1
|
Qiu X, Gao Q, Wang J, Zhang Z, Tao L. The microbiota-m 6A-metabolism axis: Implications for therapeutic strategies in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189317. [PMID: 40222422 DOI: 10.1016/j.bbcan.2025.189317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Gastrointestinal (GI) cancers remain a leading cause of cancer-related mortality worldwide, with metabolic reprogramming recognized as a central driver of tumor progression and therapeutic resistance. Among the key regulatory layers, N6-methyladenosine (m6A) RNA modification-mediated by methyltransferases (writers such as METTL3/14), RNA-binding proteins (readers like YTHDFs and IGF2BPs), and demethylases (erasers including FTO and ALKBH5), plays a pivotal role in controlling gene expression and metabolic flux in the tumor context. Concurrently, the gut microbiota profoundly influences GI tumorigenesis and immune evasion by modulating metabolite availability and remodeling the tumor microenvironment. Recent evidence has uncovered a bidirectional crosstalk between microbial metabolites and m6A methylation: microbiota-derived signals dynamically regulate m6A deposition on metabolic and immune transcripts, while m6A modifications, in turn, regulate the stability and translation of key mRNAs such as PD-L1 and FOXP3. This reciprocal interaction forms self-reinforcing epigenetic circuits that drive tumor plasticity, immune escape, and metabolic adaptation. In this review, we dissect the molecular underpinnings of the microbiota-m6A-metabolism axis in GI cancers and explore its potential to inform novel strategies in immunotherapy, metabolic intervention, and microbiome-guided precision oncology.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qi Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Tao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
2
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
3
|
Singh A, Mazumder A, Das S, Kanda A, Tyagi PK, Chaitanya MVNL. Harnessing the Power of Probiotics: Boosting Immunity and Safeguarding against Various Diseases and Infections. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2025; 20:5-29. [PMID: 40302548 DOI: 10.2174/0127724344308638240530065552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2025]
Abstract
The human microbiome, a diverse microorganism community, crucially defends against pathogens. Probiotics, postbiotics, and paraprobiotics alone and in combination are potent in countering fungal and waterborne infections, particularly against viral threats. This review focuses on the mechanisms of the microbiome against viral infections, emphasizing probiotic interventions. Certain Lactic Acid Bacteria (LAB) strains effectively eliminate toxic aflatoxin B1 (AFB1) from microfungi-produced mycotoxins. LAB binding to AFB1 persists post-gastric digestion, and pre-incubation with mycotoxins reduces probiotic adhesion to mucus. Oral probiotic administration in animals increases mycotoxin excretion, reducing associated health risks. Bifidobacterium longum and Lactobacillus rhamnosus show exceptional efficacy in removing cyanobacterial toxin microcystin-LR from drinking water. Engineered probiotics promise advanced therapeutic applications for metabolic disorders, Alzheimer's, and type 1 diabetes, serving as diagnostic tools for detecting pathogens and inflammation markers. In antimicrobial peptide production, genetically modified probiotics producing human β-defensin 2 (HBD2) treat Crohn's disease with implemented biocontainment strategies preventing unintended environmental impacts.
Collapse
Affiliation(s)
- Archna Singh
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Saumya Das
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Anmol Kanda
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19 Knowledge Park-II, Greater Noida, 201306, U.P., India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144001, Punjab, India
| |
Collapse
|
4
|
Seo H, Kim S, Beck S, Song HY. Perspectives on Microbiome Therapeutics in Infectious Diseases: A Comprehensive Approach Beyond Immunology and Microbiology. Cells 2024; 13:2003. [PMID: 39682751 PMCID: PMC11640688 DOI: 10.3390/cells13232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Although global life expectancy has increased over the past 20 years due to advancements in managing infectious diseases, one-fifth of people still die from infections. In response to this ongoing threat, significant efforts are underway to develop vaccines and antimicrobial agents. However, pathogens evolve resistance mechanisms, complicating their control. The COVID-19 pandemic has underscored the limitations of focusing solely on the pathogen-killing strategies of immunology and microbiology to address complex, multisystemic infectious diseases. This highlights the urgent need for practical advancements, such as microbiome therapeutics, that address these limitations while complementing traditional approaches. Our review emphasizes key outcomes in the field, including evidence of probiotics reducing disease severity and insights into host-microbiome crosstalk that have informed novel therapeutic strategies. These findings underscore the potential of microbiome-based interventions to promote physiological function alongside existing strategies aimed at enhancing host immune responses and pathogen destruction. This narrative review explores microbiome therapeutics as next-generation treatments for infectious diseases, focusing on the application of probiotics and their role in host-microbiome interactions. While offering a novel perspective grounded in a cooperative defense system, this review also addresses the practical challenges and limitations in translating these advancements into clinical settings.
Collapse
Affiliation(s)
- Hoonhee Seo
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Samuel Beck
- Center for Aging Research, Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, J-607, 609 Albany, Boston, MA 02118, USA
| | - Ho-Yeon Song
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Cheonan-si 31151, Chungnam-do, Republic of Korea
| |
Collapse
|
5
|
Gallina NLF, Irizarry Tardi N, Li X, Cai A, Horn MJ, Applegate BM, Reddivari L, Bhunia AK. Assessment of Biofilm Formation and Anti-Inflammatory Response of a Probiotic Blend in a Cultured Canine Cell Model. Microorganisms 2024; 12:2284. [PMID: 39597673 PMCID: PMC11596120 DOI: 10.3390/microorganisms12112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Gut dysbiosis and an inflamed bowel are growing concerns in mammals, including dogs. Probiotic supplements have been used to restore the natural microbial community and improve gastrointestinal health. Biofilm formation, antimicrobial activities, and immunological responses of probiotics are crucial to improving gut health. Thus, we tested a commercial probiotic blend (LabMAX-3), a canine kibble additive comprising Lactobacillus acidophilus, Lacticaseibacillus casei, and Enterococcus faecium for their ability to inactivate common enteric pathogens; their ability to form biofilms; epithelial cell adhesion; and their anti-inflammatory response in the Madin-Darby Canine Kidney (MDCK) cell line. Probiotic LabMAX-3 blend or individual isolates showed a strong inhibitory effect against Salmonella enterica, Listeria monocytogenes, enterotoxigenic Escherichia coli, and Campylobacter jejuni. LabMAX-3 formed biofilms comparable to Staphylococcus aureus. LabMAX-3 adhesion to the MDCK cell line (with or without lipopolysaccharide (LPS) pretreatment) showed comparable adhesion and biofilm formation (p < 0.05) to L. casei ATCC 334 used as a control. LabMAX-3 had no cytotoxic effects on the MDCK cell line during 1 h exposure. The interleukin-10 (IL-10) and tumor necrosis factor alpha (TNFα) ratio of LabMAX-3, compared to the L. casei control, showed a significant increase (p < 0.05), indicating a more pronounced anti-inflammatory response. The data show that LabMAX-3, a canine kibble supplement, can improve gastrointestinal health.
