1
|
Miao Q, Deng L, Le X, Li Q, Ning Y, Duan Y, Liu Q, Tao Y, Wang B, Xia X. Genetic and Antiviral Potential Characterization of Four Insect-Specific Viruses Identified and Isolated from Mosquitoes in Yunnan Province. Viruses 2025; 17:596. [PMID: 40431611 DOI: 10.3390/v17050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Mosquitoes, comprising over 300 species, are pivotal vectors for transmitting arthropod-borne viruses (arboviruses) to vertebrates via bites, posing a significant public health threat with approximately 700,000 annual deaths. In contrast, insect-specific viruses (ISVs) exclusively infect insects and have no direct impact on human health. Yunnan Province in China, located in tropical and subtropical regions, provides an ideal environment for mosquito habitation and has the highest diversity of known mosquito-borne viruses. In this study, mosquito samples were collected from eight cities and states in Yunnan Province, totaling 15,099 specimens. Based on the collection sites and mosquito species, the samples were divided into 110 groups for virus isolation. Four insect-specific viruses (Tanay virus [TANV], Culex orthoflavivirus [CxFV], Aedes orthoflavivirus [AeFV], La Tina virus [LTNV]) were successfully isolated, and co-infection studies with dengue virus (DENV-2) were conducted in C6/36 cells. Preliminary results suggested that these four insect-specific viruses may reduce the viral titer of DENV-2 in C6/36 cells. Understanding the intricate interactions between insect-specific viruses and mosquito-borne viruses is crucial for elucidating the multifaceted role of mosquitoes in arboviral transmission dynamics. Insect-specific viruses exhibit considerable potential as innovative biocontrol agents, with promising capacity to attenuate mosquito-borne viral transmission through the targeted modulation of mosquito innate immunity and physiological adaptations.
Collapse
Affiliation(s)
- Qinxuan Miao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lulu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiang Le
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuting Ning
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yimeng Duan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yinzhu Tao
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Binghui Wang
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Xueshan Xia
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
2
|
Li C, Holmes EC, Shi W. The diversity, pathogenic spectrum, and ecological significance of arthropod viruses. Trends Microbiol 2025:S0966-842X(25)00081-2. [PMID: 40240215 DOI: 10.1016/j.tim.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Research on arthropod viruses initially focused on those associated with diseases in vertebrates, particularly humans, as well as in plants of economic importance. However, the more recent deployment of metatranscriptomic sequencing of diverse arthropod species has facilitated the discovery of a multitude of novel arthropod viruses, in turn revealing that pathogenic viruses represent only a small component of the arthropod virome. In addition, arthropods may play a pivotal role in viral evolution and ecological dynamics, and have the potential to act as reservoirs for pathogens affecting vertebrates or plants. Due to active interactions between arthropod populations and diverse organisms - including fungi, plants, vertebrates, and even other arthropods in both aquatic and terrestrial ecosystems - there is an increased risk of the spillover of arthropod viruses to other organisms, including mammals. Herein, we review our current understanding of the diversity and ecology of arthropod viruses. We outline what is known about pathogenic arthropod viruses in diverse host types and emphasize the unique niche of arthropods as the source of emerging viral infectious diseases. Finally, we describe the evolutionary interactions between arthropod viruses and their hosts in ecosystems, at the same time highlighting their ecological significance with respect to regulating host populations.
Collapse
Affiliation(s)
- Cixiu Li
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Ogola EO, Roy A, Wollenberg K, Ochwoto M, Bloom ME. Strange relatives: the enigmatic arbo-jingmenviruses and orthoflaviviruses. NPJ VIRUSES 2025; 3:24. [PMID: 40295693 PMCID: PMC11971299 DOI: 10.1038/s44298-025-00106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
Arthropod - and vertebrate-associated jingmenviruses (arbo-JMV) have segmented positive-strand RNA genomes and are provisional members of the genus Orthoflavivirus (family Flaviviridae). Current investigations have described arbo-JMV infection in vertebrate hosts in proximity to humans. This raises concerns about the virus host range and public health implications. This review explores the genomic and evolutionary relationship between arbo-JMV and orthoflaviviruses and evaluates the potential of arbo-JMV to pose a public health threat.
Collapse
Affiliation(s)
- Edwin O Ogola
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| | - Amitava Roy
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Missiani Ochwoto
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Marshall E Bloom
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
4
|
Goldberg TL, Perez AU, Campbell LJ. Isopods infesting Atlantic bonefish ( Albula vulpes) host novel viruses, including reoviruses related to global pathogens, and opportunistically feed on humans. Parasitology 2024; 151:1386-1396. [PMID: 39563628 PMCID: PMC11894014 DOI: 10.1017/s003118202400146x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Isopods infest fish worldwide, but their role as disease vectors remains poorly understood. Here, we describe infestation of Atlantic bonefish (Albula vulpes) in Belize with isopods in two of three locations studied, with infestation rates of 15 and 44%. Isopods fed aggressively, and infested fish showed missing scales and scars. Gross morphologic and molecular phylogenetic analyses revealed the isopods to cluster within the family Aegidae and to be most closely related to members of the genus Rocinela, which are globally distributed micro-predators of fish. Metagenomic analysis of 10 isopods identified 11 viruses, including two novel reoviruses (Reovirales) in the families Sedoreoviridae and Spinareoviridae. The novel sedoreovirus clustered phylogenetically within an invertebrate-specific clade of viruses related to the genus Orbivirus, which contains arboviruses of global concern for mammal health. The novel spinareovirus clustered within the fish-infecting genus Aquareovirus, which contains viruses of global concern for fish health. Metagenomic analyses revealed no evidence of infection of bonefish with the novel aquareovirus, suggesting that viremia in bonefish is absent, low, or transient, or that isopods may have acquired the virus from other fish. During field collections, isopods aggressively bit humans, and blood meal analysis confirmed that isopods had fed on bonefish, other fish, and humans. Vector-borne transmission may be an underappreciated mechanism for aquareovirus transmission and for virus host switching between fish and other species, which has been inferred across viral families from studies of deep virus evolution.
Collapse
Affiliation(s)
- Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Lewis J. Campbell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Argaez-Sierra DG, Baak-Baak CM, Garcia-Rejon JE, Cetina-Trejo RC, Tzuc-Dzul JC, Acosta-Viana KY, Chan-Perez JI, Cigarroa-Toledo N. Entomo-virological surveillance of Flavivirus in mosquitoes in Yucatan State, Mexico. Rev Inst Med Trop Sao Paulo 2024; 66:e56. [PMID: 39319955 PMCID: PMC11421420 DOI: 10.1590/s1678-9946202466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/06/2024] [Indexed: 09/26/2024] Open
Abstract
The genus Flavivirus (Family: Flaviviridae) comprises arboviruses with the capacity to infect humans and animals. It also integrates insect-specific viruses. This study aimed to identify Flavivirus in mosquitoes captured in 17 municipalities in Yucatan State, Mexico. The mosquitoes were caught in households from November 2021 to May 2022. A total of 4,321 adult mosquitoes from five species were caught. The most abundant were Culex quinquefasciatus (n = 3,563) and Aedes aegypti (n = 734). For molecular investigations, 600 female mosquitoes were split into groups of 10, mostly for species and site location. Reverse transcriptase polymerase chain reaction (RT-PCR) amplified a region of the NS5 gene to find the Flavivirus ribonucleic acids (RNA). A total of 24 pools that were positive for Flavivirus were detected in Ae. aegypti specimens and subsequently subjected to sequencing using the Sanger method. A total of 12 sequences matched the established quality criteria and were subsequently employed for sequence homology analysis. We found that one sequence corresponded to the Zika virus (ZIKV), and 11 sequences had sequence similarity with Phlebotomus-associated flavivirus (PAFV), an insect-specific virus (ISF). In conclusion, we found ZIKV in the Merida municipality, Yucatan State, which suggests that the virus is silently circulating. Phlebotomus-associated flavivirus is distributed in five municipalities in Yucatan State, Mexico. Future studies could focus on isolating this virus and studying its biological role within Ae. aegypti.
