1
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Zheng J, Duan Z, Xu B, Song H, Wu J, Fang F, Sheng N, Li C. Hailey-Hailey disease successfully treated with naloxone: 2 case reports and Review of the literature on efficacy of opioid receptor antagonist in Hailey-Hailey disease patients. J DERMATOL TREAT 2025; 36:2453597. [PMID: 39842790 DOI: 10.1080/09546634.2025.2453597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hailey-Hailey disease (HHD), a genetic blistering disease, is caused by a mutation in a calcium transporter protein in the Golgi apparatus encoded by the ATP2C1 gene. Clinically, HHD is characterized by flaccid vesicles, blisters, erosions, fissures, and maceration mainly in intertriginous regions. Some patients remain refractory to conventional treatments. Previously, a series of reports have confirmed naltrexone as an effective option for those patients. However, in China, naltrexone is unavailable in some hospitals and unaffordable for some patients. OBJECTIVE To confirm naloxone as a treatment option for HHD, and assess the efficacy rate and safety of naltrexone for patients with HHD. METHODS Two patients with biopsy-proven HHD received naloxone (2 mg/d, via intravenous infusion). We followed up with the two patients, assessing the change of skin lesions and obtaining photographs. We searched the PubMed databases using the keywords 'Hailey-Hailey disease' or 'benign familial pemphigus', and 'naltrexone' or 'naloxone', and reviewed English publications of reports and analyzed the efficacy and safety of naltrexone. RESULTS Two patients prescribed naloxone showed completely remission in two weeks without any adverse reactions. The total remission rate of naltrexone for HHD is approximately 80%, without severe adverse effects. CONCLUSION Naltrexone is effective and safe in the treatment of HHD. Naloxone, an analog of naltrexone, can also effectively and safely treat HHD, potentially offering a new therapeutic option for patients with refractory HHD.
Collapse
Affiliation(s)
- Junyou Zheng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Hospital for Skin Diseases, Institute of Dermatology, Nanjing, Jiangsu, China
| | - Zhimin Duan
- Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Beilei Xu
- Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Hao Song
- Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jianbing Wu
- Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Fang Fang
- Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Nan Sheng
- Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Vandeputte MM, Stove CP. Navigating nitazenes: A pharmacological and toxicological overview of new synthetic opioids with a 2-benzylbenzimidazole core. Neuropharmacology 2025:110470. [PMID: 40252758 DOI: 10.1016/j.neuropharm.2025.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Since the first identification of isotonitazene on the recreational drug market in 2019, new synthetic opioids (NSOs) with a 2-benzylbenzimidazole core (colloquially known as 'nitazene' opioids) have increased in prevalence. At the end of 2024, 22 different analogues had been identified in Europe, and worrying trends indicate their increasing presence at the street level. Nitazene analogues originate from a series of research articles from the 1950-60s, but were never marketed as analgesics. Recent pharmacological research has shown that different analogues are highly active, with several being more potent than fentanyl in their ability to activate the μ-opioid receptor and produce opioid effects. This high potency, combined with their unpredictability on the recreational drug market, legal status in some regions, and economic appeal to drug producers, has contributed to a growing number of intoxications and fatalities involving nitazene analogues worldwide. This literature review focuses on the pharmaco-toxicology of nitazene opioids and the characteristics of their emergence on the NSO and broader recreational drug markets from 2019 onwards. Aspects that are covered include (a) a systematic approach to the naming of nitazene analogues, (b) trends, prevalence and identifications on the recreational drug market, (c) structure-activity relationships derived from recent in vitro, in vivo, and in silico research, (d) strategies for detection in biological samples and drug material, and (e) the current legal framework. Finally, innovative approaches to navigate this complex landscape are discussed, together with an outlook for the future.
Collapse
Affiliation(s)
- Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Matsiras D, Ventoulis I, Verras C, Bistola V, Bezati S, Fyntanidou B, Polyzogopoulou E, Parissis JT. Proenkephalin 119-159 in Heart Failure: From Pathophysiology to Clinical Implications. J Clin Med 2025; 14:2657. [PMID: 40283487 PMCID: PMC12027756 DOI: 10.3390/jcm14082657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Heart failure (HF) is a challenging clinical syndrome with high morbidity and mortality rates. Along the spectrum of cardiovascular diseases, HF constitutes an ever-expanding area of research aiming at combating the associated mortality and improving the prognosis of patients with HF. Although natriuretic peptides have an established role among biomarkers in HF diagnosis and prognosis, several novel biomarkers reflecting the complex pathophysiology of HF are under investigation for their ability to predict adverse clinical outcomes in HF. Proenkephalin 119-159 (PENK119-159) is a non-functional peptide belonging to the enkephalin family of the endogenous opioid system and is considered a surrogate biomarker of the biologically active enkephalin peptides. PENK119-159 has demonstrated promising results in predicting short- and long-term mortality, readmission rates, and worsening renal function in patients with HF. Indeed, in the setting of HF, the levels of both active enkephalins and their surrogate PENK119-159 are elevated and are associated with a dismal prognosis. However, the biological effects of PENK119-159 remain largely unknown. Thus, it is crucial to gain a deeper insight into both the physiology of the enkephalin peptide family and the enkephalin-mediated cardiovascular regulation. In order to elucidate the complex pathophysiological mechanisms that lead to the upregulation of enkephalins in patients with HF, as well as the potential clinical implications of elevated enkephalins and PENK119-159 levels in this patient population, the present review will describe the physiology and distribution of the endogenous opioid peptides and their corresponding opioid receptors, with a particular focus on the action of enkephalins. The effects of the enkephalin peptides will be analyzed in both healthy subjects and patients with HF, especially with regard to their role in the regulation of cardiovascular and renal function. The review will also discuss the findings of recent studies that have explored the prognostic value of PENK119-159 in patients with HF.
Collapse
Affiliation(s)
- Dionysis Matsiras
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, Keptse Area, 50200 Ptolemaida, Greece;
| | - Christos Verras
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Vasiliki Bistola
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Sofia Bezati
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - Barbara Fyntanidou
- Department of Emergency Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
| | - Effie Polyzogopoulou
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| | - John T. Parissis
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece; (C.V.); (V.B.); (S.B.); (E.P.); (J.T.P.)
| |
Collapse
|
5
|
Mahmoud RH, Coscarella G, Kwak R, Yosipovitch G. Prurigo nodularis and acquired perforating dermatosis in chronic kidney disease: Are they the same entity? Clin Dermatol 2025:S0738-081X(25)00094-X. [PMID: 40097077 DOI: 10.1016/j.clindermatol.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Prurigo nodularis has been reported in itchy chronic kidney disease (CKD) patients, particularly those with end-stage renal failure. Acquired perforating dermatitis associated with CKD and diabetes is a group of disorders in which dermal materials are eliminated through the epidermis and is characterized by itchy papules and nodules. We focus on the relationship between prurigo nodularis and acquired perforating dermatitis in CKD and provide data to support that both entities share many of the same clinical and histologic features. These cutaneous diseases are often underreported in this patient population, leading to inadequate treatment and suboptimal patient outcomes. Our review of the literature suggests a relationship between prurigo nodularis/acquired perforating dermatitis and CKD, presumably driven by uremic pruritus, changes in the renin-angiotensin-aldosterone system, a predisposing immune dysregulation with increased interleukin-31 expression, and opioid system imbalances. A variety of pharmacologic therapies may be efficacious. The use of the new targeted biologics for prurigo nodularis and whether they are also helpful for CKD and acquired perforating dermatitis are welcome.
