1
|
Mello B, Schrago CG. Modeling Substitution Rate Evolution across Lineages and Relaxing the Molecular Clock. Genome Biol Evol 2024; 16:evae199. [PMID: 39332907 PMCID: PMC11430275 DOI: 10.1093/gbe/evae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
Relaxing the molecular clock using models of how substitution rates change across lineages has become essential for addressing evolutionary problems. The diversity of rate evolution models and their implementations are substantial, and studies have demonstrated their impact on divergence time estimates can be as significant as that of calibration information. In this review, we trace the development of rate evolution models from the proposal of the molecular clock concept to the development of sophisticated Bayesian and non-Bayesian methods that handle rate variation in phylogenies. We discuss the various approaches to modeling rate evolution, provide a comprehensive list of available software, and examine the challenges and advancements of the prevalent Bayesian framework, contrasting them to faster non-Bayesian methods. Lastly, we offer insights into potential advancements in the field in the era of big data.
Collapse
Affiliation(s)
- Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| |
Collapse
|
2
|
Sutherland CA, Prigozhin DM, Monroe JG, Krasileva KV. High allelic diversity in Arabidopsis NLRs is associated with distinct genomic features. EMBO Rep 2024; 25:2306-2322. [PMID: 38528170 PMCID: PMC11093987 DOI: 10.1038/s44319-024-00122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their low-variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level, hvNLRs provide new pathogen-recognition specificities, but the association between allelic diversity and genomic and epigenomic features has not been established. Our investigation of NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states associated with an increased probability of mutation. Diversifying selection maintains variability at a subset of codons of hvNLRs, while purifying selection maintains conservation at non-hvNLRs. How these features are established and maintained, and whether they contribute to the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune receptors.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Duchêne DA, Duchêne S, Stiller J, Heller R, Ho SYW. ClockstaRX: Testing Molecular Clock Hypotheses With Genomic Data. Genome Biol Evol 2024; 16:evae064. [PMID: 38526019 PMCID: PMC10999959 DOI: 10.1093/gbe/evae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Phylogenomic data provide valuable opportunities for studying evolutionary rates and timescales. These analyses require theoretical and statistical tools based on molecular clocks. We present ClockstaRX, a flexible platform for exploring and testing evolutionary rate signals in phylogenomic data. Here, information about evolutionary rates in branches across gene trees is placed in Euclidean space, allowing data transformation, visualization, and hypothesis testing. ClockstaRX implements formal tests for identifying groups of loci and branches that make a large contribution to patterns of rate variation. This information can then be used to test for drivers of genomic evolutionary rates or to inform models for molecular dating. Drawing on the results of a simulation study, we recommend forms of data exploration and filtering that might be useful prior to molecular-clock analyses.
Collapse
Affiliation(s)
- David A Duchêne
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen 1352, Denmark
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen 1352, Denmark
| | - Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Narula K, Sinha A, Choudhary P, Ghosh S, Elagamey E, Sharma A, Sengupta A, Chakraborty N, Chakraborty S. Combining extracellular matrix proteome and phosphoproteome of chickpea and meta-analysis reveal novel proteoforms and evolutionary significance of clade-specific wall-associated events in plant. PLANT DIRECT 2024; 8:e572. [PMID: 38500675 PMCID: PMC10945595 DOI: 10.1002/pld3.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Arunima Sinha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Sudip Ghosh
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Eman Elagamey
- National Institute of Plant Genome ResearchNew DelhiIndia
- Plant Pathology Research InstituteAgricultural Research Center (ARC)GizaEgypt
| | - Archana Sharma
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | | | | |
Collapse
|
5
|
Xiao TW, Song F, Vu DQ, Feng Y, Ge XJ. The evolution of ephemeral flora in Xinjiang, China: insights from plastid phylogenomic analyses of Brassicaceae. BMC PLANT BIOLOGY 2024; 24:111. [PMID: 38360561 PMCID: PMC10868009 DOI: 10.1186/s12870-024-04796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND The ephemeral flora of northern Xinjiang, China, plays an important role in the desert ecosystems. However, the evolutionary history of this flora remains unclear. To gain new insights into its origin and evolutionary dynamics, we comprehensively sampled ephemeral plants of Brassicaceae, one of the essential plant groups of the ephemeral flora. RESULTS We reconstructed a phylogenetic tree using plastid genomes and estimated their divergence times. Our results indicate that ephemeral species began to colonize the arid areas in north Xinjiang during the Early Miocene and there was a greater dispersal of ephemeral species from the surrounding areas into the ephemeral community of north Xinjiang during the Middle and Late Miocene, in contrast to the Early Miocene or Pliocene periods. CONCLUSIONS Our findings, together with previous studies, suggest that the ephemeral flora originated in the Early Miocene, and species assembly became rapid from the Middle Miocene onwards, possibly attributable to global climate changes and regional geological events.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Duc Quy Vu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Feng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Qian ZH, Li W, Wang QF, Liang SC, Wu S, Li ZZ, Chen JM. The chromosome-level genome of the submerged plant Cryptocoryne crispatula provides insights into the terrestrial-freshwater transition in Araceae. DNA Res 2024; 31:dsae003. [PMID: 38245835 PMCID: PMC10873505 DOI: 10.1093/dnares/dsae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Plant terrestrialization (i.e. the transition to a terrestrial environment) is a significant evolutionary event that has been intensively studied. While certain plant lineages, particularly in angiosperms, have re-adapted to freshwater habitats after colonizing terrene, however, the molecular mechanism of the terrestrial-freshwater (T-F) transition remains limited. Here, the basal monocot Araceae was selected as the study object to explore the T-F transition adaptation mechanism by comparative genomic analysis. Our findings revealed that the substitution rates significantly increased in the lineage of freshwater Araceae, which may promote their adaptation to the freshwater habitat. Additionally, 20 gene sets across all four freshwater species displayed signs of positive selection contributing to tissue development and defense responses in freshwater plants. Comparative synteny analysis showed that genes specific to submerged plants were enriched in cellular respiration and photosynthesis. In contrast, floating plants were involved in regulating gene expression, suggesting that gene and genome duplications may provide the original material for plants to adapt to the freshwater environment. Our study provides valuable insights into the genomic aspects of the transition from terrestrial to aquatic environments in Araceae, laying the groundwork for future research in the angiosperm.
Collapse
Affiliation(s)
- Zhi-Hao Qian
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- Plant Diversity Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shi-Chu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
| | - Shuang Wu
- Guangxi Association for Science and Technology, Nanning 530023, China
| | - Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
7
|
Asar Y, Sauquet H, Ho SYW. Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution. Syst Biol 2023; 72:1337-1356. [PMID: 37695237 PMCID: PMC10924723 DOI: 10.1093/sysbio/syad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
9
|
Munguía‐Rosas MA, Parra‐Tabla V, Rodríguez‐Domínguez JM. Partial and asymmetrical reproductive isolation between two sympatric tropical shrub species: Cnidoscolus aconitifolius and C. souzae (Euphorbiaceae). Ecol Evol 2023; 13:e10801. [PMID: 38089899 PMCID: PMC10714054 DOI: 10.1002/ece3.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Reproductive isolation is conferred by several barriers that occur at different stages of reproduction. Comprehensive reviews on the topic have identified that barriers occurring prior to zygote formation are often stronger than those that occur afterward. However, the overrepresentation of temperate perennial herbs in the current literature precludes any generalization of this pattern to plants that present other life forms and patterns of distribution. Here, we assessed reproductive isolation barriers and their absolute contribution to reproductive isolation and asymmetry in Cnidoscolus aconitifolius and C. souzae, two closely related tropical shrub species that co-occur on the Yucatan peninsula. The reproductive barriers assessed were phenological mismatch, pollinator differentiation, pollen-pistil incompatibility (three pre-zygotic barriers), fruit set failure, and seed unviability (post-zygotic barriers). Reproductive isolation between the study species was found to be complete in the direction C. aconitifolius to C. souzae, but only partial in the opposite direction. One post-zygotic barrier was the strongest example. Most barriers, particularly the pre-zygotic examples, were asymmetrical and predicted the direction of heterospecific pollen flow and hybrid formation from C. souzae to C. aconitifolius. Both parental species, as well as the hybrids, were diploid and had a chromosome number 2n = 36. More studies with tropical woody perennials are required to fully determine whether this group of plants consistently shows stronger post-zygotic barriers.