Collapse
Affiliation(s)
- Diana Guadalupe Argaez-Sierra
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Arbovirología, Mérida, Yucatán, Mexico
| | - Carlos Marcial Baak-Baak
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Arbovirología, Mérida, Yucatán, Mexico
| | - Julian E. Garcia-Rejon
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Arbovirología, Mérida, Yucatán, Mexico
| | - Rosa Carmina Cetina-Trejo
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Arbovirología, Mérida, Yucatán, Mexico
| | - Julio C. Tzuc-Dzul
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Arbovirología, Mérida, Yucatán, Mexico
| | - Karla Y. Acosta-Viana
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Biología Celular, Mérida, Yucatán, Mexico
| | - José I. Chan-Perez
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Biología Celular, Mérida, Yucatán, Mexico
| | - Nohemi Cigarroa-Toledo
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Biología Celular, Mérida, Yucatán, Mexico
| |
Collapse
|
6
|
Farías AA, Laberdolive V, Stein M, Juri MJD, Visintin A, Almirón WR, Contigiani MS, Re VE, Diaz A. Diversity and molecular characterization of insect-specific flaviviruses in mosquitoes (Diptera: Culicidae) collected in central and northern Argentina. AN ACAD BRAS CIENC 2024; 96:e20230452. [PMID: 38922274 DOI: 10.1590/0001-3765202420230452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/28/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Flavivirus comprises approximately 80 different viruses. Phylogenetic relationships among its members indicate a clear ecological separation between those viruses transmitted by mosquitoes, ticks, with no known vector, and insect-specific Flaviviruses. The diversity and phylogenetic relationships among insect-specific flaviviruses circulating in the central and northern regions of Argentina were studied by performing molecular detection and characterization of the NS5 protein gene in mosquitoes collected in Córdoba, Chaco and Tucumán provinces. Overall, 68 out of 1776 pools were positive. CxFV, KRV and CFAV circulate in the 3 studied provinces. Several mosquito species (Aedes aegypti, Culex bidens, Cx. dolosus, Cx. interfor, Cx. quinquefasciatus, Cx. saltanensis, Haemagogus spegazzini) were found infected. A wide circulation of CxFV was observed in the central-northern region of Argentina. CxFV strains detected in our study clustered with strains circulating in Santa Fe and Buenos Aires provinces (Argentina), and other countries such as Indonesia, Mexico, Uganda and Taiwan. The presence of these viruses in mosquitoes could play an important role from the public health perspective, because it has been shown that previous CxFV infection can increase or block the infection of the mosquito by other pathogenic flaviviruses.
Collapse
Affiliation(s)
- Adrián A Farías
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
| | - Victoria Laberdolive
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
| | - Marina Stein
- Universidad Nacional del Nordeste, Departamento de Entomología, Instituto de Medicina Regional, Avenida Las Heras 727, CP 3500, Resistencia, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
| | - María Julia Dantur Juri
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251, CP 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Andrés Visintin
- Universidad Nacional de la Rioja, Instituto de Biología de la Conservación y Paleobiología (IBiCoPa), Centro de Investigación e Innovación Tecnológica (CENIIT), Avenida Luis Vernet y Apóstol Felipe s/n, F5200, La Rioja, Argentina
| | - Walter R Almirón
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET- Av. Vélez Sarsfield 1611, X5016, Córdoba, Argentina
| | - Marta S Contigiani
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
| | - Viviana E Re
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
| | - Adrián Diaz
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
| |
Collapse
|
7
|
Yuan JN, Ye ZX, Chen MN, Ren PP, Ning C, Sun ZT, Chen JP, Zhang CX, Li JM, Mao Q. Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera. INSECTS 2024; 15:394. [PMID: 38921109 PMCID: PMC11203538 DOI: 10.3390/insects15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host's siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs' hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.
Collapse
Affiliation(s)
- Jing-Na Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Meng-Nan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Chao Ning
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| | - Qianzhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.-N.Y.); (Z.-X.Y.); (M.-N.C.); (P.-P.R.); (C.N.); (Z.-T.S.); (J.-P.C.); (C.-X.Z.); (J.-M.L.)
| |
Collapse
|
8
|
Kobayashi D, Inoue Y, Suzuki R, Matsuda M, Shimoda H, Faizah AN, Kaku Y, Ishijima K, Kuroda Y, Tatemoto K, Virhuez-Mendoza M, Harada M, Nishino A, Inumaru M, Yonemitsu K, Kuwata R, Takano A, Watanabe M, Higa Y, Sawabe K, Maeda K, Isawa H. Identification and epidemiological study of an uncultured flavivirus from ticks using viral metagenomics and pseudoinfectious viral particles. Proc Natl Acad Sci U S A 2024; 121:e2319400121. [PMID: 38687787 PMCID: PMC11087778 DOI: 10.1073/pnas.2319400121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Yusuke Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama City, Tokyo208-0011, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama City, Tokyo208-0011, Japan
| | - Hiroshi Shimoda
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Milagros Virhuez-Mendoza
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Ayano Nishino
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Mizue Inumaru
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Kenzo Yonemitsu
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Ryusei Kuwata
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari City, Ehime794-8555, Japan
| | - Ai Takano
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Mamoru Watanabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi City, Yamaguchi753-8515, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo162-8640, Japan
| |
Collapse
|
9
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Qi YH, Ye ZX, Zhang CX, Chen JP, Li JM. Diversity of RNA viruses in agricultural insects. Comput Struct Biotechnol J 2023; 21:4312-4321. [PMID: 37711182 PMCID: PMC10497914 DOI: 10.1016/j.csbj.2023.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.
