1
|
Bianchi M, Avesani S, Bonato B, Dadda M, Guerra S, Ravazzolo L, Simonetti V, Castiello U. Plant behavior: Theoretical and technological advances. Curr Opin Psychol 2025; 64:102026. [PMID: 40107178 PMCID: PMC7617499 DOI: 10.1016/j.copsyc.2025.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The widespread disregard for plant behavior is gradually being overcome through more inclusive theoretical approaches and the development of appropriate and advanced technologies. In this paper we review scientific evidence on recent contributions to the study of plants, such as movement and communication as well as potential forms of attention. Some of the most recent contributions to the study of plant abilities come from comparative studies on biocommunication and research on the accuracy of plants in responding to different environmental stimuli through electrophysiological and kinematical analyses in different context (e.g., individual and social). Furthermore, an underexplored area that warrants further investigation is plants' multisensory perception and its potential link to multimodal communication capabilities. Research into this set of abilities could help to clarify the degree of behavioral flexibility in sessile organisms without a nervous system and enhance discussions on interactive behavior as expressed in nature. This, in turn, will help to bridge the gap between studies on animal organisms and the rest of the living world.
Collapse
Affiliation(s)
| | - Sara Avesani
- Department of General Psychology, University of Padua, Italy
| | - Bianca Bonato
- Department of General Psychology, University of Padua, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padua, Italy
| | - Silvia Guerra
- Department of General Psychology, University of Padua, Italy
| | - Laura Ravazzolo
- DAFNAE-Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Italy
| | | | | |
Collapse
|
2
|
Gottlieb R, Gruntman M. Belowground plant competition: uncoupling root response strategies of peas. Proc Biol Sci 2024; 291:20240673. [PMID: 39079667 PMCID: PMC11288680 DOI: 10.1098/rspb.2024.0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Belowground plant competition has been shown to induce varying responses, from increases to decreases in root biomass allocation or in directional root placement. Such inconsistencies could result from the fact that root allocation and directional growth were seldom studied together, even though they might represent different strategies. Moreover, variations in belowground responses might be due to different size hierarchies between plants, but this hypothesis has not been studied previously. In a greenhouse rhizobox experiment, we examined the way both root allocation and directional root placement of Pisum sativum are affected by the size and density of Festuca glauca neighbours, and by nutrient distribution. We found that root allocation of P. sativum increased with the density and size of F. glauca. By contrast, directional root placement was unaffected by neighbour size and increased either towards or away from neighbours when nutrients were patchily or uniformly distributed, respectively. These results demonstrate that directional root placement under competition is contingent on the distribution of soil resources. Interestingly, our results suggest that root allocation and directional placement might be uncoupled strategies that simultaneously provide stress tolerance and spatial responsiveness to neighbours, thus highlighting the importance of measuring both when studying belowground plant competition.
Collapse
Affiliation(s)
- Ruth Gottlieb
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Michal Gruntman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
4
|
Bonato B, Castiello U, Guerra S, Wang Q. Motor cognition in plants: from thought to real experiments. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2024; 36:423-437. [PMID: 39132627 PMCID: PMC7616355 DOI: 10.1007/s40626-023-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 08/13/2024]
Abstract
Motor cognition involves the process of planning and executing goal-directed movements and recognizing, anticipating, and interpreting others' actions. Motor cognitive functions are generally associated with the presence of a brain and are ascribed only to humans and other animal species. A growing body of evidence suggests that aneural organisms, like climbing plants, exhibit behaviors driven by the intention to achieve goals, challenging our understanding of cognition. Here, we propose an inclusive perspective under motor cognition to explain climbing plants' behavior. We will first review our empirical research based on kinematical analysis to understand movement in pea plants. Then, we situate this empirical research within the current theoretical debate aimed at extending the principles of cognition to aneural organisms. A novel comparative perspective that considers the perception-action cycle, involving transforming perceived environmental elements into intended movement patterns, is provided.
Collapse
Affiliation(s)
- Bianca Bonato
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Umberto Castiello
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Silvia Guerra
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| | - Qiuran Wang
- Department of General Psychology (DPG), University of Padova, Padua, Italy
| |
Collapse
|
5
|
Su H, Li M, Wang C, Fu G, Le R, Sun G. Effects of light regimes and benthic fish disturbance on the foraging behavior of Vallisneria natans in heterogeneous sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:331-342. [PMID: 38012492 DOI: 10.1007/s11356-023-31196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
In shallow eutrophic lakes, submersed macrophytes are significantly influenced by two main factors: light availability and benthic fish disturbance. Plant foraging is one of the most crucial aspects of plant behavior. The present study was carried out to effects of light regimes and fish disturbance on the foraging behavior of Vallisneria natans in heterogeneous sediments. V. natans was cultivated in heterogeneous sediments with four treatments: high-light regime (H), high-light regime with benthic fish (HF), low-light regime (L), and low-light regime with benthic fish (LF). We use plant trait network analysis to evaluate the relationships between traits in heterogeneous sediments. We found the plant foraging intensity was positively correlated with trait network modularity. The biomass of stem, maternal plant biomass ratio, and ramet number were the hub traits of plant growing in heterogeneous habitats. Although the plant relative growth rate (RGR) was positively correlated with foraging intensity, the hub traits had closer links with plant RGR than foraging intensity. Light regime and benthic fish indirectly affected the plant foraging intensity by changing the chlorophyll a content and pH of overlying water. Overall, our analysis provides valuable insights into plant foraging behavior in response to environmental changes.
Collapse
Affiliation(s)
- Hong Su
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China.
| | - Mingfan Li
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Chao Wang
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Guanbao Fu
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Ruijie Le
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Gang Sun
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| |
Collapse
|
6
|
Hiranmayee G, Marik D, Sadhukhan A, Reddy GS. Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana. J Genet Eng Biotechnol 2023; 21:159. [PMID: 38052743 DOI: 10.1186/s43141-023-00615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Plant probiotics bacteria are live microbes that promote soil health and plant growth and build the stress-tolerant capacity to the plants. They benefit the plants by increasing nutrient absorption and release of stress-related phytohormones. These plant probiotic bacteria serve a better purpose to the plant when compared to chemical fertilizers. Use of chemical fertilizers such as arsenic and cadmium can lead to soil acidification and even release of harmful gases such as methane which further pollutes the environment. RESULTS Different bacterial species were isolated from the agricultural fields of Tattiannaram, Telangana, and identified as the efficient rhizosphere bacteria with the essential qualities of plant growth promotion by evaluating the nitrogen-fixing ability on a selective media and various other methods. Upon the molecular characterization of the isolates, they were identified as Corynebacterium spp., Bacillus spp., Lactobacillus spp., and Cytobacillus spp. The results were also examined using various bioinformatics tools for accuracy in their phylogenetic pattern. CONCLUSION The recognized species of plant probiotics have established roles in promoting plant growth and strengthening plant immunity. This research introduces an innovative methodology for evaluating and investigating recently identified bacterial isolates, focusing on their distinctive plant probiotic attributes. Through harnessing the potential of advantageous microorganisms and comprehending their interaction with plants and soil, our objective is to formulate inventive approaches to elevate crop productivity, enhance soil richness, and foster environmentally sustainable and robust agricultural methodologies. These characteristics exhibit promising potential for future incorporation into plant systems, fortifying growth and development, and underscoring their distinctive significance within the realm of agriculture.