Collapse
Affiliation(s)
- Rami H Mahmoud
- Dr Phillip Frost Dept of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine
| | - Giulia Coscarella
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Ruby Kwak
- Dr Phillip Frost Dept of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine
| | - Gil Yosipovitch
- Dr Phillip Frost Dept of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine.
| |
Collapse
|
6
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
7
|
Adamczyk K, Zuzda K, Jankowski M, Świerczyński R, Chudziński K, Czapski B, Szułdrzyński K. Effects of Opioids in Cancer Pain: An Interplay Among Genetic Factors, Immune Response, and Clinical Outcomes-A Scoping Review. Cancers (Basel) 2025; 17:863. [PMID: 40075716 PMCID: PMC11899605 DOI: 10.3390/cancers17050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Managing cancer-related pain presents complex challenges involving the interplay between analgesic efficacy, immune system responses, and patient outcomes. Methods: Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we conducted a comprehensive literature search in Medline, Scopus, and Web of Science databases. The review synthesized evidence regarding opioid pain management modalities, genetic variations affecting pain perception, and associated drug metabolism. Results: The literature reveals significant associations between opioid administration and immune function, with potential implications for cancer progression and survival. Genetic polymorphisms in key genes influence individual responses to pain opioid metabolism and, finally, pain management strategies. The immunosuppressive effects of opioids emerge as a critical consideration in cancer pain management, potentially influencing disease progression and treatment outcomes. Conclusions: Genetic variants influence analgesic efficacy, while the interaction between opioid-induced immunosuppression and genetic factors impacts both pain control and survival outcomes. This emphasizes the need for personalized treatment approaches considering individual genetic profiles and immune function.
Collapse
Affiliation(s)
- Kamil Adamczyk
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konrad Zuzda
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Miłosz Jankowski
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Rafał Świerczyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Kamil Chudziński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Bartosz Czapski
- Department of Neurosurgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konstanty Szułdrzyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
8
|
Andrejic N, Božovic I, Moradi H, Tataei R, Knezevic NN. Neuropathic pain management: a focused review of current treatments and novel data from main ongoing clinical trials. Expert Opin Investig Drugs 2025:1-13. [PMID: 40016085 DOI: 10.1080/13543784.2025.2473692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Neuropathic pain (NP) remains a significant challenge in clinical practice, requiring a sophisticated pharmacotherapeutic strategy for effective symptom management. This review provides a comprehensive analysis of the current pharmacological treatments for NP, focusing on their efficacy, mechanism of action, and therapeutic potential. Additionally, it evaluates ongoing clinical trials investigating novel drugs and therapeutic approaches, highlighting emerging trends and future directions in NP management. AREAS COVERED This review examines first- to third-line therapeutic modalities for NP, critically analyzing their efficacy, safety profiles, and clinical applications. It also includes an overview of ongoing clinical trials exploring innovative pharmacological therapies. A thorough literature review was conducted using the MEDLINE database without temporal limitations, offering a detailed assessment of established and emerging treatments. EXPERT OPINION While current pharmacological options offer significant symptom relief, their overall effectiveness in managing NP remains limited, highlighting the need for further therapeutic advancements. Staying informed about emerging therapies and clinical trials is vital to enhancing patient care and quality of life. The future of NP management lies in optimizing individualized treatment strategies, refining therapeutic approaches, and fostering interdisciplinary collaboration. Close monitoring of outcomes and continued research are essential for advancing understanding and improving the precision of NP therapies.
Collapse
Affiliation(s)
- Nikola Andrejic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivo Božovic
- Neurology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Hadi Moradi
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
- Faculty of Medicine, University of Hamedan, Hamedan, Iran
- Faculty of Medicine, Belarusian State Medical University, Minsk, Belarus
| | - Rojin Tataei
- Faculty of Medicine, University of Hamedan, Hamedan, Iran
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| |
Collapse
|
9
|
Carry E, Vasilatis A, Johnson AL, Ryan JW. Expecting medication misuse: a proactive approach to drug discovery to prevent fatal overdose. Future Med Chem 2025; 17:681-692. [PMID: 40091621 PMCID: PMC11938974 DOI: 10.1080/17568919.2025.2476388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Misuse of central nervous system (CNS) depressants (alprazolam, fentanyl, etc.) is a major cause of fatal overdose, with a high prevalence of deaths involving polydrug interactions from the victim's own prescriptions. Thus, there is an urgent need to improve the safety of CNS depressants to prevent fatalities. Pharmacological pursuits aiming to prevent harm through the design of non-addictive alternatives have either failed before clinical trials or produced mediocre treatment alternatives. Therefore, we propose a new perspective for medicinal chemists: rather than aiming to prevent misuse, we must design new central nervous system (CNS) depressants under the expectation of misuse. By shifting the design focus to partial modulators rather than full agonists, we can develop novel chemical entities (NCEs) that intrinsically minimize physical harm caused by misuse without sacrificing therapeutic efficacy. In this perspective, we provide an overview of the two most widely misused classes of medications (opioid and GABAA receptor modulators) in relation to pharmacodynamic properties and clinical outcomes. We then suggest a drug discovery pathway focused on physiological parameters. It is our opinion that this approach would dramatically decrease the lethality of overdose and improve outcomes of treatments for pain, anxiety, and withdrawal from alcohol, benzodiazepines, and opioids.
Collapse
Affiliation(s)
- Eileen Carry
- Department of Drug Discovery, Zena Therapeutics Inc., North Brunswick, NJ, USA
| | - Ariane Vasilatis
- Department of Drug Discovery, Zena Therapeutics Inc., North Brunswick, NJ, USA
| | - Anna Laroche Johnson
- Department of Biomedical Research Summer Internship Program, National Institute of Drug Abuse, North Brunswick, NJ, USA
| | - Jake William Ryan
- Department of Biomedical Research Summer Internship Program, National Institute of Drug Abuse, North Brunswick, NJ, USA
| |
Collapse
|
10
|
Spodnick MB, McElderry SC, Diaz MR. Opioid receptor signaling throughout ontogeny: Shaping neural and behavioral trajectories. Neurosci Biobehav Rev 2025; 170:106033. [PMID: 39894419 PMCID: PMC11851333 DOI: 10.1016/j.neubiorev.2025.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Due to the recent and ongoing opioid crisis in the United States, exposure to opioid drugs in utero is becoming more common, including during medication-assisted therapy used to treat opioid use disorder. As such, careful consideration of opioidergic signaling in utero and beyond, as well as alterations to this signaling via introduction of exogenous opioids, is warranted. This review explores the ontogeny and function of the Mu, Kappa and Delta opioid receptor systems throughout the lifespan, highlighting their importance in guiding neurobehavioral development. We argue for a paradigm shift in conceptualization of opioids as not only contributors within their own system, but also vital regulators of a multitude of downstream neurodevelopmental processes.
Collapse
Affiliation(s)
- Mary B Spodnick
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| | | | - Marvin R Diaz
- Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| |
Collapse
|
11
|
Lambert DG, Mincer JS. Targeting the kappa opioid receptor for analgesia and antitumour effects. Br J Anaesth 2025; 134:646-648. [PMID: 39779420 DOI: 10.1016/j.bja.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
Kappa opioid (KOP) receptor agonists have analgesic actions in a range of models, but central side-effects can limit their utility. In addition, non-analgesic actions of opioid receptors are receiving significant research interest. A recent article reports that high KOP receptor expression in glioma tissue correlates with improved survival and that KOP receptor agonism further promotes apoptosis of glioma cells through regulation of the p38 MAPK oncogenic pathway. This suggests that KOP receptor ligands could be developed as chemotherapeutic adjuncts in addition to their use as analgesics.