Collapse
Affiliation(s)
- Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Huang Y, Wang S, Liu H, Atoni E, Wang F, Chen W, Li Z, Rodriguez S, Yuan Z, Ming Z, Xia H. A global dataset of sequence, diversity and biosafety recommendation of arbovirus and arthropod-specific virus. Sci Data 2023; 10:305. [PMID: 37208388 DOI: 10.1038/s41597-023-02226-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Arthropod-borne virus (arbovirus) and arthropod-specific virus (ASV) are viruses circulating amongst hematophagous arthropods that are broadly transmitted in ecological systems. Arbovirus may replicate in both vertebrates and invertebrates and some are known to be pathogenic to animals or humans. ASV only replicate in invertebrate arthropods yet they are basal to many types of arboviruses. We built a comprehensive dataset of arbovirus and ASV by curating globally available data from the Arbovirus Catalog, the arbovirus list in Section VIII-F of the Biosafety in Microbiological and Biomedical Laboratories 6th edition, Virus Metadata Resource of International Committee on Taxonomy of Viruses, and GenBank. Revealing the diversity, distribution and biosafety recommendation of arbovirus and ASV at a global scale is essential to the understanding of potential interactions, evolution, and risks associated with these viruses. Moreover, the genomic sequences associated with the dataset will enable the investigation of genetic patterns distinguishing the two groups, as well as aid in predicting the vector/host relationships of the newly discovered viruses.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunlong Wang
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Evans Atoni
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Wang
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Chen
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Li
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sergio Rodriguez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77551, USA
| | - Zhiming Yuan
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyan Ming
- School of Computer and Computing Science, Hangzhou City University, Hangzhou, 310015, China.
| | - Han Xia
- Key Laboratory of Highly pathogenic Viruses and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
12
|
Ferreira QR, Lemos FFB, Moura MN, Nascimento JODS, Novaes AF, Barcelos IS, Fernandes LA, Amaral LSDB, Barreto FK, de Melo FF. Role of the Microbiome in Aedes spp. Vector Competence: What Do We Know? Viruses 2023; 15:779. [PMID: 36992487 PMCID: PMC10051417 DOI: 10.3390/v15030779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the vectors of important arboviruses: dengue fever, chikungunya, Zika, and yellow fever. Female mosquitoes acquire arboviruses by feeding on the infected host blood, thus being able to transmit it to their offspring. The intrinsic ability of a vector to infect itself and transmit a pathogen is known as vector competence. Several factors influence the susceptibility of these females to be infected by these arboviruses, such as the activation of the innate immune system through the Toll, immunodeficiency (Imd), JAK-STAT pathways, and the interference of specific antiviral response pathways of RNAi. It is also believed that the presence of non-pathogenic microorganisms in the microbiota of these arthropods could influence this immune response, as it provides a baseline activation of the innate immune system, which may generate resistance against arboviruses. In addition, this microbiome has direct action against arboviruses, mainly due to the ability of Wolbachia spp. to block viral genome replication, added to the competition for resources within the mosquito organism. Despite major advances in the area, studies are still needed to evaluate the microbiota profiles of Aedes spp. and their vector competence, as well as further exploration of the individual roles of microbiome components in activating the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
13
|
Andrade PS, Valença IN, Heinisch MRS, Rocha EC, Fernandes LN, Faria NR, Sabino EC, Lima-Camara TN. First Report of Wenzhou sobemo-like virus 4 in Aedes albopictus (Diptera: Culicidae) in Latin America. Viruses 2022; 14:2341. [PMID: 36366436 PMCID: PMC9696862 DOI: 10.3390/v14112341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
Insect-specific viruses (ISVs) are viruses that replicate exclusively in arthropod cells. Many ISVs have been studied in mosquitoes as many of them act as vectors for human etiological agents, such as arboviruses. Aedes (Stegomyia) albopictus is an important potential vector of several arboviruses in Brazil, such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV). The development of next-generation sequencing metagenomics has enabled the discovery and characterization of new ISVs. Ae. albopictus eggs were collected using oviposition traps placed in two urban parks in the city of São Paulo, Brazil. The Aedes albopictus females were divided into pools and the genetic material was extracted and processed for sequencing by metagenomics. Complete genomes of ISV Wenzhou sobemo-like virus 4 (WSLV4) were obtained in three of the four pools tested. This is the first detection of ISV WSLV4 in Ae. albopictus females in Latin America. Further studies on ISVs in Ae. albopictus are needed to better understand the role of this species in the dynamics of arbovirus transmission in the Americas.
Collapse
Affiliation(s)
- Pâmela S. Andrade
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Ian N. Valença
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Marta R. S. Heinisch
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| | - Esmenia C. Rocha
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Lícia N. Fernandes
- Medical Research Laboratory 49, Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ester C. Sabino
- Institute of Tropical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Tamara N. Lima-Camara
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
14
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses. Proc Natl Acad Sci U S A 2022; 119:e2110491119. [PMID: 35294288 PMCID: PMC8944775 DOI: 10.1073/pnas.2110491119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most viruses have a relatively narrow host range. In contrast, vector-borne flaviviruses, such as dengue virus and Zika virus, maintain their transmission cycle between arthropods and vertebrates, belonging to different phyla. How do these viruses adapt to the distinct cellular environments of two phyla? By comparing the single-host insect--specific flavivirus and dual-host Zika virus, we identified three key molecular factors that determine MBF host tropism. This study will greatly increase the understanding of entry, replication, and cross-species evolution of mosquito-borne flaviviruses. Mosquito-borne flaviviruses (MBFs) adapt to a dual-host transmission circle between mosquitoes and vertebrates. Dual-host affiliated insect-specific flaviviruses (dISFs), discovered from mosquitoes, are phylogenetically similar to MBFs but do not infect vertebrates. Thus, dISF–MBF chimeras could be an ideal model to study the dual-host adaptation of MBFs. Using the pseudoinfectious reporter virus particle and reverse genetics systems, we found dISFs entered vertebrate cells as efficiently as the MBFs but failed to initiate replication. Exchange of the untranslational regions (UTRs) of Donggang virus (DONV), a dISF, with those from Zika virus (ZIKV) rescued DONV replication in vertebrate cells, and critical secondary RNA structures were further mapped. Essential UTR-binding host factors were screened for ZIKV replication in vertebrate cells, displaying different binding patterns. Therefore, our data demonstrate a post-entry cross-species transmission mechanism of MBFs, while UTR-host interaction is critical for dual-host adaptation.