Collapse
Affiliation(s)
- Nicholas L. F. Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Nicole Irizarry Tardi
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Xilin Li
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Alvin Cai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Mandy J. Horn
- CH2 Animal Solutions, 21 Bear Creek Estates Dr., Ottumwa, IA 52501, USA;
| | - Bruce M. Applegate
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lavanya Reddivari
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers (Basel) 2024; 16:3707. [PMID: 39518144 PMCID: PMC11545705 DOI: 10.3390/cancers16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Radiotherapy is an effective method of treating cancer and affects 50% of patients. Intensity-modulated radiotherapy (IMRT) is a modernized method of classical radiation used in the treatment of laryngeal cancer. Treatment with intent to preserve the larynx is not always safe or complication-free. The microbiome may significantly influence the effectiveness of oncological treatment, especially radiotherapy, and may also be modified by the toxic response to radiation. OBJECTIVE The aim of the study was to prospectively assess the microbiome and its influence on radiotherapy toxicity in patients with laryngeal cancer. RESULTS Statistically significant risk factors for complications after radiotherapy were the percentage of Porphyromonas of at least 6.7%, the percentage of Fusobacterium of at least 2.6% and the percentage of Catonella of at least 2.6%. CONCLUSIONS The importance of the microbiome in oncology has been confirmed in many studies. Effective radiotherapy treatment and the prevention of radiation-induced oral mucositis is a challenge in oncology. The microbiome may be an important part of personalized cancer treatment. The assessment of the microbiome of patients diagnosed with cancer may provide the opportunity to predict the response to treatment and its effectiveness. The influence of the microbiome may be important in predicting the risk group for radiotherapy treatment failure. The possibility of modifying the microbiome may become a goal to improve the prognosis of patients with laryngeal cancer. Fusobacterium, Porphyromonas and Catonella are important risk factors for radiation-induced oral mucositis in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
7
|
Ali N, Vora C, Mathuria A, Kataria N, Mani I. Advances in CRISPR-Cas systems for gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:59-81. [PMID: 39266188 DOI: 10.1016/bs.pmbts.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.
Collapse
Affiliation(s)
- Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
8
|
Hasnain MA, Kang D, Moon GS. Research trends of next generation probiotics. Food Sci Biotechnol 2024; 33:2111-2121. [PMID: 39130671 PMCID: PMC11315851 DOI: 10.1007/s10068-024-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024] Open
Abstract
Gut represents one of the largest interfaces for the interaction of host factors and the environmental ones. Gut microbiota, largely dominated by bacterial community, plays a significant role in the health status of the host. The healthy gut microbiota fulfills several vital functions such as energy metabolism, disease protection, and immune modulation. Dysbiosis, characterized by microbial imbalance, can contribute to the development of various disorders, including intestinal, systemic, metabolic, and neurodegenerative conditions. Probiotics offer the potential to address dysbiosis and improve overall health. Advancements in high-throughput sequencing, bioinformatics, and omics have enabled mechanistic studies for the development of bespoke probiotics, referred to as next generation probiotics. These tailor-made probiotics have the potential to ameliorate specific disease conditions and thus fulfill the specific consumer needs. This review discusses recent updates on the most promising next generation probiotics, along with the challenges that must be addressed to translate this concept into reality.
Collapse
Affiliation(s)
- Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
| | - Dae‑Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Gi-Seong Moon
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
- Major in Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| |
Collapse
|
9
|
Singh A, Mazumder A, Das S, Tyagi PK, Chaitanya MVNL. Probiotics in Action: Enhancing Immunity and Combatting Diseases for Optimal Health. JOURNAL OF NATURAL REMEDIES 2024:1153-1167. [DOI: 10.18311/jnr/2024/35894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 01/03/2025]
Abstract
This review offers an in-depth examination of the mechanisms underlying the microbiome's defense against viral infections, with a specific focus on probiotic interventions. Mycotoxins, secondary compounds produced by microfungi, pose significant health risks. Yet, certain strains of Lactic Acid Bacteria (LAB) have exhibited remarkable efficacy in eliminating aflatoxin B1 (AFB1), the most toxic member of the aflatoxin family. Experimental setups demonstrated AFB1 binding to specific LAB strains, persisting even after gastric digestion. Laboratory studies revealed a potential protective mechanism wherein pre-incubation of probiotics with mycotoxins reduced their adhesion to mucus. Animal trials further underscored the benefits of oral probiotic administration, showcasing increased fecal excretion of mycotoxins and mitigation of associated health risks. Cyanobacteria-generated microcystins in drinking water pose a significant threat to human health. Probiotic bacteria, particularly strains like Bifidobacterium longum and Lactobacillus rhamnosus, have demonstrated exceptional efficacy in removing the cyanobacterial peptide toxin microcystin-LR. Optimized conditions resulted in rapid toxin elimination, highlighting the potential of probiotics in water purification. Engineered probiotics represent a cutting-edge approach to tailor microorganisms for specific therapeutic applications, exhibiting promise in treating metabolic disorders, Alzheimer's disease, and type 1 diabetes. Additionally, they serve as innovative diagnostic tools, capable of detecting pathogens and inflammation markers within the body. In the realm of antimicrobial peptide production, probiotics offer a promising platform, with genetically modified strains engineered to produce human β-defensin 2 (HBD2) for treating Crohn's disease, showcasing their potential in targeted theurapetic delivery. Biocontainment strategies have been implemented to prevent unintended environmental impacts.
