have led to the identification of genes potentially involved in this mechanism. However, the molecular basis of this control is still not understood. In this work, we have screened for genes that when deleted increase the variability in size of dividing cells. The strongest candidate identified in this screen was mga2 The mga2 deletion strain shows a greater variation in cell length at division, with a coefficient of variation (CV) of 15-24%, while the wild-type strain has a CV of 5-8%. Furthermore, unlike wild-type cells, the mga2 deletion cells are unable to correct cell size deviations within one cell cycle. We show that the mga2 gene genetically interacts with nem1 and influences the nuclear membrane and the nuclear-cytoplasmic transport of CDK regulators.
Collapse
Affiliation(s)
| | - Kazunori Kume
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
29
|
Novák B, Tyson JJ. Computational modeling of chromosome re-replication in mutant strains of fission yeast. Mol Biol Cell 2021; 32:830-841. [PMID: 33534609 PMCID: PMC8108527 DOI: 10.1091/mbc.e20-09-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Typically cells replicate their genome only once per division cycle, but under some circumstances, both natural and unnatural, cells synthesize an overabundance of DNA, either in a disorganized manner (“overreplication”) or by a systematic doubling of chromosome number (“endoreplication”). These variations on the theme of DNA replication and division have been studied in strains of fission yeast, Schizosaccharomyces pombe, carrying mutations that interfere with the function of mitotic cyclin-dependent kinase (Cdk1:Cdc13) without impeding the roles of DNA-replication loading factor (Cdc18) and S-phase cyclin-dependent kinase (Cdk1:Cig2). Some of these mutations support endoreplication, and some overreplication. In this paper, we propose a dynamical model of the interactions among the proteins governing DNA replication and cell division in fission yeast. By computational simulations of the mathematical model, we account for the observed phenotypes of these re-replicating mutants, and by theoretical analysis of the dynamical system, we provide insight into the molecular distinctions between overreplicating and endoreplicating cells. In the case of induced overproduction of regulatory proteins, our model predicts that cells first switch from normal mitotic cell cycles to growth-controlled endoreplication, and ultimately to disorganized overreplication, parallel to the slow increase of protein to very high levels.
Collapse
Affiliation(s)
- Béla Novák
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
30
|
Teimouri H, Mukherjee R, Kolomeisky AB. Stochastic Mechanisms of Cell-Size Regulation in Bacteria. J Phys Chem Lett 2020; 11:8777-8782. [PMID: 33001652 DOI: 10.1021/acs.jpclett.0c02627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How bacteria are able to maintain their sizes remains an open question. It is believed that cells have narrow distributions of sizes as a consequence of a homeostasis that allows bacteria to function at the optimal conditions. Several phenomenological approaches to explain these observations have been presented, but the microscopic origins of the cell-size regulation are still not understood. Here, we propose a new stochastic approach to investigate the molecular mechanisms of maintaining the cell sizes in bacteria. It is argued that the cell-size regulation is a result of coupling of two stochastic processes, cell growth and division, which eliminates the need for introducing the thresholds. Dynamic properties of the system are explicitly evaluated, and it is shown that the model is consistent with the experimentally supported adder principle of the cell-size regulation. In addition, theoretical predictions agree with experimental observations on E. coli bacteria. Theoretical analysis clarifies some important features of bacterial cell growth.