Collapse
|
16
|
Vieira P, Subbotin SA, Alkharouf N, Eisenback J, Nemchinov LG. Expanding the RNA virome of nematodes and other soil-inhabiting organisms. Virus Evol 2022; 8:veac019. [PMID: 35371560 PMCID: PMC8967085 DOI: 10.1093/ve/veac019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 07/25/2023] Open
Abstract
In recent years, several newly discovered viruses infecting free-living nematodes, sedentary plant-parasitic nematodes, and migratory root lesion nematodes have been described. However, to the best of our knowledge, no comprehensive research focusing exclusively on metagenomic analysis of the soil nematode community virome has thus far been carried out. In this work, we have attempted to bridge this gap by investigating viral communities that are associated with soil-inhabiting organisms, particularly nematodes. This study demonstrates a remarkable diversity of RNA viruses in the natural soil environment. Over 150 viruses were identified in different soil-inhabiting hosts, of which more than 139 are potentially new virus species. Many of these viruses belong to the nematode virome, thereby enriching our understanding of the diversity and evolution of this complex part of the natural ecosystem.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD 20705, USA
| | - Sergei A Subbotin
- Plant Pest Diagnostics Branch, California Department of Food & Agriculture, Sacramento, CA 95832, USA
- Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow 117071, Russia
| | - Nadim Alkharouf
- Department of Computer & Information Sciences Faculty, Towson University, Towson, MD 21204, USA
| | - Jonathan Eisenback
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
17
|
Morais P, Trovão N, Abecasis A, Parreira R. Insect-specific viruses in the Parvoviridae family: genetic lineage characterization and spatiotemporal dynamics of the recently established Brevihamaparvovirus genus. Virus Res 2022; 313:198728. [DOI: 10.1016/j.virusres.2022.198728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
18
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
19
|
Munivenkatappa A, Nyayanit DA, Yadav PD, Rangappa M, Patil S, Majumdar T, Mohandas S, Sinha DP, Jayaswamy MM, OmPrakash P. Identification of Phasi Charoen-Like Phasivirus in Field Collected Aedes aegypti from Karnataka State, India. Vector Borne Zoonotic Dis 2021; 21:900-909. [PMID: 34520272 DOI: 10.1089/vbz.2021.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: A wide range of insect-specific viruses (ISVs) have been reported worldwide. There are no studies from India that have reported ISVs. The current study describes the identification of Phasi Charoen-like virus (PCLV) from Aedes aegypti mosquito-pools from six districts of Karnataka state, India. Materials and Methods: During the Chikungunya virus (CHIKV) outbreak in the Bangalore Urban district in 2019, using conventional PCR, it was found that both human and mosquito samples were positive for CHIKV. For retrieve the complete genome sequence, mosquito samples were subjected to next generation sequencing (NGS) analysis and PCLV was also found. During 2019, as part of a vector-borne disease surveillance, we received 50 mosquito pool samples from 6 districts of the state, all of them were subjected to NGS to identify PCLV. Results: The A. aegypti mosquito-pools samples were subjected to the NGS platform that led to identification of an ISV, PCLV. PCLV was identified in 26 A. aegypti mosquito-pools collected from 6 districts. We also found mixed infection of PCLV with the Dengue virus (DENV; genotypes 1 and 3) and CHIKV from five pools. The nucleotide identity for the L gene of Indian PCLV sequences ranged between 97.1% and 98.3% in comparison with the Thailand sequences. Conclusions: To the best of our knowledge, this is the first report of PCLV dual infection with DENV and CHIKV in India. The present study confirms the presence of PCLV in A. aegypti mosquitoes from Karnataka state. The study adds India in the global geographical distribution of PCLV.
Collapse
Affiliation(s)
- Ashok Munivenkatappa
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Bangalore, Karnataka, India
| | - Dimpal A Nyayanit
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Pragya D Yadav
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Manjushree Rangappa
- National Anti-Malaria Programme Bangalore Zone, Directorate of Health and Family Welfare Services, Bangalore, Karnataka, India
| | - Savita Patil
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Triparna Majumdar
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Sreelekshmy Mohandas
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Pune, Maharashtra, India
| | - Diamond Prakash Sinha
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Bangalore, Karnataka, India
| | - Manjunath M Jayaswamy
- Indian Council of Medical Research (ICMR)-National Institute of Virology, Bangalore, Karnataka, India
| | - Patil OmPrakash
- Directorate of Health and Family Welfare Services, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Abstract
Negeviruses are a group of insect-specific viruses (ISVs) that have been found in many arthropods. Their presence in important vector species led us to examine their interactions with arboviruses during coinfections. Wild-type negeviruses reduced the replication of several alphaviruses during coinfections in mosquito cells. Negev virus (NEGV) isolates were also used to express green fluorescent protein (GFP) and anti-chikungunya virus (CHIKV) antibody fragments during coinfections with CHIKV. NEGV expressing anti-CHIKV antibody fragments was able to further reduce replication of CHIKV during coinfections, while reductions of CHIKV with NEGV expressing GFP were similar to titers with wild-type NEGV alone. These results are the first to show that negeviruses induce superinfection exclusion of arboviruses and to demonstrate a novel approach to deliver antiviral antibody fragments with paratransgenic ISVs. The ability to inhibit arbovirus replication and express exogenous proteins in mosquito cells makes negeviruses a promising platform for control of arthropod-borne pathogens. IMPORTANCE Negeviruses are a group of insect-specific viruses (ISVs), viruses known to infect only insects. They have been discovered over a wide geographical and species range. Their ability to infect mosquito species that transmit dangerous arboviruses makes negeviruses a candidate for a pathogen control platform. Coinfections of mosquito cells with a negevirus and an alphavirus demonstrated that negeviruses can inhibit the replication of alphaviruses. Additionally, modifying Negev virus (NEGV) to express a fragment of an anti-CHIKV antibody further reduced the replication of CHIKV in coinfected cells. This is the first evidence to demonstrate that negeviruses can inhibit the replication of important arboviruses in mosquito cells. The ability of a modified NEGV to drive the expression of antiviral proteins also highlights a method for negeviruses to target specific pathogens and limit the incidence of vector-borne diseases.
Collapse
|
21
|
Kobayashi D, Watanabe M, Faizah AN, Amoa-Bosompem M, Higa Y, Tsuda Y, Sawabe K, Isawa H. Discovery of a Novel Flavivirus (Flaviviridae) From the Horse Fly, Tabanus rufidens (Diptera: Tabanidae): The Possible Coevolutionary Relationships Between the Classical Insect-Specific Flaviviruses and Host Dipteran Insects. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:880-890. [PMID: 33710314 DOI: 10.1093/jme/tjaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/12/2023]
Abstract
Tabanid flies (Tabanidae: Diptera) are common hematophagous insects known to transmit some pathogens mechanically or biologically to animals; they are widely distributed throughout the world. However, no tabanid-borne viruses, except mechanically transmitted viruses, have been reported to date. In this study, we conducted RNA virome analysis of several human-biting tabanid species in Japan, to discover and characterize viruses associated with tabanids. A novel flavivirus was encountered during the study in the Japanese horse fly, Tabanus rufidens (Bigot, 1887). The virus was detected only in T. rufidens, but not in other tabanid species, and as such was designated Tabanus rufidens flavivirus (TrFV). TrFV could not be isolated using a mammalian cell line and showed a closer phylogenetic relationship to the classical insect-specific flaviviruses (cISFs) rather than the vertebrate-infecting flaviviruses (VIFs), suggesting that it is a novel member of the cISFs. The first discovery of a cISF from Brachycera provides new insight into the evolutionary history and dynamics of flaviviruses.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Research Promotion, Japan Agency for Medical Research and Development, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
22
|
Wan S, Cao S, Wang X, Zhou Y, Yan W, Gu X, Wu TC, Pang X. Generation and preliminary characterization of vertebrate-specific replication-defective Zika virus. Virology 2021; 552:73-82. [PMID: 33075709 PMCID: PMC7733535 DOI: 10.1016/j.virol.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that replicates in both vertebrate and insect cells, whereas insect-specific flaviviruses (ISF) replicate only in insect cells. We sought to convert ZIKV, from a dual-tropic flavivirus, into an insect-specific virus for the eventual development of a safe ZIKV vaccine. Reverse genetics was used to introduce specific mutations into the furin cleavage motif within the ZIKV pre-membrane protein (prM). Mutant clones were selected, which replicated well in C6/36 insect cells but exhibited reduced replication in non-human primate (Vero) cells. Further characterization of the furin cleavage site mutants indicated they replicated poorly in both human (HeLa, U251), and baby hamster kidney (BHK-21) cells. One clone with the induced mutation in the prM protein and at positions 291and 452 within the NS3 protein was totally and stably replication-defective in vertebrate cells (VSRD-ZIKV). Preliminary studies in ZIKV sensitive, immunodeficient mice demonstrated that VSRD-ZIKV-infected mice survived and were virus-negative. Our study indicates that a reverse genetic approach targeting the furin cleavage site in prM can be used to select an insect-specific ZIKV with the potential utility as a vaccine strain.