Collapse
Affiliation(s)
- Miguel A. Munguía‐Rosas
- Laboratorio de Ecología Terrestre, Departamento de Ecología HumanaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)MéridaMexico
| | - Víctor Parra‐Tabla
- Departamento de Ecología TropicalUniversidad Autónoma de YucatánMéridaMexico
| | - José M. Rodríguez‐Domínguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Unidad de Biotecnología VegetalGuadalajaraMexico
| |
Collapse
|
10
|
Kumar K, Gupta P, Singh KN, Nirgude MS, Srivastava H, Sharma S, Sevanthi AM, Durgesh K, Jain PK, Gaikwad K. Whole chloroplast genome-specific non-synonymous SNPs reveal the presence of substantial diversity in the pigeonpea mini-core collection. 3 Biotech 2023; 13:365. [PMID: 37840876 PMCID: PMC10575842 DOI: 10.1007/s13205-023-03785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
To unravel the plastid genome diversity among the cultivated groups of the pigeonpea germplasm, we characterized the SNP occurrence and distribution of 142 pigeonpea mini-core collections based on their reference-based assembly of the chloroplast genome. A total of 8921 SNPs were found, which were again filtered and finally 3871 non-synonymous SNPs were detected and used for diversity estimates. These 3871 SNPs were classified into 12 groups and were present in only 44 of the 125 genes, demonstrating the presence of a precise mechanism for maintaining the whole chloroplast genome throughout evolution. The Acetyl-CoA carboxylase D gene possesses the maximum number of SNPs (12.29%), but the Adenosine Tri-Phosphate synthatase cluster genes (atpA, atpB, atpE, atpF, atpH, and atpI) altogether bear 43.34% of the SNPs making them most diverse. Various diversity estimates, such as the number of effective alleles (1.013), Watterson's estimate (0.19), Tajima's D ( - 3.15), Shannon's information index (0.036), suggest the presence of less diversity in the cultivated gene pool of chloroplast genomes. The genetic relatedness estimates based on pairwise correlations were also in congruence with these diversity descriptors and indicate the prevalence of rare alleles in the accessions. Interestingly, no stratification was observed either through STRUCTURE, PCoA, or phylogenetic analysis, indicating the common origin of the chloroplast in all the accessions used, irrespective of their geographical distribution. Further 6194 Cleaved Amplified Polymorphic Sequences (CAPS) markers for 531 SNPs were developed and validated in a selected set of germplasm. Based on these results, we inferred that all of the cultivated gene pools of pigeonpea have a common origin for the chloroplast genome and they possess less diversity in protein-coding regions, indicating a stable and evolved plastid genome. At the same time, all diversity analysis indicates the occurrence of rare alleles, suggesting the suitability of the mini-core collection in future pigeonpea improvement programs. In addition, the development of chloroplast genome-based CAPS markers would have utility in pigeonpea breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03785-8.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh India
| | - Palak Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Kumar Durgesh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
11
|
Sutherland CA, Prigozhin DM, Monroe JG, Krasileva KV. High intraspecies allelic diversity in Arabidopsis NLR immune receptors is associated with distinct genomic and epigenomic features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523861. [PMID: 36711945 PMCID: PMC9882162 DOI: 10.1101/2023.01.12.523861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their low variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level, hvNLRs provide new pathogen recognition specificities, but the association between allelic diversity and genomic and epigenomic features has not been established. Our investigation of NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states associated with an increased probability of mutation. Diversifying selection maintains variability at a subset of codons of hvNLRs, while purifying selection maintains conservation at non-hvNLRs. How these features are established and maintained, and whether they contribute to the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune receptors.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA 94720
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 94720
| | - J Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA, USA 95616
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA 94720
| |
Collapse
|
12
|
Yu H, Ma L, Zhao Y, Naren G, Wu H, Sun Y, Wu L, Zhang L. Characterization of nuclear DNA diversity in an individual Leymus chinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1157145. [PMID: 37346123 PMCID: PMC10280068 DOI: 10.3389/fpls.2023.1157145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 06/23/2023]
Abstract
Intraorganismal genetic heterogeneity (IGH) exists when an individual organism harbors more than one genotype among its cells. In general, intercellular DNA diversity occurs at a very low frequency and cannot be directly detected by DNA sequencing from bulk tissue. In this study, based on Sanger and high-throughput sequencing, different species, different organs, different DNA segments and a single cell were employed to characterize nucleotide mutations in Leymus chinensis. The results demonstrated that 1) the nuclear DNA showed excessive genetic heterogeneity among cells of an individual leaf or seed but the chloroplast genes remained consistent; 2) a high density of SNPs was found in the variants of the unique DNA sequence, and the similar SNP profile shared between the leaf and seed suggested that nucleotide mutation followed a certain rule and was not random; and 3) the mutation rate decreased from the genomic DNA sequence to the corresponding protein sequence. Our results suggested that Leymus chinensis seemed to consist of a collection of cells with different genetic backgrounds.
Collapse
|
13
|
Roberts M, Josephs EB. Weaker selection on genes with treatment-specific expression consistent with a limit on plasticity evolution in Arabidopsis thaliana. Genetics 2023; 224:iyad074. [PMID: 37094602 PMCID: PMC10484170 DOI: 10.1093/genetics/iyad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Differential gene expression between environments often underlies phenotypic plasticity. However, environment-specific expression patterns are hypothesized to relax selection on genes, and thus limit plasticity evolution. We collated over 27 terabases of RNA-sequencing data on Arabidopsis thaliana from over 300 peer-reviewed studies and 200 treatment conditions to investigate this hypothesis. Consistent with relaxed selection, genes with more treatment-specific expression have higher levels of nucleotide diversity and divergence at nonsynonymous sites but lack stronger signals of positive selection. This result persisted even after controlling for expression level, gene length, GC content, the tissue specificity of expression, and technical variation between studies. Overall, our investigation supports the existence of a hypothesized trade-off between the environment specificity of a gene's expression and the strength of selection on said gene in A. thaliana. Future studies should leverage multiple genome-scale datasets to tease apart the contributions of many variables in limiting plasticity evolution.
Collapse
Affiliation(s)
- Miles Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Genome-Wide Comparative Analysis of the Fasciclin-like Arabinogalactan Proteins (FLAs) in Salicacea and Identification of Secondary Tissue Development-Related Genes. Int J Mol Sci 2023; 24:ijms24021481. [PMID: 36675002 PMCID: PMC9862198 DOI: 10.3390/ijms24021481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs) containing both AGP-like glycated domains and fasciclin (FAS) domains, which are involved in plant growth and development and synthesis of the cell wall. However, these proteins have not been identified or analyzed in willow, Salix, the sister genus of Populus. In this study, we performed a whole genome study of the FLA gene family of Salix suchowensis and compared it with the FLA gene family of Populus deltoides. The results showed the presence of 40 and 46 FLA genes in P. deltoides and S. suchowensis, distributed on 17 and 16 chromosomes, respectively. Four pairs of tandem repeat genes were found in willow, while poplar had no tandem repeat genes. Twelve and thirteen pairs of duplicated gene fragments were identified in poplar and willow, respectively. The multispecies phylogenetic tree showed that the FLA gene family could be divided into four groups (I-IV), with Group 1 showing significant expansion in woody plants. A gene expression analysis showed that PdeFLA19/27 in Group I of poplar was highly expressed, specifically during the secondary growth period of the stem and the rapid elongation of seed hairs. In the Group I genes of S. suchowensis, SsuFLA25/26/28 was also highly expressed during the secondary growth period, whereas increased expression of SsuFLA35 was associated with seed hair tissue. These results provide important clues about the differences in the FLA gene family during the evolution of herbs and woody plants, and suggest that the FLA gene family may play an essential role in regulating the secondary growth of woody plants. It also provides a reference for further studies on the regulation of secondary growth and seed hair development by FLA genes in poplar and willow.
Collapse
|
15
|
Distribution of Biodiversity of Wild Beet Species (Genus Beta L.) in Armenia under Ongoing Climate Change Conditions. PLANTS 2022; 11:plants11192502. [PMID: 36235368 PMCID: PMC9573691 DOI: 10.3390/plants11192502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
The reported annual temperature increase and significant precipitation drop in Armenia impact the country’s ecosystems and biodiversity. The present study surveyed the geographical distribution of the local wild beet species under the ongoing climate change conditions. We showed that B. lomatogona, B. corolliflora and B. macrorhiza are sensitive to climate change and were affected to various degrees, depending on their location. The most affected species was B. lomatogona, which is at the verge of extinction. Migration for ca. 90 and 200–300 m up the mountain belt was recorded for B. lomatogona and B. macrorhiza, respectively. B. corolliflora was found at 100–150 m lower altitudes than in the 1980s. A general reduction in the beet’s population size in the native habitats was observed, with an increased number of plants within the populations, recorded for B. corolliflora and B. macrorhiza. A new natural hybrid Beta x intermedium Aloyan between B. corolliflora and B. macrorhiza was described and confirmed using chloroplast DNA trnL-trnF intergenic spacer (LF) and partially sequenced alcohol dehydrogenase (adh) of nuclear DNA. An overview of the wild beets reported in Armenia with the taxonomic background, morphological features, and distribution is provided. Conservation measures for preservation of these genetic resources are presented.