Collapse
|
10
|
Wan W, Wu W, Amier Y, Li X, Yang J, Huang Y, Xun Y, Yu X. Engineered microorganisms: A new direction in kidney stone prevention and treatment. Synth Syst Biotechnol 2024; 9:294-303. [PMID: 38510204 PMCID: PMC10950756 DOI: 10.1016/j.synbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Numerous studies have shown that intestinal and urinary tract flora are closely related to the formation of kidney stones. The removal of probiotics represented by lactic acid bacteria and the colonization of pathogenic bacteria can directly or indirectly promote the occurrence of kidney stones. However, currently existing natural probiotics have limitations. Synthetic biology is an emerging discipline in which cells or living organisms are genetically designed and modified to have biological functions that meet human needs, or even create new biological systems, and has now become a research hotspot in various fields. Using synthetic biology approaches of microbial engineering and biological redesign to enable probiotic bacteria to acquire new phenotypes or heterologous protein expression capabilities is an important part of synthetic biology research. Synthetic biology modification of microorganisms in the gut and urinary tract can effectively inhibit the development of kidney stones by a range of means, including direct degradation of metabolites that promote stone production or indirect regulation of flora homeostasis. This article reviews the research status of engineered microorganisms in the prevention and treatment of kidney stones, to provide a new and effective idea for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Wenlong Wan
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Weisong Wu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yirixiatijiang Amier
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianmiao Li
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Junyi Yang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yisheng Huang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Xun
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Meng J, Liu S, Wu X. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases. Crit Rev Microbiol 2024; 50:300-314. [PMID: 36946080 DOI: 10.1080/1040841x.2023.2190392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
The use of probiotics to regulate the intestinal microbiota to prevent and treat a large number of disorders and diseases has been an international research hotspot. Although conventional probiotics have a certain regulatory role in nutrient metabolism, inhibiting pathogens, inducing immune regulation, and maintaining intestinal epithelial barrier function, they are unable to treat certain diseases. In recent years, aided by the continuous development of synthetic biology, engineering probiotics with desired characteristics and functionalities to benefit human health has made significant progress. In this article, we summarise the mechanism of action of conventional probiotics and their limitations and highlight the latest developments in the design and construction of probiotics as living diagnostics and therapeutics for the detection and treatment of a series of diseases, including pathogen infections, cancer, intestinal inflammation, metabolic disorders, vaccine delivery, cognitive health, and fatty liver. Besides we discuss the concerns regarding engineered probiotics and corresponding countermeasures and outline the desired features in the future development of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
| | - Shufan Liu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology; College of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
12
|
Routy B, Jackson T, Mählmann L, Baumgartner CK, Blaser M, Byrd A, Corvaia N, Couts K, Davar D, Derosa L, Hang HC, Hospers G, Isaksen M, Kroemer G, Malard F, McCoy KD, Meisel M, Pal S, Ronai Z, Segal E, Sepich-Poore GD, Shaikh F, Sweis RF, Trinchieri G, van den Brink M, Weersma RK, Whiteson K, Zhao L, McQuade J, Zarour H, Zitvogel L. Melanoma and microbiota: Current understanding and future directions. Cancer Cell 2024; 42:16-34. [PMID: 38157864 PMCID: PMC11096984 DOI: 10.1016/j.ccell.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.
Collapse
Affiliation(s)
- Bertrand Routy
- University of Montreal Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
| | - Tanisha Jackson
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Laura Mählmann
- Seerave Foundation, The Seerave Foundation, 35-37 New Street, St Helier, JE2 3RA Jersey, UK
| | | | - Martin Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Kasey Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lisa Derosa
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France
| | - Howard C Hang
- Departments of Immunology & Microbiology and Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geke Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94905 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Kathy D McCoy
- Department of Physiology & Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ze'ev Ronai
- Sanford Burnham Prebys Discovery Medical Research Institute, La Jolla, CA 92037, USA
| | - Eran Segal
- Weizmann Institute of Science, Computer Science and Applied Mathematics Department, 234th Herzel st., Rehovot 7610001, Israel
| | - Gregory D Sepich-Poore
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Micronoma Inc., San Diego, CA 92121, USA
| | - Fyza Shaikh
- Johns Hopkins School of Medicine, Department of Oncology, Baltimore, MD 21287, USA
| | - Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcel van den Brink
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, Sloan Kettering Institute, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, New Jersey Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NY 08901, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Hassane Zarour
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
13
|
Liu L, Helal SE, Peng N. CRISPR-Cas-Based Engineering of Probiotics. BIODESIGN RESEARCH 2023; 5:0017. [PMID: 37849462 PMCID: PMC10541000 DOI: 10.34133/bdr.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.