Collapse
Affiliation(s)
- David G Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Hodgkin Building, Leicester, UK
| | - Joshua S Mincer
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Angelidou A, Koster JA, Sherman AC, McLoughlin C, Lalwani P, Kelly A, Saeed A, McEnaney K, Baden LR, Brogna M, Weitzman ER, Levy S, Dowling DJ, Levy O. Product and trial design considerations on the path towards a vaccine to combat opioid overdose. NPJ Vaccines 2025; 10:35. [PMID: 39971929 PMCID: PMC11840009 DOI: 10.1038/s41541-025-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Opioid overdose deaths are an evolving public health emergency in the United States. Recent advancements in drug conjugate vaccine design and adjuvantation technologies have re-ignited interest in the potential clinical utility of opioid vaccination. Here we present the concept of fentanyl vaccination as a complementary strategy for opioid overdose prevention with a focus on vaccine safety, efficacy, and considerations for vaccine development and testing in early phase human clinical trials.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jacob A Koster
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Amy C Sherman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Caitlyn McLoughlin
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Pooja Lalwani
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Aisling Kelly
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ahsan Saeed
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Lindsey R Baden
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Melissa Brogna
- Division of Addiction Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Elissa R Weitzman
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Addiction Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sharon Levy
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Addiction Medicine, Boston Children's Hospital, Boston, MA, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT & Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Zhang L, Wang D, Shi S, Wu S, Li Z, Nan J, Lan Y. Mechanisms of delta opioid receptor inhibition of parallel fibers-purkinje cell synaptic transmission in the mouse cerebellar cortex. Brain Res 2025; 1849:149374. [PMID: 39638084 DOI: 10.1016/j.brainres.2024.149374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear. In this study, we utilized whole-cell patch-clamp recordings and neuropharmacological approaches to explore the effects of DORs activation on PF-PC synaptic transmission in the mouse cerebellar cortex and to elucidate the underlying mechanisms. We found that the selective DORs agonist DPDPE significantly reduced the amplitude and area under the curve (AUC) of PF-PC evoked excitatory postsynaptic currents (eEPSCs), accompanied by an increase in the paired-pulse ratio (PPR). This inhibitory effect was blocked by the DORs antagonist Naltrindole. Additionally, DPDPE decreased the frequency of PF-PC miniature excitatory postsynaptic currents (mEPSCs) without affecting their amplitude, indicating a presynaptic site of action. When the protein kinase A (PKA) inhibitor PKI was added to the internal solution of the recording electrode, it did not alter the DPDPE-induced suppression of PF-PC mEPSC frequency. However, this suppression was reversed by KT5720, a cell-permeable PKA-specific inhibitor. These findings suggest that DPDPE inhibits PF-PC synaptic transmission through the preferential activation of presynaptic DORs, with this process being dependent on the cyclic adenosine monophosphate (cAMP)-PKA signaling pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Dan Wang
- Department of Pharmacology, Medical College of Dalian University, Dalian City, Liaoning Province, 116000, China
| | - Shuang Shi
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Shuang Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Zhi Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, 133000, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China.
| |
Collapse
|
14
|
Zech A, Most V, Mutti A, Heilbronn R, Schwarzer C, Hildebrand PW, Staritzbichler R. A combined in silico approach to design peptide ligands with increased receptor-subtype selectivity. J Mol Biol 2025:169006. [PMID: 39954776 DOI: 10.1016/j.jmb.2025.169006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
G-protein coupled receptors are major drug targets that change their conformation upon binding of ligands to their extracellular binding pocket to transduce the signal to intracellular G-proteins or arrestins. In drug screening campaigns, computational methods are frequently used to predict binding affinities for chemical compounds in silico before experimental testing. Some of these methods take into consideration the inherent flexibility of the ligand and to some extent also of the receptor. Due to high structural flexibility, peptide ligands are exceptionally difficult to handle and approaches to effectively sample in silico receptor-peptide ligand interactions are limited. Here we describe a pipeline starting from microseconds molecular dynamics simulations of receptor and receptor ligand complexes to find reasonable starting conformations and derive constraints for subsequent flexible docking of peptide ligands, using Rosetta's FlexPepDock approach. We applied this approach to predict binding affinities for dynorphin and its variants to members of the opioid receptor family. Using an ensemble of docking poses, Rosetta's fixbb protein design method explored the sequence space at defined positions, to enhance binding affinities, aiming to increase subtype selectivity towards κ-opioid receptor while decreasing it towards μ-opioid receptor. The results of our computations were validated experimentally in a related study (Zangrandi et al., 2024[1]). Four out of six proposed variants lead to a significant increase in subtype selectivity in favor of κ-opioid receptor, highlighting the potential of our approach to design subtype selective peptide variants. The established workflow may also apply for other receptor types activated by peptide ligands.
Collapse
Affiliation(s)
- Adam Zech
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Victoria Most
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Drug Development, University of Leipzig, Leipzig, Germany
| | - Anna Mutti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Regine Heilbronn
- Clinic for Neurology and Experimental Neurology, AG Gene Therapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chistoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - René Staritzbichler
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; University Institute for Laboratory Medicine, Microbiology and Clinical Pathobiochemistry, University Hospital of Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
15
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
16
|
Zhang Z, Zhao Y, Gou D, Li P, Wang H, Li Y, Li C, Niu Z, Yang T, Zhou L, Dong S. Peripheral inflammation enhances opioid-induced gastrointestinal motility inhibition via up-regulating spinal mu opioid receptor. Toxicol Appl Pharmacol 2025; 495:117225. [PMID: 39761922 DOI: 10.1016/j.taap.2025.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Opioids are potent analgesics in clinical pain management but exert variable analgesia in different pain types. Opioid-induced constipation is a common side effect of opioid therapy, and whether opioids induce different gastrointestinal motility inhibitions in different pain types is unknown. In this study, we evaluated the antinociceptive effects and inhibition of upper gastrointestinal transit and colonic bead expulsion of morphine, DAMGO, and Deltorphin in mouse CFA chronic inflammatory pain, SNI chronic neuropathic pain, and carrageenan chronic inflammatory pain models. Furthermore, quantitative PCR and immunofluorescence were used to investigate the mechanisms underlying the altered inhibition. Results showed that intrathecal administration of morphine, DAMGO, and Deltorphin produced higher antinociceptive effects in the CFA and carrageenan groups than in the SNI group. Upper gastrointestinal transit inhibition was significantly enhanced in the carrageenan group by morphine and DAMGO; colonic bead expulsion inhibition was also enhanced in the CFA and carrageenan groups by morphine and DAMGO, but not in Deltorphin treatment. Additionally, mu (MOR) opioid receptor mRNA and MOR-expressing cell density in the lumbar spinal cord of CFA and carrageenan mice were increased, whereas delta opioid receptor expression remained unchanged in these groups. Finally, the pharmacological blockade of MOR completely prevented the enhanced upper gastrointestinal transit inhibition in the carrageenan group by morphine and DAMGO. Altogether, our results indicate that gastrointestinal motility inhibition induced by MOR agonists can be enhanced with upregulated spinal MOR expression in chronic inflammatory pain.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Dingnian Gou
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pengtao Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Hao Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yanfang Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chenxi Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Lanxia Zhou