Collapse
Affiliation(s)
- Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Weidong Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Tzyy-Choou Wu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
23
|
Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia longipalpis Using Genomic and Virus-Host Interaction Signatures. Viruses 2020; 13:v13010009. [PMID: 33374584 PMCID: PMC7822452 DOI: 10.3390/v13010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hematophagous insects act as the major reservoirs of infectious agents due to their intimate contact with a large variety of vertebrate hosts. Lutzomyia longipalpis is the main vector of Leishmania chagasi in the New World, but its role as a host of viruses is poorly understood. In this work, Lu. longipalpis RNA libraries were subjected to progressive assembly using viral profile HMMs as seeds. A sequence phylogenetically related to fungal viruses of the genus Mitovirus was identified and this novel virus was named Lul-MV-1. The 2697-base genome presents a single gene coding for an RNA-directed RNA polymerase with an organellar genetic code. To determine the possible host of Lul-MV-1, we analyzed the molecular characteristics of the viral genome. Dinucleotide composition and codon usage showed profiles similar to mitochondrial DNA of invertebrate hosts. Also, the virus-derived small RNA profile was consistent with the activation of the siRNA pathway, with size distribution and 5′ base enrichment analogous to those observed in viruses of sand flies, reinforcing Lu. longipalpis as a putative host. Finally, RT-PCR of different insect pools and sequences of public Lu. longipalpis RNA libraries confirmed the high prevalence of Lul-MV-1. This is the first report of a mitovirus infecting an insect host.
Collapse
|
24
|
Jeffries CL, White M, Wilson L, Yakob L, Walker T. Detection of Cell-Fusing Agent virus across ecologically diverse populations of Aedes aegypti on the Caribbean island of Saint Lucia. Wellcome Open Res 2020; 5:149. [PMID: 33869790 PMCID: PMC8030115 DOI: 10.12688/wellcomeopenres.16030.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/20/2022] Open
Abstract
Background. Outbreaks of mosquito-borne arboviral diseases including dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV) and chikungunya virus (CHIKV) have recently occurred in the Caribbean. The geographical range of the principal vectors responsible for transmission, Aedes (Ae.) aegypti and Ae. albopictus are increasing and greater mosquito surveillance is needed in the Caribbean given international tourism is so prominent. The island of Saint Lucia has seen outbreaks of DENV and CHIKV in the past five years but vector surveillance has been limited with the last studies dating back to the late 1970s. Natural disasters have changed the landscape of Saint Lucia and the island has gone through significant urbanisation. Methods. In this study, we conducted an entomological survey of Ae. aegypti and Ae. albopictus distribution across the island and analysed environmental parameters associated with the presence of these species in addition to screening for medically important arboviruses and other flaviviruses. Results. Although we collected Ae. aegypti across a range of sites across the island, no Ae. albopictus were collected despite traps being placed in diverse ecological settings. The number of Ae. aegypti collected was significantly associated with higher elevation, and semi-urban settings yielded female mosquito counts per trap-day that were five-fold lower than urban settings. Screening for arboviruses revealed a high prevalence of cell-fusing agent virus (CFAV). Conclusions. Outbreaks of arboviruses transmitted by Ae. aegypti and Ae. albopictus have a history of occurring in small tropical islands and Saint Lucia is particularly vulnerable given the limited resources available to undertake vector control and manage outbreaks. Surveillance strategies can identify risk areas for predicting future outbreaks. Further research is needed to determine the diversity of current mosquito species, investigate insect-specific viruses, as well as pathogenic arboviruses, and this should also be extended to the neighbouring smaller Caribbean islands.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mia White
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Louisia Wilson
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
25
|
McLean BJ, Hall-Mendelin S, Webb CE, Bielefeldt-Ohmann H, Ritchie SA, Hobson-Peters J, Hall RA, van den Hurk AF. The Insect-Specific Parramatta River Virus Is Vertically Transmitted by Aedes vigilax Mosquitoes and Suppresses Replication of Pathogenic Flaviviruses In Vitro. Vector Borne Zoonotic Dis 2020; 21:208-215. [PMID: 33325801 DOI: 10.1089/vbz.2020.2692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect-specific flaviviruses (ISFs) have been isolated from a range of mosquito species from different parts of the world. These viruses replicate efficiently in mosquitoes but do not appear to replicate in vertebrates. There is increasing evidence that ISFs persist in nature through vertical transmission, and that they interfere with the replication and transmission of pathogenic flaviviruses in the mosquito host. A novel ISF species, Parramatta River virus (PaRV), was previously shown to occur at high rates in Aedes (Ae.) vigilax mosquitoes collected from Sydney, Australia. We investigated whether vertical transmission was the mechanism of viral persistence in Ae. vigilax populations and whether PaRV affected replication of the pathogenic flaviviruses, West Nile virus (WNV), and dengue virus type 3 (DENV-3) in cultured mosquito cells. Progeny reared from eggs obtained from field-collected infected females had infection rates as high as 142 and 85 per 1000 for females and males, respectively. In vitro experiments showed that replication of both WNV and DENV-3 was significantly suppressed in Aedes albopictus (C6/36) cells persistently infected with PaRV. Our studies with PaRV support the findings of previous investigations that ISFs persist in nature through vertical transmission and that ISFs can suppress the replication of pathogenic flaviviruses in coinfected mosquito cells.
Collapse
Affiliation(s)
- Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, Australia
| | - Cameron E Webb
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Medical Entomology, New South Wales Health Pathology, Sydney, Australia.,The University of Sydney, and Medical Entomology, New South Wales Health Pathology, Sydney, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, Australia
| |
Collapse
|
26
|
Stanojević M, Li K, Stamenković G, Ilić B, Paunović M, Pešić B, Maslovara IĐ, Šiljić M, Ćirković V, Zhang Y. Depicting the RNA Virome of Hematophagous Arthropods from Belgrade, Serbia. Viruses 2020; 12:v12090975. [PMID: 32887342 PMCID: PMC7552015 DOI: 10.3390/v12090975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/21/2023] Open
Abstract
Hematophagous arthropods are important vectors for zoonotic pathogens. To date, a huge number of viruses have been identified in these arthropods, with a considerable proportion of them being human pathogens. However, the viromes of hematophagous arthropods are still largely unresearched. In this study, a number of arthropods were collected from Belgrade, Serbia including mosquitoes, ticks and bedbugs. The viromes of these arthropods were identified and characterized using Illumina MiSeq sequencing. In total, 21 viruses belonging to 11 families were characterized, with 11 of them representing novel species. These results may contribute to our knowledge of RNA viruses in arthropods and the discovery of novel human pathogens.