Collapse
Affiliation(s)
- Hamid Teimouri
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77251, United States
| | - Rupsha Mukherjee
- MTech, Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77251, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
31
|
Jin H, Du Z, Zhang Y, Antal J, Xia Z, Wang Y, Gao Y, Zhao X, Han X, Cheng Y, Shen Q, Zhang K, Elder RE, Benko Z, Fenyvuesvolgyi C, Li G, Rebello D, Li J, Bao S, Zhao RY, Wang D. A distinct class of plant and animal viral proteins that disrupt mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. SCIENCE ADVANCES 2020; 6:eaba3418. [PMID: 32426509 PMCID: PMC7220342 DOI: 10.1126/sciadv.aba3418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Many animal viral proteins, e.g., Vpr of HIV-1, disrupt host mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. However, it is unknown whether plant viruses may use this mechanism in their pathogenesis. Here, we report that the 17K protein, encoded by barley yellow dwarf viruses and related poleroviruses, delays G2/M transition and disrupts mitosis in both host (barley) and nonhost (fission yeast, Arabidopsis thaliana, and tobacco) cells through interrupting the function of Wee1-Cdc25-CDKA/Cdc2 via direct protein-protein interactions and alteration of CDKA/Cdc2 phosphorylation. When ectopically expressed, 17K disrupts the mitosis of cultured human cells, and HIV-1 Vpr inhibits plant cell growth. Furthermore, 17K and Vpr share similar secondary structural feature and common amino acid residues required for interacting with plant CDKA. Thus, our work reveals a distinct class of mitosis regulators that are conserved between plant and animal viruses and play active roles in viral pathogenesis.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiqiang Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Judit Antal
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zongliang Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjun Cheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Robert E. Elder
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zsigmond Benko
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Csaba Fenyvuesvolgyi
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dionne Rebello
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jing Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Richard Y. Zhao
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, Institute of Human Virology, and Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
32
|
Abstract
The notion that graded distributions of signals underlie the spatial organization of biological systems has long been a central pillar in the fields of cell and developmental biology. During morphogenesis, morphogens spread across tissues to guide development of the embryo. Similarly, a variety of dynamic gradients and pattern-forming networks have been discovered that shape subcellular organization. Here we discuss the principles of intracellular pattern formation by these intracellular morphogens and relate them to conceptually similar processes operating at the tissue scale. We will specifically review mechanisms for generating cellular asymmetry and consider how intracellular patterning networks are controlled and adapt to cellular geometry. Finally, we assess the general concept of intracellular gradients as a mechanism for positional control in light of current data, highlighting how the simple readout of fixed concentration thresholds fails to fully capture the complexity of spatial patterning processes occurring inside cells.
Collapse
Affiliation(s)
- Lars Hubatsch
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
33
|
Abstract
The genetic control of the characteristic cell sizes of different species and tissues is a long-standing enigma. Plants are convenient for studying this question in a multicellular context, as their cells do not move and are easily tracked and measured from organ initiation in the meristems to subsequent morphogenesis and differentiation. In this article, we discuss cell size control in plants compared with other organisms. As seen from yeast cells to mammalian cells, size homeostasis is maintained cell autonomously in the shoot meristem. In developing organs, vacuolization contributes to cell size heterogeneity and may resolve conflicts between growth control at the cellular and organ levels. Molecular mechanisms for cell size control have implications for how cell size responds to changes in ploidy, which are particularly important in plant development and evolution. We also discuss comparatively the functional consequences of cell size and their potential repercussions at higher scales, including genome evolution.
Collapse
Affiliation(s)
- Marco D'Ario
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Robert Sablowski
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
34
|
Jones AR, Band LR, Murray JAH. Double or Nothing? Cell Division and Cell Size Control. TRENDS IN PLANT SCIENCE 2019; 24:1083-1093. [PMID: 31630972 DOI: 10.1016/j.tplants.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Size is a fundamental property that must be tightly regulated to ensure that cells and tissues function efficiently. Dynamic size control allows unicellular organisms to adapt to environmental changes, but cell size is also integral to multicellular development, affecting tissue size and structure. Despite clear evidence for homeostatic cell size maintenance, we are only now beginning to understand cell size regulation in the actively dividing meristematic tissues of higher plants. We discuss here how coupled advances in live cell imaging and modelling are uncovering dynamic mechanisms for size control mediated at the cellular level. We argue that integrated models of cell growth and division will be necessary to predict cell size and fully understand multicellular growth and development.
