1
|
Medeiros IPM, Lopes FC, Souza MM. Between shells and seas: Effects of ocean acidification on calcification and osmoregulation in yellow clam (Amarilladesma mactroides). MARINE ENVIRONMENTAL RESEARCH 2025; 207:107083. [PMID: 40085980 DOI: 10.1016/j.marenvres.2025.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The decline in ocean pH due to rising CO2 levels is a critical factor impacting marine ecosystems. Ocean acidification (OA) is expected to negatively affect various organisms, particularly those with mineralized structures. While the effects of OA on the calcification of shells and exoskeletons are documented, the impact on homeostatic processes, such as osmoregulation, is less understood. Osmoregulation is vital for maintaining water and salt balance within marine organisms, crucial for their survival and physiological functions. Acidification may alter ion exchange mechanisms, affecting the regulation of ions. In this study, we evaluated the effects of intermediate OA (pH 7.6) with or without hypersaline stress (35‰) on calcification and osmotic balance biomarkers in the bivalve Amarilladesma mactroides after 96h of acute exposure. We found that pH did not affect hemolymph osmolality or extracellular Ca2+ concentration. However, OA impaired the bivalve's ability to maintain its mineralized structures by decreasing Ca2+-ATPase enzyme activity in the mantle. The increase in carbonic anhydrase activity indicated a specific response to maintain acid-base balance in the tissue, i.e., compensating for the effects of acidification by neutralizing CO2 accumulation and stabilizing internal pH. In the gills, both enzymes showed increased performance under higher salinity and reduced pH. Exposure to less alkaline pH inhibited carbonic anhydrase and Na+/K+-ATPase activity, potentially affecting the regulation of essential inorganic osmolytes.
Collapse
Affiliation(s)
- Isadora Porto Martins Medeiros
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, FURG, Rio Grande, Rio Grande do Sul, Brazil.
| | - Fernanda Chaves Lopes
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, FURG, Rio Grande, Rio Grande do Sul, Brazil; Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Marta Marques Souza
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, FURG, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Tian Y, Zhang P, Huang H, Lei L, Galindo Torres SA, Li L. Internal hydrodynamics within the skeleton of Acropora pulchra coral. iScience 2025; 28:111742. [PMID: 39925420 PMCID: PMC11804786 DOI: 10.1016/j.isci.2025.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/06/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Many marine life forms, like Acropora coral, develop abiotic components to host and support the growth of living organisms. Using numerical models based on real coral samples reconstructed from micro-computed tomography (CT) scan images, we simulated internal flows inside the skeletons of Acropora pulchra coral under the influence of ambient ocean currents. The results showed that the coral's skeletal structure, with specially connected pore space, leads to the flow and material transport within and through the skeleton to assist the coral growth and stability. However, under intensified ocean acidification, the skeletal internal flow may induce the dissolution of aragonite inside the skeleton and weaken the whole coral structure.
Collapse
Affiliation(s)
- Yanmei Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- School of Engineering, Westlake University, Hangzhou 310024, China
| | - Pei Zhang
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Science, Sanya 572000, China
| | - Liang Lei
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| | - Sergio Andres Galindo Torres
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, Westlake University Hangzhou 310024, China
| |
Collapse
|
3
|
Castro MS, Guimarães PS, Barbosa FG, Schneck F, Martins CDMG. Impacts of warming and acidification on pesticide toxicity in continental aquatic environments: A scientometric and systematic map. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125384. [PMID: 39586451 DOI: 10.1016/j.envpol.2024.125384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Carbon dioxide emissions are altering aquatic ecosystems by causing water acidification and temperature increases, and these environments are also facing pesticide contamination. We present a scientometric and systematic map of these impacts in continental aquatic environments, aiming to provide an overview of research investigating the effects of temperature and acidification on pesticide toxicity. Our findings reveal a significant increase in research output on this topic, especially over the past seven years, with the United States leading due to high pesticide use and rigorous environmental monitoring. International collaborations remain low. High-impact journal publications underscore the importance of this topic. The primary focus is on temperature-pesticide interactions, highlighting the need for studies on pesticide-acidification interactions driven by climate change. The most studied class of pesticides is insecticides, particularly chlorpyrifos. Animals such as fish and crustaceans are the most frequently used organisms in ecotoxicological tests, indicating the need for broader assessments of impacts on other aquatic groups. Synergistic effects in interactions were prevalent, stressing the importance of an integrated approach in considering the interplay between temperature, pH, and pesticides. The information presented in this study directs and encourages studies in areas that have not yet addressed this topic.
Collapse
Affiliation(s)
- Muryllo Santos Castro
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Fabiana Gonçalves Barbosa
- MBA em Ciência de Dados, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Fabiana Schneck
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Camila De Martinez Gaspar Martins
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
4
|
Norzagaray-López CO, Calderón-Aguilera LE, Hernández-Ayón JM, Gómez-Hernández G. Bioerosion of Porites coral by Lithophaga bivalve in the eastern tropical Pacific: Interactive effects in an island reef. MARINE POLLUTION BULLETIN 2024; 209:117154. [PMID: 39471721 DOI: 10.1016/j.marpolbul.2024.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
Coral reefs are maintained by a balance between formation (calcifiers) and destructive processes (dissolution and erosion). In eastern tropical Pacific reefs, Porites genus is the second-largest contributor to CaCO3 production, but is affected by bioerosion. In this study, we evaluate the interaction between Lithophaga and Porites in an island reef in the Mexican Pacific by quantifying bioerosion rate, its impact on CaCO3 production, and contrasting growth models. To achieve this, Porites lobata colonies were collected to evaluate calcification and CaCO3 production. Shells of Lithophaga (Leiosolenus plumula) were extracted from corals, and age and length fed into a growth model. Our results indicate a high bioerosion rate (21.9 ± 4.1 %), representing 8.3 % of overall CaCO3 production. Bivalves' age (8 y) was less than corals (12.6 y), and cohort analysis indicates an intense recruitment. We associate this with high productivity derived from the island's oceanography, promoting nutrient enrichment, a plausible scenario for reefs under eutrophication conditions.
Collapse
Affiliation(s)
- Carlos Orión Norzagaray-López
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, Ensenada 22860, Mexico
| | - Luis Eduardo Calderón-Aguilera
- Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana 3918, Ensenada 22860, Mexico.
| | - José Martín Hernández-Ayón
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, Ensenada 22860, Mexico
| | - Guadalupe Gómez-Hernández
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, Ensenada 22860, Mexico
| |
Collapse
|
5
|
Schubert N, Tuya F, Peña V, Horta PA, Salazar VW, Neves P, Ribeiro C, Otero-Ferrer F, Espino F, Schoenrock K, Ragazzola F, Olivé I, Giaccone T, Nannini M, Mangano MC, Sará G, Mancuso FP, Tantillo MF, Bosch-Belmar M, Martin S, Le Gall L, Santos R, Silva J. "Pink power"-the importance of coralline algal beds in the oceanic carbon cycle. Nat Commun 2024; 15:8282. [PMID: 39333525 PMCID: PMC11436964 DOI: 10.1038/s41467-024-52697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Current evidence suggests that macroalgal-dominated habitats are important contributors to the oceanic carbon cycle, though the role of those formed by calcifiers remains controversial. Globally distributed coralline algal beds, built by pink coloured rhodoliths and maerl, cover extensive coastal shelf areas of the planet, but scarce information on their productivity, net carbon flux dynamics and carbonate deposits hampers assessing their contribution to the overall oceanic carbon cycle. Here, our data, covering large bathymetrical (2-51 m) and geographical ranges (53°N-27°S), show that coralline algal beds are highly productive habitats that can express substantial carbon uptake rates (28-1347 g C m-2 day-1), which vary in function of light availability and species composition and exceed reported estimates for other major macroalgal habitats. This high productivity, together with their substantial carbonate deposits (0.4-38 kilotons), renders coralline algal beds as highly relevant contributors to the present and future oceanic carbon cycle.
Collapse
Affiliation(s)
- Nadine Schubert
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Telde, Spain
| | - Viviana Peña
- BioCost Research Group, Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Paulo A Horta
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Vinícius W Salazar
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, Brazil
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, Australia
| | - Pedro Neves
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação (OOM/ ARDITI), Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal
| | - Cláudia Ribeiro
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
- IFCN-Instituto das Florestas e Conservação da Natureza, IP-RAM, Madeira, Funchal, Portugal
| | - Francisco Otero-Ferrer
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Telde, Spain
- Asociación Biodiversidad Atlántica y Sostenibilidad (ABAS), Telde, Spain
| | - Fernando Espino
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Telde, Spain
| | - Kathryn Schoenrock
- Department of Zoology, School of Natural Sciences, The Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Federica Ragazzola
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Genoa Marine Centre, Genova, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Irene Olivé
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Thalassia Giaccone
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Department of Integrative Marine Ecology (EMI), Anton Dohrn Zoological Station, Sicily Marine Centre, Messina, Italy
| | - Matteo Nannini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Genoa Marine Centre, Genova, Italy
| | - M Cristina Mangano
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Sicily Marine Centre Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy
| | - Gianluca Sará
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Francesco Paolo Mancuso
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Mario Francesco Tantillo
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Mar Bosch-Belmar
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Sophie Martin
- UMR 7144 Adaptation et Diversité en Milieu Marin, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Line Le Gall
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Rui Santos
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - João Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
6
|
Thangal SH, Muralisankar T, Mohan K, Santhanam P, Venmathi Maran BA. Biological and physiological responses of marine crabs to ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 248:118238. [PMID: 38262516 DOI: 10.1016/j.envres.2024.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Marine crabs play an integral role in the food chain and scavenge the debris in the ecosystem. Gradual increases in global atmospheric carbon dioxide cause ocean acidification (OA) and global warming that leads to severe consequences for marine organisms including crabs. Also, OA combined with other stressors like temperature, hypoxia, and heavy metals causes more severe adverse effects in marine crabs. The present review was made holistic discussion of information from 111 articles, of which 37 peer-reviewed original research papers reported on the effect of OA experiments and its combination with other stressors like heavy metals, temperature, and hypoxia on growth, survival, molting, chitin quality, food indices, tissue biochemical constituents, hemocytes population, and biomarker enzymes of marine crabs. Nevertheless, the available reports are still in the infancy of marine crabs, hence, this review depicts the possible gaps and future research needs on the impact of OA on marine crabs.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore-641046, Tamil Nadu, India
| | | | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Perumal Santhanam
- Marine Planktonology& Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Balu Alagar Venmathi Maran
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, 852-8521, Japan
| |
Collapse
|
7
|
Dalpadado P, Roxy MK, Arrigo KR, van Dijken GL, Chierici M, Ostrowski M, Skern-Mauritzen R, Bakke G, Richardson AJ, Sperfeld E. Rapid climate change alters the environment and biological production of the Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167342. [PMID: 37758130 DOI: 10.1016/j.scitotenv.2023.167342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
We synthesize and review the impacts of climate change on the physical, chemical, and biological environments of the Indian Ocean and discuss mitigating actions and knowledge gaps. The most recent climate scenarios identify with high certainty that the Indian Ocean (IO) is experiencing one of the fastest surface warming among the world's oceans. The area of surface waters of >28 °C (IO Warm Pool) has significantly increased during 1982-2021 by expanding into the northern-central basins. A significant decrease in pH and aragonite (building blocks of calcified organisms) levels in the IO was observed from 1981-2020 due to an increase in atmospheric CO2 concentrations. There are also signals of decreasing trends in primary productivity in the north, likely related to enhanced stratification and nutrient depletion. Further, the rapid warming of the IO will manifest more extreme weather conditions along its adjacent continents and oceans, including marine heat waves that are likely to reshape biodiversity. However, the impact of climate change beyond the unprecedented warming, increase in marine heat waves, expansion of the IO Warm Pool, and decrease in pH, remains uncertain for many other key variables in the IO including changes in salinity, oxygen, and net primary production. Understanding the response of these physical, chemical, and biological variables to climate change is vital to project future changes in regional fisheries and identify mitigation actions. We accordingly conclude by identifying knowledge gaps and recommending directions for sustainable fisheries and climate impact studies.