- The Laboratory Center of The First Hospital, Lanzhou University, 1 Donggang West Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
17
|
Obeng S, McMahon LR, Ofori E. Patent review of novel compounds targeting opioid use disorder (2018-2024). Expert Opin Ther Pat 2025; 35:165-180. [PMID: 39816001 DOI: 10.1080/13543776.2024.2446230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Opioids have served as a cornerstone in pain management for decades. However, the emergence of increasingly potent synthetic analogs brings forth a range of side effects, including respiratory depression, tolerance, dependence, constipation, and, more importantly, the development of severe and debilitating opioid use disorder (OUD). Search for therapeutics to mitigate OUD has been challenging, and this has called for novel approaches that include the design of small molecules targeting neuronal circuits involved in addiction (opioid, dopamine, serotonin, norepinephrine, and glutamate receptors, etc.). AREAS COVERED In this review, we retrieve and discuss two dozen (24) relevant patents filed in the past six (6) years that focus on novel small-molecule therapeutics for OUD. The chemical entities disclosed were highlighted, and specific examples were provided where necessary. EXPERT OPINION Several chemical entities targeting both opioid and non-opioid targets are under consideration for treating OUD. Our search for patents covering such compounds revealed embodiments with diverse chemistry. Understanding the public impact of OUD and the rapidly evolving landscape of substance abuse underscores the urgent need for a thorough reevaluation of strategies to address these challenges. This includes the development of small molecules with unique mechanisms of action for OUD treatment.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Lance R McMahon
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Edward Ofori
- Department of Pharmaceutical and Biomedical Sciences, Rudolph H. Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| |
Collapse
|
18
|
Furdui A, da Silveira Scarpellini C, Montandon G. Mu-opioid receptors in tachykinin-1-positive cells mediate the respiratory and antinociceptive effects of the opioid fentanyl. Br J Pharmacol 2025; 182:1059-1074. [PMID: 39506356 DOI: 10.1111/bph.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Opioid drugs are potent analgesics that carry the risk of respiratory side effects due to actions on μ-opioid receptors (MORs) in brainstem regions that control respiration. Substance P is encoded by the Tac1 gene and is expressed in neurons regulating breathing, nociception, and locomotion. Tac1-positive cells also express MORs in brainstem regions mediating opioid-induced respiratory depression. We determined the role of Tac1-positive cells in mediating the respiratory effects of opioid drugs. EXPERIMENTAL APPROACH In situ hybridization was used to determine Oprm1 mRNA expression (gene encoding MORs) in Tac1-positive cells in regions regulating respiratory depression by opioid drugs. Conditional knockout mice lacking functional MORs in Tac1-positive cells were produced and the respiratory and locomotor responses to the opioid analgesic fentanyl were assessed using whole-body plethysmography. A tail immersion assay was used to assess the antinociceptive response to fentanyl. KEY RESULTS Oprm1 mRNA was highly expressed (>80%) in subpopulations of Tac1-positive cells in the preBötzinger Complex, nucleus tractus solitarius, and Kölliker-Fuse/lateral parabrachial region. Conditionally knocking out MORs in Tac1-positive cells abolished the effects of fentanyl on respiratory rate, relative tidal volume, and relative minute ventilation compared with control mice. Importantly, the antinociceptive response of fentanyl was eliminated in mice lacking functional MORs in Tac1-positive cells, whereas locomotor effects induced by fentanyl were preserved. CONCLUSIONS AND IMPLICATIONS Our findings suggest that Tac1-positive cells mediate the respiratory depressive and antinociceptive effects of the opioid fentanyl, providing important insights for the development of pain therapies with reduced risk of respiratory side effects.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Kartvelishvili T, Sapojnikova N, Asatiani N, Asanishvili L, Sokhadze V, Sichinava N, Chikovani Z. Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients. Diseases 2025; 13:30. [PMID: 39997037 PMCID: PMC11853769 DOI: 10.3390/diseases13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES In brain physiology and disease, MMP-9 is a significant and apparently peculiar factor. Numerous studies have implicated neuroinflammatory processes involving MMP-9 in the pathophysiology of addiction. This study aims to evaluate plasma MMP-9 level as a biomarker for the stages of alcohol and opioid addiction. METHODS The case subjects were patients with opioid and alcohol addiction. The quantitative assessment of MMP-9 plasma concentration was performed using monoclonal antibodies against human MMP-9. RESULTS MMP-9 levels in the plasma of patients with alcohol and opioid dependence differ from MMP-9 concentrations in apparently healthy donors. During the intoxication stage, MMP-9 concentrations in individuals with alcohol and opioid dependence are similar and higher than in the control group. While the MMP-9 level is close to the control level after alcohol withdrawal, it stays increased during opioid withdrawal. When MMP-9 levels in plasma were measured in three distinct intoxicated states (light, moderate, and heavy) in cases of alcohol addiction, the results were all similar. Two distinct opioid intoxicated states (methadone and buprenorphine) and three withdrawals-following methadone, buprenorphine, and heroin abuse-were associated with high MMP-9 levels.
Collapse
Affiliation(s)
- Tamar Kartvelishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Nelly Sapojnikova
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Nino Asatiani
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Lali Asanishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Victor Sokhadze
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | | | - Zaza Chikovani
- Narcological Clinic “Nishati”, Tbilisi 0186, Georgia (Z.C.)
| |
Collapse
|
20
|
Hoffmann J, Schepmann D, Daniliuc C, Bermudez M, Wünsch B. Stereoselective Synthesis and Biological Evaluation of Perhydroquinoxaline-Based κ Receptor Agonists. Int J Mol Sci 2025; 26:998. [PMID: 39940767 PMCID: PMC11817610 DOI: 10.3390/ijms26030998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The hydroxylated perhydroquinoxaline 14 was designed by conformational restriction of the prototypical κ receptor agonist U-50,488 and the introduction of an additional polar group. The synthesis of 14 comprised ten reaction steps starting from diethyl 3-hydroxyglutarate (4). The first key step was the diastereoselective establishment of the tetrasubstituted cyclohexane 7 by the reaction of dialdehyde 6 with benzylamine and nitromethane. The piperazine ring was annulated by the reaction of silyloxy-substituted cyclohexanetriamine 8 with dimethyl oxalate. The pharmacophoric structural elements characteristic for κ receptor agonists were finally introduced by functional group modifications. The structure including the relative configuration of the tetrasubstituted cyclohexane derivative (2r,5s)-7a and the perhydroquinoxaline 9 was determined unequivocally by X-ray crystal structure analysis. The hydroxylated perhydroquinoxaline 14 showed moderate κ receptor affinity (Ki = 599 nM) and high selectivity over μ, δ, σ1, and σ2 receptors. An ionic interaction between the protonated pyrrolidine of 14 and D138 of κ receptor anchors 14 in the κ receptor binding pocket.
Collapse
Affiliation(s)
- Jonathan Hoffmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (J.H.); (D.S.)
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (J.H.); (D.S.)
| | - Constantin Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, D-48149 Münster, Germany;
| | - Marcel Bermudez
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (J.H.); (D.S.)
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (J.H.); (D.S.)
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Universität Münster, Corrensstr. 48, D-48149 Münster, Germany
| |
Collapse
|
21
|
Stein C. Effects of pH on opioid receptor activation and implications for drug design. Biophys J 2024; 123:4158-4166. [PMID: 38970252 PMCID: PMC11700362 DOI: 10.1016/j.bpj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
G-protein-coupled receptors are integral membrane proteins that transduce chemical signals from the extracellular matrix into the cell. Traditional drug design has considered ligand-receptor interactions only under normal conditions. However, studies on opioids indicate that such interactions are very different in diseased tissues. In such microenvironments, protons play an important role in structural and functional alterations of both ligands and receptors. The pertinent literature strongly suggests that future drug design should take these aspects into account in order to reduce adverse side effects while preserving desired effects of novel compounds.