Collapse
Affiliation(s)
- Maja Stanojević
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (M.Š.); (V.C.)
| | - Kun Li
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing 102206, China;
| | - Gorana Stamenković
- Department for Genetic Research, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojan Ilić
- Department of Animal Development, Faculty of Biology, Institute of Zoology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Paunović
- Natural History Museum in Belgrade, 11000 Belgrade, Serbia;
| | - Branislav Pešić
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia; (B.P.); (I.Đ.M.)
| | - Ivana Đurić Maslovara
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia; (B.P.); (I.Đ.M.)
| | - Marina Šiljić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (M.Š.); (V.C.)
| | - Valentina Ćirković
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (M.Š.); (V.C.)
| | - Yongzhen Zhang
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Changping, Beijing 102206, China;
- Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai 200432, China
- Correspondence:
| |
Collapse
|
27
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
28
|
Abílio AP, Silva M, Kampango A, Narciso I, Gudo ES, das Neves LCB, Sidat M, Fafetine JM, de Almeida APG, Parreira R. A survey of RNA viruses in mosquitoes from Mozambique reveals novel genetic lineages of flaviviruses and phenuiviruses, as well as frequent flavivirus-like viral DNA forms in Mansonia. BMC Microbiol 2020; 20:225. [PMID: 32723369 PMCID: PMC7385898 DOI: 10.1186/s12866-020-01905-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases involving arboviruses represent expanding threats to sub-Saharan Africa imposing as considerable burden to human and veterinary public health. In Mozambique over one hundred species of potential arbovirus mosquito vectors have been identified, although their precise role in maintaining such viruses in circulation in the country remains to be elucidated. The aim of this study was to screen for the presence of flaviviruses, alphaviruses and bunyaviruses in mosquitoes from different regions of Mozambique. RESULTS Our survey analyzed 14,519 mosquitoes, and the results obtained revealed genetically distinct insect-specific flaviviruses, detected in multiple species of mosquitoes from different genera. In addition, smaller flavivirus-like NS5 sequences, frequently detected in Mansonia seemed to correspond to defective viral sequences, present as viral DNA forms. Furthermore, three lineages of putative members of the Phenuiviridae family were also detected, two of which apparently corresponding to novel viral genetic lineages. CONCLUSION This study reports for the first-time novel insect-specific flaviviruses and novel phenuiviruses, as well as frequent flavivirus-like viral DNA forms in several widely known vector species. This unique work represents recent investigation of virus screening conducted in mosquitoes from Mozambique and an important contribution to inform the establishment of a vector control program for arbovirus in the country and in the region.
Collapse
Affiliation(s)
- Ana Paula Abílio
- Instituto Nacional de Saúde (INS)-Ministry of Health (MISAU), Vila de Marracuene, Estrada Nacional N°1, Parcela N°3943, P.O. Box: 264, Maputo, Mozambique.
- Faculty of Medicine, Eduardo Mondlane University (UEM), Maputo, Mozambique.
| | - Manuel Silva
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT)/Universidade Nova de Lisboa (NOVA), and Global Health and Tropical Medicine (GHTM) Research Centre, Lisbon, Portugal
| | - Ayubo Kampango
- Instituto Nacional de Saúde (INS)-Ministry of Health (MISAU), Vila de Marracuene, Estrada Nacional N°1, Parcela N°3943, P.O. Box: 264, Maputo, Mozambique
| | - Inácio Narciso
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT)/Universidade Nova de Lisboa (NOVA), and Global Health and Tropical Medicine (GHTM) Research Centre, Lisbon, Portugal
| | - Eduardo Samo Gudo
- Instituto Nacional de Saúde (INS)-Ministry of Health (MISAU), Vila de Marracuene, Estrada Nacional N°1, Parcela N°3943, P.O. Box: 264, Maputo, Mozambique
| | | | - Mohsin Sidat
- Faculty of Medicine, Eduardo Mondlane University (UEM), Maputo, Mozambique
| | | | - António Paulo Gouveia de Almeida
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT)/Universidade Nova de Lisboa (NOVA), and Global Health and Tropical Medicine (GHTM) Research Centre, Lisbon, Portugal
| | - Ricardo Parreira
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT)/Universidade Nova de Lisboa (NOVA), and Global Health and Tropical Medicine (GHTM) Research Centre, Lisbon, Portugal
| |
Collapse
|
29
|
Jeffries CL, White M, Wilson L, Yakob L, Walker T. Detection of a novel insect-specific flavivirus across ecologically diverse populations of Aedes aegypti on the Caribbean island of Saint Lucia. Wellcome Open Res 2020; 5:149. [PMID: 33869790 PMCID: PMC8030115 DOI: 10.12688/wellcomeopenres.16030.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 04/01/2024] Open
Abstract
Background. Outbreaks of mosquito-borne arboviral diseases including dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV) and chikungunya virus (CHIKV) have recently occurred in the Caribbean. The geographical range of the principle vectors responsible for transmission, Aedes (Ae.) aegypti and Ae. albopictus is increasing and greater mosquito surveillance is needed in the Caribbean given international tourism is so prominent. The island of Saint Lucia has seen outbreaks of DENV and CHIKV in the past five years but vector surveillance has been limited with the last studies dating back to the late 1970s. Natural disasters have changed the landscape of Saint Lucia and the island has gone through significant urbanisation. Methods. In this study, we conducted an entomological survey of Ae. aegypti and Ae. albopictus distribution across the island and analysed environmental parameters associated with the presence of these species in addition to screening for medically important arboviruses and other flaviviruses. Results. Although we collected Ae. aegypti across a range of sites across the island, no Ae. albopictus were collected despite traps being placed in diverse ecological settings. The number of Ae. aegypti collected was significantly associated with higher elevation, and semi-urban settings yielded female mosquito counts per trap-day that were five-fold lower than urban settings. Screening for arboviruses revealed a high prevalence of a novel insect-specific flavivirus closely related to cell fusing agent virus (CFAV). Conclusions. Outbreaks of arboviruses transmitted by Ae. aegypti and Ae. albopictus have a history of occurring in small tropical islands and Saint Lucia is particularly vulnerable given the limited resources available to undertake vector control and manage outbreaks. Surveillance strategies can identify risk areas for predicting future outbreaks and further research is needed to determine the diversity of current mosquito species and this should be extended to the neighbouring smaller Caribbean islands.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mia White
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Louisia Wilson
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
30
|
Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. CURRENT OPINION IN INSECT SCIENCE 2020; 39:50-56. [PMID: 32278312 PMCID: PMC7302987 DOI: 10.1016/j.cois.2020.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 05/03/2023]
Abstract
Novel insect-specific viruses (ISVs) are being discovered in many important vectors due to advances in sequencing technology and a growing awareness of the virome. Several in vitro and in vivo studies indicate that ISVs are capable of modulating pathogenic arboviruses. In addition, there is growing evidence that both vertical and horizonal transmission strategies maintain ISVs in vector populations. As such there is potential to exploit ISVs for stand-alone vector control strategies and deploying them in synergy with other symbiont control approaches such as Wolbachia-mediated control. However, before the applied potential can be realized, a greater understanding of their basic biology is required, including their species range, ability to be maintained and transmitted in native and non-native vector hosts, and the effect of infection on a range of pathogens.