Collapse
Affiliation(s)
| | - Mathew Koll Roxy
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Kevin R Arrigo
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | - Gert L van Dijken
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | | | - Marek Ostrowski
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | | | - Gunnstein Bakke
- Directorate of Fisheries, Strandgaten 229, 5804 Bergen, Norway
| | - Anthony J Richardson
- School of the Environment, University of Queensland, St. Lucia, 4072, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, 4067, Queensland, Australia
| | - Erik Sperfeld
- Animal Ecology, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| |
Collapse
|
8
|
Jafari F, Naeemi AS, Sohani MM, Noorinezhad M. Effect of elevated temperature, sea water acidification, and phenanthrene on the expression of genes involved in the shell and pearl formation of economic pearl oyster (Pinctada radiata). MARINE POLLUTION BULLETIN 2023; 196:115603. [PMID: 37793272 DOI: 10.1016/j.marpolbul.2023.115603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Our study aims to examine the effect of some stressors on the gene expression levels of shell matrix proteins in a pearl oyster. Oysters were exposed to the different combinations of the temperature, pH, and phenanthrene concentration is currently measured in the Persian Gulf and the predicted ocean warming and acidification for 28 days. The expression of all the studied genes was significantly downregulated. Time and temperature had the greatest effects on the decreases in n19 and n16 genes expression, respectively. Aspein and msi60 genes expression were highly influenced by pH. Pearlin was affected by double interaction temperature and phenanthrene. Moreover, a correlation was observed among the expression levels of studied genes. This study represents basic data on the relationship between mRNA transcription genes involved in the shell and pearl formation and climate changes in pollutant presence conditions and acclimatizing mechanism of the oyster to the future scenario as well.
Collapse
Affiliation(s)
- Fatemeh Jafari
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran
| | - Akram Sadat Naeemi
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran.
| | - Mohammad Mehdi Sohani
- University of Guilan, Faculty of Agricultural Sciences, Department of Biotechnology, Rasht, Iran
| | - Mohsen Noorinezhad
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| |
Collapse
|
9
|
Pandion K, Dowlath MJH, Arunachalam KD, Abd-Elkader OH, Yadav KK, Nazir N, Rajagopal R, Mani RR, Jones S, Chang SW, Ravindran B. Seasonal influence on physicochemical properties of the sediments from Bay of Bengal coast with statistical approach. ENVIRONMENTAL RESEARCH 2023; 235:116611. [PMID: 37437863 DOI: 10.1016/j.envres.2023.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The current study aims to investigate the influence of seasonal changes on the pollution loads of the sediment of a coastal area in terms of its physicochemical features. The research will focus on analyzing the nutrients, organic carbon and particle size of the sediment samples collected from 12 different sampling stations in 3 different seasons along the coastal area. Additionally, the study discusses about the impact of anthropogenic activities such as agriculture and urbanization and natural activities such as monsoon on the sediment quality of the coastal area. The nutrient changes in the sediment were found to be: pH (7.96-9.45), EC (2.89-5.23 dS/m), nitrogen (23.98-57.23 mg/kg), phosphorus (7.75-11.36 mg/kg), potassium (217-398 mg/kg), overall organic carbon (0.35-0.99%), and sediment proportions (8.91-9.3%). Several statistical methods were used to investigate changes in sediment quality. According to the three-way ANOVA test, the mean value of the sediments differs significantly with each season. It correlates significantly with principal factor analysis and cluster analysis across seasons, implying contamination from both natural and man-made sources. This study will contribute to developing effective management strategies for the protection and restoration of degraded coastal ecosystem.
Collapse
Affiliation(s)
- Kumar Pandion
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Chengelpattu, Tamil Nadu, India
| | - Mohammed Junaid Hussain Dowlath
- Department of Anatomy, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Chengelpattu, Tamil Nadu, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Chengelpattu, Tamil Nadu, India; Dean, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, 360 003, India.
| | - Omar H Abd-Elkader
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Nusrat Nazir
- College of Earth Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Taman Connaught, 56000, Kuala Lumpur, Malaysia
| | - Sumathi Jones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai, 600 100, India
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
10
|
Medellín-Maldonado F, Cruz-Ortega I, Pérez-Cervantes E, Norzogaray-López O, Carricart-Ganivet JP, López-Pérez A, Alvarez-Filip L. Newly deceased Caribbean reef-building corals experience rapid carbonate loss and colonization by endolithic organisms. Commun Biol 2023; 6:934. [PMID: 37699971 PMCID: PMC10497637 DOI: 10.1038/s42003-023-05301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Coral mortality triggers the loss of carbonates fixed within coral skeletons, compromising the reef matrix. Here, we estimate rates of carbonate loss in newly deceased colonies of four Caribbean reef-building corals. We use samples from living and recently deceased colonies following a stony coral tissue loss disease (SCTLD) outbreak. Optical densitometry and porosity analyses reveal a loss of up to 40% of the calcium carbonate (CaCO3) content in dead colonies. The metabolic activity of the endolithic organisms colonizing the dead skeletons is likely partially responsible for the observed dissolution. To test for the consequences of mass mortality events over larger spatial scales, we integrate our estimates of carbonate loss with field data of the composition and size structure of coral communities. The dissolution rate depends on the relative abundance of coral species and the structural properties of their skeletons, yet we estimate an average reduction of 1.33 kg CaCO3 m-2, nearly 7% of the total amount of CaCO3 sequestered in the entire system. Our findings highlight the importance of including biological and chemical processes of CaCO3 dissolution in reef carbonate budgets, particularly as the impacts of global warming, ocean acidification, and disease likely enhance dissolution processes.
Collapse
Affiliation(s)
- Francisco Medellín-Maldonado
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico.
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico.
- Laboratorio de Arrecifes y Biodiversidad, Universidad Autónoma Metropolitana, 09340, Ciudad de México, Mexico.
| | - Israel Cruz-Ortega
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| | - Esmeralda Pérez-Cervantes
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Orion Norzogaray-López
- Instituto de Investigaciones Oceanológicas y Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, 22860, Ensenada, BC, Mexico
| | - Juan P Carricart-Ganivet
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| | - Andrés López-Pérez
- Laboratorio de Arrecifes y Biodiversidad, Universidad Autónoma Metropolitana, 09340, Ciudad de México, Mexico
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| |
Collapse
|
11
|
Tan CD, Hähner G, Fitzer S, Cole C, Finch AA, Hintz C, Hintz K, Allison N. The response of coral skeletal nano structure and hardness to ocean acidification conditions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230248. [PMID: 37538739 PMCID: PMC10394408 DOI: 10.1098/rsos.230248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Ocean acidification typically reduces coral calcification rates and can fundamentally alter skeletal morphology. We use atomic force microscopy (AFM) and microindentation to determine how seawater pCO2 affects skeletal structure and Vickers hardness in a Porites lutea coral. At 400 µatm, the skeletal fasciculi are composed of tightly packed bundles of acicular crystals composed of quadrilateral nanograins, approximately 80-300 nm in dimensions. We interpret high adhesion at the nanograin edges as an organic coating. At 750 µatm the crystals are less regular in width and orientation and composed of either smaller/more rounded nanograins than observed at 400 µatm or of larger areas with little variation in adhesion. Coral aragonite may form via ion-by-ion attachment to the existing skeleton or via conversion of amorphous calcium carbonate precursors. Changes in nanoparticle morphology could reflect variations in the sizes of nanoparticles produced by each crystallization pathway or in the contributions of each pathway to biomineralization. We observe no significant variation in Vickers hardness between skeletons cultured at different seawater pCO2. Either the nanograin size does not affect skeletal hardness or the effect is offset by other changes in the skeleton, e.g. increases in skeletal organic material as reported in previous studies.
Collapse
Affiliation(s)
- Chao Dun Tan
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Georg Hähner
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Susan Fitzer
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Catherine Cole
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Adrian A. Finch
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Chris Hintz
- Department of Marine and Environmental Sciences, Savannah State University, Savannah, GA USA
| | - Ken Hintz
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
| | - Nicola Allison
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| |
Collapse
|
12
|
Ribeiro B, Lima C, Pereira SE, Peixoto R, Klautau M. Calcareous sponges can synthesize their skeleton under short-term ocean acidification. Sci Rep 2023; 13:6776. [PMID: 37185292 PMCID: PMC10130156 DOI: 10.1038/s41598-023-33611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Calcifying organisms are considered as threatened by ocean acidification, because of their calcium carbonate skeleton. This study investigated if a calcareous sponge could synthesize its skeleton (i.e. spicules) under ocean-acidification conditions. Sponge cell aggregates that have the potential to develop into a functional sponge, called primmorphs, were submitted to a 5-day experiment, with two treatments: control (pH 8.1) and acidified conditions (pH 7.6). Primmorphs of the calcareous sponge Paraleucilla magna were able to synthesize a skeleton, even under low pH, and to develop into functional sponges. The spicules had the same shape in both conditions, although the spicules synthesized in low pH were slightly thinner than those in the control. These results suggest that P. magna may be able to survive near-future ocean-acidification conditions.