Collapse
Affiliation(s)
- Gottumukkala Hiranmayee
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522 502, India
| | - Debankona Marik
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur, India
| | - Golamari Siva Reddy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522 502, India.
| |
Collapse
|
7
|
Hall RM, Markovic D, Kaul HP, Wagentristl H, Urban B, Durec N, Renner-Martin K, Ninkovic V. Talking Different Languages: The Role of Plant-Plant Communication When an Invader Beats up a Strange Neighborhood. PLANTS (BASEL, SWITZERLAND) 2023; 12:3298. [PMID: 37765461 PMCID: PMC10534427 DOI: 10.3390/plants12183298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Communication through airborne volatile organic compounds (VOCs) and root exudates plays a vital role in the multifarious interactions of plants. Common ragweed (Ambrosia artemesiifolia L.) is one of the most troublesome invasive alien species in agriculture. Below- and aboveground chemical interactions of ragweed with crops might be an important factor in the invasive species' success in agriculture. In laboratory experiments, we investigated the contribution of intra- and interspecific airborne VOCs and root exudates of ragweed to its competitiveness. Wheat, soybean, and maize were exposed to VOCs emitted from ragweed and vice versa, and the adaptation response was measured through plant morphological and physiological traits. We observed significant changes in plant traits of crops in response to ragweed VOCs, characterized by lower biomass production, lower specific leaf area, or higher chlorophyll contents. After exposure to ragweed VOCs, soybean and wheat produced significantly less aboveground dry mass, whereas maize did not. Ragweed remained unaffected when exposed to VOCs from the crops or a conspecific. All crops and ragweed significantly avoided root growth toward the root exudates of ragweed. The study shows that the plant response to either above- or belowground chemical cues is highly dependent on the identity of the neighbor, pointing out the complexity of plant-plant communication in plant communities.
Collapse
Affiliation(s)
- Rea Maria Hall
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
- Institute of Botany, University of Natural Resources and Life Science, 1180 Vienna, Austria
| | - Dimitrije Markovic
- Department of Ecology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
- Faculty of Agriculture, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Hans-Peter Kaul
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
| | - Helmut Wagentristl
- Experimental Farm Groß-Enzerdorf, University of Natural Resources and Life Sciences, 2301 Groß-Enzersdorf, Austria;
| | - Bernhard Urban
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
- Institute of Botany, University of Natural Resources and Life Science, 1180 Vienna, Austria
| | - Nora Durec
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
| | - Katharina Renner-Martin
- Institute of Agronomy, University of Natural Resources and Life Science, 3430 Tulln an der Donau, Austria; (H.-P.K.); (B.U.); (N.D.); (K.R.-M.)
- Institute of Mathematics, University of Natural Resources and Life Science, 1180 Vienna, Austria
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| |
Collapse
|
8
|
Del Dottore E, Mazzolai B. Perspectives on Computation in Plants. ARTIFICIAL LIFE 2023; 29:336-350. [PMID: 36787453 DOI: 10.1162/artl_a_00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots-fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.
Collapse
Affiliation(s)
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia.
| |
Collapse
|
9
|
Mahal HF, Barber-Cross T, Brown C, Spaner D, Cahill JF. Changes in the Amount and Distribution of Soil Nutrients and Neighbours Have Differential Impacts on Root and Shoot Architecture in Wheat ( Triticum aestivum). PLANTS (BASEL, SWITZERLAND) 2023; 12:2527. [PMID: 37447087 DOI: 10.3390/plants12132527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Plants exhibit differential behaviours through changes in biomass development and distribution in response to environmental cues, which may impact crops uniquely. We conducted a mesocosm experiment in pots to determine the root and shoot behavioural responses of wheat, T. aestivum. Plants were grown in homogeneous or heterogeneous and heavily or lightly fertilized soil, and alone or with a neighbour of the same or different genetic identity (cultivars: CDC Titanium, Carberry, Glenn, Go Early, and Lillian). Contrary to predictions, wheat did not alter relative reproductive effort in the presence of neighbours, more nutrients, or homogenous soil. Above and below ground, the plants' tendency to use potentially shared space exhibited high levels of plasticity. Above ground, they generally avoided shared, central aerial space when grown with neighbours. Unexpectedly, nutrient amount and distribution also impacted shoots; plants that grew in fertile or homogenous environments increased shared space use. Below ground, plants grown with related neighbours indicated no difference in neighbour avoidance. Those in homogenous soil produced relatively even roots, and plants in heterogeneous treatments produced more roots in nutrient patches. Additionally, less fertile soil resulted in pot-level decreases in root foraging precision. Our findings illustrate that explicit coordination between above- and belowground biomass in wheat may not exist.
Collapse
Affiliation(s)
- Habba F Mahal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Tianna Barber-Cross
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Charlotte Brown
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
10
|
Zhang X, Yan J, Wu F. Response of Cucumis sativus to Neighbors in a Species-Specific Manner. PLANTS (BASEL, SWITZERLAND) 2022; 12:139. [PMID: 36616268 PMCID: PMC9824612 DOI: 10.3390/plants12010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plants exhibit various behaviors of growth and allocation that play an important role in plant performance and social interaction as they grow together. However, it is unclear how Cucumis sativus plants respond to different neighbors. Here, we performed 5 neighbor combinations with C. sativus as the focal species. The selected materials of C. sativus responded to neighbors and exhibited different behavior strategies in a species-specific manner. All competition treatments reduced the growth of C. sativus seedlings to a certain extent, but only the Eruca sativa neighbor treatment reached a significant level in total root length and shoot biomass. Compared with growing under solitary conditions, focal plants avoided, tended to and did not change their allocation to their nearby plants. The larger the biomass of their neighbors, the stronger the inhibition of the focal plants. In addition, no significant correlations between growth and allocation variables were found, suggesting that growth and allocation are two important aspects of C. sativus behavioral strategies. Our findings provide reference and support for agricultural production of C. sativus, but further research and practice are still needed.
Collapse
Affiliation(s)
- Xiu Zhang
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin 150030, China
| | - Jingfan Yan
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin 150030, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Wang P, Mou P, Hu L, Hu S. Effects of nutrient heterogeneity on root foraging and plant growth at the individual and community level. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7503-7515. [PMID: 36055760 DOI: 10.1093/jxb/erac358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Plants enhance nutrient uptake in heterogeneous nutrient environments through selective root placement. Many studies have documented that plants grow better under heterogeneous than under homogeneous nutrient distribution, but comprehensive syntheses are relatively few. In a meta-analysis, we examined the effects of patch scale and contrast on plant responses by synthesizing the effects of nutrient heterogeneity on root foraging and plant growth in 131 comparative studies. Plant responses to nutrient heterogeneity were phylogenetically conserved, and the response in shoot biomass was significantly correlated with the response in root biomass but not with root foraging precision. Root precision depended on the competition regime, and plants had lower precision in interspecific than in conspecific competition. Community-level growth was significantly promoted by nutrient heterogeneity and was less variable than individual-level responses. Along with increasing patch scale, overall shoot and root responses of individuals increased but root foraging precision declined. In addition, moderate patch contrast induced the highest root responses. Our results indicate that plants optimize nutrient acquisition from heterogeneous patches mainly through increasing root growth, and plant communities exploit heterogeneous nutrients more effectively than individuals. Understanding the roles of patch attributes in nutrient-heterogeneity effects may help in designing fertilization practices to promote productivity and conserve biodiversity.
Collapse
Affiliation(s)
- Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pu Mou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lingyan Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Gottlieb R, Gruntman M. Can plants integrate information on above-ground competition in their directional responses below ground? ANNALS OF BOTANY 2022; 130:763-771. [PMID: 36001107 PMCID: PMC9670743 DOI: 10.1093/aob/mcac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Light competition can induce varying above-ground responses in plants. However, very little is known regarding the effect of above-ground light competition cues on plant responses below ground. Here we asked whether light competition cues that indicate the occurrence and direction of neighbours above ground might affect directional root placemat. METHODS In a common-garden experiment, we examined the integrated responses of the annual procumbent plant Portulaca oleracea to light competition cues and soil nutrient distribution. Soil nutrients were distributed either uniformly or in patches, and light competition was simulated using a transparent green filter, which was spatially located either in the same or opposite direction of the soil nutrient patch. KEY RESULTS As predicted, root proliferation of P. oleracea increased in the direction of the enriched soil patches but was homogenously distributed under the uniform nutrient distribution. Interestingly, root distribution was also affected by the light competition cue and increased in its direction regardless of the location of the soil patches. CONCLUSIONS Our results provide initial support to the idea that below-ground plant responses to competition might also be regulated by above-ground neighbour cues, highlighting the need to further investigate the combined effects of both above- and below-ground competition cues on root behaviour.