Collapse
Affiliation(s)
- Ling Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shimaa Elsayed Helal
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
14
|
Asif A, Afzaal M, Shahid H, Saeed F, Ahmed A, Shah YA, Ejaz A, Ghani S, Ateeq H, Khan MR. Probing the functional and therapeutic properties of postbiotics in relation to their industrial application. Food Sci Nutr 2023; 11:4472-4484. [PMID: 37576043 PMCID: PMC10420781 DOI: 10.1002/fsn3.3465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Functional foods are gaining significant research attention of researchers due to their health-endorsing properties due to their bioactive components either living cells (probiotics) or nonviable cells (prebiotics). The term "postbiotic" specifies the soluble substances, such as enzymes, peptides, teichoic acids, muropeptides derived from peptidoglycans, polysaccharides, cell surface proteins, and organic acids, that are secreted by living bacteria or released after bacterial lysis. Due to various signaling molecules which may have antioxidant, immunomodulatory, antiinflammatory, antihypertensive, and antiproliferative activities, postbiotics offer great potential to be used in pharmaceutical, food, and nutraceutical industries, to promote health and ailment prevention. This recent review is a landmark of information relevant to the production of postbiotics along with salient features to use in various fields ranging from food to immunomodulation and selective and effective therapy. It also puts forward the concept that postbiotics are way more effective than probiotics in the veterinary, food as well as medical field which ultimately helps in reducing the disease burden along with human health.
Collapse
Affiliation(s)
- Abrar Asif
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Hina Shahid
- Women Medical OfficerDistrict Head Quarters (DHQ) Hospital VehariVehariPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
15
|
Durmusoglu D, Al'Abri I, Li Z, Islam Williams T, Collins LB, Martínez JL, Crook N. Improving therapeutic protein secretion in the probiotic yeast Saccharomyces boulardii using a multifactorial engineering approach. Microb Cell Fact 2023; 22:109. [PMID: 37287064 PMCID: PMC10245609 DOI: 10.1186/s12934-023-02117-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
The probiotic yeast Saccharomyces boulardii (Sb) is a promising chassis to deliver therapeutic proteins to the gut due to Sb's innate therapeutic properties, resistance to phage and antibiotics, and high protein secretion capacity. To maintain therapeutic efficacy in the context of challenges such as washout, low rates of diffusion, weak target binding, and/or high rates of proteolysis, it is desirable to engineer Sb strains with enhanced levels of protein secretion. In this work, we explored genetic modifications in both cis- (i.e. to the expression cassette of the secreted protein) and trans- (i.e. to the Sb genome) that enhance Sb's ability to secrete proteins, taking a Clostridioides difficile Toxin A neutralizing peptide (NPA) as our model therapeutic. First, by modulating the copy number of the NPA expression cassette, we found NPA concentrations in the supernatant could be varied by sixfold (76-458 mg/L) in microbioreactor fermentations. In the context of high NPA copy number, we found a previously-developed collection of native and synthetic secretion signals could further tune NPA secretion between 121 and 463 mg/L. Then, guided by prior knowledge of S. cerevisiae's secretion mechanisms, we generated a library of homozygous single gene deletion strains, the most productive of which achieved 2297 mg/L secretory production of NPA. We then expanded on this library by performing combinatorial gene deletions, supplemented by proteomics experiments. We ultimately constructed a quadruple protease-deficient Sb strain that produces 5045 mg/L secretory NPA, an improvement of > tenfold over wild-type Sb. Overall, this work systematically explores a broad collection of engineering strategies to improve protein secretion in Sb and highlights the ability of proteomics to highlight under-explored mediators of this process. In doing so, we created a set of probiotic strains that are capable of delivering a wide range of protein titers and therefore furthers the ability of Sb to deliver therapeutics to the gut and other settings to which it is adapted.
Collapse
Affiliation(s)
- Deniz Durmusoglu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Ibrahim Al'Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Taufika Islam Williams
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Leonard B Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, USA
| | - José L Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
16
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
17
|
Khablenko A, Danylenko S, Yalovenko O, Duhan O, Potemskaia O, Prykhodko D. Recombinant Probiotic Preparations: Current State, Development and Application Prospects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2023; 6:119-147. [DOI: 10.20535/ibb.2022.6.3-4.268349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The article is devoted to the latest achievements in the field of research, development, and implementation of various types of medicinal products based on recombinant probiotics. The benefits of probiotics, their modern use in medicine along with the most frequently used genera and species of probiotic microorganisms were highlighted. The medicinal and therapeutic activities of the studied probiotics were indicated. The review suggests various methods of creating recombinant probiotic microorganisms, including standard genetic engineering methods, as well as systems biology approaches and new methods of using the CRISPR-Cas system. The range of potential therapeutic applications of drugs based on recombinant probiotics was proposed. Special attention was paid to modern research on the creation of new, more effective recombinant probiotics that can be used for various therapeutic purposes. Considering the vast diversity of therapeutic applications of recombinant probiotics and ambiguous functions, their use for the potential treatment of various common human diseases (non-infectious and infectious diseases of the gastrointestinal tract, metabolic disorders, and allergic conditions) was investigated. The prospects for creating different types of vaccines based on recombinant probiotics together with the prospects for their implementation into medicine were considered. The possibilities of using recombinant probiotics in veterinary medicine, particularly for the prevention of domestic animal diseases, were reviewed. The prospects for the implementation of recombinant probiotics as vaccines and diagnostic tools for testing certain diseases as well as modeling the work of the human digestive system were highlighted. The risks of creation, application, including the issues related to the regulatory sphere regarding the use of new recombinant microorganisms, which can potentially enter the environment and cause unforeseen circumstances, were outlined.