Collapse
Affiliation(s)
- Angharad R Jones
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Leah R Band
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
35
|
Abstract
Individual cell types have characteristic sizes, suggesting that size sensing mechanisms may coordinate transcription, translation, and metabolism with cell growth rates. Two types of size-sensing mechanisms have been proposed: spatial sensing of the location or dimensions of a signal, subcellular structure or organelle; or titration-based sensing of the intracellular concentrations of key regulators. Here we propose that size sensing in animal cells combines both titration and spatial sensing elements in a dynamic mechanism whereby microtubule motor-dependent localization of RNA encoding importin β1 and mTOR, coupled with regulated local protein synthesis, enable cytoskeleton length sensing for cell growth regulation.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
36
|
Abstract
Polyploidy has evolved many times across the kingdom of life. The relationship between cell growth and chromosome replication in bacteria has been studied extensively in monoploid model organisms such as Escherichia coli but not in polyploid organisms. Our study of the polyploid cyanobacterium Synechococcus elongatus demonstrates that replicating chromosome number is restricted and regulated by DnaA to maintain a relatively stable gene copy number/cell volume ratio during cell growth. In addition, our results suggest that polyploidy confers resistance to UV, which damages DNA. This compensatory polyploidy is likely necessitated by photosynthesis, which requires sunlight and generates damaging reactive oxygen species, and may also explain how polyploid bacteria can adapt to extreme environments with high risk of DNA damage. Homologous chromosome number (ploidy) has diversified among bacteria, archaea, and eukaryotes over evolution. In bacteria, model organisms such as Escherichia coli possess a single chromosome encoding the entire genome during slow growth. In contrast, other bacteria, including cyanobacteria, maintain multiple copies of individual chromosomes (polyploid). Although a correlation between ploidy level and cell size has been observed in bacteria and eukaryotes, it is poorly understood how replication of multicopy chromosomes is regulated and how ploidy level is adjusted to cell size. In addition, the advantages conferred by polyploidy are largely unknown. Here we show that only one or a few multicopy chromosomes are replicated at once in the cyanobacterium Synechococcus elongatus and that this restriction depends on regulation of DnaA activity. Inhibiting the DnaA intrinsic ATPase activity in S. elongatus increased the number of replicating chromosomes and chromosome number per cell but did not affect cell growth. In contrast, when cell growth rate was increased or decreased, DnaA level, DnaA activity, and the number of replicating chromosomes also increased or decreased in parallel, resulting in nearly constant chromosome copy number per unit of cell volume at constant temperature. When chromosome copy number was increased by inhibition of DnaA ATPase activity or reduced culture temperature, cells exhibited greater resistance to UV light. Thus, it is suggested that the stepwise replication of the genome enables cyanobacteria to maintain nearly constant gene copy number per unit of cell volume and that multicopy chromosomes function as backup genetic information to compensate for genomic damage.
Collapse
|
37
|
Ahmad Z, Magyar Z, Bögre L, Papdi C. Cell cycle control by the target of rapamycin signalling pathway in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2275-2284. [PMID: 30918972 DOI: 10.1093/jxb/erz140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Cells need to ensure a sufficient nutrient and energy supply before committing to proliferate. In response to positive mitogenic signals, such as light, sugar availability, and hormones, the target of rapamycin (TOR) signalling pathway promotes cell growth that connects to the entry and passage through the cell division cycle via multiple signalling mechanisms. Here, we summarize current understanding of cell cycle regulation by the RBR-E2F regulatory hub and the DREAM-like complexes, and highlight possible functional relationships between these regulators and TOR signalling. A genetic screen recently uncovered a downstream signalling component to TOR that regulates cell proliferation, YAK1, a member of the dual specificity tyrosine phosphorylation-regulated kinase (DYRK) family. YAK1 activates the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors and therefore could be important to regulate both the CDKA-RBR-E2F pathway to control the G1/S transition and the mitotic CDKB1;1 to control the G2/M transition. TOR, as a master regulator of both protein synthesis-driven cell growth and cell proliferation is also central for cell size homeostasis. We conclude the review by briefly highlighting the potential applications of combining TOR and cell cycle knowledge in the context of ensuring future food security.
Collapse
Affiliation(s)
- Zaki Ahmad
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - László Bögre
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
38
|
Patterson JO, Rees P, Nurse P. Noisy Cell-Size-Correlated Expression of Cyclin B Drives Probabilistic Cell-Size Homeostasis in Fission Yeast. Curr Biol 2019; 29:1379-1386.e4. [PMID: 30955932 PMCID: PMC6488275 DOI: 10.1016/j.cub.2019.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
How cells correct deviations from a mean cell size at mitosis remains uncertain. Classical cell-size homeostasis models are the sizer, timer, and adder [1]. Sizers postulate that cells divide at some threshold size; timers, that cells grow for a set time; and adders, that cells add a constant volume before division. Here, we show that a size-based probabilistic model of cell-size control at the G2/M transition (P(Div)) can generate realistic cell-size homeostasis in silico. In fission yeast cells, Cyclin BCdc13 scales with size, and we propose that this increases the likelihood of mitotic entry, while molecular noise in its expression adds a probabilistic component to the model. Varying Cdc13 expression levels exogenously using a newly developed tetracycline inducible promoter shows that both the level and variability of its expression influence cell size at division. Our results demonstrate that as cells grow larger, their probability of dividing increases, and this is sufficient to generate cell-size homeostasis. Size-correlated Cdc13 expression forms part of the molecular circuitry of this system. A size-correlated division probability can generate cell-size homeostasis Cyclin B concentration scales noisily with size in fission yeast Cells with stochastically suprathreshold cyclin B are the ones that divide A new tetracycline inducible promoter with linear dose response is developed
Collapse
Affiliation(s)
- James O Patterson
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK; College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK.