Collapse
|
16
|
Thomas-Bulle C, Bertrand D, Nagarajan N, Copley RR, Corre E, Hourdez S, Bonnivard É, Claridge-Chang A, Jollivet D. Genomic patterns of divergence in the early and late steps of speciation of the deep-sea vent thermophilic worms of the genus Alvinella. BMC Ecol Evol 2022; 22:106. [PMID: 36057769 PMCID: PMC9441076 DOI: 10.1186/s12862-022-02057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The transient and fragmented nature of the deep-sea hydrothermal environment made of ridge subduction, plate collision and the emergence of new rifts is currently acting to separate of vent populations, promoting local adaptation and contributing to bursts of speciation and species specialization. The tube-dwelling worms Alvinella pompejana called the Pompeii worm and its sister species A. caudata live syntopically on the hottest part of deep-sea hydrothermal chimneys along the East Pacific Rise. They are exposed to extreme thermal and chemical gradients, which vary greatly in space and time, and thus represent ideal candidates for understanding the evolutionary mechanisms at play in the vent fauna evolution. Results We explored genomic patterns of divergence in the early and late stages of speciation of these emblematic worms using transcriptome assemblies and the first draft genome to better understand the relative role of geographic isolation and habitat preference in their genome evolution. Analyses were conducted on allopatric populations of Alvinella pompejana (early stage of separation) and between A. pompejana and its syntopic species Alvinella caudata (late stage of speciation). We first identified divergent genomic regions and targets of selection as well as their position in the genome over collections of orthologous genes and, then, described the speciation dynamics by documenting the annotation of the most divergent and/or positively selected genes involved in the isolation process. Gene mapping clearly indicated that divergent genes associated with the early stage of speciation, although accounting for nearly 30% of genes, are highly scattered in the genome without any island of divergence and not involved in gamete recognition or mito-nuclear incompatibilities. By contrast, genomes of A. pompejana and A. caudata are clearly separated with nearly all genes (96%) exhibiting high divergence. This congealing effect however seems to be linked to habitat specialization and still allows positive selection on genes involved in gamete recognition, as a possible long-duration process of species reinforcement.
Conclusion Our analyses highlight the non-negligible role of natural selection on both the early and late stages of speciation in the iconic thermophilic worms living on the walls of deep-sea hydrothermal chimneys. They shed light on the evolution of gene divergence during the process of speciation and species specialization over a very long period of time. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02057-y.
Collapse
|
17
|
Fu P, Chen S, Sun S, Favre A. Strong plastid degradation is consistent within section Chondrophyllae, the most speciose lineage of Gentiana. Ecol Evol 2022; 12:e9205. [PMID: 35991284 PMCID: PMC9379351 DOI: 10.1002/ece3.9205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
Recovering phylogenetic relationships in lineages experiencing intense diversification has always been a persistent challenge in evolutionary studies, including in Gentiana section Chondrophyllae sensu lato (s.l.). Indeed, this subcosmopolitan taxon encompasses more than 180 mostly annual species distributed around the world. We sequenced and assembled 22 new plastomes representing 21 species in section Chondrophyllae s.l. In addition to previously released plastome data, our study includes all main lineages within the section. We reconstructed their phylogenetic relationships based on protein-coding genes and recombinant DNA (rDNA) cistron sequences, and then investigated plastome structural evolution as well as divergence time. Despite an admittedly humble species cover overall, we recovered a well-supported phylogenetic tree based on plastome data, and found significant discordance between phylogenetic relationships and taxonomic treatments. Our results show that G. capitata and G. leucomelaena diverged early within the section, which is then further divided into two clades. The divergence time estimation showed that section Chondrophyllae s.l. evolved in the second half of the Oligocene. We found that section Chondrophyllae s.l. had the smallest average plastome size (128 KB) in tribe Gentianeae (Gentianaceae), with frequent gene and sequence losses such as the ndh complex and its flanking regions. In addition, we detected both expansion and contraction of the inverted repeat (IR) regions. Our study suggests that plastome degradation parallels the diversification of this group, and illustrates the strong discordance between phylogenetic relationships and taxonomic treatments, which now need to be carefully revised.
Collapse
Affiliation(s)
- Peng‐Cheng Fu
- School of Life Science, Luoyang Normal UniversityLuoyangP. R. China
| | - Shi‐Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningP. R. China
| | - Shan‐Shan Sun
- School of Life Science, Luoyang Normal UniversityLuoyangP. R. China
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
- Regional Nature Park of the Trient ValleySalvanSwitzerland
| |
Collapse
|
18
|
Cruzan MB, Streisfeld MA, Schwoch JA. Fitness effects of somatic mutations accumulating during vegetative growth. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10188-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations.
Collapse
|
19
|
Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene-body methylation in plants: mechanisms, functions and important implications for understanding evolutionary processes. Genome Biol Evol 2022; 14:6550137. [PMID: 35298639 PMCID: PMC8995044 DOI: 10.1093/gbe/evac038] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature. Here, we review our current knowledge of gbM in plants. We start by presenting the well-elucidated mechanisms of plant gbM establishment and maintenance. We then review more controversial topics: the evolution of gbM and the potential selective pressures that act on it. Finally, we discuss the potential functions of gbM that may affect organismal phenotypes: gene expression stabilization and upregulation, inhibition of aberrant transcription (reverse and internal), prevention of aberrant intron retention, and protection against TE insertions. To bolster the review of these topics, we include novel analyses to assess the effect of gbM on transcripts. Overall, a growing body of literature finds that gbM correlates with levels and patterns of gene expression. It is not clear, however, if this is a causal relationship. Altogether, functional work suggests that the effects of gbM, if any, must be relatively small, but there is nonetheless evidence that it is shaped by natural selection. We conclude by discussing the potential adaptive character of gbM and its implications for an updated view of the mechanisms of adaptation in plants.
Collapse
Affiliation(s)
| | | | - Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding, Cologne, Germany
| | | |
Collapse
|
20
|
Leong JCK, Li Y, Uesaka M, Uchida Y, Omori A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Wang F, Chen L, Wessel G, Livingston BT, Bradham C, Wang W, Irie N. Derivedness Index for Estimating Degree of Phenotypic Evolution of Embryos: A Study of Comparative Transcriptomic Analyses of Chordates and Echinoderms. Front Cell Dev Biol 2021; 9:749963. [PMID: 34900995 PMCID: PMC8661034 DOI: 10.3389/fcell.2021.749963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named "derivedness index" to quantify the degree of derivedness. In contrast to the conservation-based approach, which deals with expressions of commonly shared genes among species being compared, the derivedness index also considers those that were potentially lost or duplicated during evolution. By applying our method, we found that the gene expression profiles of penta-radial phases in echinoderm tended to be more highly derived than those of the bilateral phase. However, our results suggest that echinoderms may not have experienced much larger modifications to their developmental systems than chordates, at least at the transcriptomic level. In vertebrates, we found that the mid-embryonic and organogenesis stages were generally less derived than the earlier or later stages, indicating that the conserved phylotypic period is also less derived. We also found genes that potentially explain less derivedness, such as Hox genes. Finally, we highlight technical concerns that may influence the measured transcriptomic derivedness, such as read depth and library preparation protocols, for further improvement of our method through future studies. We anticipate that this index will serve as a quantitative guide in the search for constrained developmental phases or processes.