Collapse
Affiliation(s)
| | - Svetlana Danylenko
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | | - Olexii Duhan
- Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
| | - Oksana Potemskaia
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | |
Collapse
|
18
|
Wang Y, Wang B, Zeng Z, Liu R, Tang L, Meng X, Li W. Bacillus amyloliquefaciens SC06 attenuated high-fat diet induced anxiety-like behavior and social withdrawal of male mice by improving antioxidant capacity, intestinal barrier function and modulating intestinal dysbiosis. Behav Brain Res 2023; 438:114172. [PMID: 36280009 DOI: 10.1016/j.bbr.2022.114172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Anxiety-like behavior and social withdrawal induced by obesity and oxidative stress are significant health concerns in contemporary society. Our previously study found that Bacillus amyloliquefaciens SC06 (SC06) decreased the body weight of high-fat diet (HFD)-fed male mice and protected porcine intestinal epithelial cells against oxidative stress. The present study further investigated the effect of SC06 on HFD-induced obesity, anxiety-like behavior and social withdrawal of male mice and explored its mechanism. Results showed that SC06 significantly decreased HFD-induced obesity as evidenced by the decreased body weight, weight of liver and epididymal fat. Meanwhile, SC06 attenuated the anxiety-like behavior of HFD-fed male mice as illustrated by the more exploration time in both the open arms of elevated plus maze and the central area of open field and the reversed their social withdrawal tested in the three-chamber social choice task. SC06 also reduced reactive oxygen species (ROS) concentration and normalized the mitochondrial morphology in the hippocampus. SC06 reduced the systemic inflammation and increased the expression of intestinal tight junctions (ZO-1 and Claudin1). Furthermore, SC06 also altered the microbial diversity and composition, and decreased Firmicutes to Bacteroidetes ratio of HFD-fed male mice. These findings suggest SC06 attenuate HFD-induced anxiety-like behavior and social withdrawal of male mice by attenuating hippocampal oxidation stress, systemic inflammation, dysbiosis and improving intestinal barrier function.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China; College of Animal Science and Technology, Qingdao Agricultural University, 266109 Qingdao, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Zhonghua Zeng
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Xiaolu Meng
- Department of Psychology, School of Medical Humanitarians, Guizhou Medical University, 550025 Guiyang, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition and Feed Sciences, College of Animal Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
19
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
20
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Lubkowicz D, Horvath NG, James MJ, Cantarella P, Renaud L, Bergeron CG, Shmueli RB, Anderson C, Gao J, Kurtz CB, Perreault M, Charbonneau MR, Isabella VM, Hava DL. An engineered bacterial therapeutic lowers urinary oxalate in preclinical models and
in silico
simulations of enteric hyperoxaluria. Mol Syst Biol 2022; 18:e10539. [PMID: 35253995 PMCID: PMC8899768 DOI: 10.15252/msb.202110539] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 01/06/2023] Open
|
22
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
23
|
Ghadaksaz A, Nodoushan SM, Sedighian H, Behzadi E, Fooladi AAI. Evaluation of the Role of Probiotics As a New Strategy to Eliminate Microbial Toxins: a Review. Probiotics Antimicrob Proteins 2022; 14:224-237. [PMID: 35031968 DOI: 10.1007/s12602-021-09893-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
Probiotics are living microorganisms that have favorable effects on human and animal health. The most usual types of microorganisms recruited as probiotics are lactic acid bacteria (LAB) and bifidobacteria. To date, numerous utilizations of probiotics have been reported. In this paper, it is suggested that probiotic bacteria can be recruited to remove and degrade different types of toxins such as mycotoxins and algal toxins that damage host tissues and the immune system causing local and systemic infections. These microorganisms can remove toxins by disrupting, changing the permeability of the plasma membrane, producing metabolites, inhibiting the protein translation, hindering the binding to GTP binding proteins to GM1 receptors, or by preventing the interaction between toxins and adhesions. Here, we intend to review the mechanisms that probiotic bacteria use to eliminate and degrade microbial toxins.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Mousavi Nodoushan
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran.
| |
Collapse
|
24
|
Sharma S, Singh A, Sharma S, Kant A, Sevda S, Taherzadeh MJ, Garlapati VK. Functional foods as a formulation ingredients in beverages: technological advancements and constraints. Bioengineered 2021; 12:11055-11075. [PMID: 34783642 PMCID: PMC8810194 DOI: 10.1080/21655979.2021.2005992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
As a consequence of expanded science and technical research, the market perception of consumers has shifted from standard traditional to valuable foods, which are furthermore nutritional as well as healthier in today's world. This food concept, precisely referred to as functional, focuses on including probiotics, which enhance immune system activity, cognitive response, and overall health. This review primarily focuses on functional foods as functional additives in beverages and other food items that can regulate the human immune system and avert any possibility of contracting the infection. Many safety concerns must be resolved during their administration. Functional foods must have an adequate amount of specific probiotic strain(s) during their use and storage, as good viability is needed for optimum functionality of the probiotic. Thus, when developing novel functional food-based formulations, choosing a strain with strong technological properties is crucial. The present review focused on probiotics as an active ingredient in different beverage formulations and the exerting mechanism of action and fate of probiotics in the human body. Moreover, a comprehensive overview of the regulative and safety issues of probiotics-based foods and beverages formulations.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Astha Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Swati Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | | | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
25
|
The urobiome, urinary tract infections, and the need for alternative therapeutics. Microb Pathog 2021; 161:105295. [PMID: 34801647 DOI: 10.1016/j.micpath.2021.105295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Improvements in bacterial culturing and DNA sequencing techniques have revealed a diverse, and hitherto unknown, urinary tract microbiome (urobiome). The potential role of this microbial community in contributing to health and disease, particularly in the context of urinary tract infections (UTIs) is of significant clinical importance. However, while several studies have confirmed the existence of a core urobiome, the role of its constituent microbes is not yet fully understood, particularly in the context of health and disease. Herein, we review the current state of the art, concluding that the urobiome represents an important component of the body's innate immune defences, and a potentially rich resource for the development of alternative treatment and control strategies for UTIs.