Collapse
Affiliation(s)
- Christoph Stein
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Experimental Anaesthesiology, Berlin, Germany.
| |
Collapse
|
22
|
Qiao B, Yao J, Fan Y, Zhang N, Feng M, Zhao J, Song X, Luan Y, Zhuang B, Zhang N, Xie X, Xu M. Intrinsic anti-inflammatory nanomedicines for enhanced pain management. Front Bioeng Biotechnol 2024; 12:1514245. [PMID: 39737056 PMCID: PMC11683077 DOI: 10.3389/fbioe.2024.1514245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Effective postoperative pain management remains a significant challenge due to the severe side effects of opioids and the limitations of existing analgesic delivery systems. Inflammation plays a critical role in pain exacerbation, highlighting the need for therapies that combine analgesic effects with intrinsic anti-inflammatory properties. Methods Herein, we develop an intrinsic anti-inflammatory nanomedicine designed to enhance pain management by integrating controlled anesthetic release with inherent anti-inflammatory activity. Our nanoplatform utilizes dendritic mesoporous silica nanoparticles (MSNs) loaded with levobupivacaine and coated with Rg3-based liposomes derived from ginsenoside Rg3, termed LMSN-bupi. Results The MSNs enable sustained and controlled release of the local anesthetic, while the Rg3-liposome coating provides intrinsic anti-inflammatory effects by inhibiting macrophage activation. In animal models, LMSN-bupi demonstrates significantly prolonged analgesic effects and attenuated inflammatory responses compared to traditional liposome-decorated nanoparticles (TMSN-bupi) (n = 5). Discussion These findings underscore the potential of intrinsic anti-inflammatory nanomedicines in enhancing pain management, offering a promising strategy to overcome the limitations of current therapies and improve patient outcomes in postoperative care.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaqian Yao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu’ang Fan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Na Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Feng
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaju Zhao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinye Song
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Kiyatkin EA. Hypoxic effects of heroin and fentanyl and their basic physiological mechanisms. Am J Physiol Lung Cell Mol Physiol 2024; 327:L930-L948. [PMID: 39404797 PMCID: PMC11684959 DOI: 10.1152/ajplung.00251.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024] Open
Abstract
Respiratory depression that diminishes oxygen delivery to the brain is the most dangerous effect of opioid drugs. Although plethysmography is a valuable tool to examine drug-induced changes in respiration, the primary cause of brain abnormalities induced by opioids is the global decrease in brain oxygen levels. The primary goal of this review is to provide an overview and discussion on fluctuations in brain oxygen levels induced by opioids, with a focus on heroin and fentanyl. To evaluate fluctuations in brain oxygen levels, we used oxygen sensors coupled with high-speed amperometry in awake, freely moving rats. First, we provide an overview of brain oxygen responses induced by natural physiological stimuli and discuss the mechanisms regulating oxygen entry into brain tissue. Then, we present data on brain oxygen responses induced by heroin and fentanyl and review their underlying mechanisms. These data allowed us to compare the effects of these drugs on brain oxygen regarding their latency, potency, time-dependency, and potential lethality at high doses as well as their relationships with peripheral oxygen responses. We also discuss data on the effects of naloxone on brain oxygen responses induced by heroin and fentanyl in the paradigms of both the pretreatment and treatment, when naloxone is administered at different times after the primary opioid drug. Although most data discussed were obtained in rats, they may have clinical relevance for understanding the mechanisms underlying the physiological effects of opioids and developing rational treatment strategies to decrease acute lethality and long-term health complications of opioid misuse.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS, Baltimore, Maryland, United States
| |
Collapse
|
24
|
Guitart-Vela J, Magrone Á, González G, Folch J. Effectiveness and Safety of Sublingual Fentanyl in the Treatment of Breakthrough Cancer Pain in Older Patients with Cancer: Results from a Retrospective Observational Study. J Pain Palliat Care Pharmacother 2024; 38:355-366. [PMID: 39115710 DOI: 10.1080/15360288.2024.2385680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/03/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
The study assessed sublingual fentanyl citrate (SFC) effectiveness and safety for breakthrough cancer pain (BtCP) in older patients. A multicenter, retrospective, observational study was conducted in three subgroups of cancer patients aged over 65 years with BtCP. The reports were collected by 20 oncologists across 12 hospitals. The primary goal was to measure changes in BtCP intensity with SFC treatment over 30 days; secondary objectives included pain relief onset and adverse events. A total of 127 patients with long-term cancer (mean: 3.3 years) were recruited. All of them had BtCP, mostly of mixed origin (62.5%). A significantly lower dose was needed in the high-age group at the final visit compared to baseline (212.90 ± 200.45 mcg vs. 206 ± 167.08 mcg; p = 0.000). Pain intensities at the beginning of the flare and at 30 min after SFC administration were significantly lower when the last and first visits were compared (1.9 vs. 2.3, p = 0.000; and 6.2 vs. 6.8 p = 0.006, respectively). The onset of analgesia was significantly more rapid for half of the patients ≥75 years, compared with 65-69 and 70-74 age groups. SFC appears then to be effective, well-tolerated, and safe to treat BtCP in older cancer patients.
Collapse
Affiliation(s)
- Jordi Guitart-Vela
- is with Servicio de Patología del Dolor, Hospital Plató, Barcelona, Spain
| | | | | | - Jordi Folch
- is with Servicio de Patología del Dolor, Hospital Plató, Barcelona, Spain
| |
Collapse
|
25
|
Vera-López KJ, Davila-Del-Carpio G, Nieto-Montesinos R. Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurol Int 2024; 16:1611-1625. [PMID: 39585076 PMCID: PMC11587492 DOI: 10.3390/neurolint16060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Therapeutic treatment of nervous system disorders has represented one of the significant challenges in medicine for the past several decades. Technological and medical advances have made it possible to recognize different neurological disorders, which has led to more precise identification of potential therapeutic targets, in turn leading to research into developing drugs aimed at these disorders. In this sense, recent years have seen an increase in exploration of the therapeutic effects of various metabolites extracted from Maca (Lepidium meyenii), a plant native to the central alpine region of Peru. Among the most important secondary metabolites contained in this plant are macamides, molecules derived from N-benzylamides of long-chain fatty acids. Macamides have been proposed as active drugs to treat some neurological disorders. Their excellent human tolerance and low toxicity along with neuroprotective, immune-enhancing, and and antioxidant properties make them ideal for exploration as therapeutic agents. In this review, we have compiled information from various studies on macamides, along with theories about the metabolic pathways on which they act.
Collapse
Affiliation(s)
| | | | - Rita Nieto-Montesinos
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (G.D.-D.-C.)
| |
Collapse
|
26
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Zhang X, Guan M, Yi W, Li X, Ding X, He Y, Han W, Wang Z, Tang Q, Liao B, Shen J, Han X, Bai D. Smart Response Biomaterials for Pain Management. Adv Healthc Mater 2024; 13:e2401555. [PMID: 39039990 DOI: 10.1002/adhm.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinhe Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yi He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zijie Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiuyu Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jieliang Shen
- Department of Rehabilitation Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
28
|
Cole RH, Joffe ME. Mu and Delta Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618870. [PMID: 39484533 PMCID: PMC11526863 DOI: 10.1101/2024.10.17.618870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of Mu and Delta opioid receptors (MOR and DOR), positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how MOR and DOR regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization MOR and DOR regulation of inhibitory transmission. We show that DOR activation is more effective at suppressing spontaneous inhibitory transmission in the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through pre- and postsynaptic modifications to IN physiology, whereas MOR function is predominantly observed in somato-dendritic or presynaptic compartments depending on cell type.