Collapse
Affiliation(s)
- Bárbara Ribeiro
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Carolina Lima
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Sara Emilly Pereira
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil
| | - Raquel Peixoto
- Biological and Environmental Science and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Michelle Klautau
- TaxoN Laboratory, Zoology Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-599, Brazil.
| |
Collapse
|
13
|
Nelson CE, Wegley Kelly L, Haas AF. Microbial Interactions with Dissolved Organic Matter Are Central to Coral Reef Ecosystem Function and Resilience. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:431-460. [PMID: 36100218 DOI: 10.1146/annurev-marine-042121-080917] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To thrive in nutrient-poor waters, coral reefs must retain and recycle materials efficiently. This review centers microbial processes in facilitating the persistence and stability of coral reefs, specifically the role of these processes in transforming and recycling the dissolved organic matter (DOM) that acts as an invisible currency in reef production, nutrient exchange, and organismal interactions. The defining characteristics of coral reefs, including high productivity, balanced metabolism, high biodiversity, nutrient retention, and structural complexity, are inextricably linked to microbial processing of DOM. The composition of microbes and DOM in reefs is summarized, and the spatial and temporal dynamics of biogeochemical processes carried out by microorganisms in diverse reef habitats are explored in a variety of key reef processes, including decomposition, accretion, trophictransfer, and macronutrient recycling. Finally, we examine how widespread habitat degradation of reefs is altering these important microbe-DOM interactions, creating feedbacks that reduce reef resilience to global change.
Collapse
Affiliation(s)
- Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, and Sea Grant College Program, School of Ocean and Earth Sciences and Technology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA;
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA;
| | - Andreas F Haas
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands;
| |
Collapse
|
14
|
Morris J, Enochs I, Webb A, de Bakker D, Soderberg N, Kolodziej G, Manzello D. The influences of diurnal variability and ocean acidification on the bioerosion rates of two reef-dwelling Caribbean sponges. GLOBAL CHANGE BIOLOGY 2022; 28:7126-7138. [PMID: 36129389 DOI: 10.1111/gcb.16442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 05/28/2023]
Abstract
Ocean acidification (OA) is expected to modify the structure and function of coral reef ecosystems by reducing calcification, increasing bioerosion, and altering the physiology of many marine organisms. Much of our understanding of these relationships is based on experiments with static OA treatments, although evidence suggests that the magnitude of diurnal fluctuations in carbonate chemistry may modulate the calcification response to OA. These light-mediated swings in seawater pH are projected to become more extreme with OA, yet their impact on bioerosion remains unknown. We evaluated the influence of diurnal carbonate chemistry variability on the bioerosion rates of two Caribbean sponges: the zooxanthellate Cliona varians and azooxanthellate Cliothosa delitrix. Replicate fragments from multiple colonies of each species were exposed to four precisely controlled pH treatments: contemporary static (8.05 ± 0.00; mean pH ± diurnal pH oscillation), contemporary variable (8.05 ± 0.10), future OA static (7.80 ± 0.00), and future OA variable (7.80 ± 0.10). Significantly enhanced bioerosion rates, determined using buoyant weight measurements, were observed under more variable conditions in both the contemporary and future OA scenarios for C. varians, whereas the same effect was only apparent under contemporary pH conditions for C. delitrix. These results indicate that variable carbonate chemistry has a stimulating influence on sponge bioerosion, and we hypothesize that bioerosion rates evolve non-linearly as a function of pCO2 resulting in different magnitudes and directions of rate enhancement/reduction between day and night, even with an equal fluctuation around the mean. This response appeared to be intensified by photosymbionts, evident by the consistently higher percent increase in bioerosion rates for photosynthetic C. varians across all treatments. These findings further suggest that more variable natural ecosystems may presently experience elevated sponge bioerosion rates and that the heightened impact of OA enhanced bioerosion on reef habitat could occur sooner than prior predictions.
Collapse
Affiliation(s)
- John Morris
- Ocean Chemistry and Ecosystem Division, NOAA, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
| | - Ian Enochs
- Ocean Chemistry and Ecosystem Division, NOAA, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Alice Webb
- Ocean Chemistry and Ecosystem Division, NOAA, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
| | - Didier de Bakker
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Nash Soderberg
- Ocean Chemistry and Ecosystem Division, NOAA, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
| | - Graham Kolodziej
- Ocean Chemistry and Ecosystem Division, NOAA, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
| | - Derek Manzello
- Satellite Oceanography & Climatology Division, Coral Reef Watch, Center for Satellite Applications and Research, U.S. National Oceanic and Atmospheric Administration, College Park, Maryland, USA
| |
Collapse
|
15
|
Ricci F, Leggat W, Page CE, Ainsworth TD. Coral growth anomalies, neoplasms, and tumors in the Anthropocene. Trends Microbiol 2022; 30:1160-1173. [PMID: 35718641 DOI: 10.1016/j.tim.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/13/2023]
Abstract
One of the most widespread coral diseases linked to anthropogenic activities and recorded on reefs worldwide is characterized by anomalous growth formations in stony corals, referred to as coral growth anomalies (GAs). The biological functions of GA tissue include limited reproduction, reduced access to resources, and weakened ability to defend against predators. Transcriptomic analyses have revealed that, in some cases, disease progression can involve host genes related to oncogenesis, suggesting that the GA tissues may be malignant neoplasms such as those developed by vertebrates. The number of studies reporting the presence of GAs in common reef-forming species highlights the urgency of a thorough understanding of the pathology and causative factors of this disease and its parallels to higher organism malignant tissue growth. Here, we review the current state of knowledge on the etiology and holobiont features of GAs in reef-building corals.
Collapse
Affiliation(s)
- Francesco Ricci
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington 2033, NSW, Australia.
| | - William Leggat
- University of Newcastle, School of Environmental and Life Sciences, Callaghan 2309, NSW, Australia
| | - Charlotte E Page
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington 2033, NSW, Australia
| | - Tracy D Ainsworth
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington 2033, NSW, Australia
| |
Collapse
|
16
|
Doucette VE, Rodriguez Bravo LM, Altieri AH, Johnson MD. Negative effects of a zoanthid competitor limit coral calcification more than ocean acidification. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220760. [PMID: 36425521 PMCID: PMC9682307 DOI: 10.1098/rsos.220760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification (OA) threatens the persistence of reef-building corals and the habitat they provide. While species-specific effects of OA on marine organisms could have cascading effects on ecological interactions like competition, few studies have identified how benthic reef competitors respond to OA. We explored how two common Caribbean competitors, branching Porites and a colonial zoanthid (Zoanthus), respond to the factorial combination of OA and competition. In the laboratory, we exposed corals, zoanthids and interacting corals and zoanthids to ambient (8.01 ± 0.03) and OA (7.68 ± 0.07) conditions for 60 days. The OA treatment had no measured effect on zoanthids or coral calcification but decreased Porites maximum PSII efficiency. Conversely, the competitive interaction significantly decreased Porites calcification but had minimal-to-no countereffects on the zoanthid. Although this interaction was not exacerbated by the 60-day OA exposure, environmental changes that enhance zoanthid performance could add to the dominance of zoanthids over corals. The lack of effects of OA on coral calcification indicates that near-term competitive interactions may have more immediate consequences for some corals than future global change scenarios. Disparate consequences of competition have implications for community structure and should be accounted for when evaluating local coral reef trajectories.
Collapse
Affiliation(s)
| | - Lucia M. Rodriguez Bravo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Andrew H. Altieri
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Maggie D. Johnson
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Tenenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA
| |
Collapse
|
17
|
Bell JJ, Shaffer M, Luter HM, Mana R, Rodolfo-Metalpa R. Phototrophic sponge productivity may not be enhanced in a high CO 2 world. GLOBAL CHANGE BIOLOGY 2022; 28:4900-4911. [PMID: 35662355 DOI: 10.1111/gcb.16235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Sponges are major components of benthic communities across the world and have been identified as potential "winners" on coral reefs in the face of global climate change as result of their tolerance to ocean warming and acidification (OA). Previous studies have also hypothesised that photosymbiont-containing sponges might have higher productivity under future OA conditions as a result of photosymbionts having increased access to CO2 and subsequently greater carbon production. Here we test this hypothesis for a widespread and abundant photosymbiont-containing sponge species Lamellodysidea herbacea at a CO2 seep in Papua New Guinea simulating OA conditions. We found seep sponges had relatively higher cyanobacterial abundance, chlorophyll concentrations and symbiont photosynthetic efficiency than non-seep sponges, and a three-fold higher sponge abundance at the seep site. However, while gross oxygen production was the same for seep and non-seep sponges, seep sponge dark respiration rates were higher and instantaneous photosynthesis: respiration (P:R) ratios were lower. We show that while photosymbiont containing sponges may not have increased productivity under OA, they are able to show flexibility in their relationships with microbes and offset increased metabolic costs associated with climate change associated stress.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Megan Shaffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Heidi M Luter
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ralph Mana
- School of Natural and Physical Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Riccardo Rodolfo-Metalpa
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia
| |
Collapse
|
18
|
Woo S, Yum S. Transcriptional response of the azooxanthellate octocoral Scleronephthya gracillimum to seawater acidification and thermal stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100978. [PMID: 35259638 DOI: 10.1016/j.cbd.2022.100978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The stress responses to increased seawater temperature and marine acidification were investigated using a microarray to reveal transcriptional changes in S. gracillimum. For the study, corals were exposed to different stress experiments; high temperature only (26 °C, 28 °C and 30 °C), low-pH only (pH 7.5, pH 7.0 and pH 6.5) and dual stress experiments (28 °C + pH 7.8, 28 °C + pH 7.5 and 28 °C + pH 7.0), mortality and morphological changes in 24 h exposure experiments were investigated. The survival rates of each experimental group were observed. The gene expression changes in single and dual stress exposed coals were measured and the differentially expressed genes were classified with gene ontology analysis. The top three enriched gene ontology terms of DEGs in response to dual stress were metal ion binding (23.4%), extracellular region (17.2%), and calcium ion binding (12.8%). The gene showing the greatest increase in expression as a response to the dual stress was hemagglutinin/amebocyte aggregation factor, followed by interferon-inducible GTPase 5 and the gene showing the greatest decrease as a response to the dual stress was Fas-associating death domain-containing protein, followed by oxidase 2. These results represented the transcriptomic study focused on the stress responses of the temperate asymbiotic soft coral exposed to single and dual stresses. The combined effect of thermal and acidification stress on corals triggered the negative regulation of ion binding and extracellular matrix coding genes and these genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.