Collapse
|
26
|
Wang Y, Dykes GA. Direct modulation of the gut microbiota as a therapeutic approach for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:14-25. [PMID: 34365962 DOI: 10.2174/1871527320666210806165751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by a progressive decline in memory and cognitive functions. It is a multifactorial disease involving a wide range of pathological factors that are not fully understood. As supported by a growing amount of evidence in recent years, the gut microbiota plays an important role in the pathogenesis of Alzheimer's disease through the brain-gut-microbiota axis. This suggests that direct modulation of the gut microbiota can be a potential therapeutic target for Alzheimer's disease. This review summarizes recent research findings on the modulation of the gut microbiota by probiotic therapies and faecal microbiota transplantation for controlling the pathologies of Alzheimer's disease. Current limitations and future research directions of this field are also discussed.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| |
Collapse
|
27
|
Iqbal Z, Ahmed S, Tabassum N, Bhattacharya R, Bose D. Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. 3 Biotech 2021; 11:242. [PMID: 33968585 PMCID: PMC8079594 DOI: 10.1007/s13205-021-02796-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Microorganisms that inhabits human digestive tract affect global health and enteric disorders. Previous studies have documented the effectiveness and mode of action of probiotics and classified as human-friendly biota and a competitor to enteric pathogens. Statistical studies reported more than 1.5 billion cases of gastrointestinal infections caused by enteric pathogens and their long-term exposure can lead to mental retardation, temporary or permanent physical weakness, and leaving the patient susceptible for opportunistic pathogens, which can cause fatality. We reviewed previous literature providing evidence about therapeutic approaches regarding probiotics to cure enteric infections efficiently by producing inhibitory substances, immune system modulation, improved barrier function. The therapeutic effects of probiotics have shown success against many foodborne pathogens and their therapeutic effectiveness has been exponentially increased using genetically engineered probiotics. The bioengineered probiotic strains are expected to provide a better and alternative approach than traditional antibiotic therapy against enteric pathogens, but the novelty of these strains also raise doubts about the possible untapped side effects, for which there is a need for further studies to eliminate the concerns relating to the use and safety of probiotics. Many such developments and optimization of the classical techniques will revolutionize the treatments for enteric infections.
Collapse
Affiliation(s)
- Zunaira Iqbal
- Department of Microbiology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Shahzaib Ahmed
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Natasha Tabassum
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| | - Debajyoti Bose
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| |
Collapse
|
28
|
Ryan VE, Bailey TW, Liu D, Vemulapalli T, Cooper B, Cox AD, Bhunia AK. Listeria adhesion protein-expressing bioengineered probiotics prevent fetoplacental transmission of Listeria monocytogenes in a pregnant Guinea pig model. Microb Pathog 2021; 151:104752. [PMID: 33484805 DOI: 10.1016/j.micpath.2021.104752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pregnancy is a high-risk factor for foodborne pathogen Listeria monocytogenes (Lm), which causes abortion, premature birth, or stillbirth. The primary route of Lm transmission is oral hence intestinal epithelial barrier crossing is a prerequisite for systemic spread. Intestinal barrier crossing, in part, is attributed to the interaction of Listeria adhesion protein (LAP) with its cognate receptor, Hsp60. In a recent study, we showed that oral-dosing of bioengineered Lactobacillus caseiprobiotic (BLP) expressing the LAP protected nonpregnant mice from lethal infection; however, its ability to prevent listeriosis during pregnancy is not known. Therefore, we investigated whether BLP could prevent fetoplacental transmission of Lm in a pregnant guinea pig model. After 14 consecutive days on probiotic (~109 CFU/ml in drinking water), pregnant guinea pigs (gestational days 24-28) were orally challenged with Lm (9 × 108-2.5 × 109 CFU/animal) and were euthanized 72 h post-infection. Maternal mesenteric lymph node (MLN), liver, spleen, lungs, blood, and placenta, and fetal liver were analyzed for the presence/absence of Lm. All tissues/organs from Lm-challenged naïve dams and fetuses were Lm positive. Similar tissue distribution was also seen in guinea pigs that received wild-type Lactobacillus casei (LbcWT). Remarkably, Lm was absent in the maternal blood, kidney, lungs, and placenta, and fetal liver from the BLP-fed group even though the Lm was present in the maternal liver, spleen, and MLN. BLP feeding also suppressed Lm-induced inflammatory response in mothers. These data highlight the potential for the prevention of fetoplacental transmission of Lm by LAP-expressing BLP during pregnancy.
Collapse
Affiliation(s)
- Valerie E Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA
| | - Tracy Vemulapalli
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Bruce Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
29
|
Liu J, Liu C, Yue J. Radiotherapy and the gut microbiome: facts and fiction. Radiat Oncol 2021; 16:9. [PMID: 33436010 PMCID: PMC7805150 DOI: 10.1186/s13014-020-01735-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
An ever-growing body of evidence has linked the gut microbiome with both the effectiveness and the toxicity of cancer therapies. Radiotherapy is an effective way to treat tumors, although large variations exist among patients in tumor radio-responsiveness and in the incidence and severity of radiotherapy-induced side effects. Relatively little is known about whether and how the microbiome regulates the response to radiotherapy. Gut microbiota may be an important player in modulating "hot" versus "cold" tumor microenvironment, ultimately affecting treatment efficacy. The interaction of the gut microbiome and radiotherapy is a bidirectional function, in that radiotherapy can disrupt the microbiome and those disruptions can influence the effectiveness of the anticancer treatments. Limited data have shown that interactions between the radiation and the microbiome can have positive effects on oncotherapy. On the other hand, exposure to ionizing radiation leads to changes in the gut microbiome that contribute to radiation enteropathy. The gut microbiome can influence radiation-induced gastrointestinal mucositis through two mechanisms including translocation and dysbiosis. We propose that the gut microbiome can be modified to maximize the response to treatment and minimize adverse effects through the use of personalized probiotics, prebiotics, or fecal microbial transplantation. 16S rRNA sequencing is the most commonly used approach to investigate distribution and diversity of gut microbiome between individuals though it only identifies bacteria level other than strain level. The functional gut microbiome can be studied using methods involving metagenomics, metatranscriptomics, metaproteomics, as well as metabolomics. Multiple '-omic' approaches can be applied simultaneously to the same sample to obtain integrated results. That said, challenges and remaining unknowns in the future that persist at this time include the mechanisms by which the gut microbiome affects radiosensitivity, interactions between the gut microbiome and combination treatments, the role of the gut microbiome with regard to predictive and prognostic biomarkers, the need for multi "-omic" approach for in-depth exploration of functional changes and their effects on host-microbiome interactions, and interactions between gut microbiome, microbial metabolites and immune microenvironment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
30
|
Drolia R, Amalaradjou MAR, Ryan V, Tenguria S, Liu D, Bai X, Xu L, Singh AK, Cox AD, Bernal-Crespo V, Schaber JA, Applegate BM, Vemulapalli R, Bhunia AK. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun 2020; 11:6344. [PMID: 33311493 PMCID: PMC7732855 DOI: 10.1038/s41467-020-20200-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Probiotic bacteria reduce the intestinal colonization of pathogens. Yet, their use in preventing fatal infection caused by foodborne Listeria monocytogenes (Lm), is inconsistent. Here, we bioengineered Lactobacillus probiotics (BLP) to express the Listeria adhesion protein (LAP) from a non-pathogenic Listeria (L. innocua) and a pathogenic Listeria (Lm) on the surface of Lactobacillus casei. The BLP strains colonize the intestine, reduce Lm mucosal colonization and systemic dissemination, and protect mice from lethal infection. The BLP competitively excludes Lm by occupying the surface presented LAP receptor, heat shock protein 60 and ameliorates the Lm-induced intestinal barrier dysfunction by blocking the nuclear factor-κB and myosin light chain kinase-mediated redistribution of the major epithelial junctional proteins. Additionally, the BLP increases intestinal immunomodulatory functions by recruiting FOXP3+T cells, CD11c+ dendritic cells and natural killer cells. Engineering a probiotic strain with an adhesion protein from a non-pathogenic bacterium provides a new paradigm to exclude pathogens and amplify their inherent health benefits.