Collapse
Affiliation(s)
- Jason Cheok Kuan Leong
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yui Uchida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, United States
| | - Brian T Livingston
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Cynthia Bradham
- Department of Biology, Boston University, Boston, MA, United States
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Wagner ND, Volf M, Hörandl E. Highly Diverse Shrub Willows ( Salix L.) Share Highly Similar Plastomes. FRONTIERS IN PLANT SCIENCE 2021; 12:662715. [PMID: 34539686 PMCID: PMC8448165 DOI: 10.3389/fpls.2021.662715] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 05/23/2023]
Abstract
Plastome phylogenomics is used in a broad range of studies where single markers do not bear enough information. Phylogenetic reconstruction in the genus Salix is difficult due to the lack of informative characters and reticulate evolution. Here, we use a genome skimming approach to reconstruct 41 complete plastomes of 32 Eurasian and North American Salix species representing different lineages, different ploidy levels, and separate geographic regions. We combined our plastomes with published data from Genbank to build a comprehensive phylogeny of 61 samples (50 species) using RAxML (Randomized Axelerated Maximum Likelihood). Additionally, haplotype networks for two observed subclades were calculated, and 72 genes were tested to be under selection. The results revealed a highly conserved structure of the observed plastomes. Within the genus, we observed a variation of 1.68%, most of which separated subg. Salix from the subgeneric Chamaetia/Vetrix clade. Our data generally confirm previous plastid phylogenies, however, within Chamaetia/Vetrix phylogenetic results represented neither taxonomical classifications nor geographical regions. Non-coding DNA regions were responsible for most of the observed variation within subclades and 5.6% of the analyzed genes showed signals of diversifying selection. A comparison of nuclear restriction site associated DNA (RAD) sequencing and plastome data on a subset of 10 species showed discrepancies in topology and resolution. We assume that a combination of (i) a very low mutation rate due to efficient mechanisms preventing mutagenesis, (ii) reticulate evolution, including ancient and ongoing hybridization, and (iii) homoplasy has shaped plastome evolution in willows.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Goettingen, Göttingen, Germany
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Goettingen, Göttingen, Germany
| |
Collapse
|
22
|
Linde AM, Eklund DM, Cronberg N, Bowman JL, Lagercrantz U. Rates and patterns of molecular evolution in bryophyte genomes, with focus on complex thalloid liverworts, Marchantiopsida. Mol Phylogenet Evol 2021; 165:107295. [PMID: 34438050 DOI: 10.1016/j.ympev.2021.107295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Plants commonly referred to as "bryophytes" belong to three major lineages of non-vascular plants: the liverworts, the hornworts and the mosses. They are unique among land plants in having a dominant haploid generation and a short-lived diploid sporophytic generation. The dynamics of selection acting on a haploid genome differs from those acting on a diploid genome: new mutations are directly exposed to selection. The general aim of this paper is to investigate the diversification rateof bryophytes - measured as silent site substitution rate representing neutral evolution (mutation rate) and the nonsynonymous to synonymous substitution rate ratio (dN/dS) representing selective evolution - and compare it with earlier studies on vascular plants. Results show that the silent site substitution rate is lower for liverworts as compared to angiosperms, but not as low as for gymnosperms. The selection pressure, measured as dN/dS, isnot remarkably lower for bryophytes as compared to other diploid dominant plants as would be expected by the masking hypothesis, indicating that other factors are more important than ploidy.
Collapse
Affiliation(s)
- Anna-Malin Linde
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - D Magnus Eklund
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Nils Cronberg
- Biodiversity, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden.
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ulf Lagercrantz
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| |
Collapse
|
23
|
Ibrahim Bio Yerima AR, Issoufou KA, Adje CA, Mamadou A, Oselebe H, Gueye MC, Billot C, Achigan-Dako EG. Genome-Wide Scanning Enabled SNP Discovery, Linkage Disequilibrium Patterns and Population Structure in a Panel of Fonio (Digitaria exilis [Kippist] Stapf) Germplasm. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.699549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
White fonio (Digitaria exilis) is a staple food for millions of people in arid and semi-arid areas of West Africa. Knowledge about nutritional and health benefits, insights into morphological diversity, and the recent development of genomic resources call for a better understanding of the genetic structure of the extant germplasm gathered throughout the region in order to set up a robust breeding program. We assessed the genetic diversity and population structure of 259 fonio individuals collected from six countries from West Africa (Nigeria, Benin, Guinea, Mali, Burkina Faso and Niger) in this study using 688 putative out of 21,324 DArTseq-derived SNP markers. Due to the inbreeding and small population size, the results revealed a substantial level of genetic variability. Furthermore, two clusters were found irrespective of the geographic origins of accessions. Moreover, the high level of linkage disequilibrium (LD) between loci observed resulted from the mating system of the crop, which is often associated with a low recombination rate. These findings fill the gaps about the molecular diversity and genetic structure of the white fonio germplasm in West Africa. This was required for the application of genomic tools that can potentially speed up the genetic gain in fonio millet breeding for complex traits such as yield, and other nutrient contents.
Collapse
|
24
|
Wondimu Z, Dong H, Paterson AH, Worku W, Bantte K. Genetic diversity, population structure and selection signature in Ethiopian Sorghum (Sorghum bicolor L. [Moench]) germplasm. G3-GENES GENOMES GENETICS 2021; 11:6237486. [PMID: 33871028 PMCID: PMC8495740 DOI: 10.1093/g3journal/jkab087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022]
Abstract
Ethiopia, the probable center of origin and diversity for sorghum [Sorghum bicolor L. (Moench)] and with unique ecogeographic features, possesses a large number of sorghum landraces that have not been well studied. Increased knowledge of this diverse germplasm through large-scale genomic characterization may contribute for understanding of evolutionary biology, and adequate use of these valuable resources from the center of origin. In this study, we characterized genetic diversity, population structure and selection signature in 304 sorghum accessions collected from diverse sorghum growing regions of Ethiopia using genotyping-by-sequencing. We identified a total of 108,107 high-quality single-nucleotide polymorphism (SNPs) markers that were evenly distributed across the sorghum genome. The average gene diversity among accessions was high (He = 0.29). We detected a relatively low frequency of rare alleles (26%), highlighting the potential of this germplasm for subsequent allele mining studies through genome-wide association studies. Although we found no evidence of genetic differentiation among administrative regions (FST = 0.02, P = 0.12), population structure and cluster analyses showed clear differentiation among six Ethiopian sorghum populations (FST = 0.28, P = 0.01) adapting to different environments. Analysis of SNP differentiation between the identified genetic groups revealed a total of 40 genomic regions carrying signatures of selection. These regions harbored candidate genes potentially involved in a variety of biological processes, including abiotic stress tolerance, pathogen defense and reproduction. Overall, a high level of untapped diversity for sorghum improvement remains available in Ethiopia, with patterns of diversity consistent with divergent selection on a range of adaptive characteristics.
Collapse
Affiliation(s)
- Zeleke Wondimu
- College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Hongxu Dong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | - Walelign Worku
- College of Agriculture, Hawassa University, PO Box 05, Hawassa, Ethiopia
| | - Kassahun Bantte
- College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
25
|
Fu P, Sun S, Twyford AD, Li B, Zhou R, Chen S, Gao Q, Favre A. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol Evol 2021; 11:3286-3299. [PMID: 33841784 PMCID: PMC8019047 DOI: 10.1002/ece3.7281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
The structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species-rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species' habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single-copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage-specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species-rich plant group.
Collapse
Affiliation(s)
- Peng‐Cheng Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shan‐Shan Sun
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Alex D. Twyford
- Ashworth LaboratoriesInstitute of Evolutionary BiologyThe University of EdinburghEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Bei‐Bei Li
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Rui‐Qi Zhou
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shi‐Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Qing‐Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
| |
Collapse
|
26
|
Smith CI, McKain MR, Guimond A, Flatz R. Genome-scale data resolves the timing of divergence in Joshua trees. AMERICAN JOURNAL OF BOTANY 2021; 108:647-663. [PMID: 33846972 DOI: 10.1002/ajb2.1633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Joshua trees (Yucca brevifolia and Y. jaegeriana) and their yucca moth pollinators (Tegeticula synthetica and T. antithetica) are a model system for studies of plant-pollinator coevolution and, they are thought to be one of the only cases in which there is compelling evidence for cospeciation driven by coevolution. Previous work attempted to evaluate whether divergence between the plant and their pollinators was contemporaneous. That work concluded that the trees diverged more than 5 million years ago-well before the pollinators. However, clear inferences were hampered by a lack of data from the nuclear genome and low genetic variation in chloroplast genes. As a result, divergence times in the trees could not be confidently estimated. METHODS We present an analysis of whole chloroplast genome sequence data and RADseq data from >5000 loci in the nuclear genome. We developed a molecular clock for the Asparagales and the Agavoideae using multiple fossil calibration points. Using Bayesian inference, we produced new estimates for the age of the genus Yucca and for Joshua trees. We used calculated summary statistics describing genetic variation and used coalescent-based methods to estimate population genetic parameters. RESULTS We find that the Joshua trees are moderately genetically differentiated, but that they diverged quite recently (~100-200 kya), and much more recently than their pollinators. CONCLUSIONS The results argue against the notion that coevolution directly contributed to speciation in this system, suggesting instead that coevolution with pollinators may have reinforced reproductive isolation following initial divergence in allopatry.