Collapse
Affiliation(s)
- Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Sciences and Technology, Geoje 53201, South Korea; KIOST School, University of Science and Technology, Geoje 53201, South Korea.
| |
Collapse
|
19
|
Bedi N, Srivastava DK, Srivastava A, Mahapatra S, Dkhar DS, Chandra P, Srivastava A. Marine Biological Macromolecules as Matrix Material for Biosensor fabrication. Biotechnol Bioeng 2022; 119:2046-2063. [PMID: 35470439 DOI: 10.1002/bit.28122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/06/2022]
Abstract
The Ocean covers two-third of our planet and has great biological heterogeneity. Marine organisms like algae, vertebrates, invertebrates, and microbes are known to provide many natural products with biological activities as well as potent sources of biomaterials for therapeutic, biomedical, biosensors, and climate stabilization. Over the years, the field of biosensors have gained huge attention due to their extraordinary ability to provide early disease diagnosis, rapid detection of various molecules and substances along with long term monitoring. This review aims to focus on the properties and employment of various biomaterials (Carbohydrate polymers, proteins, polyacids etc) of marine origin such as Alginate, Chitin, Chitosan, Fucoidan, Carrageenan, Chondroitin Sulfate (CS), Hyaluronic acid (HA), Collagen, marine pigments, marine nanoparticles, Hydroxyapatite (HAp), Biosilica, lectins, and marine whole cell in the design and development of biosensors. Further, this review also covers the source of such marine biomaterials and their promising evolution in the fabrication of biosensors that are potent to be employed in the biomedical, environmental science and agricultural sciences domains. The use of such fabricated biosensors harness the system with excellent specificity, selectivity, biocompatibility, thermally stable and minimal cost advantages. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Namita Bedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | | | - Arti Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Ashutosh Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India.,Amity Institute of Marine Science and Technology, Amity University Uttar Pradesh, Sector 125, Noida, India
| |
Collapse
|
20
|
Platz MC, Arias ME, Byrne RH. Reef Metabolism Monitoring Methods and Potential Applications for Coral Restoration. ENVIRONMENTAL MANAGEMENT 2022; 69:612-625. [PMID: 35079882 DOI: 10.1007/s00267-022-01597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Coral reef metabolism measurements have been used by scientists for decades to track reef responses to the globe's changing carbon budget and project shifts in reef function. Here, we propose that metabolism measurement tools and methods could also be used to monitor reef ecosystem change in response to coral restoration. This review paper provides a general introduction to net ecosystem metabolism and carbon chemistry for coral reef ecosystems, followed by a review of five metabolism monitoring methods with potential for application to coral reef restoration monitoring. Selected methodologies included those with measurement scales appropriate to assess outplant arrays and whole reef ecosystem outcomes associated with restoration interventions. Subsequently we discuss how water column and CO2 chemistry could be used to address coral restoration monitoring research gaps and scale up from biological, colony-level metrics to ecosystem-scale function and performance assessments. Such function-based measurements could potentially be used to inform several goal-based monitoring objectives highlighted in the Coral Reef Restoration Monitoring Guide. Lastly, this review discusses important methodological factors, such as scale, reef type, and flow environment, that should be considered when determining which metabolism monitoring technique would be most appropriate for a reef restoration project.
Collapse
Affiliation(s)
- Michelle C Platz
- University of South Florida, Department of Civil and Environmental Engineering, 4202 E. Fowler Avenue, ENG-030, Tampa, FL, 33620, USA
| | - Mauricio E Arias
- University of South Florida, Department of Civil and Environmental Engineering, 4202 E. Fowler Avenue, ENG-030, Tampa, FL, 33620, USA.
| | - Robert H Byrne
- University of South Florida, College of Marine Science, 830 1st St S, St. Petersburg, FL, 33701, USA
| |
Collapse
|
21
|
Ziegler M, Anton A, Klein SG, Rädecker N, Geraldi NR, Schmidt-Roach S, Saderne V, Mumby PJ, Cziesielski MJ, Martin C, Frölicher TL, Pandolfi JM, Suggett DJ, Aranda M, Duarte CM, Voolstra CR. Integrating environmental variability to broaden the research on coral responses to future ocean conditions. GLOBAL CHANGE BIOLOGY 2021; 27:5532-5546. [PMID: 34391212 DOI: 10.1111/gcb.15840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2 , and O2 ) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2 , and dissolved O2 , which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change.
Collapse
Affiliation(s)
- Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Andrea Anton
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Global Change Research Group, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Esporles (Illes Balears), Spain
| | - Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nils Rädecker
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nathan R Geraldi
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sebastian Schmidt-Roach
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Vincent Saderne
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| | - Maha J Cziesielski
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Cecilia Martin
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
22
|
Zhou G, Tong H, Cai L, Huang H. Transgenerational Effects on the Coral Pocillopora damicornis Microbiome Under Ocean Acidification. MICROBIAL ECOLOGY 2021; 82:572-580. [PMID: 33576852 DOI: 10.1007/s00248-021-01690-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Reef-building corals are inhabited by functionally diverse microorganisms which play important roles in coral health and persistence in the Anthropocene. However, our understanding of the complex associations within coral holobionts is largely limited, particularly transgenerational exposure to environmental stress, like ocean acidification. Here we investigated the microbiome development of an ecologically important coral Pocillopora damicornis following transgenerational exposure to moderate and high pCO2 (partial pressure of CO2) levels, using amplicon sequencing and analysis. Our results showed that the Symbiodiniaceae community structures in adult and juvenile had similar patterns, all of which were dominated by Durusdinium spp., previously known as clade D. Conversely, prokaryotic communities varied between adults and juveniles, possibly driven by the effect of host development. Surprisingly, there were no significant changes in both Symbiodiniaceae and prokaryotic communities with different pCO2 treatments, which was independent of the life history stage. This study shows that ocean acidification has no significant effect on P. damicornis microbiome, and warrants further research to test whether transgenerational acclimation exists in coral holobiont to projected future climate change.
Collapse
Affiliation(s)
- Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China.
- Sanya National Marine Ecosystem Research Station and Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| | - Haoya Tong
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Lin Cai
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China.
- Sanya National Marine Ecosystem Research Station and Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
23
|
Ling J, Zhou W, Yang Q, Yin J, Zhang J, Peng Q, Huang X, Zhang Y, Dong J. Spatial and Species Variations of Bacterial Community Structure and Putative Function in Seagrass Rhizosphere Sediment. Life (Basel) 2021; 11:life11080852. [PMID: 34440596 PMCID: PMC8401270 DOI: 10.3390/life11080852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Seagrasses are an important part of the coral reef ecosystem, and their rhizosphere microbes are of great ecological importance. However, variations in diversity, composition, and potential functions of bacterial communities in the seagrass rhizosphere of coral reef ecosystems remain unclear. This study employed the high-throughput sequencing based on 16S rDNA gene sequences and functional annotation of prokaryotic taxa (FAPROTAX) analysis to investigate these variations based on seagrass species and sampling locations, respectively. Results demonstrated that the seagrass rhizosphere microbial community was mainly dominated by phylum Proteobacteria (33.47%), Bacteroidetes (23.33%), and Planctomycetes (12.47%), while functional groups were mainly composed of sulfate respiration (14.09%), respiration of sulfur compounds (14.24%), aerobic chemoheterotrophy (20.87%), and chemoheterotrophy (26.85%). Significant differences were evident in alpha diversity, taxonomical composition and putative functional groups based on seagrass species and sampling locations. Moreover, the core microbial community of all investigated samples was identified, accounting for 63.22% of all obtained sequences. Network analysis indicated that most microbes had a positive correlation (82.41%), and two module hubs (phylum Proteobacteria) were investigated. Furthermore, a significant positive correlation was found between the OTUs numbers obtained and the functional groups assigned for seagrass rhizosphere microbial communities (p < 0.01). Our result would facilitate future investigation of the function of seagrass rhizosphere microbes.
Collapse
Affiliation(s)
- Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuying Peng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.Z.); (Q.Y.); (J.Y.); (J.Z.); (Q.P.); (X.H.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya 572000, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
- Correspondence: ; Tel.: +86-20-8910-7830
| |
Collapse
|
24
|
Herrera M, Liew YJ, Venn A, Tambutté E, Zoccola D, Tambutté S, Cui G, Aranda M. New Insights From Transcriptomic Data Reveal Differential Effects of CO 2 Acidification Stress on Photosynthesis of an Endosymbiotic Dinoflagellate in hospite. Front Microbiol 2021; 12:666510. [PMID: 34349734 PMCID: PMC8326563 DOI: 10.3389/fmicb.2021.666510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Ocean acidification (OA) has both detrimental as well as beneficial effects on marine life; it negatively affects calcifiers while enhancing the productivity of photosynthetic organisms. To date, many studies have focused on the impacts of OA on calcification in reef-building corals, a process particularly susceptible to acidification. However, little is known about the effects of OA on their photosynthetic algal partners, with some studies suggesting potential benefits for symbiont productivity. Here, we investigated the transcriptomic response of the endosymbiont Symbiodinium microadriaticum (CCMP2467) in the Red Sea coral Stylophora pistillata subjected to different long-term (2 years) OA treatments (pH 8.0, 7.8, 7.4, 7.2). Transcriptomic analyses revealed that symbionts from corals under lower pH treatments responded to acidification by increasing the expression of genes related to photosynthesis and carbon-concentrating mechanisms. These processes were mostly up-regulated and associated metabolic pathways were significantly enriched, suggesting an overall positive effect of OA on the expression of photosynthesis-related genes. To test this conclusion on a physiological level, we analyzed the symbiont’s photochemical performance across treatments. However, in contrast to the beneficial effects suggested by the observed gene expression changes, we found significant impairment of photosynthesis with increasing pCO2. Collectively, our data suggest that over-expression of photosynthesis-related genes is not a beneficial effect of OA but rather an acclimation response of the holobiont to different water chemistries. Our study highlights the complex effects of ocean acidification on these symbiotic organisms and the role of the host in determining symbiont productivity and performance.
Collapse
Affiliation(s)
- Marcela Herrera
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yi Jin Liew
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexander Venn
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Eric Tambutté
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Didier Zoccola
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Guoxin Cui
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc Natl Acad Sci U S A 2021; 118:2025435118. [PMID: 34050025 PMCID: PMC8179235 DOI: 10.1073/pnas.2025435118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ocean warming has caused catastrophic losses of corals on reefs worldwide and is intensifying faster than the adaptive rate of most coral populations that remain. Human interventions, such as propagation of heat-resistant corals, may help maintain reef function and delay further devastation of these valuable ecosystems as society confronts the climate crisis. However, exposing adult corals to a complex suite of new environmental conditions could lead to tradeoffs that alter their heat stress responses, and empirical data are needed to test the utility of this approach. Here, we show that corals transplanted to novel reef conditions did not exhibit changes in their heat stress response or negative fitness tradeoffs, supporting the inclusion of this approach in our management arsenal. Urgent action is needed to prevent the demise of coral reefs as the climate crisis leads to an increasingly warmer and more acidic ocean. Propagating climate change–resistant corals to restore degraded reefs is one promising strategy; however, empirical evidence is needed to determine whether stress resistance is affected by transplantation beyond a coral’s native reef. Here, we assessed the performance of bleaching-resistant individuals of two coral species following reciprocal transplantation between reefs with distinct pH, salinity, dissolved oxygen, sedimentation, and flow dynamics to determine whether heat stress response is altered following coral exposure to novel physicochemical conditions in situ. Critically, transplantation had no influence on coral heat stress responses, indicating that this trait was relatively fixed. In contrast, growth was highly plastic, and native performance was not predictive of performance in the novel environment. Coral metabolic rates and overall fitness were higher at the reef with higher flow, salinity, sedimentation, and diel fluctuations of pH and dissolved oxygen, and did not differ between native and cross-transplanted corals, indicating acclimatization via plasticity within just 3 mo. Conversely, cross-transplants at the second reef had higher fitness than native corals, thus increasing the fitness potential of the recipient population. This experiment was conducted during a nonbleaching year, so the potential benefits to recipient population fitness are likely enhanced during bleaching years. In summary, this study demonstrates that outplanting bleaching-resistant corals is a promising tool for elevating the resistance of coral populations to ocean warming.