Collapse
Affiliation(s)
- Edward I Patterson
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Joseph N Muthoni
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Lucien Dobel-Ober
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
31
|
Differential Small RNA Responses against Co-Infecting Insect-Specific Viruses in Aedes albopictus Mosquitoes. Viruses 2020; 12:v12040468. [PMID: 32326240 PMCID: PMC7232154 DOI: 10.3390/v12040468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
The mosquito antiviral response has mainly been studied in the context of arthropod-borne virus (arbovirus) infection in female mosquitoes. However, in nature, both female and male mosquitoes are frequently infected with insect-specific viruses (ISVs). ISVs are capable of infecting the reproductive organs of both sexes and are primarily maintained by vertical transmission. Since the RNA interference (RNAi)-mediated antiviral response plays an important antiviral role in mosquitoes, ISVs constitute a relevant model to study sex-dependent antiviral responses. Using a naturally generated viral stock containing three distinct ISVs, Aedes flavivirus (AEFV), Menghai rhabdovirus (MERV), and Shinobi tetra virus (SHTV), we infected adult Aedes albopictus females and males and generated small RNA libraries from ovaries, testes, and the remainder of the body. Overall, both female and male mosquitoes showed unique small RNA profiles to each co-infecting ISV regardless of the sex or tissue tested. While all three ISVs generated virus-derived siRNAs, only MERV generated virus-derived piRNAs. We also studied the expression of PIWI genes in reproductive tissues and carcasses. In contrast to Piwi5-9, Piwi1-4 were abundantly expressed in ovaries and testes, suggesting that Piwi5-9 are involved in exogenous viral piRNA production. Together, our results show that ISV-infected Aedes albopictus produce viral small RNAs in a virus-specific manner and that male mosquitoes mount a similar small RNA-mediated antiviral response to that of females.
Collapse
|
32
|
Gaye A, Diagne MM, Ndiaye EH, Dior Ndione MH, Faye M, Talla C, Fall G, Ba Y, Diallo D, Dia I, Handschumacher P, Faye O, Sall AA, Diallo M. Vector competence of anthropophilic mosquitoes for a new mesonivirus in Senegal. Emerg Microbes Infect 2020; 9:496-504. [PMID: 32106784 PMCID: PMC7054948 DOI: 10.1080/22221751.2020.1730710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mesoniviruses (MESOVs) belong to the newly described Mesoniviridae family (Order: Nidovirales). They have never been reported in Senegal until recently during a study in arbovirus emergence with the detection of a new species of MESOV named Dianke virus (DKV) from common mosquitoes from eastern Senegal. Actually, their vector competence for this newly described DKV is unknown. We, therefore, estimated the vector competence of Culex tritaeniorhynchus, Culex quinquefasciatus, Aedes aegypti, and Anopheles gambiae mosquitoes collected in Senegal for DKV using oral infection. Whole bodies, legs/wings, and saliva samples were tested for DKV by RT–PCR to estimate infection, dissemination, and transmission rates. The infectivity of virus particles in the saliva was confirmed by infecting C6/36 cells. Virus transmission rates were up to 95.45% in Culex tritaeniorhynchus, 28% in Cx. quinquefasciatus and 9.09% in Aedes aegypti. Viral particles in the saliva were confirmed infectious by C6/36 cell culture. An. gambiae was able to disseminate DKV only at 20 days post-infection. This study shows that Culex mosquitoes are more competent than Ae. aegypti for DKV, while Anopheles gambiae is not likely a competent vector.
Collapse
Affiliation(s)
- Alioune Gaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Moïse Diagne
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - El Hadji Ndiaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Marie Henriette Dior Ndione
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal.,Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Martin Faye
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh Talla
- Epidemiology of infectious diseases unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Yamar Ba
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Diawo Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ibrahima Dia
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Pascal Handschumacher
- Aix Marseille Univ, INSERM, IRD, UMR SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France
| | - Ousmane Faye
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pole de virologie, Unité des Arbovirus et virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Mawlouth Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
33
|
Insect-specific flaviviruses and densoviruses, suggested to have been transmitted vertically, found in mosquitoes collected in Angola: Genome detection and phylogenetic characterization of viral sequences. INFECTION GENETICS AND EVOLUTION 2020; 80:104191. [PMID: 31931257 DOI: 10.1016/j.meegid.2020.104191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
Abstract
This report describes a survey of RNA and DNA viruses carried out in adult mosquitoes from Angola, raised under laboratory conditions from field-collected immature forms. This viral genomic survey was performed using different sets of primers targeting groups of arboviruses with a considerable impact on human health, including flaviviruses, alphaviruses, and phleboviruses. Furthermore, the viral survey that was performed also included detection of densoviruses. The obtained results did not reveal the presence of recognizable pathogenic arboviruses but allowed the identification of insect-specific flaviviruses from two genetic lineages and a single lineage of brevidensoviruses. These viruses, collectivelly detected in Anopheles sp. and Culex pipiens s.l. mosquitoes, were most probably transmitted vertically.
Collapse
|
34
|
Diagne MM, Gaye A, Ndione MHD, Faye M, Fall G, Dieng I, Widen SG, Wood TG, Popov V, Guzman H, Bâ Y, Weaver SC, Diallo M, Tesh R, Faye O, Vasilakis N, Sall AA. Dianke virus: A new mesonivirus species isolated from mosquitoes in Eastern Senegal. Virus Res 2020; 275:197802. [PMID: 31697989 PMCID: PMC7075714 DOI: 10.1016/j.virusres.2019.197802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
An increasing number of insect-specific viruses are found around the world. Very recently, a new group of insect-specific viruses, the Mesoniviridae family, was discovered in Africa, Asia, North America and Australia. Here we report the first detection and isolation of a new virus belonging to Mesonivirus genus in Senegal, West Africa. The so-called Dianke virus was detected in 21 species of arthropods trapped in the eastern part of the country. Male individuals were also infected, supporting vertical transmission assertion of insect specific viruses. As described for other mesoniviruses, no viral replication was observed after inoculation of mammalian cells. Viral replication in mosquito cells was blocked at a temperature of 37 °C, highlighting the importance of thermal conditions in Mesonivirus host restriction. Similar to our study, where a diverse range of arthropod vectors were found infected by the new virus, several studies have detected mesonivirus infection in mosquitoes with concerns for human health. It has been shown that dual infections in mosquito can alter viral infectivity. Due to their extensive geographic distribution and host range, as well as their use as potential disease control agents in vector populations, more studies should be done for a better knowledge of arthropod-restricted viruses prevalence and diversity.
Collapse
Affiliation(s)
- Moussa M Diagne
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal.