Collapse
Affiliation(s)
- Ruth Gottlieb
- School of Plant Sciences and Food Security, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| | - Michal Gruntman
- School of Plant Sciences and Food Security, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
McNickle GG. Vertical root segregation theory put to the test. THE NEW PHYTOLOGIST 2022; 235:2143-2145. [PMID: 35979685 PMCID: PMC9546134 DOI: 10.1111/nph.18370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
This article is a Commentary on Herben et al. (2022), 235: 2223–2236.
Collapse
Affiliation(s)
- Gordon G. McNickle
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907‐2054USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907‐2054USA
| |
Collapse
|
14
|
Herben T, Šašek J, Balšánková T, Hadincová V, Krahulec F, Krak K, Pecháčková S, Skálová H. The shape of root systems in a mountain meadow: plastic responses or species-specific architectural blueprints? THE NEW PHYTOLOGIST 2022; 235:2223-2236. [PMID: 35363897 DOI: 10.1111/nph.18132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The efficient uptake of nutrients depends on the ability of roots to respond to gradients of these resources. Although pot experiments have shown that species differ in their ability to proliferate their roots in nutrient-rich patches, the role of such differences in determining root shapes in the field is unclear. We used fine-scale quantitative (q)PCR-based species-specific mapping of roots in a grassland community to reconstruct species-specific root system shapes. We linked them with data from pot experiments on the ability of these species to proliferate in nutrient-rich patches and their rooting depth. We found remarkable diversity in root system shapes, from cylindrical to conical. Interspecific differences in rooting depths in pots were the main determinant of rooting depths in the field, whereas differences in foraging ability played only a minor role. Although some species with strong foraging ability did place their roots into nutrient-rich soil layers, it was not a universal pattern. The results imply that although the vertical differentiation of grassland species is pronounced, it is primarily not driven by the differential plastic response of species to soil nutrient gradients. This may constrain the coexistence of species with similar rooting depths and may instead favour coexistence of species differing in their architectural blueprints.
Collapse
Affiliation(s)
- Tomáš Herben
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
| | - Jan Šašek
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
| | - Tereza Balšánková
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Věroslava Hadincová
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - František Krahulec
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| | - Karol Krak
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Sylvie Pecháčková
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- The West Bohemian Museum in Pilsen, Kopeckého sady 2, 301 00, Plzeň, Czech Republic
| | - Hana Skálová
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
| |
Collapse
|
15
|
Parise AG, de Toledo GRA, Oliveira TFDC, Souza GM, Castiello U, Gagliano M, Marder M. Do plants pay attention? A possible phenomenological-empirical approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 173:11-23. [PMID: 35636584 DOI: 10.1016/j.pbiomolbio.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Attention is the important ability of flexibly controlling limited cognitive resources. It ensures that organisms engage with the activities and stimuli that are relevant to their survival. Despite the cognitive capabilities of plants and their complex behavioural repertoire, the study of attention in plants has been largely neglected. In this article, we advance the hypothesis that plants are endowed with the ability of attaining attentive states. We depart from a transdisciplinary basis of philosophy, psychology, physics and plant ecophysiology to propose a framework that seeks to explain how plant attention might operate and how it could be studied empirically. In particular, the phenomenological approach seems particularly important to explain plant attention theoretically, and plant electrophysiology seems particularly suited to study it empirically. We propose the use of electrophysiological techniques as a viable way for studying it, and we revisit previous work to support our hypothesis. We conclude this essay with some remarks on future directions for the study of plant attention and its implications to botany.
Collapse
Affiliation(s)
- André Geremia Parise
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Gabriel Ricardo Aguilera de Toledo
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Umberto Castiello
- Neuroscience of Movement Laboratory (NEMO), Department of General Psychology, University of Padova, Padova, Italy
| | - Monica Gagliano
- Biological Intelligence Laboratory (BI Lab), School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Michael Marder
- Ikerbasque: Basque Foundation for Science & Department of Philosophy, University of the Basque Country (UPV/EHU), Spain
| |
Collapse
|
16
|
Jessup LH, Halloway AH, Mickelbart MV, McNickle GG. Information theory and plant ecology. OIKOS 2022. [DOI: 10.1111/oik.09352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura H. Jessup
- Dept of Forestry and Natural Resources, Purdue Univ. West Lafayette IN USA
- Dept of Ecological Sciences and Engineering, Purdue Univ. West Lafayette IN USA
| | - Abdel H. Halloway
- Dept of Botany and Plant Pathology, Purdue Univ. West Lafayette IN USA
- Purdue Center for Plant Biology, Purdue Univ. West Lafayette IN USA
| | - Michael V. Mickelbart
- Dept of Botany and Plant Pathology, Purdue Univ. West Lafayette IN USA
- Purdue Center for Plant Biology, Purdue Univ. West Lafayette IN USA
| | - Gordon G. McNickle
- Dept of Botany and Plant Pathology, Purdue Univ. West Lafayette IN USA
- Purdue Center for Plant Biology, Purdue Univ. West Lafayette IN USA
| |
Collapse
|
17
|
Tumber‐Dávila SJ, Schenk HJ, Du E, Jackson RB. Plant sizes and shapes above and belowground and their interactions with climate. THE NEW PHYTOLOGIST 2022; 235:1032-1056. [PMID: 35150454 PMCID: PMC9311740 DOI: 10.1111/nph.18031] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Although the above and belowground sizes and shapes of plants strongly influence plant competition, community structure, and plant-environment interactions, plant sizes and shapes remain poorly characterized across climate regimes. We investigated relationships among shoot and root system size and climate. We assembled and analyzed, to our knowledge, the largest global database describing the maximum rooting depth, lateral spread, and shoot size of terrestrial plants - more than doubling the Root Systems of Individual Plants database to 5647 observations. Water availability and growth form greatly influence shoot size, and rooting depth is primarily influenced by temperature seasonality. Shoot size is the strongest predictor of lateral spread, with root system diameter being two times wider than shoot width on average for woody plants. Shoot size covaries strongly with rooting system size; however, the geometries of plants differ considerably across climates, with woody plants in more arid climates having shorter shoots, but deeper, narrower root systems. Additionally, estimates of the depth and lateral spread of plant root systems are likely underestimated at the global scale.