Collapse
Affiliation(s)
- Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
29
|
Brandt HB, Sinning S, Hasselstrøm JB, Andersen CU. A review of possible biomarkers for opioid tolerance. Forensic Sci Int 2024; 363:112187. [PMID: 39154523 DOI: 10.1016/j.forsciint.2024.112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Knowledge of opioid tolerance in a deceased person is important for distinguishing between therapeutic and toxic opioid concentrations for that particular individual when interpreting postmortem toxicological results. However, no biomarkers for opioid tolerance are currently available. This review aimed to study the existing literature on mechanisms or changes in signaling pathways related to chronic opioid use, which could be relevant for further studies to identify biomarkers for opioid tolerance. We performed a systematic literature search using the PRISMA 2020 guidelines using the MeSH terms "opioid tolerance AND biomarkers" in PubMed, Embase, WebofScience, and the Cochrane library. A review of the search results yielded seven studies on animal models or humans, identifying and evaluating thirteen possible biomarkers in terms of specificity for changes induced by opioids and other aspects to be considered as potential biomarkers. We evaluated nine potential biomarkers as unlikely to be specific for opioid tolerance, and one had contradictory results in terms of upregulation or downregulation. However, methylation of the promoter region of the μ-opioid receptor gene, increased activity of soluble puromycin-sensitive aminopeptidase, altered miRNA profile, or other multiple component profiling may be interesting to study further as biomarkers for opioid tolerance in forensic postmortem cases.
Collapse
Affiliation(s)
| | | | | | - Charlotte Uggerhøj Andersen
- Department of Forensic Medicine, Aarhus University, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.
| |
Collapse
|
30
|
Jafal NM, Stoleru S, Zugravu A, Orban C, Popescu M, Marin RC, Fulga IG. The Analgesic Effect of Morphine on Peripheral Opioid Receptors: An Experimental Research. J Crit Care Med (Targu Mures) 2024; 10:337-344. [PMID: 39829726 PMCID: PMC11740696 DOI: 10.2478/jccm-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
Opioids represent one of the key pillars in postoperative pain management, but their use has been associated with a variety of serious side effects. Thus, it is crucial to investigate the timing and course of opioid administration in order to ensure a best efficacy to side-effect profile. The aim of our article was to investigate the analgesic effects of locally administered morphine sulfate (intraplantar) in a carrageenan-induced inflammation model in rats. After carrageenan administration, the rats were divided into 10 equal groups and were injected with either morphine 5 mg/kg or 0.9% saline solution at different time intervals, depending on the assigned group. The analgesic effect was assessed through thermal stimulation. Our results showed that paw withdrawal time was significantly higher in rats treated with morphine compared to those in the control group 9.18 ± 3.38 compared to 5.14 ± 2.21 seconds, p=0.012). However, differences were more pronounced at certain time intervals post-carrageenan administration (at 180 minutes compared to 360 minutes, p=0.003 and at 180 minutes compare to 1440 minutes p<0.001), indicating that efficacy varies depending on the timing of treatment. In conclusion, our findings support the hypothesis that locally administered morphine may alleviate pain under inflammatory conditions and underscores the importance of considering treatment timing when evaluating the analgesic effect.
Collapse
Affiliation(s)
| | - Smaranda Stoleru
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Aurelian Zugravu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Carmen Orban
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Popescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Ion-Gigel Fulga
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
31
|
Zhang J, Cheng J. A promising alternative to opioids. eLife 2024; 13:e103003. [PMID: 39344495 PMCID: PMC11441975 DOI: 10.7554/elife.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
A complex extracted from the amniotic membrane in humans reduces post-surgical pain in mice by directly inhibiting pain-sensing neurons.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pain Management, Cleveland ClinicClevelandUnited States
- Department of Neuroscience, Cleveland ClinicClevelandUnited States
| | - Jianguo Cheng
- Department of Pain Management, Cleveland ClinicClevelandUnited States
- Department of Neuroscience, Cleveland ClinicClevelandUnited States
| |
Collapse
|
32
|
Henriques ART, Silva JP, Carvalho F. The impact of opioids on the hallmarks of ageing. Mech Ageing Dev 2024; 222:111994. [PMID: 39326463 DOI: 10.1016/j.mad.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Opioids rank among the most hazardous substances of abuse, leading to opioid use disorders (which greatly diminish life quality) and contributing to the highest drug-related mortality rates. Nonetheless, both the therapeutic and recreational use of opioids is escalating globally. Interestingly, chronic opioid users often exhibit signs consistent with accelerated ageing, suggesting that they likely interfere with well-characterized ageing mechanisms (e.g., telomere shortening, epigenetic changes, mitochondrial dysfunction, cellular senescence). Here, we review the most recent advances regarding the impact of opioids on well-characterized hallmarks of ageing, to ascertain a potential association between opioid use and accelerated ageing. Our findings indicate that there is accumulating evidence supporting a close association between the use of opioids and the early onset of some ageing hallmarks, namely mitochondrial dysfunction, genomic instability, or telomere shortening. However, there is still limited data available regarding how opioids specifically impact other ageing hallmarks, like nutrient sensing, cellular senescence, or loss of proteostasis. Taking into consideration the high prevalence of opioid use, strengthening the understanding of the mechanisms underlying opioids' impact on ageing assumes utmost relevance, both in terms of improving risk assessment, as well as to help researchers and clinicians prevent or mitigate these effects in clinical settings.
Collapse
Affiliation(s)
- Ana Rita Tavares Henriques
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - João Pedro Silva
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
33
|
Liu Y, Sun J, Wu C, Ren J, He Y, Sun N, Huang H, Chen Q, Liu D, Huang Y, Xu F, Yu L, Fitzgibbon BM, Cash RFH, Fitzgerald PB, Yan M, Che X. Characterizing the opioidergic mechanisms of repetitive transcranial magnetic stimulation-induced analgesia: a randomized controlled trial. Pain 2024; 165:2035-2043. [PMID: 38537053 PMCID: PMC11331833 DOI: 10.1097/j.pain.0000000000003220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 08/21/2024]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) is a promising technology to reduce chronic pain. Investigating the mechanisms of rTMS analgesia holds the potential to improve treatment efficacy. Using a double-blind and placebo-controlled design at both stimulation and pharmacologic ends, this study investigated the opioidergic mechanisms of rTMS analgesia by abolishing and recovering analgesia in 2 separate stages across brain regions and TMS doses. A group of 45 healthy participants were equally randomized to the primary motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC), and the Sham group. In each session, participants received an intravenous infusion of naloxone or saline before the first rTMS session. Participants then received a second dose of rTMS session after the drugs were metabolized at 90 minutes. M1-rTMS-induced analgesia was abolished by naloxone compared with saline and was recovered by the second rTMS run when naloxone was metabolized. In the DLPFC, double but not the first TMS session induced significant pain reduction in the saline condition, resulting in less pain compared with the naloxone condition. In addition, TMS over the M1 or DLPFC selectively increased plasma concentrations of β-endorphin or encephalin, respectively. Overall, we present causal evidence that opioidergic mechanisms are involved in both M1-induced and DLPFC-rTMS-induced analgesia; however, these are shaped by rTMS dosage and the release of different endogenous opioids.