Collapse
Affiliation(s)
- Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Mary Anne Roshni Amalaradjou
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Valerie Ryan
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Atul K Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Victor Bernal-Crespo
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - James A Schaber
- Bindley Bioscience Research Center, Purdue University, West Lafayette, IN, USA
| | - Bruce M Applegate
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
31
|
Challenges & opportunities for phage-based in situ microbiome engineering in the gut. J Control Release 2020; 326:106-119. [DOI: 10.1016/j.jconrel.2020.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
|
32
|
Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr Opin Biotechnol 2020; 65:171-179. [DOI: 10.1016/j.copbio.2020.02.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
|
33
|
Postbiotics and paraprobiotics: From concepts to applications. Food Res Int 2020; 136:109502. [PMID: 32846581 DOI: 10.1016/j.foodres.2020.109502] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been used to describe non-viable microorganisms or bacterial-free extracts that may provide benefits to the host by offering bioactivities additional to probiotics. However, several aspects related to these postbiotics and paraprobiotics bioactivities remain unexplored or are poorly understood. Therefore, the aim of this work is to provide an overview of the general aspects and emerging trends of postbiotics and paraprobiotics, such as conceptualization of terms, production, characterization, bioactivities, health-promoting effects, bioengineering approaches, and applications. In vitro and in vivo studies have demonstrated that some postbiotics and paraprobiotics exhibit bioactivities such as anti-inflammatory, immunomodulatory, anti-proliferative, antioxidant, and antimicrobial. These bioactivities could be involved in health-promoting effects observed in human and clinical trials, but despite the scientific evidence available, the mechanisms of action and the signaling pathways involved have not been fully elucidated. Nevertheless, paraprobiotics and postbiotics possess valuable potential for the development of biotechnological products with functional ingredients for the nutraceutical industry.
Collapse
|
34
|
Senapati S, Dash J, Sethi M, Chakraborty S. Bioengineered probiotics to control SARS-CoV-2 infection. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e54802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The outbreak of 2019 novel corona virus disease (COVID-19) is now a global public health crisis and declared as a pandemic. Several recent studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to human angiotensin-converting enzyme 2 (ACE2). The information obtained from these structural and biochemical studies provides a strong rationale to target SARS-CoV-2 spike protein and ACE2 interaction for developing therapeutics against this viral infection. Here, we propose to discuss the scope of bioengineered probiotics expressing human ACE2 as a novel therapeutic to control the viral outbreak.
Collapse
|
35
|
Yadav M, Shukla P. Recent systems biology approaches for probiotics use in health aspects: a review. 3 Biotech 2019; 9:448. [PMID: 31763126 PMCID: PMC6848287 DOI: 10.1007/s13205-019-1980-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The market of probiotics is growing dynamically for the food and supplements, which provides better health to an individual. Probiotics are used as dietary management for diseases, but it varies between regions and persons. Systems biology can help in resolving the strain specificity of probiotics by studying their genome level organization. In this review, we have compiled facets of systems biology and next-generation omics methods such as metagenomics, proteomics and metabolomics. These tools are crucial for the optimization of the metabolic processes in probiotics and hence, their use for human health. The limitations and challenges associated with the development of probiotics involve their stability and function in different individuals. Systems biology facilitates emerging metabolic engineering approaches to improve probiotics strain for their broader application. This review provides comprehensive and updated knowledge of engineered probiotics as therapeutics and various challenges in the development of engineered probiotics.
Collapse
Affiliation(s)
- Monika Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
36
|
Sireswar S, Ghosh I, Dey G. First and second generation probiotic therapeutics for Inflammatory Bowel Disease. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Synthetic biology applied in the agrifood sector: Public perceptions, attitudes and implications for future studies. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Bhattacharya A, Toro Díaz VC, Morran LT, Bashey F. Evolution of increased virulence is associated with decreased spite in the insect-pathogenic bacterium Xenorhabdus nematophila. Biol Lett 2019; 15:20190432. [PMID: 31455168 DOI: 10.1098/rsbl.2019.0432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Disease virulence may be strongly influenced by social interactions among pathogens, both during the time course of an infection and evolutionarily. Here, we examine how spiteful bacteriocin production in the insect-pathogenic bacterium Xenorhabdus nematophila is evolutionarily linked to its virulence. We expected a negative correlation between virulence and spite owing to their inverse correlations with growth. We examined bacteriocin production and growth across 14 experimentally evolved lineages that show faster host-killing relative to their ancestral population. Consistent with expectations, these more virulent lineages showed reduced bacteriocin production and faster growth relative to the ancestor. Further, bacteriocin production was negatively correlated with growth across the examined lineages. These results strongly support an evolutionary trade-off between virulence and bacteriocin production and lend credence to the view that disease management can be improved by exploiting pathogen social interactions.