Collapse
Affiliation(s)
- Shersingh Joseph Tumber‐Dávila
- Department of Earth System ScienceStanford University473 Via OrtegaStanfordCA94305USA
- Harvard ForestHarvard University324 N Main StPetershamMA01366USA
| | - H. Jochen Schenk
- Department of Biological ScienceCalifornia State University Fullerton800 North State College BlvdFullertonCA92831USA
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal University19 Xinjiekouwai StreetBeijing100875China
| | - Robert B. Jackson
- Department of Earth System ScienceStanford University473 Via OrtegaStanfordCA94305USA
- Woods Institute for the EnvironmentStanford University473 Via OrtegaStanfordCA94305USA
- Precourt Institute for EnergyStanford University473 Via OrtegaStanfordCA94305USA
| |
Collapse
|
18
|
Zheng X, Gao Y, Wang Y, Xing F, Zhao M, Gao Y. Optimal foraging strategies in varying nutrient heterogeneity: responses of a stoloniferous clonal plant to patch pattern, size and quality. ECOSCIENCE 2022. [DOI: 10.1080/11956860.2022.2048533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaona Zheng
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| | - Yang Gao
- Anshan High-Tech Zone Experimental School, Department of Biology Science, Anshan, Liaoning, China
| | - Yanan Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| | - Fu Xing
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| | - Meixuan Zhao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| | - Ying Gao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| |
Collapse
|
19
|
Stiblíková P, Klimeš A, Cahill JF, Koubek T, Weiser M. Interspecific differences in root foraging precision cannot be directly inferred from species' mycorrhizal status or fine root economics. OIKOS 2022. [DOI: 10.1111/oik.08995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Adam Klimeš
- Dept of Functional Ecology, Inst. of Botany, Czech Academy of Sciences Třeboň Czechia
- Dept of Biological Sciences, Biological Sciences Building, Univ. of Alberta Edmonton AB Canada
| | - James F. Cahill
- Dept of Biological Sciences, Faculty of Mathematics and Natural Sciences, Univ. of Bergen Bergen Norway
| | - Tomáš Koubek
- Dept of Botany, Faculty of Science, Charles Univ. Praha Czechia
| | - Martin Weiser
- Dept of Botany, Faculty of Science, Charles Univ. Praha Czechia
| |
Collapse
|
20
|
Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG. Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. GLOBAL CHANGE BIOLOGY 2022; 28:2711-2720. [PMID: 35098614 DOI: 10.1111/gcb.16090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 01/14/2022] [Indexed: 05/17/2023]
Abstract
Temporal stability of net primary productivity (NPP) is important for predicting the reliable provisioning of ecosystem services under global changes. Although nitrogen (N) addition is known to affect the temporal stability of aboveground net primary productivity (ANPP), it is unclear how it impacts that of belowground net primary productivity (BNPP) and NPP, and whether such effects are scale dependent. Here, using experimental N addition in a grassland, we found different responses of ANPP and BNPP stability to N addition at the local scale and that these responses propagated to the larger spatial scale. That is, N addition significantly decreased the stability of ANPP but did not affect the stability of BNPP and NPP at the two scales investigated. Additionally, spatial asynchrony of both ANPP and BNPP among communities provided greater stability at the larger scale and was not affected by N addition. Our findings challenge the traditional view that N addition would reduce ecosystem stability based on results from aboveground dynamics, thus highlighting the importance of viewing ecosystem stability from a whole system perspective.
Collapse
Affiliation(s)
- Guo-Jiao Yang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Zi-Jia Zhang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xing-Guo Han
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation of Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Rajaniemi TK. Root allocation and foraging precision in heterogeneous soils. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Effect of soil spatial configuration on Trifolium repens varies with resource amount. PLoS One 2022; 17:e0263290. [PMID: 35100326 PMCID: PMC8803177 DOI: 10.1371/journal.pone.0263290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Soil spatial heterogeneity involves nutrients being patchily distributed at a range of scales and is prevalent in natural habitats. However, little is known about the effect of soil spatial configurations at the small scale on plant foraging behavior and plant growth under different resource amounts. Here, we experimentally investigated how a stoloniferous species, Trifolium repens, responded to varied resource amounts and spatial configuration combinations. Plant foraging behavior (i.e., the orientation of the primary stolon, mean length of the primary stolon, foraging precision, and foraging scale) and plant growth (i.e., total biomass, root biomass, shoot biomass, and root/shoot) were compared among differently designed configurations of soil resources in different amounts. The relationships of foraging behavior and plant biomass were analyzed. The results showed that the effect of the spatial configuration of soil resources on Trifolium repens depended on the resource amount. Specifically, when the total resource amount was low, fragmented soil patches promoted root foraging and increased Trifolium repens plant biomass; however, when the total resource amount was high, the soil spatial configuration did not affect foraging behavior or plant growth. Our results also showed that plant growth was facilitated by root foraging scale to adapt to low resource amounts. We conclude that the spatial configuration of soil resources at small scales affects whole plant growth, which is mediated by a distinct foraging strategy. These findings contribute to a better understanding of how the growth strategy of clonal plants responds to heterogeneous environments caused by different resource amounts and its spatial configurations.
Collapse
|
23
|
Adomako MO, Xue W, Roiloa S, Zhang Q, Du DL, Yu FH. Earthworms Modulate Impacts of Soil Heterogeneity on Plant Growth at Different Spatial Scales. FRONTIERS IN PLANT SCIENCE 2021; 12:735495. [PMID: 35003149 PMCID: PMC8732864 DOI: 10.3389/fpls.2021.735495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/30/2021] [Indexed: 05/26/2023]
Abstract
Soil heterogeneity (uneven distribution of soil nutrients and/or other properties) is ubiquitous in nature and can greatly affect plant growth. As earthworm activity can influence nutrient redistribution in the soil, we hypothesize that earthworms may alter the effect of soil heterogeneity on plant growth and this effect may depend on the scale of soil heterogeneity. To test these hypotheses, we grew the clonal grass Leymus chinensis in three soil treatments (heterogeneous large vs. heterogeneous small patch vs. homogeneous soil treatment) with or without earthworms [i.e., Eisenia fetida Savigny (Lumbricidae, epigeic redworm)]. In the heterogeneous treatments, the soil consisted of patches with and without 15N-labeled litter (referred to as high- and low-quality patches, respectively), and in the homogeneous treatment, the soil was an even mixture of the two types of soil patches. Biomass of L. chinensis was significantly higher in the high- than in the low-quality patches, showing the foraging response; this foraging response occurred at both scales and under both earthworm treatments. Compared to the homogeneous treatment, the heterogeneous large patch treatment increased biomass of L. chinensis without earthworms, but decreased it with earthworms. In contrast, biomass of L. chinensis in the heterogeneous small patch treatment did not differ from that in the homogeneous treatment, irrespective of earthworms. Belowground biomass was much greater in the heterogeneous small than in the heterogeneous large patch treatment without earthworms, but it did not differ between these two scale treatments with earthworms. In the heterogeneous treatments, soil 15N was greater in the high- than in the low-quality patches, but this effect became much weaker with than without earthworms, suggesting that earthworm activity homogenized the soil. We conclude that earthworms can change the impact of soil heterogeneity on plant growth via homogenizing the soil, and that this effect of earthworms varies with patch scale. Such scale-dependent interactive effects of soil heterogeneity and earthworms could be a potential mechanism modulating plant community structure and productivity.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Xue
- Institute of Wetland Ecology & Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Sergio Roiloa
- BioCost Group, Biology Department, Universidade da Coruña, A Coruña, Spain
| | - Qian Zhang
- Institute of Wetland Ecology & Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Department of LISA, University of Twente, Enschede, Netherlands
| | - Dao-Lin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
24
|
Liu B, Han F, Xing K, Zhang A, Rengel Z. The Response of Plants and Mycorrhizal Fungi to Nutritionally-Heterogeneous Environments Are Regulated by Nutrient Types and Plant Functional Groups. FRONTIERS IN PLANT SCIENCE 2021; 12:734641. [PMID: 34868118 PMCID: PMC8634332 DOI: 10.3389/fpls.2021.734641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Nutrient type and plant functional group are both important in influencing proliferation of roots or hyphae and their benefit to plant growth in nutritionally heterogeneous environments. However, the studies quantifying relative importance of roots vs. hyphae affecting the plant response to nutrient heterogeneity are lacking. Here, we used meta-analysis based on 879 observations from 66 published studies to evaluate response patterns of seven variables related to growth and morphological traits of plants and mycorrhizal fungi in nutritionally heterogeneous environments. We found that phosphorus [P] and organic fertilizer [OF] supply significantly increased shoot (+18.1 and +25.9%, respectively) and root biomass (+31.1 and +23.0%, respectively) and root foraging precision (+11.8 and +20.4%, respectively). However, there was no significant difference among functional groups of herbs (grasses, forbs, and legumes), between herbs and woody species, and between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree species in the shoot, root and mycorrhizal fungi responses to nutrient heterogeneity, except for root biomass and root foraging precision among grasses, forbs, and legumes, and mycorrhizal hyphal foraging precision between AM and ECM tree species. Root diameter was uncorrelated with neither root foraging precision nor mycorrhizal hyphal foraging precision, regardless of mycorrhizal type or nutrient type. These results suggest that plant growth and foraging strategies are mainly influenced by nutrient type, among other factors including plant functional type and mycorrhizal type.