Collapse
Affiliation(s)
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL
| | - Austin Guimond
- Department of Biology, Willamette University, 900 State Street, Salem, OR
| | - Ramona Flatz
- Department of Biology, Willamette University, 900 State Street, Salem, OR
| |
Collapse
|
27
|
Zhang CY, Liu TJ, Mo XL, Huang HR, Yao G, Li JR, Ge XJ, Yan HF. Comparative Analyses of the Chloroplast Genomes of Patchouli Plants and Their Relatives in Pogostemon (Lamiaceae). PLANTS 2020; 9:plants9111497. [PMID: 33167549 PMCID: PMC7694494 DOI: 10.3390/plants9111497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023]
Abstract
Pogostemon Desf., the largest genus of the tribe Pogostemoneae (Lamiaceae), consists of ca. 80 species distributed mainly from South and Southeast Asia to China. The genus contains many patchouli plants, which are of great economic importance but taxonomically difficult. Therefore, it is necessary to characterize more chloroplast (cp) genomes for infrageneric phylogeny analyses and species identification of Pogostemon, especially for patchouli plants. In this study, we newly generated four cp genomes for three patchouli plants (i.e., Pogostemon plectranthoides Desf., P. septentrionalis C. Y. Wu et Y. C. Huang, and two cultivars of P. cablin (Blanoco) Benth.). Comparison of all samples (including online available cp genomes of P. yatabeanus (Makino) Press and P. stellatus (Lour.) Kuntze) suggested that Pogostemon cp genomes are highly conserved in terms of genome size and gene content, with a typical quadripartite circle structure. Interspecific divergence of cp genomes has been maintained at a relatively low level, though seven divergence hotspot regions were identified by stepwise window analysis. The nucleotide diversity (Pi) value was correlated significantly with gap proportion (indels), but significantly negative with GC content. Our phylogenetic analyses based on 80 protein-coding genes yielded high-resolution backbone topologies for the Lamiaceae and Pogostemon. For the overall mean substitution rates, the synonymous (dS) and nonsynonymous (dN) substitution rate values of protein-coding genes varied approximately threefold, while the dN values among different functional gene groups showed a wider variation range. Overall, the cp genomes of Pogostemon will be useful for phylogenetic reconstruction, species delimitation and identification in the future.
Collapse
Affiliation(s)
- Cai-Yun Zhang
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China; (C.-Y.Z.); (X.-L.M.)
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.-R.H.); (J.-R.L.); (X.-J.G.); (H.-F.Y.)
- Correspondence:
| | - Xiao-Lu Mo
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China; (C.-Y.Z.); (X.-L.M.)
| | - Hui-Run Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.-R.H.); (J.-R.L.); (X.-J.G.); (H.-F.Y.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Gang Yao
- South China Limestone Plants Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Jian-Rong Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.-R.H.); (J.-R.L.); (X.-J.G.); (H.-F.Y.)
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.-R.H.); (J.-R.L.); (X.-J.G.); (H.-F.Y.)
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (H.-R.H.); (J.-R.L.); (X.-J.G.); (H.-F.Y.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
28
|
Dong W, Xu C, Wen J, Zhou S. Evolutionary directions of single nucleotide substitutions and structural mutations in the chloroplast genomes of the family Calycanthaceae. BMC Evol Biol 2020; 20:96. [PMID: 32736519 PMCID: PMC7393888 DOI: 10.1186/s12862-020-01661-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloroplast genome sequence data is very useful in studying/addressing the phylogeny of plants at various taxonomic ranks. However, there are no empirical observations on the patterns, directions, and mutation rates, which are the key topics in chloroplast genome evolution. In this study, we used Calycanthaceae as a model to investigate the evolutionary patterns, directions and rates of both nucleotide substitutions and structural mutations at different taxonomic ranks. RESULTS There were 2861 polymorphic nucleotide sites on the five chloroplast genomes, and 98% of polymorphic sites were biallelic. There was a single-nucleotide substitution bias in chloroplast genomes. A → T or T → A (2.84%) and G → C or C → G (3.65%) were found to occur significantly less frequently than the other four transversion mutation types. Synonymous mutations kept balanced pace with nonsynonymous mutations, whereas biased directions appeared between transition and transversion mutations and among transversion mutations. Of the structural mutations, indels and repeats had obvious directions, but microsatellites and inversions were non-directional. Structural mutations increased the single nucleotide mutations rates. The mutation rates per site per year were estimated to be 0.14-0.34 × 10- 9 for nucleotide substitution at different taxonomic ranks, 0.64 × 10- 11 for indels and 1.0 × 10- 11 for repeats. CONCLUSIONS Our direct counts of chloroplast genome evolution events provide raw data for correctly modeling the evolution of sequence data for phylogenetic inferences.
Collapse
Affiliation(s)
- Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Hu G, Cheng L, Huang W, Cao Q, Zhou L, Jia W, Lan Y. Chloroplast genomes of seven species of Coryloideae (Betulaceae): structures and comparative analysis. Genome 2020; 63:337-348. [PMID: 32240594 DOI: 10.1139/gen-2019-0153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coryloideae is a subfamily in the family Betulaceae consisting of four extant genera: Carpinus, Corylus, Ostrya, and Ostryopsis. We sequenced the plastomes of six species of Corylus and one species of Ostryopsis for comparative and phylogenetic analyses. The plastomes are 159-160 kb long and possess typical quadripartite cp architecture. The plastomes show moderate divergence and conserved arrangement. Five mutational hotspots were identified by comparing the plastomes of seven species of Coryloideae: trnG-atpA, trnF-ndhJ, accD-psaI, ndhF-ccsA, and ycf1. We assembled the most complete phylogenomic tree for the family Betulaceae using 68 plastomes. Our cp genomic sequence phylogenetic analyses placed Carpinus, Ostrya, and Ostryopsis in a clade together and left Corylus in a separate clade. Within the genus Corylus, these analyses indicate the existence of five subclades reflecting the phylogeographical relationships among the species. The data offer significant genetic information for the identification of species of the Coryloideae, taxonomic and phylogenetic studies, and molecular breeding.
Collapse
Affiliation(s)
- Guanglong Hu
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Lili Cheng
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Wugang Huang
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Qingchang Cao
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Wenshen Jia
- Department of Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yanping Lan
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| |
Collapse
|
30
|
Ogutu C, Cherono S, Ntini C, Mollah MD, Zhao L, Belal MA, Han Y. Evolutionary rate variation among genes involved in galactomannan biosynthesis in Coffea canephora. Ecol Evol 2020; 10:2559-2569. [PMID: 32185001 PMCID: PMC7069334 DOI: 10.1002/ece3.6084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/03/2022] Open
Abstract
The endosperm cell walls of mature coffee seeds accumulate large amounts of mannan storage polysaccharides, which serve as nutrient reserve for embryo and contribute to beverage quality. Our study investigated the evolutionary patterns of key galactomannan (GM) biosynthesis genes using d N/d S ratio, synteny, and phylogenetic analysis and detected heterogeneity in rate of evolution among gene copies. Selection ratio index revealed evidence of positive selection in the branch editing gene Coffea canephora alpha (α) galactosidase (Cc-alpha Gal) at Cc11_g15950 copy (ω = 1.12), whereas strong purifying selection on deleterious mutations was observed in the Coffea canephora uridine diphosphate (UDP)-glucose 4'-epimerase (Cc-UG4E) and Coffea canephora mannose-1P guanylytransferase (Cc-MGT) genes controlling the crucial nucleotide carbon sugar building blocks flux in the pathway. Relatively low sequence diversity and strong syntenic linkages were detected in all GM pathway genes except in Cc-alpha Gal, which suggests a correlation between selection pressure and nucleotide diversity or synteny analysis. In addition, phylogenetic analysis revealed independent evolution or expansion of GM pathway genes in different plant species, with no obvious inferable clustering patterns according to either gene family or congruent with evolutionary plants lineages tested due to high dynamic nature and specific biochemical cell wall modification requirements. Altogether, our study shows a significant high rate of evolutionary variation among GM pathway genes in the diploid C. canephora and demonstrates the inherent variation in evolution of gene copies and their potential role in understanding selection rates in a homogenously connected metabolic pathway.