| | - Paul Rees
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK; Imaging Platform, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
39
|
Kinnaer C, Dudin O, Martin SG. Yeast-to-hypha transition of Schizosaccharomyces japonicus in response to environmental stimuli. Mol Biol Cell 2019; 30:975-991. [PMID: 30726171 PMCID: PMC6589906 DOI: 10.1091/mbc.e18-12-0774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
Many fungal species are dimorphic, exhibiting both unicellular yeast-like and filamentous forms. Schizosaccharomyces japonicus, a member of the fission yeast clade, is one such dimorphic fungus. Here, we first identify fruit extracts as natural, stress-free, starvation-independent inducers of filamentation, which we use to describe the properties of the dimorphic switch. During the yeast-to-hypha transition, the cell evolves from a bipolar to a unipolar system with 10-fold accelerated polarized growth but constant width, vacuoles segregated to the nongrowing half of the cell, and hyper-lengthening of the cell. We demonstrate unusual features of S. japonicus hyphae: these cells lack a Spitzenkörper, a vesicle distribution center at the hyphal tip, but display more rapid cytoskeleton-based transport than the yeast form, with actin cables being essential for the transition. S. japonicus hyphae also remain mononuclear and undergo complete cell divisions, which are highly asymmetric: one daughter cell inherits the vacuole, the other the growing tip. We show that these elongated cells scale their nuclear size, spindle length, and elongation rates, but display altered division size controls. This establishes S. japonicus as a unique system that switches between symmetric and asymmetric modes of growth and division.
Collapse
Affiliation(s)
- Cassandre Kinnaer
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Omaya Dudin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Gu Y, Oliferenko S. Cellular geometry scaling ensures robust division site positioning. Nat Commun 2019; 10:268. [PMID: 30664646 PMCID: PMC6341079 DOI: 10.1038/s41467-018-08218-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cells of a specific cell type may divide within a certain size range. Yet, functionally optimal cellular organization is typically maintained across different cell sizes, a phenomenon known as scaling. The mechanisms underlying scaling and its physiological significance remain elusive. Here we approach this problem by interfering with scaling in the rod-shaped fission yeast Schizosaccharomyces japonicus that relies on cellular geometry cues to position the division site. We show that S. japonicus uses the Cdc42 polarity module to adjust its geometry to changes in the cell size. When scaling is prevented resulting in abnormal cellular length-to-width aspect ratio, cells exhibit severe division site placement defects. We further show that despite the generally accepted view, a similar scaling phenomenon can occur in the sister species, Schizosaccharomyces pombe. Our results demonstrate that scaling is required for normal cell function and delineate possible rules for cellular geometry maintenance in populations of proliferating cells. Cells divide within a given size range and can scale across differing cell sizes but mechanisms and function remain unclear. Here the authors show, despite the current dogma of fission yeast maintaining constant width, some fission yeast can scale their width and length, impacting the positioning of the cell division site.
Collapse
Affiliation(s)
- Ying Gu
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
41
|
Martins BMC, Tooke AK, Thomas P, Locke JCW. Cell size control driven by the circadian clock and environment in cyanobacteria. Proc Natl Acad Sci U S A 2018; 115:E11415-E11424. [PMID: 30409801 PMCID: PMC6275512 DOI: 10.1073/pnas.1811309115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
How cells maintain their size has been extensively studied under constant conditions. In the wild, however, cells rarely experience constant environments. Here, we examine how the 24-h circadian clock and environmental cycles modulate cell size control and division timings in the cyanobacterium Synechococcus elongatus using single-cell time-lapse microscopy. Under constant light, wild-type cells follow an apparent sizer-like principle. Closer inspection reveals that the clock generates two subpopulations, with cells born in the subjective day following different division rules from cells born in subjective night. A stochastic model explains how this behavior emerges from the interaction of cell size control with the clock. We demonstrate that the clock continuously modulates the probability of cell division throughout day and night, rather than solely applying an on-off gate to division, as previously proposed. Iterating between modeling and experiments, we go on to identify an effective coupling of the division rate to time of day through the combined effects of the environment and the clock on cell division. Under naturally graded light-dark cycles, this coupling narrows the time window of cell divisions and shifts divisions away from when light levels are low and cell growth is reduced. Our analysis allows us to disentangle, and predict the effects of, the complex interactions between the environment, clock, and cell size control.