Collapse
Affiliation(s)
- Bitao Liu
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Fei Han
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Kaixiong Xing
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Aiping Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
25
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
26
|
Li G, Wang M, Ma C, Tao R, Hou F, Liu Y. Effects of Soil Heterogeneity and Species on Plant Interactions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.756344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant interactions are central in driving the composition and structure of plant populations and communities. Soil heterogeneity and species identity can modulate such interactions, yet require more studies. Thus, a manipulative experiment was done where three soil heterogeneity levels were developed by mixing local soil and sand in three different ratios (i.e., soil:sand ratio = 2:8, 5:5, and 8:2), and three typical species (i.e., Festuca elata, Bromus inermis, and Elymus breviaristatus) were used in different combinations. Soil heterogeneity was assumed to affect plant interactions, which were in turn modified by species. Plant height was applied as an indicator for plant interactions. Relative competition intensity (RCI) was used to quantify plant interactions, where RCI was applied as a ratio of monoculture and mixture performance. Results showed that soil heterogeneity and soil heterogeneity × species significantly affected the RCI in mixtures compared with plant individuals growing alone (i.e., RCI1). However, species as a single factor did not affect RCI1. Moreover, species and soil heterogeneity × species significantly affected the RCI in mixtures compared with two individuals growing together (i.e., RCI2), and the difference between RCI1 and RCI2 (i.e., RCIdiff). Soil heterogeneity significantly affected RCI2 of F. elata. This study suggests that soil heterogeneity could buffer the stability of plant populations by modifying plant interactions, which would subsequently drive plant establishment. To explore the underlying mechanisms of such patterns, further studies considering more species and plant traits are needed.
Collapse
|
27
|
Mohiley A, Laaser T, Höreth S, Clemens S, Tielbörger K, Gruntman M. Between the devil and the deep blue sea: herbivory induces foraging for and uptake of cadmium in a metal hyperaccumulating plant. Proc Biol Sci 2021; 288:20211682. [PMID: 34583580 PMCID: PMC8479331 DOI: 10.1098/rspb.2021.1682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Plants have been shown to change their foraging behaviour in response to resource heterogeneity. However, an unexplored hypothesis is that foraging could be induced by environmental stressors, such as herbivory, which might increase the demand for particular resources, such as those required for herbivore defence. This study examined the way simulated herbivory affects both root foraging for and uptake of cadmium (Cd), in the metal-hyperaccumulating plant Arabidopsis halleri, which uses this heavy metal as herbivore defence. Simulated herbivory elicited enhanced relative allocation of roots to Cd-rich patches as well as enhanced Cd uptake, and these responses were exhibited particularly by plants from non-metalliferous origin, which have lower metal tolerance. By contrast, plants from a metalliferous origin, which are more tolerant to Cd, did not show any preference in root allocation, yet enhanced Cd sharing between ramets when exposed to herbivory. These results suggest that foraging for heavy metals, as well as their uptake and clonal-sharing, could be stimulated in A. halleri by herbivory impact. Our study provides first support for the idea that herbivory can induce not only defence responses in plants but also affect their foraging, resource uptake and clonal sharing responses.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Tanja Laaser
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Stephan Höreth
- Lehrstuhl Pflanzenphysiologie, Universität Bayreuth, Bayreuth
| | - Stephan Clemens
- Lehrstuhl Pflanzenphysiologie, Universität Bayreuth, Bayreuth
| | - Katja Tielbörger
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michal Gruntman
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
- School of Plant Sciences and Food Security and Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Simulating root distribution of plant individual with a three-dimensional model. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Reyes MF, Aguiar MR. Do xerophytic and mesophytic perennial grasses differ in soil resource capture and allocation? A field
15
N experiment. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Fernanda Reyes
- Facultad de Ciencias Agrarias Universidad Nacional del Comahue Ruta 151 km‐12.5 Cinco Saltos Río Negro 8303Argentina
- IFEVA Facultad de Agronomía CONICET Universidad de Buenos Aires Buenos Aires Argentina
| | - Martín R. Aguiar
- IFEVA Facultad de Agronomía CONICET Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
30
|
Mohiley A, Tielbörger K, Weber M, Clemens S, Gruntman M. Competition for light induces metal accumulation in a metal hyperaccumulating plant. Oecologia 2021; 197:157-165. [PMID: 34370097 DOI: 10.1007/s00442-021-05001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
Plants can respond to competition with a myriad of physiological or morphological changes. Competition has also been shown to affect the foraging decisions of plants belowground. However, a completely unexplored idea is that competition might also affect plants' foraging for specific elements required to inhibit the growth of their competitors. In this study, we examined the effect of simulated competition on root foraging and accumulation of heavy metals in the metal hyperaccumulating perennial plant Arabidopsis halleri, whose metal accumulation has been shown to provide allelopathic ability. A. halleri plants originating from both metalliferous and non-metalliferous soils were grown in a "split-root" setup with one root in a high-metal pot and the other in a low-metal one. The plants were then assigned to either simulated light competition or no-competition (control) treatments, using vertical green or clear plastic filters, respectively. While simulated light competition did not induce greater root allocation into the high-metal pots, it did result in enhanced metal accumulation by A. halleri, particularly in the less metal-tolerant plants, originating from non-metalliferous soils. Interestingly, this accumulation response was particularly enhanced for zinc rather than cadmium. These results provide support to the idea that the accumulation of metals by hyperaccumulating plants can be facultative and change according to their demand following competition.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michael Weber
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Michal Gruntman
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.
- School of Plant Sciences and Food Security, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Chen BJW, Huang L, During HJ, Wang X, Wei J, Anten NPR. No neighbour-induced increase in root growth of soybean and sunflower in mesh-divider experiments after controlling for nutrient concentration and soil volume. AOB PLANTS 2021; 13:plab020. [PMID: 33995993 PMCID: PMC8112762 DOI: 10.1093/aobpla/plab020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/12/2021] [Indexed: 05/11/2023]
Abstract
Root competition is a key factor determining plant performance, community structure and ecosystem productivity. To adequately estimate the extent of root proliferation of plants in response to neighbours independently of nutrient availability, one should use a set-up that can simultaneously control for both nutrient concentration and soil volume at plant individual level. With a mesh-divider design, which was suggested as a promising solution for this problem, we conducted two intraspecific root competition experiments: one with soybean (Glycine max) and the other with sunflower (Helianthus annuus). We found no response of root growth or biomass allocation to intraspecific neighbours, i.e. an 'ideal free distribution' (IFD) norm, in soybean; and even a reduced growth as a negative response in sunflower. These responses are all inconsistent with the hypothesis that plants should produce more roots even at the expense of reduced fitness in response to neighbours, i.e. root over-proliferation. Our results suggest that neighbour-induced root over-proliferation is not a ubiquitous feature in plants. By integrating the findings with results from other soybean studies, we conclude that for some species this response could be a genotype-dependent response as a result of natural or artificial selection, or a context-dependent response so that plants can switch from root over-proliferation to IFD depending on the environment of competition. We also critically discuss whether the mesh-divider design is an ideal solution for root competition experiments.