Collapse
Affiliation(s)
- Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junfeng Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaomin Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanni He
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - QunShan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co, Ltd, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bernadette M. Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
- Monarch Research Institute, Monarch Mental Health Group, Melbourne, Australia
| | - Robin F. H. Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Paul B. Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
34
|
Pinheiro AV, Petrucci GN, Dourado A, Silva F, Pires I. Pain Management in Animals with Oncological Disease: Opioids as Influencers of Immune and Tumor Cellular Balance. Cancers (Basel) 2024; 16:3015. [PMID: 39272873 PMCID: PMC11394036 DOI: 10.3390/cancers16173015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Advancements in understanding pain physiopathology have historically challenged animals' absence of pain senses. Studies have demonstrated that animals have comparable neural pain pathways, suggesting that cats and dogs likely experience pain similarly to humans. Understanding brain circuits for effective pain control has been crucial to adjusting pain management to the patient's individual responses and current condition. The refinement of analgesic strategies is necessary to better cater to the patient's demands. Cancer pain management searches to ascertain analgesic protocols that enhance patient well-being by minimizing or abolishing pain and reducing its impact on the immune system and cancer cells. Due to their ability to reduce nerve sensitivity, opioids are the mainstay for managing moderate and severe acute pain; however, despite their association with tumor progression, specific opioid agents have immune-protective properties and are considered safe alternatives to analgesia for cancer patients.
Collapse
Affiliation(s)
- Ana Vidal Pinheiro
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- School of Agrarian Sciences, Polytechnic Institute of Viana do Castelo, Refoidos do Lima, 4990-706 Ponte de Lima, Portugal
| | - Gonçalo N Petrucci
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
| | - Amândio Dourado
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
35
|
Gustafsson M, Silva V, Valeiro C, Joaquim J, van Hunsel F, Matos C. Misuse, Abuse and Medication Errors' Adverse Events Associated with Opioids-A Systematic Review. Pharmaceuticals (Basel) 2024; 17:1009. [PMID: 39204114 PMCID: PMC11357286 DOI: 10.3390/ph17081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Opioids are the strongest analgesics available and are crucial in the treatment of acute and chronic pain. The line between these critical medications and how they are used beyond standard therapeutics in cases such as abuse, misuse, and medication errors needs to be understood, as it affects their safety, efficacy, and manner of use. The aim of this systematic review was to identify what is known about the adverse events resulting from the abuse, misuse, and medication errors associated with opioid use. A systematic search was conducted in the PubMed®, Scopus® and, EBSCO® databases to retrieve studies from the inception to December 2023 reporting abuse, misuse, and medication errors associated with medicinal opioid use. Two authors independently screened titles and abstracts and full text according to eligibility using Covidence® software. Full articles were examined by two independent reviewers, and disagreements were resolved by a third reviewer. The risk of bias was assessed by the JBI's critical appraisal tools. A total of 934 articles were screened by their title and abstract. Then, 151 articles were selected for full text screening. Of these, 34 studies were eligible for inclusion in this review. The included studies varied significantly in their population sizes, ranging from 9 individuals to 298,433 patients, and encompassed a diverse demographic, including all ages and both sexes. The studies consistently reported a range of adverse events associated with opioid use. Fentanyl, morphine, oxycodone, tramadol, and hydrocodone were frequently implicated. The data heterogeneity in this field resulted in challenges in drawing conclusions. The review highlights that some opioids, particularly fentanyl, morphine, and oxycodone, are frequently associated with preventable adverse drug reactions, abuse, and medication errors, underscoring the need for robust preventative measures and ongoing research to mitigate opioid-related harm.
Collapse
Affiliation(s)
- Moa Gustafsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
| | - Vítor Silva
- Unidade Local de Saúde de Coimbra, EPE, 3004-561 Coimbra, Portugal;
| | - Carolina Valeiro
- Eu2P European Programme in Pharmacovigilance and Pharmacoepidemiology, University Autónoma de Barcelona, 08193 Barcelona, Spain;
| | - João Joaquim
- Instituto Politécnico De Coimbra, ESTESC-Coimbra Health School, Farmácia, 3046-854 Coimbra, Portugal;
| | - Florence van Hunsel
- Netherlands Pharmacovigilance Centre Lareb, 5237 MH ’s-Hertogenbosch, The Netherlands;
- Department of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Cristiano Matos
- Instituto Politécnico De Coimbra, ESTESC-Coimbra Health School, Farmácia, 3046-854 Coimbra, Portugal;
- QLV Research Consulting, 3030-193 Coimbra, Portugal
| |
Collapse
|
36
|
Constantin S, Sokanovic SJ, Mochimaru Y, Dams AL, Smiljanic K, Prévide RM, Nessa N, Carmona GN, Stojilkovic SS. Protein Tyrosine Phosphatase Receptors N and N2 Control Pituitary Melanotroph Development and POMC Expression. Endocrinology 2024; 165:bqae076. [PMID: 38923438 PMCID: PMC11242453 DOI: 10.1210/endocr/bqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The neuroendocrine marker genes Ptprn and Ptprn2 encode protein tyrosine phosphatase receptors N and N2, 2 members of protein tyrosine phosphatase receptors void of enzymatic activity, and whose function and mechanism of action have not been elucidated. To explore the role(s) of Ptprn and Ptprn2 on the hypothalamic-pituitary-adrenal axis, we used mice in which both genes were knocked out (DKO). The focus in this study was on corticotrophs and melanotrophs from the anterior and intermediate lobes of the pituitary gland, respectively. In both sexes, DKO caused an increase in the expression of the corticotroph/melanotroph genes Pomc and Tbx19 and the melanotroph-specific gene Pax7. We also found in vivo and in vitro increased synthesis and release of beta-endorphin, alpha-melanocyte-stimulating hormone, and ACTH in DKO mice, which was associated with increased serum corticosterone levels and adrenal mass. DKO also increased the expression of other melanotroph-specific genes, but not corticotroph-specific genes. The dopaminergic pathway in the hypothalamus and dopaminergic receptors in melanotrophs were not affected in DKO mice. However, hyperplasia of the intermediate lobe was observed in DKO females and males, accompanied by increased proopiomelanocortin immunoreactivity per cell. These results indicate that protein tyrosine phosphatase receptor type N contributes to hypothalamic-pituitary-adrenal function by being involved in processes governing postnatal melanotroph development and Pomc expression.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Srdjan J Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Aloa Lamarca Dams
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Rafael M Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Naseratun Nessa
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gilberto N Carmona
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Furdui A, da Silveira Scarpellini C, Montandon G. Anatomical distribution of µ-opioid receptors, neurokinin-1 receptors, and vesicular glutamate transporter 2 in the mouse brainstem respiratory network. J Neurophysiol 2024; 132:108-129. [PMID: 38748514 DOI: 10.1152/jn.00478.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 07/03/2024] Open
Abstract