Collapse
Affiliation(s)
- Bruno M C Martins
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Amy K Tooke
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - Philipp Thomas
- Department of Mathematics, Imperial College London, SW7 2AZ London, United Kingdom
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom;
| |
Collapse
|
42
|
Hsieh HJ, Zhang W, Lin SH, Yang WH, Wang JZ, Shen J, Zhang Y, Lu Y, Wang H, Yu J, Mills GB, Peng G. Systems biology approach reveals a link between mTORC1 and G2/M DNA damage checkpoint recovery. Nat Commun 2018; 9:3982. [PMID: 30266942 PMCID: PMC6162282 DOI: 10.1038/s41467-018-05639-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
Checkpoint recovery, the process that checkpoint-arrested cells with normal DNA repair capacity resume cell cycle progression, is essential for genome stability. However, the signaling network of the process has not been clearly defined. Here, we combine functional proteomics, mathematical modeling, and molecular biology to identify mTORC1, the nutrient signaling integrator, as the determinant for G2/M checkpoint recovery. Inhibition of the mTORC1 pathway delays mitotic entry after DNA damage through KDM4B-mediated regulation of CCNB1 and PLK1 transcription. Cells with hyper-mTORC1 activity caused by TSC2 depletion exhibit accelerated G2/M checkpoint recovery. Those Tsc2-null cells are sensitive to WEE1 inhibition in vitro and in vivo by driving unscheduled mitotic entry and inducing mitotic catastrophe. These results reveal that mTORC1 functions as a mediator between nutrition availability sensing and cell fate determination after DNA damage, suggesting that checkpoint inhibitors may be used to treat mTORC1-hyperactivated tumors such as those associated with tuberous sclerosis complex.
Collapse
Affiliation(s)
- Hui-Ju Hsieh
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- QIAGEN (Suzhou) Translational Medicine Co., Ltd, Jiangsu Province, 215123, China
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Hao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, 510095, China
| | - Jun-Zhong Wang
- Department of Electrical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 80778, Taiwan
| | - Jianfeng Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yiran Zhang
- Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hua Wang
- Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Jane Yu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
Zülbahar S, Sieglitz F, Kottmeier R, Altenhein B, Rumpf S, Klämbt C. Differential expression of Öbek controls ploidy in the Drosophila blood-brain barrier. Development 2018; 145:dev.164111. [PMID: 30002129 DOI: 10.1242/dev.164111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
During development, tissue growth is mediated by either cell proliferation or cell growth, coupled with polyploidy. Both strategies are employed by the cell types that make up the Drosophila blood-brain barrier. During larval growth, the perineurial glia proliferate, whereas the subperineurial glia expand enormously and become polyploid. Here, we show that the level of ploidy in the subperineurial glia is controlled by the N-terminal asparagine amidohydrolase homolog Öbek, and high Öbek levels are required to limit replication. In contrast, perineurial glia express moderate levels of Öbek, and increased Öbek expression blocks their proliferation. Interestingly, other dividing cells are not affected by alteration of Öbek expression. In glia, Öbek counteracts fibroblast growth factor and Hippo signaling to differentially affect cell growth and number. We propose a mechanism by which growth signals are integrated differentially in a glia-specific manner through different levels of Öbek protein to adjust cell proliferation versus endoreplication in the blood-brain barrier.