Collapse
|
26
|
Dichotomy between Regulation of Coral Bacterial Communities and Calcification Physiology under Ocean Acidification Conditions. Appl Environ Microbiol 2021; 87:AEM.02189-20. [PMID: 33419736 PMCID: PMC8105028 DOI: 10.1128/aem.02189-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Ocean acidification (OA) threatens the growth and function of coral reef ecosystems. A key component to coral health is the microbiome, but little is known about the impact of OA on coral microbiomes. A submarine CO2 vent at Maug Island in the Northern Mariana Islands provides a natural pH gradient to investigate coral responses to long-term OA conditions. Three coral species (Pocillopora eydouxi, Porites lobata, and Porites rus) were sampled from three sites where the mean seawater pH is 8.04, 7.98, and 7.94. We characterized coral bacterial communities (using 16S rRNA gene sequencing) and determined pH of the extracellular calcifying fluid (ECF) (using skeletal boron isotopes) across the seawater pH gradient. Bacterial communities of both Porites species stabilized (decreases in community dispersion) with decreased seawater pH, coupled with large increases in the abundance of Endozoicomonas, an endosymbiont. P. lobata experienced a significant decrease in ECF pH near the vent, whereas P. rus experienced a trending decrease in ECF pH near the vent. In contrast, Pocillopora exhibited bacterial community destabilization (increases in community dispersion), with significant decreases in Endozoicomonas abundance, while its ECF pH remained unchanged across the pH gradient. Our study shows that OA has multiple consequences on Endozoicomonas abundance and suggests that Endozoicomonas abundance may be an indicator of coral response to OA. We reveal an interesting dichotomy between two facets of coral physiology (regulation of bacterial communities and regulation of calcification), highlighting the importance of multidisciplinary approaches to understanding coral health and function in a changing ocean.IMPORTANCE Ocean acidification (OA) is a consequence of anthropogenic CO2 emissions that is negatively impacting marine ecosystems such as coral reefs. OA affects many aspects of coral physiology, including growth (i.e., calcification) and disrupting associated bacterial communities. Coral-associated bacteria are important for host health, but it remains unclear how coral-associated bacterial communities will respond to future OA conditions. We document changes in coral-associated bacterial communities and changes to calcification physiology with long-term exposure to decreases in seawater pH that are environmentally relevant under midrange IPCC emission scenarios (0.1 pH units). We also find species-specific responses that may reflect different responses to long-term OA. In Pocillopora, calcification physiology was highly regulated despite changing seawater conditions. In Porites spp., changes in bacterial communities do not reflect a breakdown of coral-bacterial symbiosis. Insights into calcification and host-microbe interactions are critical to predicting the health and function of different coral taxa to future OA conditions.
Collapse
|
27
|
Silbiger NJ, Donahue MJ, Lubarsky K. Submarine groundwater discharge alters coral reef ecosystem metabolism. Proc Biol Sci 2020; 287:20202743. [PMID: 33323091 DOI: 10.1098/rspb.2020.2743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Submarine groundwater discharge (SGD) influences near-shore coral reef ecosystems worldwide. SGD biogeochemistry is distinct, typically with higher nutrients, lower pH, cooler temperature and lower salinity than receiving waters. SGD can also be a conduit for anthropogenic nutrients and other pollutants. Using Bayesian structural equation modelling, we investigate pathways and feedbacks by which SGD influences coral reef ecosystem metabolism at two Hawai'i sites with distinct aquifer chemistry. The thermal and biogeochemical environment created by SGD changed net ecosystem production (NEP) and net ecosystem calcification (NEC). NEP showed a nonlinear relationship with SGD-enhanced nutrients: high fluxes of moderately enriched SGD (Wailupe low tide) and low fluxes of highly enriched SGD (Kūpikipiki'ō high tide) increased NEP, but high fluxes of highly enriched SGD (Kūpikipiki'ō low tide) decreased NEP, indicating a shift toward microbial respiration. pH fluctuated with NEP, driving changes in the net growth of calcifiers (NEC). SGD enhances biological feedbacks: changes in SGD from land use and climate change will have consequences for calcification of coral reef communities, and thereby shoreline protection.
Collapse
Affiliation(s)
- Nyssa J Silbiger
- Biology Department, California State University, Northridge, CA 91330, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Katie Lubarsky
- Scripps Institution of Oceanography, University of California, San Diego, CA, 92037, USA
| |
Collapse
|
28
|
Chaves Lopes F, Rosa de Castro M, Caldas Barbosa S, Primel EG, de Martinez Gaspar Martins C. Effect of the UV filter, Benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions. MARINE POLLUTION BULLETIN 2020; 158:111401. [PMID: 32753186 DOI: 10.1016/j.marpolbul.2020.111401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 05/20/2023]
Abstract
This work aimed to investigate effects of the ocean contamination by the sunscreen Benzophenone-3 (BP3) and acidification, caused by CO2 enrichment, to the yellow clam, Amarilladesma mactroides. Biochemical biomarkers were analyzed in tissues (gills, digestive gland, and mantle) of clams exposed to the environmental concentration of 1 μg/L BP3, at seawater natural pH (pH 8.1) and at lower pH (pH 7.6). The tissues responded in different ways considering their physiological roles. In general, BP3 altered activity of the enzymes, glutathione-S-transferase (GST) and glutathione cysteine ligase (GCL); but mostly increased the level of glutathione (GSH). These effects were enhanced by acidification, without augmenting lipid peroxidation (LPO). Carbonic anhydrase activity (CA) increased after BP3 exposure in the digestive gland and decreased in the gills at pH 7.6, while Ca2+-ATPase activity was affected by acidification only. Changing levels of these enzymes can alter shell formation and affect the bivalve maintenance in impacted environments.
Collapse
Affiliation(s)
- Fernanda Chaves Lopes
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Micheli Rosa de Castro
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Sergiane Caldas Barbosa
- Universidade Federal do Rio Grande, Escola de Química e Alimentos, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| | - Ednei Gilberto Primel
- Universidade Federal do Rio Grande, Escola de Química e Alimentos, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
29
|
Hall ER, Wickes L, Burnett LE, Scott GI, Hernandez D, Yates KK, Barbero L, Reimer JJ, Baalousha M, Mintz J, Cai WJ, Craig JK, DeVoe MR, Fisher WS, Hathaway TK, Jewett EB, Johnson Z, Keener P, Mordecai RS, Noakes S, Phillips C, Sandifer PA, Schnetzer A, Styron J. Acidification in the U.S. Southeast: Causes, Potential Consequences and the Role of the Southeast Ocean and Coastal Acidification Network. FRONTIERS IN MARINE SCIENCE 2020; 7:1-548. [PMID: 32802822 PMCID: PMC7424514 DOI: 10.3389/fmars.2020.00548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Coastal acidification in southeastern U.S. estuaries and coastal waters is influenced by biological activity, run-off from the land, and increasing carbon dioxide in the atmosphere. Acidification can negatively impact coastal resources such as shellfish, finfish, and coral reefs, and the communities that rely on them. Organismal responses for species located in the U.S. Southeast document large negative impacts of acidification, especially in larval stages. For example, the toxicity of pesticides increases under acidified conditions and the combination of acidification and low oxygen has profoundly negative influences on genes regulating oxygen consumption. In corals, the rate of calcification decreases with acidification and processes such as wound recovery, reproduction, and recruitment are negatively impacted. Minimizing the changes in global ocean chemistry will ultimately depend on the reduction of carbon dioxide emissions, but adaptation to these changes and mitigation of the local stressors that exacerbate global acidification can be addressed locally. The evolution of our knowledge of acidification, from basic understanding of the problem to the emergence of applied research and monitoring, has been facilitated by the development of regional Coastal Acidification Networks (CANs) across the United States. This synthesis is a product of the Southeast Coastal and Ocean Acidification Network (SOCAN). SOCAN was established to better understand acidification in the coastal waters of the U.S. Southeast and to foster communication among scientists, resource managers, businesses, and governments in the region. Here we review acidification issues in the U.S. Southeast, including the regional mechanisms of acidification and their potential impacts on biological resources and coastal communities. We recommend research and monitoring priorities and discuss the role SOCAN has in advancing acidification research and mitigation of and adaptation to these changes.