Collapse
Affiliation(s)
- Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| | - Sylvia Cherono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Charmaine Ntini
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mohammad Dulal Mollah
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mohammad A. Belal
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
31
|
Schaack S, Ho EKH, Macrae F. Disentangling the intertwined roles of mutation, selection and drift in the mitochondrial genome. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190173. [PMID: 31787045 PMCID: PMC6939366 DOI: 10.1098/rstb.2019.0173] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2019] [Indexed: 12/31/2022] Open
Abstract
Understanding and quantifying the rates of change in the mitochondrial genome is a major component of many areas of biological inquiry, from phylogenetics to human health. A critical parameter in understanding rates of change is estimating the mitochondrial mutation rate (mtDNA MR). Although the first direct estimates of mtDNA MRs were reported almost 20 years ago, the number of estimates has not grown markedly since that time. This is largely owing to the challenges associated with time- and labour-intensive mutation accumulation (MA) experiments. But even MA experiments do not solve a major problem with estimating mtDNA MRs-the challenge of disentangling the role of mutation from other evolutionary forces acting within the cell. Now that it is widely understood that any newly generated mutant allele in the mitochondria will initially be at very low frequency (1/N, where N is the number of mtDNA molecules in the cell), the importance of understanding the effective population size (Ne) of the mtDNA and the size of genetic bottlenecks during gametogenesis and development has come into the spotlight. In addition to these factors regulating the role of genetic drift, advances in our understanding of mitochondrial replication and turnover allow us to more easily envision how natural selection within the cell might favour or purge mutations in multi-copy organellar genomes. Here, we review the unique features of the mitochondrial genome that pose a challenge for accurate MR estimation and discuss ways to overcome those challenges. Estimates of mtDNA MRs remain one of the most widely used parameters in biology, thus accurate quantification and a deeper understanding of how and why they may vary within and between individuals, populations and species is an important goal. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Sarah Schaack
- Department of Biology, Reed College, Portland, OR 97202, USA
| | - Eddie K H Ho
- Department of Biology, Reed College, Portland, OR 97202, USA
| | - Fenner Macrae
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
32
|
Wang W, Chen S, Guo W, Li Y, Zhang X. Tropical plants evolve faster than their temperate relatives: a case from the bamboos (Poaceae: Bambusoideae) based on chloroplast genome data. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1773312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Wencai Wang
- Molecular Genetics Group, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
- Molecular Genetics Group, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan Province, PR China
| | - Wei Guo
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Yongquan Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
33
|
Duchêne DA, Tong KJ, Foster CSP, Duchêne S, Lanfear R, Ho SYW. Linking Branch Lengths across Sets of Loci Provides the Highest Statistical Support for Phylogenetic Inference. Mol Biol Evol 2019; 37:1202-1210. [DOI: 10.1093/molbev/msz291] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractEvolution leaves heterogeneous patterns of nucleotide variation across the genome, with different loci subject to varying degrees of mutation, selection, and drift. In phylogenetics, the potential impacts of partitioning sequence data for the assignment of substitution models are well appreciated. In contrast, the treatment of branch lengths has received far less attention. In this study, we examined the effects of linking and unlinking branch-length parameters across loci or subsets of loci. By analyzing a range of empirical data sets, we find consistent support for a model in which branch lengths are proportionate between subsets of loci: gene trees share the same pattern of branch lengths, but form subsets that vary in their overall tree lengths. These models had substantially better statistical support than models that assume identical branch lengths across gene trees, or those in which genes form subsets with distinct branch-length patterns. We show using simulations and empirical data that the complexity of the branch-length model with the highest support depends on the length of the sequence alignment and on the numbers of taxa and loci in the data set. Our findings suggest that models in which branch lengths are proportionate between subsets have the highest statistical support under the conditions that are most commonly seen in practice. The results of our study have implications for model selection, computational efficiency, and experimental design in phylogenomics.
Collapse
Affiliation(s)
- David A Duchêne
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - K Jun Tong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Charles S P Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert Lanfear
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Guo Y, Peng Z, Liu J, Yuan N, Wang Z, Du J. Systematic Comparisons of Positively Selected Genes between Gossypium arboreum and Gossypium raimondii Genomes. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190227151013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Studies of Positively Selected Genes (PSGs) in microorganisms and
mammals have provided insights into the dynamics of genome evolution and the genetic basis of
differences between species by using whole genome-wide scans. Systematic investigations and
comparisons of PSGs in plants, however, are still limited.
Objective:
A systematic comparison of PSGs between the genomes of two cotton species,
Gossypium arboreum (G. arboreum) and G. raimondii, will give the key answer for revealing
molecular evolutionary differences in plants.
Methods:
Genome sequences of G. arboreum and G. raimondii were compared, including Whole
Genome Duplication (WGD) events and genomic features such as gene number, gene length,
codon bias index, evolutionary rate, number of expressed genes, and retention of duplicated
copies.
Results:
Unlike the PSGs in G. raimondii, G. arboreum comprised more PSGs, smaller gene size
and fewer expressed gene. In addition, the PSGs evolved at a higher rate of synonymous
substitutions, but were subjected to lower selection pressure. The PSGs in G. arboreum were also
retained with a lower number of duplicate gene copies than G. raimondii after a single WGD event
involving Gossypium.
Conclusion:
These data indicate that PSGs in G. arboreum and G. raimondii differ not only in
Ka/Ks, but also in their evolutionary, structural, and expression properties, indicating that
divergence of G. arboreum and G. raimondii was associated with differences in PSGs in terms of
evolutionary rates, gene length, expression patterns, and WGD retention in Gossypium.
Collapse
Affiliation(s)
- Yue Guo
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen Peng
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Liu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Na Yuan
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen Wang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
35
|
Yan L, Kenchanmane Raju SK, Lai X, Zhang Y, Dai X, Rodriguez O, Mahboub S, Roston RL, Schnable JC. Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:965-977. [PMID: 31069858 DOI: 10.1111/tpj.14376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection.
Collapse
Affiliation(s)
- Lang Yan
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Laboratory of Functional Genome and Application of Potato, Xichang University, Liangshan, 615000, China
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | | | - Xianjun Lai
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Laboratory of Functional Genome and Application of Potato, Xichang University, Liangshan, 615000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xiuru Dai
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Oscar Rodriguez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, NE, USA
| | - Samira Mahboub
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, NE, USA
| |
Collapse
|
36
|
Complete chloroplast genome sequences of four Allium species: comparative and phylogenetic analyses. Sci Rep 2019; 9:12250. [PMID: 31439882 PMCID: PMC6706373 DOI: 10.1038/s41598-019-48708-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/09/2019] [Indexed: 11/26/2022] Open
Abstract
The genus Allium is one of the largest monocotyledonous genera, containing over 850 species, and most of these species are found in temperate climates of the Northern Hemisphere. Furthermore, as a large number of new Allium species continue to be identified, phylogenetic classification based on morphological characteristics and a few genetic markers will gradually exhibit extremely low discriminatory power. In this study, we present the use of complete chloroplast genome sequences in genome-scale phylogenetic studies of Allium. We sequenced and assembled four Allium chloroplast genomes and retrieved five published chloroplast genomes from GenBank. All nine chloroplast genomes were used for genomic comparison and phylogenetic inference. The chloroplast genomes, ranging from 152,387 bp to 154,482 bp in length, exhibited conservation of genomic structure, and gene organization and order. Subsequently, we observed the expansion of IRs from the basal monocot Acorus americanus to Allium, identified 814 simple sequence repeats, 131 tandem repeats, 154 dispersed repeats and 109 palindromic repeats, and found six highly variable regions. The phylogenetic relationships of the Allium species inferred from the chloroplast genomes obtained high support, indicating that chloroplast genome data will be useful for further resolution of the phylogeny of the genus Allium.
Collapse
|
37
|
Dates and rates in grape's plastomes: evolution in slow motion. Curr Genet 2019; 66:123-140. [PMID: 31201544 DOI: 10.1007/s00294-019-01004-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
The family Vitaceae includes the domesticated grapevine (Vitis vinifera), one of the most economically important crops in the world. Despite the importance of Vitaceae, there is still considerable controversy surrounding their phylogenetic relationships and evolutionary timescales. Moreover, variation in rates of molecular evolution among Vitaceae remains mostly unexplored. The present research aims to fill these knowledge gaps through the analysis of plastome sequences. Thirteen newly sequenced grape plastomes are presented and their phylogenetic relationships examined. Divergence times and absolute substitution rates are inferred under different molecular clocks by the analysis of 95 non-coding plastid regions and 43 representative accessions of the major lineages of Vitaceae. Furthermore, the phylogenetic informativeness of non-coding plastid regions is investigated. We find strong evidence in favor of the random local clock model and rate heterogeneity within Vitaceae. Substitution rates decelerate in Ampelocissus, Ampelopsis, Nekemias, Parthenocissus, Rhoicissus, and Vitis, with genus Vitis showing the lowest values up to a minimum of ~ 4.65 × 10-11 s/s/y. We suggest that liana-like species of Vitaceae evolve slower than erect growth habit plants and we invoke the "rate of mitosis hypothesis" to explain the observed pattern of the substitution rates. We identify a reduced set of 20 non-coding regions able to accurately reconstruct the phylogeny of Vitaceae and we provide a detailed description of all 152 non-coding regions identified in the plastomes of subg. Vitis. These polymorphic regions will find their applications in phylogenetics, phylogeography, and population genetics as well in grapes identification through DNA barcoding techniques.