Collapse
Affiliation(s)
- Selen Zülbahar
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Florian Sieglitz
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Rita Kottmeier
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Benjamin Altenhein
- Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Sebastian Rumpf
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| |
Collapse
|
44
|
Martínez-Láinez JM, Moreno DF, Parisi E, Clotet J, Aldea M. Centromeric signaling proteins boost G1 cyclin degradation and modulate cell size in budding yeast. PLoS Biol 2018; 16:e2005388. [PMID: 30080861 PMCID: PMC6095599 DOI: 10.1371/journal.pbio.2005388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/16/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
Cell size scales with ploidy in a great range of eukaryotes, but the underlying mechanisms remain unknown. Using various orthogonal single-cell approaches, we show that cell size increases linearly with centromere (CEN) copy number in budding yeast. This effect is due to a G1 delay mediated by increased degradation of Cln3, the most upstream G1 cyclin acting at Start, and specific centromeric signaling proteins, namely Mad3 and Bub3. Mad3 binds both Cln3 and Cdc4, the adaptor component of the Skp1/Cul1/F-box (SCF) complex that targets Cln3 for degradation, these interactions being essential for the CEN-dosage dependent effects on cell size. Our results reveal a pathway that modulates cell size as a function of CEN number, and we speculate that, in cooperation with other CEN-independent mechanisms, it could assist the cell to attain efficient mass/ploidy ratios.
Collapse
Affiliation(s)
- Joan M. Martínez-Láinez
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David F. Moreno
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Eva Parisi
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Josep Clotet
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Martí Aldea
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
45
|
Ginzberg MB, Chang N, D'Souza H, Patel N, Kafri R, Kirschner MW. Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. eLife 2018; 7:26957. [PMID: 29889021 PMCID: PMC6031432 DOI: 10.7554/elife.26957] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/07/2018] [Indexed: 12/30/2022] Open
Abstract
Cell size uniformity in healthy tissues suggests that control mechanisms might coordinate cell growth and division. We derived a method to assay whether cellular growth rates depend on cell size, by monitoring how variance in size changes as cells grow. Our data revealed that, twice during the cell cycle, growth rates are selectively increased in small cells and reduced in large cells, ensuring cell size uniformity. This regulation was also observed directly by monitoring nuclear growth in live cells. We also detected cell-size-dependent adjustments of G1 length, which further reduce variability. Combining our assays with chemical/genetic perturbations confirmed that cells employ two strategies, adjusting both cell cycle length and growth rate, to maintain the appropriate size. Additionally, although Rb signaling is not required for these regulatory behaviors, perturbing Cdk4 activity still influences cell size, suggesting that the Cdk4 pathway may play a role in designating the cell’s target size. Animal cells come in many different sizes. In humans, for example, egg cells are thousands of times larger than sperm cells. Yet cells of any given type are often strikingly similar in size. The cells that line the surface of organs including the skin and kidneys are especially uniform; in fact a loss of size uniformity in certain tumors is a sign of malignancy. What kind of regulation could enable separate cells within a tissue to have the same size? One possibility is that each type of cell is programmed with a specific target size, and that a cell can sense if it strays from its target and take steps to compensate. Animal cells sensing their own size was first reported in the 1960s, and now Ginzberg et al. confirm that human cells grown in the laboratory do indeed monitor their size and correct deviations from their target. It turns out that two separate and independent processes help to keep all the cells in the population roughly uniform in size. Firstly, proliferating human cells that are smaller than their target size spend longer growing before they divide. Secondly, at two time points between cell divisions, large cells adjust their growth rate such that they grow slower than small cells. To show these processes in action, Ginzberg et al. introduced mutations or chemicals that perturbed the length of time between cell divisions or the rate of a cell’s growth. As expected, most of these perturbations had only a modest influence on cell size, due to the cell’s compensatory strategies. Cells that had less time to grow compensated by more quickly making new protein molecules, meaning that they still had enough material to build two new cells by the time they had to divide. In contrast, if a cell’s division was artificially delayed, it reduced its growth rate to stop it from becoming too large. Similarly, cells grown in conditions that slow the production of proteins extended the time between their cell divisions to give them enough time to accumulate the material required for two new cells. In a recent related study, Liu, Ginzberg et al. identified some of the molecules that a human cell uses to sense its own size. Together these two studies now pave the road to answering a fundamental question in cell biology: what is the elusive cell size sensor? Understanding how cells sense their size will open a window onto how quantitative information is programmed, sensed and communicated within living cells. These findings will shed also new light onto how cells specialize into cell types of different sizes, and what happens when cells lose the ability to sense or regulate their size in diseases like cancers.