Collapse
Affiliation(s)
- Amrita Bhattacharya
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN, USA
| | - Valeria C Toro Díaz
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN, USA
| | - Levi T Morran
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA, USA
| | - Farrah Bashey
- Department of Biology, Indiana University Bloomington, 1001 E 3rd Street, Bloomington, IN, USA
| |
Collapse
|
39
|
Mathipa MG, Bhunia AK, Thantsha MS. Internalin AB-expressing recombinant Lactobacillus casei protects Caco-2 cells from Listeria monocytogenes-induced damages under simulated intestinal conditions. PLoS One 2019; 14:e0220321. [PMID: 31356632 PMCID: PMC6663025 DOI: 10.1371/journal.pone.0220321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background Listeria monocytogenes is an intracellular foodborne pathogen that employs a number of strategies to survive challenging gastrointestinal conditions. It proliferates in the gut and subsequently causes listeriosis in high-risk individuals. Therefore, inhibition of its adherence to the intestinal receptors is crucial in controlling its infection. In this study, the effect of our previously developed recombinant Lactobacillus casei strain expressing invasion protein, Internalin AB of L. monocytogenes (LbcInlAB) on epithelial infection processes of the latter under simulated intestinal conditions was investigated. Materials and methods The confluent Caco-2 cell monolayer was pre-exposed to different L. casei strains at a multiplicity of exposure (MOE) of 10 for various periods before infection with L. monocytogenes at a multiplicity of infection (MOI) of 10 under simulated intestinal conditions. Subsequently, L. monocytogenes adhesion, invasion, and translocation, cytotoxicity and impact on tight junction integrity of the Caco-2 cells were analyzed. Results Under the simulated gastrointestinal condition, LbcInlAB showed a significant increase (p<0.0001) in adherence to, invasion and translocation through the Caco-2 cells when compared with the wild type strain. Although LbcInlAB strain exhibited enhanced inhibition of L. monocytogenes, it was not able to displace L. monocytogenes cells already attached to the monolayer. Additionally, pre-exposure to LbcInlAB reduced L. monocytogenes-mediated cytotoxicity and protected the tight junction barrier function. Conclusion The recombinant L. casei expressing InlAB shows potential for use as a prophylactic intervention strategy for targeted control of L. monocytogenes during the intestinal phase of infection.
Collapse
Affiliation(s)
- Moloko G. Mathipa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Mapitsi S. Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
40
|
Shoukat S, Aslam MZ, Rehman A, Zhang B. Screening of
Bifidobacterium
strains to bind with Benzo[a]pyrene under food stress factors and the mechanism of the process. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sana Shoukat
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Muhammad Zohaib Aslam
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Abdul Rehman
- School of Mathematics and Physics University of Science and Technology Beijing Beijing China
| | - Bolin Zhang
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
- Key Laboratory of Forest Food Processing and Safety Beijing China
| |
Collapse
|
41
|
Bhattacharya A, Stacy A, Bashey F. Suppression of bacteriocin resistance using live, heterospecific competitors. Evol Appl 2019; 12:1191-1200. [PMID: 31293631 PMCID: PMC6597863 DOI: 10.1111/eva.12797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Rapidly spreading antibiotic resistance has led to the need for novel alternatives and sustainable strategies for antimicrobial use. Bacteriocins are a class of proteinaceous anticompetitor toxins under consideration as novel therapeutic agents. However, bacteriocins, like other antimicrobial agents, are susceptible to resistance evolution and will require the development of sustainable strategies to prevent or decelerate the evolution of resistance. Here, we conduct proof-of-concept experiments to test whether introducing a live, heterospecific competitor along with a bacteriocin dose can effectively suppress the emergence of bacteriocin resistance in vitro. Previous work with conventional chemotherapeutic agents suggests that competition between conspecific sensitive and resistant pathogenic cells can effectively suppress the emergence of resistance in pathogenic populations. However, the threshold of sensitive cells required for such competitive suppression of resistance may often be too high to maintain host health. Therefore, here we aim to ask whether the principle of competitive suppression can be effective if a heterospecific competitor is used. Our results show that a live competitor introduced in conjunction with low bacteriocin dose can effectively control resistance and suppress sensitive cells. Further, this efficacy can be matched by using a bacteriocin-producing competitor without any additional bacteriocin. These results provide strong proof of concept for the effectiveness of competitive suppression using live, heterospecific competitors. Currently used probiotic strains or commensals may provide promising candidates for the therapeutic use of bacteriocin-mediated competitive suppression.
Collapse
Affiliation(s)
| | | | - Farrah Bashey
- Department of BiologyIndiana UniversityBloomingtonIndiana
| |
Collapse
|
42
|
Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr Opin Biotechnol 2019; 56:163-171. [DOI: 10.1016/j.copbio.2018.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
|
43
|
|
44
|
Basson AR, Lam M, Cominelli F. Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterol Clin North Am 2017; 46:689-729. [PMID: 29173517 PMCID: PMC5909826 DOI: 10.1016/j.gtc.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential.
Collapse
Affiliation(s)
- Abigail R Basson
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Minh Lam
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
45
|
Arora AK, Douglas AE. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:10-17. [PMID: 28974456 DOI: 10.1016/j.jinsphys.2017.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment.
Collapse
Affiliation(s)
- Arinder K Arora
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|