Collapse
Affiliation(s)
- Bin J W Chen
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Li Huang
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Heinjo J During
- Section of Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Xinyu Wang
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Jiahe Wei
- College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700AK Wageningen, The Netherlands
| |
Collapse
|
32
|
Timmis K, Ramos JL. The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microb Biotechnol 2021; 14:769-797. [PMID: 33751840 PMCID: PMC8085983 DOI: 10.1111/1751-7915.13771] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Soil provides a multitude of services that are essential to a healthily functioning biosphere and continuity of the human race, such as feeding the growing human population and the sequestration of carbon needed to counteract global warming. Healthy soil availability is the limiting parameter in the provision of a number of these services. As a result of anthropogenic abuses, and natural and global warming-promoted extreme weather events, Planet Earth is currently experiencing an unprecedented crisis of soil deterioration, desertification and erosive loss that increasingly prejudices the services it provides. Such services are pivotal to the Sustainability Development Goals formulated by the United Nations. Immediate and coordinated action on a global scale is urgently required to slow and ultimately reverse the loss of healthy soils. Despite the 'dirt-dust', non-vital appearance of soil, it is a highly dynamic living entity, whose life is overwhelmingly microbial. The soil microbiota, which constitutes the greatest reservoir and donor of microbial diversity on Earth, acts as a vast bioreactor, mediating a myriad of chemical reactions that turn the biogeochemical cycles, recycle wastes, purify water, and underpin the multitude of other services soil provides. Fuelling the belowground microbial bioreactor is the aboveground plant and photosynthetic surface microbial life which captures solar energy, fixes inorganic CO2 to organic carbon, and channels fixed carbon and energy into soil. In order to muster an effective response to the crisis, to avoid further deterioration, and to restore unhealthy soils, we need a new and coherent approach, namely to deal with soils worldwide as patients in need of health care and create (i) a public health system for development of effective policies for land use, conservation, restoration, recommendations of prophylactic measures, monitoring and identification of problems (epidemiology), organizing crisis responses, etc., and (ii) a healthcare system charged with soil care: the promotion of good practices, implementation of prophylaxis measures, and institution of therapies for treatment of unhealthy soils and restoration of drylands. These systems need to be national but there is also a desperate need for international coordination. To enable development of effective, evidence-based strategies that will underpin the efforts of soil healthcare systems, a substantial investment in wide-ranging interdisciplinary research on soil health and disease is mandatory. This must lead to a level of understanding of the soil:biota functionalities underlying key ecosystem services that enables formulation of effective diagnosis-prophylaxis-therapy pathways for sustainable use, protection and restoration of different types of soil resources in different climatic zones. These conservation-regenerative-restorative measures need to be complemented by an educative-political-economic-legislative framework that provides incentives encouraging soil care: knowledge, policy, economic and others, and laws which promote international adherence to the principles of restorative soil management. And: we must all be engaged in improving soil health; everyone has a duty of care (https://www.bbc.co.uk/ideas/videos/why-soil-is-one-of-the-most-amazing-things-on-eart/p090cf64). Creative application of microbes, microbiomes and microbial biotechnology will be central to the successful operation of the healthcare systems.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
| | | |
Collapse
|
33
|
de Britto Costa P, Staudinger C, Veneklaas EJ, Oliveira RS, Lambers H. Root positioning and trait shifts in Hibbertia racemosa as dependent on its neighbour's nutrient-acquisition strategy. PLANT, CELL & ENVIRONMENT 2021; 44:1257-1267. [PMID: 33386607 DOI: 10.1111/pce.13991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Nutrient-poor ecosystems globally exhibit high plant diversity. One mechanism enabling the co-existence of species in such ecosystems is facilitation among plants with contrasting nutrient-acquisition strategies. The ecophysiological processes underlying these interactions remain poorly understood. We hypothesized that root positioning plays a role between sympatric species in nutrient-poor vegetation. We investigated how the growth traits of the focal mycorrhizal non-cluster-rooted Hibbertia racemosa change when grown in proximity of non-mycorrhizal Banksia attenuata, which produces cluster roots that increase nutrient availability, compared with growth with conspecifics. Focal plants were placed in the centre of rhizoboxes, and biomass allocation, root system architecture, specific root length (SRL), and leaf nutrient concentration were assessed. When grown with B. attenuata, focal plants decreased root investment, increased root growth towards B. attenuata, and positioned their roots near B. attenuata cluster roots. SRL was greater, and the degree of localized root investment correlated positively with B. attenuata cluster-root biomass. Total nutrient contents in the focal individuals were greater when grown with B. attenuata. Focal plants directed their root growth towards the putatively facilitating neighbour's cluster roots, modifying root traits and investment. Preferential root positioning and root morphological traits play important roles in positive plant-plant interactions.
Collapse
Affiliation(s)
- Patrícia de Britto Costa
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Programa de Pós Graduação em Biologia Vegetal Institute of Biology, University of Campinas, Campinas, Brazil
| | - Christiana Staudinger
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Rhizosphere Ecology and Biogeochemistry Group, Institute of Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Erik J Veneklaas
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Rafael S Oliveira
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Departamento de Biologia Vegetal, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Bilas RD, Bretman A, Bennett T. Friends, neighbours and enemies: an overview of the communal and social biology of plants. PLANT, CELL & ENVIRONMENT 2021; 44:997-1013. [PMID: 33270936 DOI: 10.1111/pce.13965] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants were traditionally seen as rather passive actors in their environment, interacting with each other only in so far as they competed for the same resources. In the last 30 years, this view has been spectacularly overturned, with a wealth of evidence showing that plants actively detect and respond to their neighbours. Moreover, there is evidence that these responses depend on the identity of the neighbour, and that plants may cooperate with their kin, displaying social behaviour as complex as that observed in animals. These plant-plant interactions play a vital role in shaping natural ecosystems, and are also very important in determining agricultural productivity. However, in terms of mechanistic understanding, we have only just begun to scratch the surface, and many aspects of plant-plant interactions remain poorly understood. In this review, we aim to provide an overview of the field of plant-plant interactions, covering the communal interactions of plants with their neighbours as well as the social behaviour of plants towards their kin, and the consequences of these interactions. We particularly focus on the mechanisms that underpin neighbour detection and response, highlighting both progress and gaps in our understanding of these fascinating but previously overlooked interactions.
Collapse
Affiliation(s)
- Roza D Bilas
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
35
|
Cabal C, Martínez-García R, de Castro Aguilar A, Valladares F, Pacala SW. The exploitative segregation of plant roots. Science 2021; 370:1197-1199. [PMID: 33273098 DOI: 10.1126/science.aba9877] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Plant roots determine carbon uptake, survivorship, and agricultural yield and represent a large proportion of the world's vegetation carbon pool. Study of belowground competition, unlike aboveground shoot competition, is hampered by our inability to observe roots. We developed a consumer-resource model based in game theory that predicts the root density spatial distribution of individual plants and tested the model predictions in a greenhouse experiment. Plants in the experiment reacted to neighbors as predicted by the model's evolutionary stable equilibrium, by both overinvesting in nearby roots and reducing their root foraging range. We thereby provide a theoretical foundation for belowground allocation of carbon by vegetation that reconciles seemingly contradictory experimental results such as root segregation and the tragedy of the commons in plant roots.