| | - Alioune Gaye
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Marie Henriette Dior Ndione
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Martin Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Idrissa Dieng
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Vsevolod Popov
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Hilda Guzman
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Yamar Bâ
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Mawlouth Diallo
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Robert Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Ousmane Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Amadou A Sall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
35
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
36
|
Silva M, Morais P, Maia C, de Sousa CB, de Almeida APG, Parreira R. A diverse assemblage of RNA and DNA viruses found in mosquitoes collected in southern Portugal. Virus Res 2019; 274:197769. [DOI: 10.1016/j.virusres.2019.197769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022]
|
37
|
Pimentel V, Afonso R, Nunes M, Vieira ML, Bravo-Barriga D, Frontera E, Martinez M, Pereira A, Maia C, Paiva-Cardoso MDN, Freitas FB, Abecasis AB, Parreira R. Geographic dispersal and genetic diversity of tick-borne phleboviruses (Phenuiviridae, Phlebovirus) as revealed by the analysis of L segment sequences. Ticks Tick Borne Dis 2019; 10:942-948. [PMID: 31078467 DOI: 10.1016/j.ttbdis.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/27/2022]
Abstract
The large diversity of new tick-borne phleboviruses, and the negative impacts of the virulent viruses on human/animal health have led to a growing interest in their analysis. In this report, new insights are brought out into the diversity of putative phleboviruses circulating in Portugal (both the continental territory and the islands of São Miguel, in the Azores, and Madeira), as well as in the Spanish western regions of Extremadura and Castilla and León. Phlebovirus sequences were frequently detected (L-segment) from both questing and feeding ticks, but especially in Rhipicephalus sanguineus sensu lato (s.l.) specimens. These sequences were detected in adult ticks, as well as nymphs and eggs, supporting the hypothesis of viral maintenance by vertical transmission. Though multiple genetic groups could be identified in phylogenetic trees (AnLuc, KarMa, RiPar virus 1, and Spanish group 1 and 2), all the sequences from Portugal and Spain shared common ancestry with other viral sequence obtained from samples collected over a large geographic coverage. Spatiotemporal analysis placed Middle-East as the geographic origin of the most recent common ancestor (MRCA) of all phleboviruses analysed in the present study. More recent viral transitions might include migrations from Spain to continental Portugal, and from there to the Portuguese Islands. Our findings suggest that the time of the MRCA of phleboviruses was dated around 225 years ago [95% HPD: 124-387 year before the last sampling date].
Collapse
Affiliation(s)
- Victor Pimentel
- Unidade de Saúde Pública Internacional e Bioestatística, Instituto de Higiene e Medicina Tropical (IHTM)/Universidade Nova de Lisboa (UNL), and Global Health and Tropical Medicine (GHTM) research center, Lisboa, Portugal
| | - Rita Afonso
- Unidade de Microbiologia Médica, (IHMT/UNL, and GHTM), Oeiras, Portugal
| | - Mónica Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | | | - Daniel Bravo-Barriga
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Eva Frontera
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Manuel Martinez
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - André Pereira
- Unidade de Parasitologia Médica (IHMT/UNL, and GHTM), Lisboa, Portugal
| | - Carla Maia
- Unidade de Parasitologia Médica (IHMT/UNL, and GHTM), Lisboa, Portugal
| | - Maria das Neves Paiva-Cardoso
- Departmento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD) and Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Vila Real, Portugal
| | | | - Ana B Abecasis
- Unidade de Saúde Pública Internacional e Bioestatística, Instituto de Higiene e Medicina Tropical (IHTM)/Universidade Nova de Lisboa (UNL), and Global Health and Tropical Medicine (GHTM) research center, Lisboa, Portugal
| | - Ricardo Parreira
- Unidade de Microbiologia Médica, (IHMT/UNL, and GHTM), Oeiras, Portugal.
| |
Collapse
|
38
|
Endogenous Viral Elements Are Widespread in Arthropod Genomes and Commonly Give Rise to PIWI-Interacting RNAs. J Virol 2019; 93:JVI.02124-18. [PMID: 30567990 DOI: 10.1128/jvi.02124-18] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
Arthropod genomes contain sequences derived from integrations of DNA and nonretroviral RNA viruses. These sequences, known as endogenous viral elements (EVEs), have been acquired over the course of evolution and have been proposed to serve as a record of past viral infections. Recent evidence indicates that EVEs can function as templates for the biogenesis of PIWI-interacting RNAs (piRNAs) in some mosquito species and cell lines, raising the possibility that EVEs may serve as a source of immunological memory in these organisms. However, whether piRNAs are derived from EVEs or serve an antiviral function in other arthropod species is unknown. Here, we used publicly available genome assemblies and small RNA sequencing data sets to characterize the repertoire and function of EVEs across 48 arthropod genomes. We found that EVEs are widespread in arthropod genomes and primarily correspond to unclassified single-stranded RNA (ssRNA) viruses and viruses belonging to the Rhabdoviridae and Parvoviridae families. Additionally, EVEs were enriched in piRNA clusters in a majority of species, and we found that production of primary piRNAs from EVEs is common, particularly for EVEs located within piRNA clusters. While the abundance of EVEs within arthropod genomes and the frequency with which EVEs give rise to primary piRNAs generally support the hypothesis that EVEs contribute to an antiviral response via the piRNA pathway, limited nucleotide identity between currently described viruses and EVEs identified here likely limits the extent to which this process plays a role during infection with known viruses in the arthropod species analyzed.IMPORTANCE Our results greatly expand the knowledge of EVE abundance, diversity, and function in an exceptionally wide range of arthropod species. We found that while previous findings in mosquitoes regarding the potential of EVEs to serve as sources of immunological memory via the piRNA pathway may be generalized to other arthropod species, speculation regarding the antiviral function of EVE-derived piRNAs should take into context the fact that EVEs are, in the vast majority of cases, not similar enough to currently described viruses at the nucleotide level to serve as sources of antiviral piRNAs against them.
Collapse
|
39
|
Huang YJS, Higgs S, Vanlandingham DL. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front Microbiol 2019; 10:22. [PMID: 30728812 PMCID: PMC6351451 DOI: 10.3389/fmicb.2019.00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Hundreds of viruses, designated as arboviruses, are transmitted by arthropod vectors in complex transmission cycles between the virus, vertebrate host, and the vector. With millions of human and animal infections per year, it is critical to improve our understanding of the interactions between the biological and environmental factors that play a critical role in pathogenesis, disease outcomes, and transmission of arboviruses. This review focuses on mosquito-borne arboviruses and discusses current knowledge of the factors and underlying mechanisms that influence infection and transmission of arboviruses and discusses critical factors and pathways that can potentially become targets for intervention and therapeutics.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
40
|
A Novel Highly Divergent Strain of Cell Fusing Agent Virus (CFAV) in Mosquitoes from the Brazilian Amazon Region. Viruses 2018; 10:v10120666. [PMID: 30477235 PMCID: PMC6315449 DOI: 10.3390/v10120666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022] Open
Abstract
Classical insect-specific flaviviruses (cISFs) have been widely detected in different countries in the last decades. Here, we characterize the near full-length genomes of two cISFs detected in mosquitoes collected in the city of Macapá, state of Amapá, Amazon region of Brazil. A total of 105 pools of female mosquitos were analyzed by next-generation sequencing (NGS). Comparative genomics and phylogenetic analysis identified three strains of cell fusing agent virus (CFAV) and two of Culex flavivirus (CxFV). All sequences were obtained from pools of Culex sp., except for one sequence of CFAV detected in a pool of Aedes aegypti. Both CxFV strains are phylogenetically related to a strain isolated in 2012 in the Southeast region of Brazil. The CFAV strains are the first of this species to be identified in Brazil and one of them is highly divergent from other strains of CFAV that have been detected worldwide. In conclusion, CFAV and CxFV, circulate in mosquitoes in Brazil. One strain of CFAV is highly divergent from others previously described, suggesting that a novel strain of CFAV is present in this region.
Collapse
|
41
|
Brault AC, Blitvich BJ. Continued Need for Comprehensive Genetic and Phenotypic Characterization of Viruses: Benefits of Complementing Sequence Analyses with Functional Determinations. Am J Trop Med Hyg 2018; 98:1213. [PMID: 29557334 PMCID: PMC5953397 DOI: 10.4269/ajtmh.18-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|