Collapse
|
38
|
Mello B, Schrago CG. The Estimated Pacemaker for Great Apes Supports the Hominoid Slowdown Hypothesis. Evol Bioinform Online 2019; 15:1176934319855988. [PMID: 31223232 PMCID: PMC6566470 DOI: 10.1177/1176934319855988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
The recent surge of genomic data has prompted the investigation of substitution rate variation across the genome, as well as among lineages. Evolutionary trees inferred from distinct genomic regions may display branch lengths that differ between loci by simple proportionality constants, indicating that rate variation follows a pacemaker model, which may be attributed to lineage effects. Analyses of genes from diverse biological clades produced contrasting results, supporting either this model or alternative scenarios where multiple pacemakers exist. So far, an evaluation of the pacemaker hypothesis for all great apes has never been carried out. In this work, we tested whether the evolutionary rates of hominids conform to pacemakers, which were inferred accounting for gene tree/species tree discordance. For higher precision, substitution rates in branches were estimated with a calibration-free approach, the relative rate framework. A predominant evolutionary trend in great apes was evidenced by the recovery of a large pacemaker, encompassing most hominid genomic regions. In addition, the majority of genes followed a pace of evolution that was closely related to the strict molecular clock. However, slight rate decreases were recovered in the internal branches leading to humans, corroborating the hominoid slowdown hypothesis. Our findings suggest that in great apes, life history traits were the major drivers of substitution rate variation across the genome.
Collapse
Affiliation(s)
- Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Grover CE, Arick MA, Thrash A, Conover JL, Sanders WS, Peterson DG, Frelichowski JE, Scheffler JA, Scheffler BE, Wendel JF. Insights into the Evolution of the New World Diploid Cottons (Gossypium, Subgenus Houzingenia) Based on Genome Sequencing. Genome Biol Evol 2019; 11:53-71. [PMID: 30476109 PMCID: PMC6320677 DOI: 10.1093/gbe/evy256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
We employed phylogenomic methods to study molecular evolutionary processes and phylogeny in the geographically widely dispersed New World diploid cottons (Gossypium, subg. Houzingenia). Whole genome resequencing data (average of 33× genomic coverage) were generated to reassess the phylogenetic history of the subgenus and provide a temporal framework for its diversification. Phylogenetic analyses indicate that the subgenus likely originated following transoceanic dispersal from Africa about 6.6 Ma, but that nearly all of the biodiversity evolved following rapid diversification in the mid-Pleistocene (0.5-2.0 Ma), with multiple long-distance dispersals required to account for range expansion to Arizona, the Galapagos Islands, and Peru. Comparative analyses of cpDNAversus nuclear data indicate that this history was accompanied by several clear cases of interspecific introgression. Repetitive DNAs contribute roughly half of the total 880 Mb genome, but most transposable element families are relatively old and stable among species. In the genic fraction, pairwise synonymous mutation rates average 1% per Myr, with nonsynonymous changes being about seven times less frequent. Over 1.1 million indels were detected and phylogenetically polarized, revealing a 2-fold bias toward deletions over small insertions. We suggest that this genome down-sizing bias counteracts genome size growth by TE amplification and insertions, and helps explain the relatively small genomes that are restricted to this subgenus. Compared with the rate of nucleotide substitution, the rate of indel occurrence is much lower averaging about 17 nucleotide substitutions per indel event.
Collapse
Affiliation(s)
- Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Mark A Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | - Adam Thrash
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | - Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - William S Sanders
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
- Department of Computer Science & Engineering, Mississippi State University
- The Jackson Laboratory, Connecticut
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | | | | | - Brian E Scheffler
- USDA, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| |
Collapse
|
40
|
The molecular clock and evolutionary timescales. Biochem Soc Trans 2018; 46:1183-1190. [PMID: 30154097 DOI: 10.1042/bst20180186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
Abstract
The molecular clock provides a valuable means of estimating evolutionary timescales from genetic and biochemical data. Proposed in the early 1960s, it was first applied to amino acid sequences and immunological measures of genetic distances between species. The molecular clock has undergone considerable development over the years, and it retains profound relevance in the genomic era. In this mini-review, we describe the history of the molecular clock, its impact on evolutionary theory, the challenges brought by evidence of evolutionary rate variation among species, and the statistical models that have been developed to account for these heterogeneous rates of genetic change. We explain how the molecular clock can be used to infer rates and timescales of evolution, and we list some of the key findings that have been obtained when molecular clocks have been applied to genomic data. Despite the numerous challenges that it has faced over the decades, the molecular clock continues to offer the most effective method of resolving the details of the evolutionary timescale of the Tree of Life.
Collapse
|
41
|
Payne BL, Alvarez-Ponce D. Higher Rates of Protein Evolution in the Self-Fertilizing Plant Arabidopsis thaliana than in the Out-Crossers Arabidopsis lyrata and Arabidopsis halleri. Genome Biol Evol 2018; 10:895-900. [PMID: 29608724 PMCID: PMC5865523 DOI: 10.1093/gbe/evy053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
The common transition from out-crossing to self-fertilization in plants decreases effective population size. This is expected to result in a reduced efficacy of natural selection and in increased rates of protein evolution in selfing plants compared with their outcrossing congeners. Prior analyses, based on a very limited number of genes, detected no differences between the rates of protein evolution in the selfing Arabidopsis thaliana compared with the out-crosser Arabidopsis lyrata. Here, we reevaluate this trend using the complete genomes of A. thaliana, A. lyrata, Arabidopsis halleri, and the outgroups Capsella rubella and Thellungiella parvula. Our analyses indicate slightly but measurably higher nonsynonymous divergences (dN), synonymous divergences (dS) and dN/dS ratios in A. thaliana compared with the other Arabidopsis species, indicating that purifying selection is indeed less efficacious in A. thaliana.
Collapse
|
42
|
Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z, Wang Z, Zhu B, Guo YL, Tian Z. DNA methylation footprints during soybean domestication and improvement. Genome Biol 2018; 19:128. [PMID: 30201012 PMCID: PMC6130073 DOI: 10.1186/s13059-018-1516-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In addition to genetic variation, epigenetic variation plays an important role in determining various biological processes. The importance of natural genetic variation to crop domestication and improvement has been widely investigated. However, the contribution of epigenetic variation in crop domestication at population level has rarely been explored. RESULTS To understand the impact of epigenetics on crop domestication, we investigate the variation of DNA methylation during soybean domestication and improvement by whole-genome bisulfite sequencing of 45 soybean accessions, including wild soybeans, landraces, and cultivars. Through methylomic analysis, we identify 5412 differentially methylated regions (DMRs). These DMRs exhibit characters distinct from those of genetically selected regions. In particular, they have significantly higher genetic diversity. Association analyses suggest only 22.54% of DMRs can be explained by local genetic variations. Intriguingly, genes in the DMRs that are not associated with any genetic variation are enriched in carbohydrate metabolism pathways. CONCLUSIONS This study provides a valuable map of DNA methylation across diverse accessions and dissects the relationship between DNA methylation variation and genetic variation during soybean domestication, thus expanding our understanding of soybean domestication and improvement.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
43
|
Gaut BS, Seymour DK, Liu Q, Zhou Y. Demography and its effects on genomic variation in crop domestication. NATURE PLANTS 2018; 4:512-520. [PMID: 30061748 DOI: 10.1038/s41477-018-0210-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 05/20/2023]
Abstract
Over two thousand plant species have been modified morphologically through cultivation and human use. Here, we review three aspects of crop domestication that are currently undergoing marked revisions, due to analytical advancements and their application to whole genome resequencing (WGS) data. We begin by discussing the duration and demographic history of domestication. There has been debate as to whether domestication occurred quickly or slowly. The latter is tentatively supported both by fossil data and application of WGS data to sequentially Markovian coalescent methods that infer the history of effective population size. This history suggests the possibility of extended human impacts on domesticated lineages prior to their purposeful cultivation. We also make the point that demographic history matters, because it shapes patterns and levels of extant genetic diversity. We illustrate this point by discussing the evolutionary processes that contribute to the empirical observation that most crops examined to date have more putatively deleterious alleles than their wild relatives. These deleterious alleles may contribute to genetic load within crops and may be fitting targets for crop improvement. Finally, the same demographic factors are likely to shape the spectrum of structural variants (SVs) within crops. SVs are known to underlie many of the phenotypic changes associated with domestication and crop improvement, but we currently lack sufficient knowledge about the mechanisms that create SVs, their rates of origin, their population frequencies and their phenotypic effects.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Danelle K Seymour
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Qingpo Liu
- College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
44
|
Cole CT, Ingvarsson PK. Pathway position constrains the evolution of an ecologically important pathway in aspens (Populus tremula L.). Mol Ecol 2018; 27:3317-3330. [PMID: 29972878 DOI: 10.1111/mec.14785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022]
Abstract
Many ecological interactions of aspens and their relatives (Populus spp.) are affected by products of the phenylpropanoid pathway synthesizing condensed tannins (CTs), whose production involves trade-offs with other ecologically important compounds and with growth. Genes of this pathway are candidates for investigating the role of selection on ecologically important, polygenic traits. We analysed sequences from 25 genes representing 10 steps of the CT synthesis pathway, which produces CTs used in defence and lignins used for growth, in 12 individuals of European aspen (Populus tremula). We compared these to homologs from P. trichocarpa, to a control set of 77 P. tremula genes, to genome-wide resequencing data and to RNA-seq expression levels, in order to identify signatures of selection distinct from those of demography. In Populus, pathway position exerts a strong influence on the evolution of these genes. Nonsynonymous diversity, divergence and allele frequency shifts (Tajima's D) were much lower than for synonymous measures. Expression levels were higher, and the direction of selection more negative, for upstream genes than for those downstream. Selective constraints act with increasing intensity on upstream genes, despite the presence of multiple paralogs in most gene families. Pleiotropy, expression level, flux control and codon bias appear to interact in determining levels and patterns of variation in genes of this pathway, whose products mediate a wide array of ecological interactions for this widely distributed species.