Collapse
Affiliation(s)
- Emily R. Hall
- Mote Marine Laboratory, Sarasota, FL, United States
- Correspondence: Emily R. Hall
| | - Leslie Wickes
- Thrive Blue Consulting, Charleston, SC, United States
| | - Louis E. Burnett
- Grice Marine Laboratory, College of Charleston, Charleston, SC, United States
| | - Geoffrey I. Scott
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Debra Hernandez
- Southeastern Coastal Ocean Observing and Research Regional Association, Charleston, SC, United States
| | | | - Leticia Barbero
- National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
| | - Janet J. Reimer
- College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States
| | - Mohammed Baalousha
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Jennifer Mintz
- National Oceanic and Atmospheric Administration, Ocean Acidification Program, Silver Spring, MD, United States
| | - Wei-Jun Cai
- College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States
| | - J. Kevin Craig
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort, NC, United States
| | - M. Richard DeVoe
- South Carolina Sea Grant Consortium, Charleston, SC, United States
| | - William S. Fisher
- United States Environmental Protection Agency, Gulf Ecology Laboratory, Gulf Breeze, FL, United States
| | | | - Elizabeth B. Jewett
- National Oceanic and Atmospheric Administration, Ocean Acidification Program, Silver Spring, MD, United States
| | - Zackary Johnson
- Nicholas School of the Environment and Biology Department, Duke University, Beaufort, NC, United States
| | - Paula Keener
- Global Ocean Visions, LLC, Charleston, SC, United States
| | | | - Scott Noakes
- Center for Applied Isotope Studies, The University of Georgia, Athens, GA, United States
| | - Charlie Phillips
- Phillips Seafood, Sapelo Sea Farms, South Atlantic Fisheries Management Council, Townsend, GA, United States
| | - Paul A. Sandifer
- Hollings Marine Laboratory, College of Charleston, Charleston, SC, United States
| | - Astrid Schnetzer
- Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jay Styron
- Carolina Mariculture Company, Cedar Island, NC, United States
| |
Collapse
|
30
|
Wolfe K, Nguyen HD, Davey M, Byrne M. Characterizing biogeochemical fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face of global change. GLOBAL CHANGE BIOLOGY 2020; 26:3858-3879. [PMID: 32239581 DOI: 10.1111/gcb.15103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Coastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009-2015) and present a synthesis of our current understanding of this habitat in context with global change. We used rock pools as natural mesocosms to determine biogeochemistry dynamics and patterns of eco-stress experienced by resident biota. In situ measurements and discrete water samples were collected night and day during neap low tide events to capture diurnal biogeochemistry cycles. Calculation of pHT using total alkalinity (TA) and dissolved inorganic carbon (DIC) revealed that the mid-intertidal habitat exhibited the greatest flux over the years (pHT 7.52-8.87), and over a single tidal cycle (1.11 pHT units), while the low-intertidal (pHT 7.82-8.30) and subtidal (pHT 7.87-8.30) were less variable. Temperature flux was also greatest in the mid-intertidal (8.0-34.5°C) and over a single tidal event (14°C range), as typical of temperate rocky shores. Mean TA and DIC increased at night and decreased during the day, with the most extreme conditions measured in the mid-intertidal owing to prolonged emersion periods. Temporal sampling revealed that net ecosystem calcification and production were highest during the day and lowest at night, particularly in the mid-intertidal. Characterization of biogeochemical fluctuations in a world of extremes demonstrates the variable conditions that intertidal biota routinely experience and highlight potential microhabitat-specific vulnerabilities and climate change refugia.
Collapse
Affiliation(s)
- Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, Qld, Australia
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hong D Nguyen
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Madeline Davey
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Courtney TA, Barnes BB, Chollett I, Elahi R, Gross K, Guest JR, Kuffner IB, Lenz EA, Nelson HR, Rogers CS, Toth LT, Andersson AJ. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 2020. [DOI: 10.1002/ecs2.3066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Travis A. Courtney
- Scripps Institution of Oceanography University of California San Diego La Jolla California 92093 USA
| | - Brian B. Barnes
- College of Marine Science University of South Florida St. Petersburg Florida 33701 USA
| | | | - Robin Elahi
- Hopkins Marine Station Stanford University Pacific Grove California 93950 USA
| | - Kevin Gross
- Department of Statistics North Carolina State University Raleigh North Carolina 27695 USA
| | - James R. Guest
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE17RU UK
| | - Ilsa B. Kuffner
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center St. Petersburg Florida 33701 USA
| | - Elizabeth A. Lenz
- Hawai'i Institute of Marine Biology University of Hawai'i Kāne'ohe Hawai'i 96744 USA
| | - Hannah R. Nelson
- Department of Biology California State University Northridge California 91330 USA
| | - Caroline S. Rogers
- U.S. Geological Survey, Wetland and Aquatic Research Center St John U.S. Virgin Islands USA
| | - Lauren T. Toth
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center St. Petersburg Florida 33701 USA
| | - Andreas J. Andersson
- Scripps Institution of Oceanography University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
32
|
Rastelli E, Petani B, Corinaldesi C, Dell'Anno A, Lo Martire M, Cerrano C, Danovaro R. A high biodiversity mitigates the impact of ocean acidification on hard-bottom ecosystems. Sci Rep 2020; 10:2948. [PMID: 32076065 PMCID: PMC7031329 DOI: 10.1038/s41598-020-59886-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/05/2020] [Indexed: 02/04/2023] Open
Abstract
Biodiversity loss and climate change simultaneously threaten marine ecosystems, yet their interactions remain largely unknown. Ocean acidification severely affects a wide variety of marine organisms and recent studies have predicted major impacts at the pH conditions expected for 2100. However, despite the renowned interdependence between biodiversity and ecosystem functioning, the hypothesis that the species’ response to ocean acidification could differ based on the biodiversity of the natural multispecies assemblages in which they live remains untested. Here, using experimentally controlled conditions, we investigated the impact of acidification on key habitat-forming organisms (including corals, sponges and macroalgae) and associated microbes in hard-bottom assemblages characterised by different biodiversity levels. Our results indicate that, at higher biodiversity, the impact of acidification on otherwise highly vulnerable key organisms can be reduced by 50 to >90%, depending on the species. Here we show that such a positive effect of a higher biodiversity can be associated with higher availability of food resources and healthy microbe-host associations, overall increasing host resistance to acidification, while contrasting harmful outbreaks of opportunistic microbes. Given the climate change scenarios predicted for the future, we conclude that biodiversity conservation of hard-bottom ecosystems is fundamental also for mitigating the impacts of ocean acidification.
Collapse
Affiliation(s)
- Eugenio Rastelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Bruna Petani
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, 23000, Zadar, Croatia
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy. .,Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy.
| |
Collapse
|
33
|
Li X, García-Ibáñez MI, Carter BR, Chen B, Li Q, Easley RA, Cai WJ. Purified meta-Cresol Purple dye perturbation: How it influences spectrophotometric pH measurements. MARINE CHEMISTRY 2020; 225:10.1016/j.marchem.2020.103849. [PMID: 33442076 PMCID: PMC7802507 DOI: 10.1016/j.marchem.2020.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ocean acidification, a phenomenon of seawater pH decrease due to increasing atmospheric CO2, has a global effect on seawater chemistry, marine biology, and ecosystems. Ocean acidification is a gradual and global long-term process, the study of which demands high-quality pH data. The spectrophotometric technique is capable of generating accurate and precise pH measurements but requires adding an indicator dye that perturbs the sample original pH. While the perturbation is modest in well-buffered seawater, applications of the method in environments with lower buffer capacity such as riverine, estuarine, sea-ice meltwater and lacustrine environments are increasingly common, and uncertainties related to larger potential dye perturbations need further evaluation. In this paper, we assess the effect of purified meta-Cresol Purple (mCP) dye addition on the sample pH and how to correct for this dye perturbation. We conducted numerical simulations by incorporating mCP speciation into the MATLAB CO2SYS program to examine the changes in water sample pH caused by the dye addition and to reveal the dye perturbation mechanisms. Then, laboratory experiments were carried out to verify the simulation results. The simulations suggest that the dye perturbation on sample pH is a result of total alkalinity (TA) contributions from the indicator dye and chemical equilibrium shifts that are related to both the water sample properties (pH, TA, and salinity) and the indicator dye solution properties (pH and solvent matrix). The laboratory experiments supported the simulation results; the same dye solution can lead to different dye perturbations in water samples with different pH, TA, and salinity values. The modeled adjustments agreed well with the empirically determined adjustments for salinities > 5, but it showed greater errors for lower salinities with disagreements as large as 0.005 pH units. Adjustments are minimized when the pH and salinity of the dye are matched to the sample. When the dye is used over a wide range of salinity, we suggest that it should be prepared in deionized water to minimize the dye perturbation effect on pH in the fresher sample waters with less well-constrained perturbation adjustments. We also suggest that the dye perturbation correction should be based on double dye addition experiments performed over a wide range of pH, TA, and salinity. Otherwise, multiple volume dye addition experiments are recommended for each sample to determine the dye perturbation adjustment. We further create a MATLAB function dyeperturbation.m that calculates the expected dye perturbation. This function can be used to validate empirically-derived adjustments or in lieu of empirical adjustments if dye addition experiments are unfeasible (e.g., for historical data). This study of dye perturbation evaluation and correction will improve the accuracy of the pH data, necessary for monitoring the long-term anthropogenic-driven changes in the seawater carbonate system.
Collapse
Affiliation(s)
- Xinyu Li
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| | | | - Brendan R. Carter
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Baoshan Chen
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| | - Qian Li
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| | - Regina A. Easley
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg MD, USA
| | - Wei-Jun Cai
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| |
Collapse
|
34
|
Jury CP, Delano MN, Toonen RJ. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci Rep 2019; 9:20419. [PMID: 31892705 PMCID: PMC6938506 DOI: 10.1038/s41598-019-56313-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Estimates of heritability inform evolutionary potential and the likely outcome of many management actions, but such estimates remain scarce for marine organisms. Here, we report high heritability of calcification rate among the eight most dominant Hawaiian coral species under reduced pH simulating future ocean conditions. Coral colonies were sampled from up to six locations across a natural mosaic in seawater chemistry throughout Hawai'i and fragmented into clonal replicates maintained under both ambient and high pCO2 conditions. Broad sense heritability of calcification rates was high among all eight species, ranging from a low of 0.32 in Porites evermanni to a high of 0.61 in Porites compressa. The overall results were inconsistent with short-term acclimatization to the local environment or adaptation to the mean or ideal conditions. Similarly, in 'local vs. foreign' and 'home vs. away' tests there was no clear signature of local adaptation. Instead, the data are most consistent with a protected polymorphism as the mechanism which maintains differential pH tolerance within the populations. Substantial individual variation, coupled with high heritability and large population sizes, imply considerable scope for natural selection and adaptive capacity, which has major implications for evolutionary potential and management of corals in response to climate change.
Collapse
Affiliation(s)
- Christopher P Jury
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, P.O. Box 1346, Kāne'ohe, HI, 96744, USA.
| | - Mia N Delano
- Global Environmental Science, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, P.O. Box 1346, Kāne'ohe, HI, 96744, USA.
| |
Collapse
|
35
|
Wright RM, Mera H, Kenkel CD, Nayfa M, Bay LK, Matz MV. Positive genetic associations among fitness traits support evolvability of a reef-building coral under multiple stressors. GLOBAL CHANGE BIOLOGY 2019; 25:3294-3304. [PMID: 31301206 DOI: 10.1111/gcb.14764] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 06/19/2019] [Indexed: 05/20/2023]
Abstract
Climate change threatens organisms in a variety of interactive ways that requires simultaneous adaptation of multiple traits. Predicting evolutionary responses requires an understanding of the potential for interactions among stressors and the genetic variance and covariance among fitness-related traits that may reinforce or constrain an adaptive response. Here we investigate the capacity of Acropora millepora, a reef-building coral, to adapt to multiple environmental stressors: rising sea surface temperature, ocean acidification, and increased prevalence of infectious diseases. We measured growth rates (weight gain), coral color (a proxy for Symbiodiniaceae density), and survival, in addition to nine physiological indicators of coral and algal health in 40 coral genets exposed to each of these three stressors singly and combined. Individual stressors resulted in predicted responses (e.g., corals developed lesions after bacterial challenge and bleached under thermal stress). However, corals did not suffer substantially more when all three stressors were combined. Nor were trade-offs observed between tolerances to different stressors; instead, individuals performing well under one stressor also tended to perform well under every other stressor. An analysis of genetic correlations between traits revealed positive covariances, suggesting that selection to multiple stressors will reinforce rather than constrain the simultaneous evolution of traits related to holobiont health (e.g., weight gain and algal density). These findings support the potential for rapid coral adaptation under climate change and emphasize the importance of accounting for corals' adaptive capacity when predicting the future of coral reefs.