Collapse
Affiliation(s)
- Ciro Cabal
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Ricardo Martínez-García
- ICTP-South American Institute for Fundamental Research-Instituto de Física Teórica da UNESP, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 Sao Paulo SP, Brazil.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aurora de Castro Aguilar
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN, CSIC, Madrid 28006, Spain
| | - Fernando Valladares
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN, CSIC, Madrid 28006, Spain.,Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Móstoles 28933, Spain
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
36
|
Burridge JD, Black CK, Nord EA, Postma JA, Sidhu JS, York LM, Lynch JP. An Analysis of Soil Coring Strategies to Estimate Root Depth in Maize ( Zea mays) and Common Bean ( Phaseolus vulgaris). PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:3252703. [PMID: 33313549 PMCID: PMC7706327 DOI: 10.34133/2020/3252703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided T-test (TOST) analysis of in silico data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
Collapse
Affiliation(s)
- James D. Burridge
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Christopher K. Black
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Eric A. Nord
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
- Department of Biology, Greenville University, 315 E. College Ave, Greenville, IL 62246, USA
| | - Johannes A. Postma
- Forschungszentrum Jülich GmbH, Institute of Bio-and Geosciences-Plant Sciences (IBG-2), 52425 Jülich, Germany
| | - Jagdeep S. Sidhu
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Larry M. York
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jonathan P. Lynch
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| |
Collapse
|
37
|
McNickle GG. Interpreting plant root responses to nutrients, neighbours and pot volume depends on researchers’ assumptions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gordon G. McNickle
- Department of Botany and Plant Pathology Purdue University West Lafayette IN USA
- Purdue Center for Plant Biology Purdue University West Lafayette IN USA
| |
Collapse
|
38
|
Shen N, Liu C, Yu H, Qu J. Effects of resource heterogeneity and environmental disturbance on the growth performance and interspecific competition of wetland clonal plants. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Šmilauer P, Šmilauerová M, Kotilínek M, Košnar J. Foraging speed and precision of arbuscular mycorrhizal fungi under field conditions: An experimental approach. Mol Ecol 2020; 29:1574-1587. [DOI: 10.1111/mec.15425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Petr Šmilauer
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Marie Šmilauerová
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Milan Kotilínek
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Jiří Košnar
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
40
|
Zhang D, Lyu Y, Li H, Tang X, Hu R, Rengel Z, Zhang F, Whalley WR, Davies WJ, Cahill JF, Shen J. Neighbouring plants modify maize root foraging for phosphorus: coupling nutrients and neighbours for improved nutrient-use efficiency. THE NEW PHYTOLOGIST 2020; 226:244-253. [PMID: 31536638 DOI: 10.1111/nph.16206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 05/12/2023]
Abstract
Nutrient distribution and neighbours can impact plant growth, but how neighbours shape root-foraging strategy for nutrients is unclear. Here, we explore new patterns of plant foraging for nutrients as affected by neighbours to improve nutrient acquisition. Maize (Zea mays) was grown alone (maize), or with maize (maize/maize) or faba bean (Vicia faba) (maize/faba bean) as a neighbour on one side and with or without a phosphorus (P)-rich zone on the other in a rhizo-box experiment. Maize demonstrated root avoidance in maize/maize, with reduced root growth in 'shared' soil, and increased growth away from its neighbours. Conversely, maize proliferated roots in the proximity of neighbouring faba bean roots that had greater P availability in the rhizosphere (as a result of citrate and acid phosphatase exudation) compared with maize roots. Maize proliferated more roots, but spent less time to reach, and grow out of, the P patches away from neighbours in the maize/maize than in the maize/faba bean experiment. Maize shoot biomass and P uptake were greater in the heterogeneous P treatment with maize/faba bean than with maize/maize system. The foraging strategy of maize roots is an integrated function of heterogeneous distribution of nutrients and neighbouring plants, thus improving nutrient acquisition and maize growth. Understanding the foraging patterns is critical for optimizing nutrient management in crops.
Collapse
Affiliation(s)
- Deshan Zhang
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Ministry of Education, Beijing, 100193, China
| | - Yang Lyu
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Ministry of Education, Beijing, 100193, China
| | - Hongbo Li
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Ministry of Education, Beijing, 100193, China
| | - Xiaoyan Tang
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Ministry of Education, Beijing, 100193, China
| | - Ran Hu
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Ministry of Education, Beijing, 100193, China
| | - Zed Rengel
- Soil Science & Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Fusuo Zhang
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Ministry of Education, Beijing, 100193, China
| | - William R Whalley
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - William J Davies
- Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jianbo Shen
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
41
|
Abstract
Although root traits play a critical role in mediating plant-plant interactions and resource acquisition from the soil environment, research examining whether and how belowground competition can influence the evolution of root traits remains largely unexplored. Here we examine the possibility that root traits may evolve as a target of selection from interspecific competition using Ipomoea purpurea and I. hederacea, two closely related morning glory species that commonly co-occur in the United States, as a model system. We show that belowground competitive interactions between the two species can alter the pattern of selection on root traits in each species. Specifically, competition with I. purpurea changes the pattern of selection on root angle in I. hederacea, and competitive interactions with I. hederacea change the pattern of selection on root size in I. purpurea. However, we did not uncover evidence that intraspecific competition altered the pattern of selection on any root traits within I. hederacea. Overall, our results suggest that belowground competition between closely related species can influence the phenotypic evolution of root traits in natural populations. Our findings provide a microevolutionary perspective of how competitive belowground interactions may impact plant fitness, potentially leading to patterns of plant community structure.
Collapse
|
42
|
Wang X, Feng J, White PJ, Shen J, Cheng L. Heterogeneous phosphate supply influences maize lateral root proliferation by regulating auxin redistribution. ANNALS OF BOTANY 2020; 125:119-130. [PMID: 31560368 PMCID: PMC6948210 DOI: 10.1093/aob/mcz154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/16/2019] [Accepted: 09/20/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Roots take up phosphorus (P) as inorganic phosphate (Pi). Enhanced root proliferation in Pi-rich patches enables plants to capture the unevenly distributed Pi, but the underlying control of root proliferation remains largely unknown. Here, the role of auxin in this response was investigated in maize (Zea mays). METHODS A split-root, hydroponics system was employed to investigate root responses to Pi supply, with one (heterogeneous) or both (homogeneous) sides receiving 0 or 500 μm Pi. KEY RESULTS Maize roots proliferated in Pi-rich media, particularly with heterogeneous Pi supply. The second-order lateral root number was 3-fold greater in roots of plants receiving a heterogeneous Pi supply than in roots of plants with a homogeneous Pi supply. Root proliferation in a heterogeneous Pi supply was inhibited by the auxin transporter inhibitor 1-N-naphthylphthalamic acid (NPA). The proliferation of lateral roots was accompanied by an enhanced auxin response in the apical meristem and vascular tissues at the root tip, as demonstrated in a DR5::RFP marker line. CONCLUSIONS It is concluded that the response of maize root morphology to a heterogeneous Pi supply is modulated by local signals of Pi availability and systemic signals of plant P nutritional status, and is mediated by auxin redistribution.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Jingjing Feng
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jianbo Shen
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| | - Lingyun Cheng
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Plant Nutrition, Ministry of Agriculture, Beijing , P. R. China
| |
Collapse
|
43
|
Guerra S, Peressotti A, Peressotti F, Bulgheroni M, Baccinelli W, D'Amico E, Gómez A, Massaccesi S, Ceccarini F, Castiello U. Flexible control of movement in plants. Sci Rep 2019; 9:16570. [PMID: 31719580 PMCID: PMC6851115 DOI: 10.1038/s41598-019-53118-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Although plants are essentially sessile in nature, these organisms are very much in tune with their environment and are capable of a variety of movements. This may come as a surprise to many non-botanists, but not to Charles Darwin, who reported that plants do produce movements. Following Darwin's specific interest on climbing plants, this paper will focus on the attachment mechanisms by the tendrils. We draw attention to an unsolved problem in available literature: whether during the approach phase the tendrils of climbing plants consider the structure of the support they intend to grasp and plan the movement accordingly ahead of time. Here we report the first empirical evidence that this might be the case. The three-dimensional (3D) kinematic analysis of a climbing plant (Pisum sativum L.) demonstrates that the plant not only perceives the support, but it scales the kinematics of tendrils' aperture according to its thickness. When the same support is represented in two-dimensions (2D), and thus unclimbable, there is no evidence for such scaling. In these circumstances the tendrils' kinematics resemble those observed for the condition in which no support was offered. We discuss these data in light of the evidence suggesting that plants are equipped with sensory mechanisms able to provide the necessary information to plan and control a movement.
Collapse
Affiliation(s)
- Silvia Guerra
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy
| | - Alessandro Peressotti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli studi di Udine, Udine, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione, Università degli studi di Padova, Padova, Italy
| | | | | | | | | | - Stefano Massaccesi
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy
| | - Francesco Ceccarini
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy
| | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
44
|
Information limitation and the dynamics of coupled ecological systems. Nat Ecol Evol 2019; 4:82-90. [PMID: 31659309 DOI: 10.1038/s41559-019-1008-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
Abstract
The dynamics of large ecological systems result from vast numbers of interactions between individual organisms. Here, we develop mathematical theory to show that the rate of such interactions is inherently limited by the ability of organisms to gain information about one another. This phenomenon, which we call 'information limitation', is likely to be widespread in real ecological systems and can dictate both the rates of ecological interactions and long-run dynamics of interacting populations. We show how information limitation leads to sigmoid interaction rate functions that can stabilize antagonistic interactions and destabilize mutualistic ones; as a species or type becomes rare, information on its whereabouts also becomes rare, weakening coupling with consumers, pathogens and mutualists. This can facilitate persistence of consumer-resource systems, alter the course of pathogen infections within a host and enhance the rates of oceanic productivity and carbon export. Our findings may shed light on phenomena in many living systems where information drives interactions.