Collapse
Affiliation(s)
- Miriam Bracha Ginzberg
- Department of Systems Biology, Harvard Medical School, Boston, United States.,Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Nancy Chang
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Heather D'Souza
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Nish Patel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
46
|
G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast. Cell Syst 2018; 6:539-554.e11. [DOI: 10.1016/j.cels.2018.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/17/2018] [Accepted: 04/25/2018] [Indexed: 11/20/2022]
|
47
|
Single-Cell Analysis of the Impact of Host Cell Heterogeneity on Infection with Foot-and-Mouth Disease Virus. J Virol 2018; 92:JVI.00179-18. [PMID: 29444939 DOI: 10.1128/jvi.00179-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
Viral infection and replication are affected by host cell heterogeneity, but the mechanisms underlying the effects remain unclear. Using single-cell analysis, we investigated the effects of host cell heterogeneity, including cell size, inclusion, and cell cycle, on foot-and-mouth disease virus (FMDV) infection (acute and persistent infections) and replication. We detected various viral genome replication levels in FMDV-infected cells. Large cells and cells with a high number of inclusions generated more viral RNA copies and viral protein and a higher proportion of infectious cells than other cells. Additionally, we found that the viral titer was 10- to 100-fold higher in cells in G2/M than those in other cell cycle phases and identified a strong correlation between cell size, inclusion, and cell cycle heterogeneity, which all affected the infection and replication of FMDV. Furthermore, we demonstrated that host cell heterogeneity influenced the adsorption of FMDV due to differences in the levels of FMDV integrin receptors expression. Collectively, these results further our understanding of the evolution of a virus in a single host cell.IMPORTANCE It is important to understand how host cell heterogeneity affects viral infection and replication. Using single-cell analysis, we found that viral genome replication levels exhibited dramatic variability in foot-and-mouth disease virus (FMDV)-infected cells. We also found a strong correlation between heterogeneity in cell size, inclusion number, and cell cycle status and that all of these characteristics affect the infection and replication of FMDV. Moreover, we found that host cell heterogeneity influenced the viral adsorption as differences in the levels of FMDV integrin receptors' expression. This study provided new ideas for the studies of correlation between FMDV infection mechanisms and host cells.
Collapse
|
48
|
Liu S, Ginzberg MB, Patel N, Hild M, Leung B, Li Z, Chen YC, Chang N, Wang Y, Tan C, Diena S, Trimble W, Wasserman L, Jenkins JL, Kirschner MW, Kafri R. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. eLife 2018; 7:26947. [PMID: 29595474 PMCID: PMC5876018 DOI: 10.7554/elife.26947] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 12/22/2017] [Indexed: 01/09/2023] Open
Abstract
Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.
Collapse
Affiliation(s)
- Shixuan Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Nish Patel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Marc Hild
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Bosco Leung
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Zhengda Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Yen-Chi Chen
- Department of Statistics, University of Washington, Seattle, United States
| | - Nancy Chang
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Yuan Wang
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Ceryl Tan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Shulamit Diena
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - William Trimble
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Larry Wasserman
- Department of Statistics, Carnegie Mellon University, Pittsburgh, United States
| | - Jeremy L Jenkins
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
49
|
Gelens L, Qian J, Bollen M, Saurin AT. The Importance of Kinase-Phosphatase Integration: Lessons from Mitosis. Trends Cell Biol 2018; 28:6-21. [PMID: 29089159 DOI: 10.1016/j.tcb.2017.09.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
Abstract
Kinases and phosphatases work antagonistically to control the behaviour of individual substrate molecules. This can be incorrectly extrapolated to imply that they also work antagonistically on the signals or processes that these molecules control. In fact, in many situations kinases and phosphatases work together to positively drive signal responses. We explain how this 'cooperativity' is critical for setting the amplitude, localisation, timing, and shape of phosphorylation signals. We use mitosis to illustrate why these properties are important for controlling mitotic entry, sister chromatid cohesion, kinetochore-microtubule attachments, the spindle assembly checkpoint, mitotic spindle elongation, and mitotic exit. These examples provide a rationale to explain how complex signalling behaviour could rely on similar types of integration within many other biological processes.
Collapse
Affiliation(s)
- Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| | - Junbin Qian
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Adrian T Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
50
|
Björklund M, Marguerat S. Editorial: Determinants of Cell Size. Front Cell Dev Biol 2017; 5:115. [PMID: 29326932 PMCID: PMC5737056 DOI: 10.3389/fcell.2017.00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mikael Björklund
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, London, United Kingdom.,Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|