Collapse
Affiliation(s)
- Rachel M Wright
- Department of Biological Sciences, Smith College, Northampton, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hanaka Mera
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Carly D Kenkel
- Australian Institute of Marine Science, Townsville, Qld, Australia
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Maria Nayfa
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
36
|
|
37
|
Ocean acidification effects on in situ coral reef metabolism. Sci Rep 2019; 9:12067. [PMID: 31427632 PMCID: PMC6700128 DOI: 10.1038/s41598-019-48407-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
The Anthropocene climate has largely been defined by a rapid increase in atmospheric CO2, causing global climate change (warming) and ocean acidification (OA, a reduction in oceanic pH). OA is of particular concern for coral reefs, as the associated reduction in carbonate ion availability impairs biogenic calcification and promotes dissolution of carbonate substrata. While these trends ultimately affect ecosystem calcification, scaling experimental analyses of the response of organisms to OA to consider the response of ecosystems to OA has proved difficult. The benchmark of ecosystem-level experiments to study the effects of OA is provided through Free Ocean CO2 Enrichment (FOCE), which we use in the present analyses for a 21-d experiment on the back reef of Mo’orea, French Polynesia. Two natural coral reef communities were incubated in situ, with one exposed to ambient pCO2 (393 µatm), and one to high pCO2 (949 µatm). Our results show a decrease in 24-h net community calcification (NCC) under high pCO2, and a reduction in nighttime NCC that attenuated and eventually reversed over 21-d. This effect was not observed in daytime NCC, and it occurred without any effect of high pCO2 on net community production (NCP). These results contribute to previous studies on ecosystem-level responses of coral reefs to the OA conditions projected for the end of the century, and they highlight potential attenuation of high pCO2 effects on nighttime net community calcification.
Collapse
|
38
|
Silbiger NJ, Nelson CE, Remple K, Sevilla JK, Quinlan ZA, Putnam HM, Fox MD, Donahue MJ. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc Biol Sci 2019; 285:rspb.2017.2718. [PMID: 29875294 DOI: 10.1098/rspb.2017.2718] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/14/2018] [Indexed: 11/12/2022] Open
Abstract
There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO-3) and phosphate (PO3-4) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities. Our study had four major outcomes: (i) NCC rates declined in response to nutrient addition in all substrate types, (ii) the mixed community switched from net calcification to net dissolution under medium and high nutrient conditions, (iii) nutrients augmented pH variability through modified photosynthesis and respiration rates, and (iv) nutrients disrupted the relationship between NCC and aragonite saturation state documented in ambient conditions. These results indicate that the negative effect of NO-3 and PO3-4 addition on reef calcification is likely both a direct physiological response to nutrients and also an indirect response to a shifting pH environment from altered NCP rates. Here, we show that nutrient pollution could make reefs more vulnerable to global changes associated with ocean acidification and accelerate the predicted shift from net accretion to net erosion.
Collapse
Affiliation(s)
- Nyssa J Silbiger
- Department of Biology, California State University, Northridge, CA 91330, USA
| | - Craig E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Kristina Remple
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jessica K Sevilla
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zachary A Quinlan
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.,Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Michael D Fox
- Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| |
Collapse
|
39
|
Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. CONSERVATION PHYSIOLOGY 2019; 7:coz062. [PMID: 31737270 PMCID: PMC6846232 DOI: 10.1093/conphys/coz062] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 05/20/2023]
Abstract
Ocean acidification (OA), from seawater uptake of anthropogenic CO2, has a suite of negative effects on the ability of marine invertebrates to produce and maintain their skeletons. Increased organism pCO2 causes hypercapnia, an energetically costly physiological stress. OA alters seawater carbonate chemistry, limiting the carbonate available to form the calcium carbonate (CaCO3) minerals used to build skeletons. The reduced saturation state of CaCO3 also causes corrosion of CaCO3 structures. Global change is also accelerating coastal acidification driven by land-run off (e.g. acid soil leachates, tannic acid). Building and maintaining marine biomaterials in the face of changing climate will depend on the balance between calcification and dissolution. Overall, in response to environmental acidification, many calcifiers produce less biomineral and so have smaller body size. Studies of skeleton development in echinoderms and molluscs across life stages show the stunting effect of OA. For corals, linear extension may be maintained, but at the expense of less dense biomineral. Conventional metrics used to quantify growth and calcification need to be augmented by characterisation of the changes to biomineral structure and mechanical integrity caused by environmental acidification. Scanning electron microscopy and microcomputed tomography of corals, tube worms and sea urchins exposed to experimental (laboratory) and natural (vents, coastal run off) acidification show a less dense biomineral with greater porosity and a larger void space. For bivalves, CaCO3 crystal deposition is more chaotic in response to both ocean and coastal acidification. Biomechanics tests reveal that these changes result in weaker, more fragile skeletons, compromising their vital protective roles. Vulnerabilities differ among taxa and depend on acidification level. Climate warming has the potential to ameliorate some of the negative effects of acidification but may also make matters worse. The integrative morphology-ecomechanics approach is key to understanding how marine biominerals will perform in the face of changing climate.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia
- Corresponding author: School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia.
| | - Susan Fitzer
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
40
|
van Heuven SMAC, Webb AE, de Bakker DM, Meesters E, van Duyl FC, Reichart GJ, de Nooijer LJ. In-situ incubation of a coral patch for community-scale assessment of metabolic and chemical processes on a reef slope. PeerJ 2018; 6:e5966. [PMID: 30533295 PMCID: PMC6282943 DOI: 10.7717/peerj.5966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022] Open
Abstract
Anthropogenic pressures threaten the health of coral reefs globally. Some of these pressures directly affect coral functioning, while others are indirect, for example by promoting the capacity of bioeroders to dissolve coral aragonite. To assess the coral reef status, it is necessary to validate community-scale measurements of metabolic and geochemical processes in the field, by determining fluxes from enclosed coral reef patches. Here, we investigate diurnal trends of carbonate chemistry, dissolved organic carbon, oxygen, and nutrients on a 20 m deep coral reef patch offshore from the island of Saba, Dutch Caribbean by means of tent incubations. The obtained trends are related to benthic carbon fluxes by quantifying net community calcification (NCC) and net community production (NCP). The relatively strong currents and swell-induced near-bottom surge at this location caused minor seawater exchange between the incubated reef and ambient water. Employing a compensating interpretive model, the exchange is used to our advantage as it maintains reasonably ventilated conditions, which conceivably prevents metabolic arrest during incubation periods of multiple hours. No diurnal trends in carbonate chemistry were detected and all net diurnal rates of production were strongly skewed towards respiration suggesting net heterotrophy in all incubations. The NCC inferred from our incubations ranges from −0.2 to 1.4 mmol CaCO3 m−2 h−1 (−0.2 to 1.2 kg CaCO3 m−2 year−1) and NCP varies from −9 to −21.7 mmol m−2 h−1 (net respiration). When comparing to the consensus-based ReefBudget approach, the estimated NCC rate for the incubated full planar area (0.36 kg CaCO3 m−2 year−1) was lower, but still within range of the different NCC inferred from our incubations. Field trials indicate that the tent-based incubation as presented here, coupled with an appropriate interpretive model, is an effective tool to investigate, in situ, the state of coral reef patches even when located in a relatively hydrodynamic environment.
Collapse
Affiliation(s)
- Steven M A C van Heuven
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| | - Alice E Webb
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| | - Didier M de Bakker
- Department of Marine Microbiology, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands.,Wageningen Marine Research, Wageningen University and Research, Den Helder, Noord-Holland, The Netherlands
| | - Erik Meesters
- Wageningen Marine Research, Wageningen University and Research, Den Helder, Noord-Holland, The Netherlands
| | - Fleur C van Duyl
- Department of Marine Microbiology, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| | - Gert-Jan Reichart
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, Utrecht, The Netherlands
| | - Lennart J de Nooijer
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| |
Collapse
|
41
|
Abstract
Restoration strategies for coral reefs are usually focused on the recovery of bio-physical characteristics. They seldom include an evaluation of the recovery of the socio-ecological and ecosystem services features of coral reef systems. This paper proposes a conceptual framework to address both the socio-ecological system features of coral reefs with the implementation of restoration activity for degraded coral reefs. Such a framework can lead to better societal outcomes from restoration activities while restoring bio-physical, social and ecosystem service features of such systems. We first developed a Socio Ecological System Analysis Framework, which combines the Ostrom Framework for analyzing socio-ecological systems and the Kittinger et al. human dimensions framework of coral reefs socio-ecological systems. We then constructed a Restoration of Coral Reef Framework, based on the most used and recent available coral reef restoration literature. These two frameworks were combined to present a Socio-Ecological Systems & Restoration Coral Reef Framework. These three frameworks can be used as a guide for managers, researchers and decision makers to analyze the needs of coral reef restoration in a way that addresses both socio-economic and ecological objectives to analyze, design, implement and monitor reef restoration programs.