Collapse
|
45
|
Ljubotina MK, Cahill JF. Effects of neighbour location and nutrient distributions on root foraging behaviour of the common sunflower. Proc Biol Sci 2019; 286:20190955. [PMID: 31530149 PMCID: PMC6784730 DOI: 10.1098/rspb.2019.0955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter patchily distributed soil nutrients. A common foraging response is to proliferate roots within high-quality patches. The influence of the social environment on this behaviour has been given limited attention, despite important fitness consequences of competition for soil resources among plants. Using the common sunflower (Helianthus annuus L.), we compared localized root proliferation in a high-quality patch by plants grown alone to that of plants in two different social environments: with a neighbouring plant sharing equal access to the high-quality patch, and with a neighbouring plant present but farther from the high-quality patch such that the focal individual was in closer proximity to the high-quality patch. Sunflowers grown alone proliferated more roots within high-nutrient patches than lower-nutrient soil. Plants decreased root proliferation within a high-nutrient patch when it was equidistant to a neighbour. Conversely, plants increased root proliferation when they were in closer proximity to the patch relative to a nearby neighbour. Such contingent responses may allow sunflowers to avoid competition in highly contested patches, but to also pre-empt soil resources from neighbours when they have better access to a high-quality patch. We also compared patch occupancy by sunflowers grown alone with two equidistant high-quality patches to occupancy by sunflowers grown with two high-quality patches and a neighbour. Plants grown with a neighbour decreased root length within shared patches but did not increase root length within high-quality patches they were in closer proximity to, perhaps because resource pre-emption may be less important for individuals when resources are more abundant. These results show that nutrient foraging responses in plants can be socially contingent, and that plants may account for the possibility of pre-empting limited resources in their foraging decisions.
Collapse
Affiliation(s)
- Megan K. Ljubotina
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
| | | |
Collapse
|
46
|
|
47
|
Yamawo A, Ohsaki H, Cahill JF. Damage to leaf veins suppresses root foraging precision. AMERICAN JOURNAL OF BOTANY 2019; 106:1126-1130. [PMID: 31397892 DOI: 10.1002/ajb2.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Plants generally increase root growth in areas with high nutrients in heterogeneous soils, a phenomenon called foraging precision. The physiology of this process is not well understood, but it may involve shoot-root signaling via leaf veins. If this is true, then damage to leaf veins, but not to nearby mesophyll, would reduce plant foraging precision. METHODS To test this hypothesis, we imposed two leaf damage treatments on Plantago asiatica and Prunus jamasakura, removing either the tip of each main vein or mesophyll tissue between the veins with a 3-mm-diameter hole punch. After 30 days or 20 weeks of plant growth, we measured root biomass in the soil in response to soil nutrient concentration. RESULTS When leaf mesophyll was damaged, root biomass of both species was greater in nutrient-rich patches than in nutrient-poor patches. However, when leaf veins were damaged, root biomass was similar between patches. CONCLUSIONS These results suggest the importance of shoot-root signaling in plants, emphasizing that physiological processes are not necessarily restricted to single organs. The idea that herbivores that damage leaf veins may affect a plant's ability to selectively forage in high-nutrient patches is novel, with implications for natural and managed systems.
Collapse
Affiliation(s)
- Akira Yamawo
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 1 Bunkyo-cho, Hirosaki, 036-8560, Japan
| | - Haruna Ohsaki
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 1 Bunkyo-cho, Hirosaki, 036-8560, Japan
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
48
|
Sendek A, Karakoç C, Wagg C, Domínguez-Begines J, do Couto GM, van der Heijden MGA, Naz AA, Lochner A, Chatzinotas A, Klotz S, Gómez-Aparicio L, Eisenhauer N. Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 2019; 9:9650. [PMID: 31273222 PMCID: PMC6609766 DOI: 10.1038/s41598-019-45702-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023] Open
Abstract
Droughts associated with climate change alter ecosystem functions, especially in systems characterized by low biodiversity, such as agricultural fields. Management strategies aimed at buffering climate change effects include the enhancement of intraspecific crop diversity as well as the diversity of beneficial interactions with soil biota, such as arbuscular mycorrhizal fungi (AMF). However, little is known about reciprocal relations of crop and AMF diversity under drought conditions. To explore the interactive effects of plant genotype richness and AMF richness on plant yield under ambient and drought conditions, we established fully crossed diversity gradients in experimental microcosms. We expected highest crop yield and drought tolerance at both high barley and AMF diversity. While barley richness and AMF richness altered the performance of both barley and AMF, they did not mitigate detrimental drought effects on the plant and AMF. Root biomass increased with mycorrhiza colonization rate at high AMF richness and low barley richness. AMF performance increased under higher richness of both barley and AMF. Our findings indicate that antagonistic interactions between barley and AMF may occur under drought conditions, particularly so at higher AMF richness. These results suggest that unexpected alterations of plant-soil biotic interactions could occur under climate change.
Collapse
Affiliation(s)
- Agnieszka Sendek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.
- Department of Geobotany and Botanical Garden, Martin Luther University of Halle-Wittenberg, Am Kirchweg 2, 06108, Halle, Germany.
| | - Canan Karakoç
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, Zürich, CH-8057, Switzerland
- Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jara Domínguez-Begines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Gabriela Martucci do Couto
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Marcel G A van der Heijden
- Plant-Soil-Interactions, Department of Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ali Ahmad Naz
- Crop Genetics and Biotechnology Unit, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Stefan Klotz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
| | - Lorena Gómez-Aparicio
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
49
|
Cahill JF. The inevitability of plant behavior. AMERICAN JOURNAL OF BOTANY 2019; 106:903-905. [PMID: 31188466 DOI: 10.1002/ajb2.1313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Affiliation(s)
- James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
50
|
Lecarpentier C, Barillot R, Blanc E, Abichou M, Goldringer I, Barbillon P, Enjalbert J, Andrieu B. WALTer: a three-dimensional wheat model to study competition for light through the prediction of tillering dynamics. ANNALS OF BOTANY 2019; 123:961-975. [PMID: 30629113 PMCID: PMC6589517 DOI: 10.1093/aob/mcy226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Branching is a main morphogenetic process involved in the adaptation of plants to the environment. In grasses, tillering is divided into three phases: tiller emergence, cessation of tillering and tiller regression. Understanding and prediction of the tillering process is a major challenge to better control cereal yields. In this paper, we present and evaluate WALTer, an individual-based model of wheat built on simple self-adaptive rules for predicting the tillering dynamics at contrasting sowing densities. METHODS WALTer simulates the three-dimensional (3-D) development of the aerial architecture of winter wheat. Tillering was modelled using two main hypotheses: (H1) a plant ceases to initiate new tillers when a critical Green Area Index (GAIc) is reached, and (H2) the regression of a tiller occurs if its interception of light is below a threshold (PARt). The development of vegetative organs follows descriptive rules adapted from the literature. A sensitivity analysis was performed to evaluate the impact of each parameter on tillering and GAI dynamics. WALTer was parameterized and evaluated using an initial dataset providing an extensive description of GAI dynamics, and another dataset describing tillering dynamics under a wide range of sowing densities. KEY RESULTS Sensitivity analysis indicated the predominant importance of GAIc and PARt. Tillering and GAI dynamics of expt 1 were well fit by WALTer. Once calibrated based on the agronomic density of expt 2, tillering parameters allowed an adequate prediction of tillering dynamics at contrasting sowing densities. CONCLUSIONS Using simple rules and a small number of parameters, WALTer efficiently simulated the wheat tillering dynamics observed at contrasting densities in experimental data. These results show that the definition of a critical GAI and a threshold of PAR is a relevant way to represent, respectively, cessation of tillering and tiller regression under competition for light.
Collapse
Affiliation(s)
- Christophe Lecarpentier
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emmanuelle Blanc
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - Mariem Abichou
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Isabelle Goldringer
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - Pierre Barbillon
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Jérôme Enjalbert
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - Bruno Andrieu
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|