Collapse
Affiliation(s)
- Christopher T Cole
- Division of Science and Mathematics, University of Minnesota, Morris, Morris, Minnesota
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
45
|
Casola C, Koralewski TE. Pinaceae show elevated rates of gene turnover that are robust to incomplete gene annotation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:862-876. [PMID: 29901849 DOI: 10.1111/tpj.13994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Gene duplications and gene losses are major determinants of genome evolution and phenotypic diversity. The frequency of gene turnover (gene gains and gene losses combined) is known to vary between organisms. Comparative genomic analyses of gene families can highlight such variation; however, estimates of gene turnover may be biased when using highly fragmented genome assemblies resulting in poor gene annotations. Here, we address potential biases introduced by gene annotation errors in estimates of gene turnover frequencies in a dataset including both well-annotated angiosperm genomes and the incomplete gene sets of four Pinaceae, including two pine species, Norway spruce and Douglas-fir. We show that Pinaceae experienced higher gene turnover rates than angiosperm lineages lacking recent whole-genome duplications. This finding is robust to both known major issues in Pinaceae gene sets: missing gene models and erroneous annotation of pseudogenes. A separate analysis limited to the four Pinaceae gene sets pointed to an accelerated gene turnover rate in pines compared with Norway spruce and Douglas-fir. Our results indicate that gene turnover significantly contributes to genome variation and possibly to speciation in Pinaceae, particularly in pines. Moreover, these findings indicate that reliable estimates of gene turnover frequencies can be discerned in incomplete and potentially inaccurate gene sets. Because gymnosperms are known to exhibit low overall substitution rates compared with angiosperms, our results suggest that the rate of single-base pair mutations is uncoupled from the rate of large DNA duplications and deletions associated with gene turnover in Pinaceae.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA
| | - Tomasz E Koralewski
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA
| |
Collapse
|
46
|
Foster CSP, Ho SYW. Strategies for Partitioning Clock Models in Phylogenomic Dating: Application to the Angiosperm Evolutionary Timescale. Genome Biol Evol 2018; 9:2752-2763. [PMID: 29036288 PMCID: PMC5647803 DOI: 10.1093/gbe/evx198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Evolutionary timescales can be inferred from molecular sequence data using a Bayesian phylogenetic approach. In these methods, the molecular clock is often calibrated using fossil data. The uncertainty in these fossil calibrations is important because it determines the limiting posterior distribution for divergence-time estimates as the sequence length tends to infinity. Here, we investigate how the accuracy and precision of Bayesian divergence-time estimates improve with the increased clock-partitioning of genome-scale data into clock-subsets. We focus on a data set comprising plastome-scale sequences of 52 angiosperm taxa. There was little difference among the Bayesian date estimates whether we chose clock-subsets based on patterns of among-lineage rate heterogeneity or relative rates across genes, or by random assignment. Increasing the degree of clock-partitioning usually led to an improvement in the precision of divergence-time estimates, but this increase was asymptotic to a limit presumably imposed by fossil calibrations. Our clock-partitioning approaches yielded highly precise age estimates for several key nodes in the angiosperm phylogeny. For example, when partitioning the data into 20 clock-subsets based on patterns of among-lineage rate heterogeneity, we inferred crown angiosperms to have arisen 198–178 Ma. This demonstrates that judicious clock-partitioning can improve the precision of molecular dating based on phylogenomic data, but the meaning of this increased precision should be considered critically.
Collapse
Affiliation(s)
- Charles S P Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
Liu W, Kong H, Zhou J, Fritsch PW, Hao G, Gong W. Complete Chloroplast Genome of Cercis chuniana (Fabaceae) with Structural and Genetic Comparison to Six Species in Caesalpinioideae. Int J Mol Sci 2018; 19:E1286. [PMID: 29693617 PMCID: PMC5983592 DOI: 10.3390/ijms19051286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022] Open
Abstract
The subfamily Caesalpinioideae of the Fabaceae has long been recognized as non-monophyletic due to its controversial phylogenetic relationships. Cercis chuniana, endemic to China, is a representative species of Cercis L. placed within Caesalpinioideae in the older sense. Here, we report the whole chloroplast (cp) genome of C. chuniana and compare it to six other species from the Caesalpinioideae. Comparative analyses of gene synteny and simple sequence repeats (SSRs), as well as estimation of nucleotide diversity, the relative ratios of synonymous and nonsynonymous substitutions (dn/ds), and Kimura 2-parameter (K2P) interspecific genetic distances, were all conducted. The whole cp genome of C. chuniana was found to be 158,433 bp long with a total of 114 genes, 81 of which code for proteins. Nucleotide substitutions and length variation are present, particularly at the boundaries among large single copy (LSC), inverted repeat (IR) and small single copy (SSC) regions. Nucleotide diversity among all species was estimated to be 0.03, the average dn/ds ratio 0.3177, and the average K2P value 0.0372. Ninety-one SSRs were identified in C. chuniana, with the highest proportion in the LSC region. Ninety-seven species from the old Caesalpinioideae were selected for phylogenetic reconstruction, the analysis of which strongly supports the monophyly of Cercidoideae based on the new classification of the Fabaceae. Our study provides genomic information for further phylogenetic reconstruction and biogeographic inference of Cercis and other legume species.
Collapse
Affiliation(s)
- Wanzhen Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Juan Zhou
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| | - Peter W Fritsch
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107, USA.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| | - Wei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou 510614, China.
| |
Collapse
|
48
|
Barrera-Redondo J, Ramírez-Barahona S, Eguiarte LE. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity. Evolution 2018; 72:1050-1062. [PMID: 29604055 DOI: 10.1111/evo.13475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/11/2018] [Indexed: 12/31/2022]
Abstract
Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level.
Collapse
Affiliation(s)
- Josué Barrera-Redondo
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad de México 04510, México
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad de México 04510, México
| | - Luis E Eguiarte
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad de México 04510, México
| |
Collapse
|
49
|
Ma PF, Vorontsova MS, Nanjarisoa OP, Razanatsoa J, Guo ZH, Haevermans T, Li DZ. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics. BMC PLANT BIOLOGY 2017; 17:260. [PMID: 29268709 PMCID: PMC5740905 DOI: 10.1186/s12870-017-1199-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. RESULTS Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. CONCLUSIONS Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Maria S. Vorontsova
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB UK
| | | | - Jacqueline Razanatsoa
- Herbier, Département Flore, Parc Botanique et Zoologique de Tsimbazaza, BP 4096, Antananarivo 101, Madagascar
| | - Zhen-Hua Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Thomas Haevermans
- Institut de Systématique, Évolution, Biodiversité (ISYEB) UMR 7205 Centre national de la recherche scientifique - Muséum national d’histoire naturelle - École Pratique des Hautes Études – Université Pierre et Marie Curie, Sorbonne Universités, CP39, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| |
Collapse
|
50
|
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants. Mol Biol Evol 2017; 34:1363-1377. [PMID: 28333233 PMCID: PMC5435085 DOI: 10.1093/molbev/msx069] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes.
Collapse
Affiliation(s)
- Amanda R De La Torre
- Department of Plant Sciences, University of California-Davis, Davis, CA.,Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Zhen Li
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|