Collapse
|
42
|
Putnam HM, Barott KL, Ainsworth TD, Gates RD. The Vulnerability and Resilience of Reef-Building Corals. Curr Biol 2018; 27:R528-R540. [PMID: 28586690 DOI: 10.1016/j.cub.2017.04.047] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reef-building corals provide the foundation for the structural and biological diversity of coral-reef ecosystems. These massive biological structures, which can be seen from space, are the culmination of complex interactions between the tiny polyps of the coral animal in concert with its unicellular symbiotic algae and a wide diversity of closely associated microorganisms (bacteria, archaea, fungi, and viruses). While reef-building corals have persisted in various forms for over 200 million years, human-induced conditions threaten their function and persistence. The scope for loss associated with the destruction of coral reef systems is economically, biologically, physically and culturally immense. Here, we provide a micro-to-macro perspective on the biology of scleractinian corals and discuss how cellular processes of the host and symbionts potentially affect the response of these reef builders to the wide variety of both natural and anthropogenic stressors encountered by corals in the Anthropocene. We argue that the internal physicochemical settings matter to both the performance of the host and microbiome, as bio-physical feedbacks may enhance stress tolerance through environmentally mediated host priming and effects on microbiome ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Hollie M Putnam
- University of Rhode Island, Department of Biological Sciences, Kingston, RI, USA.
| | - Katie L Barott
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA; Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| | - Tracy D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Australia
| | - Ruth D Gates
- Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| |
Collapse
|
43
|
de Bakker DM, Webb AE, van den Bogaart LA, van Heuven SMAC, Meesters EH, van Duyl FC. Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao. PLoS One 2018; 13:e0197824. [PMID: 29847572 PMCID: PMC5976196 DOI: 10.1371/journal.pone.0197824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/09/2018] [Indexed: 11/30/2022] Open
Abstract
Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sponges are currently rarely incorporated in standardized surveys and experimental work is often restricted to a few species. Here were provide chemical and mechanical bioerosion rates for the six excavating sponge species most commonly found on the shallow reef of Curaçao (southern Caribbean): Cliona caribbaea, C. aprica, C. delitrix, C. amplicavata, Siphonodictyon brevitubulatum and Suberea flavolivescens. Chemical, mechanical and total bioerosion rates were estimated based on various experimental approaches applied to sponge infested limestone cores. Conventional standing incubation techniques were shown to strongly influence the chemical dissolution signal. Final rates, based on the change in alkalinity of the incubation water, declined significantly as a function of incubation time. This effect was mitigated by the use of a flow-through incubation system. Additionally, we found that mechanically removed carbonate fragments collected in the flow-through chamber (1 h) as well as a long-term collection method (1 wk) generally yielded comparable estimates for the capacity of these sponges to mechanically remove substratum. Observed interspecific variation could evidently be linked to the adopted boring strategy (i.e. gallery-forming, cavity-forming or network-working) and presence or absence of symbiotic zooxanthellae. Notably, a clear diurnal pattern was found only in species that harbour a dense photosymbiotic community. In these species chemical erosion was substantially higher during the day. Overall, the sum of individually acquired chemical and mechanical erosion using flow-through incubations was comparable to rates obtained gravimetrically. Such consistency is a first in this field of research. These findings support the much needed confirmation that, depending on the scientific demand, the different approaches presented here can be implemented concurrently as standardized methods.
Collapse
Affiliation(s)
- Didier M. de Bakker
- Wageningen Marine Research, Den Helder, Netherlands
- Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
- * E-mail: ,
| | - Alice E. Webb
- Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
| | | | - Steven M. A. C. van Heuven
- Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
| | | | - Fleur C. van Duyl
- Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
| |
Collapse
|
44
|
Yi L, Jian Z, Liu X, Zhu Y, Zhang D, Wang Z, Deng C. Astronomical tuning and magnetostratigraphy of Neogene biogenic reefs in Xisha Islands, South China Sea. Sci Bull (Beijing) 2018; 63:564-573. [PMID: 36658843 DOI: 10.1016/j.scib.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023]
Abstract
Biogenic reefs are one of two major depositional types in the South China Sea, and are constructed by coral, algae and bryozoa. The West Pacific is a major area of biogenic reef development and plays a critical role in the global carbon cycle. However, the lack of geochronological studies in previous works inhibits our understanding of their contributions. Herein, we conduct a cyclostratigraphic and magnetostratigraphic study on Neogene biogenic reefs using the XK-1 core that was drilled at the Shidao Island, Xisha (Paracel) Islands. The main findings of this study are: (1) the establishment of reliable magentostratigraphy for Ledong, Huangliu, Meishan and Sanya Formations; (2) the magnetic susceptibility variation can be inferred as growth index and tuned to the 405-ka long eccentricity cycle; (3) the astronomical geochronology suggests that the bottom ages for Ledong, Yinggehai, Huangliu, Meishan, and Sanya Formations are 2.2 Ma, 5.7 Ma, 10.4 Ma, 16.6 Ma, and 24.3 Ma, respectively; and (4) Earth's eccentricity and obliquity played predominant roles in biogenic reef establishment on orbital to tectonic timescales. Thus, the reported geochronology offers an opportunity to test the contributions of various factors and hypothesize their roles in the global carbon cycle in future.
Collapse
Affiliation(s)
- Liang Yi
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China.
| | - Zhimin Jian
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Xinyu Liu
- China National Offshore Oil Corporation Ltd., Zhanjiang Branch, Zhanjiang 524057, China
| | - Youhua Zhu
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Daojun Zhang
- China National Offshore Oil Corporation Ltd., Zhanjiang Branch, Zhanjiang 524057, China
| | - Zhenfeng Wang
- China National Offshore Oil Corporation Ltd., Zhanjiang Branch, Zhanjiang 524057, China
| | - Chenglong Deng
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Polyamine-Functionalized Polydiacetylene (PDA) Vesicles for Colorimetric Sensing of Carbon Dioxide. Macromol Res 2018. [DOI: 10.1007/s13233-018-6036-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
|
47
|
Ling J, Lin X, Zhang Y, Zhou W, Yang Q, Lin L, Zeng S, Zhang Y, Wang C, Ahmad M, Long L, Dong J. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems. Front Microbiol 2018; 9:7. [PMID: 29422885 PMCID: PMC5788956 DOI: 10.3389/fmicb.2018.00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022] Open
Abstract
Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA) and bacteria (AOB), yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA) were used to prepare clone libraries and DNA and cDNA quantitative PCR (qPCR) assays, targeting the ammonia monooxygenase-subunit (amoA) genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amoA gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the qPCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amoA gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root) at the DNA level (P < 0.05). Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle, particularly nitrification of seagrass meadows in coral reef ecosystems.
Collapse
Affiliation(s)
- Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siquan Zeng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
48
|
Biophysical feedbacks mediate carbonate chemistry in coastal ecosystems across spatiotemporal gradients. Sci Rep 2018; 8:796. [PMID: 29335493 PMCID: PMC5768679 DOI: 10.1038/s41598-017-18736-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/17/2017] [Indexed: 11/08/2022] Open
Abstract
Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions. Specifically, non-encrusting producer-dominated systems had the highest and most variable pH environments and the highest production rates, patterns that were consistent across sites spanning 11° of latitude and encompassing multiple gradients of natural variability. Furthermore, we demonstrated a biophysical feedback loop in which net community production increased pH, leading to higher net ecosystem calcification. Extreme spatiotemporal variability in pH is, thus, both impacting and driven by biological processes, indicating that shifts in community composition and ecosystem metabolism are poised to locally buffer or intensify the effects of OA.
Collapse
|
49
|
Cyronak T, Andersson AJ, Langdon C, Albright R, Bates NR, Caldeira K, Carlton R, Corredor JE, Dunbar RB, Enochs I, Erez J, Eyre BD, Gattuso JP, Gledhill D, Kayanne H, Kline DI, Koweek DA, Lantz C, Lazar B, Manzello D, McMahon A, Meléndez M, Page HN, Santos IR, Schulz KG, Shaw E, Silverman J, Suzuki A, Teneva L, Watanabe A, Yamamoto S. Taking the metabolic pulse of the world's coral reefs. PLoS One 2018; 13:e0190872. [PMID: 29315312 PMCID: PMC5760028 DOI: 10.1371/journal.pone.0190872] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2017] [Indexed: 11/25/2022] Open
Abstract
Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.
Collapse
Affiliation(s)
- Tyler Cyronak
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (TC); (AA)
| | - Andreas J. Andersson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (TC); (AA)
| | - Chris Langdon
- The Rosential School of Marine & Atmospheric Science, University of Miami, Miami, Florida, United States of America
| | - Rebecca Albright
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Nicholas R. Bates
- Bermuda Institute of Ocean Sciences, St. George’s, Bermuda
- University of Southampton, Southampton, United Kingdom
| | - Ken Caldeira
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Renee Carlton
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, United States of America
| | - Jorge E. Corredor
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Rob B. Dunbar
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Ian Enochs
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, United States of America
| | - Jonathan Erez
- Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel
| | - Bradley D. Eyre
- Centre for Coastal Biogeochemistry Research, Southern Cross University, Lismore, New South Wales, Australia
| | - Jean-Pierre Gattuso
- CNRS-INSU, Laboratoire d’Océanographie de Villefranche, Villefranche-sur-mer, France
- Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Villefranche-sur-mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, Paris, France
| | - Dwight Gledhill
- National Oceanic and Atmospheric Administration Ocean Acidification Program, Silver Spring, Maryland, United States of America
| | - Hajime Kayanne
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - David I. Kline
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - David A. Koweek
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Coulson Lantz
- Centre for Coastal Biogeochemistry Research, Southern Cross University, Lismore, New South Wales, Australia
| | - Boaz Lazar
- Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel
| | - Derek Manzello
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, Florida, United States of America
| | - Ashly McMahon
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Melissa Meléndez
- School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New Hampshire
| | - Heather N. Page
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Isaac R. Santos
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Kai G. Schulz
- Centre for Coastal Biogeochemistry Research, Southern Cross University, Lismore, New South Wales, Australia
| | - Emily Shaw
- Department of Biology, California State University, Northridge, California, United States of America
| | | | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Lida Teneva
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
- Conservation International, Center for Oceans, Honolulu, Hawaii, United States of America
| | - Atsushi Watanabe
- Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Shoji Yamamoto
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Wolfe K, Vidal-Ramirez F, Dove S, Deaker D, Byrne M. Altered sediment biota and lagoon habitat carbonate dynamics due to sea cucumber bioturbation in a high-pCO 2 environment. GLOBAL CHANGE BIOLOGY 2018; 24:465-480. [PMID: 28727218 DOI: 10.1111/gcb.13826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
The effects of global change on biological systems and functioning are already measurable, but how ecological interactions are being altered is poorly understood. Ecosystem resilience is strengthened by ecological functionality, which depends on trophic interactions between key species and resilience generated through biogenic buffering. Climate-driven alterations to coral reef metabolism, structural complexity and biodiversity are well documented, but the feedbacks between ocean change and trophic interactions of non-coral invertebrates are understudied. Sea cucumbers, some of the largest benthic inhabitants of tropical lagoon systems, can influence diel changes in reef carbonate dynamics. Whether they have the potential to exacerbate or buffer ocean acidification over diel cycles depends on their relative production of total alkalinity (AT ) through the dissolution of ingested calcium carbonate (CaCO3 ) sediments and release of dissolved inorganic carbon (CT ) through respiration and trophic interactions. In this study, the potential for the sea cucumber, Stichopus herrmanni, a bêche-de-mer (fished) species listed as vulnerable to extinction, to buffer the impacts of ocean acidification on reef carbonate chemistry was investigated in lagoon sediment mesocosms across diel cycles. Stichopus herrmanni directly reduced the abundance of meiofauna and benthic primary producers through its deposit-feeding activity under present-day and near-future pCO2 . These changes in benthic community structure, as well as AT (sediment dissolution) and CT (respiration) production by S. herrmanni, played a significant role in modifying seawater carbonate dynamics night and day. This previously unappreciated role of tropical sea cucumbers, in support of ecosystem resilience in the face of global change, is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean.
Collapse
Affiliation(s)
- Kennedy Wolfe
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Sophie Dove
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Dione Deaker
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|