µ-Opioid receptors (MORs) are responsible for mediating both the analgesic and respiratory effects of opioid drugs. By binding to MORs in brainstem regions involved in controlling breathing, opioids produce respiratory depressive effects characterized by slow and shallow breathing, with potential cardiorespiratory arrest and death during overdose. To better understand the mechanisms underlying opioid-induced respiratory depression, thorough knowledge of the regions and cellular subpopulations that may be vulnerable to modulation by opioid drugs is needed. Using in situ hybridization, we determined the distribution and coexpression of Oprm1 (gene encoding MORs) mRNA with glutamatergic (Vglut2) and neurokinin-1 receptor (Tacr1) mRNA in medullary and pontine regions involved in breathing control and modulation. We found that >50% of cells expressed Oprm1 mRNA in the preBötzinger complex (preBötC), nucleus tractus solitarius (NTS), nucleus ambiguus (NA), postinspiratory complex (PiCo), locus coeruleus (LC), Kölliker-Fuse nucleus (KF), and the lateral and medial parabrachial nuclei (LBPN and MPBN, respectively). Among Tacr1 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, Bötzinger complex (BötC), PiCo, LC, raphe magnus nucleus, KF, LPBN, and MPBN, whereas among Vglut2 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, BötC, PiCo, LC, KF, LPBN, and MPBN. Taken together, our study provides a comprehensive map of the distribution and coexpression of Oprm1, Tacr1, and Vglut2 mRNA in brainstem regions that control and modulate breathing and identifies Tacr1 and Vglut2 mRNA-expressing cells as subpopulations with potential vulnerability to modulation by opioid drugs.NEW & NOTEWORTHY Opioid drugs can cause serious respiratory side-effects by binding to µ-opioid receptors (MORs) in brainstem regions that control breathing. To better understand the regions and their cellular subpopulations that may be vulnerable to modulation by opioids, we provide a comprehensive map of Oprm1 (gene encoding MORs) mRNA expression throughout brainstem regions that control and modulate breathing. Notably, we identify glutamatergic and neurokinin-1 receptor-expressing cells as potentially vulnerable to modulation by opioid drugs and worthy of further investigation using targeted approaches.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Jones JD, Arout CA, Luba R, Murugesan D, Madera G, Gorsuch L, Schusterman R, Martinez S. The influence of drug class on reward in substance use disorders. Pharmacol Biochem Behav 2024; 240:173771. [PMID: 38670466 PMCID: PMC11162950 DOI: 10.1016/j.pbb.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Caroline A Arout
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Rachel Luba
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dillon Murugesan
- CUNY School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Gabriela Madera
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Liam Gorsuch
- Department of Psychiatry, The University of British Columbia, 430-5950 University Blvd., Vancouver V6T 1Z3, BC, Canada
| | - Rebecca Schusterman
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
39
|
Vu LY, Luo D, Johnson K, Denehy ED, Songrady JC, Martin J, Trivedi R, Alsum AR, Shaykin JD, Chaudhary CL, Woloshin EJ, Kornberger L, Bhuiyan N, Parkin S, Jiang Q, Che T, Alilain W, Turner JR, Bardo MT, Prisinzano TE. Searching for Synthetic Opioid Rescue Agents: Identification of a Potent Opioid Agonist with Reduced Respiratory Depression. J Med Chem 2024; 67:9173-9193. [PMID: 38810170 DOI: 10.1021/acs.jmedchem.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While in the process of designing more effective synthetic opioid rescue agents, we serendipitously identified a new chemotype of potent synthetic opioid. Here, we report that conformational constraint of a piperazine ring converts a mu opioid receptor (MOR) antagonist into a potent MOR agonist. The prototype of the series, which we have termed atoxifent (2), possesses potent in vitro agonist activity. In mice, atoxifent displayed long-lasting antinociception that was reversible with naltrexone. Repeated dosing of atoxifent produced antinociceptive tolerance and a level of withdrawal like that of fentanyl. In rats, while atoxifent produced complete loss of locomotor activity like fentanyl, it failed to produce deep respiratory depression associated with fentanyl-induced lethality. Assessment of brain biodistribution demonstrated ample distribution of atoxifent into the brain with a Tmax of approximately 0.25 h. These results indicate enhanced safety for atoxifent-like molecules compared to fentanyl.
Collapse
Affiliation(s)
- Loan Y Vu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kai Johnson
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily D Denehy
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Judy C Songrady
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jocelyn Martin
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Riya Trivedi
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Alexia R Alsum
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chhabi Lal Chaudhary
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Eric J Woloshin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lindsay Kornberger
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Nazmul Bhuiyan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Qianru Jiang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Warren Alilain
- Spinal Cord and Brain Injury Research Center (SCoBIRC), College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
40
|
Wang L, Guo W, Guan H, Yan N, Cai X, Zhu L. Tramadol suppresses growth of orthotopic liver tumors via promoting M1 macrophage polarization in the tumor microenvironment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4205-4218. [PMID: 38041778 DOI: 10.1007/s00210-023-02871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Tumor-associated macrophages (TAMs) are major infiltrating immune cells in liver cancer. They are polarized to anti-tumor M1 type or tumor-supporting M2 type in a dynamic changing state. Tramadol, a synthetic opioid, exhibits tumor-suppressing effect in several cancers, but whether it plays a role in TAMs polarization is uncertain. In the present study, the potential influence of tramadol on TAMs polarization was explored in liver cancer. An orthotopic murine Hepa 1-6 liver cancer model was constructed. The potential function of tramadol was evaluated by cell viability assay, EdU incorporation assay, flow cytometry, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) assay, T cell proliferation and suppression assays and western blot. We found that tramadol suppressed proliferation and tumor formation of murine Hepa 1-6 cells in vitro and in vivo. Tramadol reprogramed the immune microenvironment to favor M1 macrophage polarization in orthotopic Hepa 1-6 tumors. Moreover, tramadol facilitated M1 macrophage polarization and inhibited M2 macrophage polarization of bone marrow-derived macrophages (BMDMs) and human THP-1 macrophages in vitro. Furthermore, tramadol-treated BMDMs promoted proliferation and activation of splenic CD4+ and CD8+ T cells. Tramadol induced cellular ROS production and mitochondrial dysfunction of BMDMs. Finally, tramadol activated NF-κB signaling in BMDMs and THP-1 macrophages, while inhibition of NF-κB signaling by JSH-23 attenuated the influence of tramadol on macrophage polarization. In conclusion, these data elucidated a novel anti-tumor mechanism of tramadol in liver cancer. Tramadol might be a promising treatment strategy for liver cancer patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Weijia Guo
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Hongman Guan
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Ni Yan
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Xiaolan Cai
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University., No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China
| | - Lili Zhu
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Dalian Medical University. , No. 222 Zhongshan Road, Xigang District, Dalian, 116000, China.
| |
Collapse
|
41
|
Yamasaki T, Kiyokawa Y, Munetomo A, Takeuchi Y. Naloxone increases conditioned fear responses during social buffering in male rats. Eur J Neurosci 2024; 59:3256-3272. [PMID: 38644789 DOI: 10.1111/ejn.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Social buffering is the phenomenon in which the presence of an affiliative conspecific mitigates stress responses. We previously demonstrated that social buffering completely ameliorates conditioned fear responses in rats. However, the neuromodulators involved in social buffering are poorly understood. Given that opioids, dopamine, oxytocin and vasopressin play an important role in affiliative behaviour, here, we assessed the effects of the most well-known antagonists, naloxone (opioid receptor antagonist), haloperidol (dopamine D2 receptor antagonist), atosiban (oxytocin receptor antagonist) and SR49059 (vasopressin V1a receptor antagonist), on social buffering. In Experiment 1, fear-conditioned male subjects were intraperitoneally administered one of the four antagonists 25 min prior to exposure to a conditioned stimulus with an unfamiliar non-conditioned rat. Naloxone, but not the other three antagonists, increased freezing and decreased walking and investigation as compared with saline administration. In Experiment 2, identical naloxone administration did not affect locomotor activity, anxiety-like behaviour or freezing in an open-field test. In Experiment 3, after confirming that the same naloxone administration again increased conditioned fear responses, as done in Experiment 1, we measured Fos expression in 16 brain regions. Compared with saline, naloxone increased Fos expression in the paraventricular nucleus of the hypothalamus and decreased Fos expression in the nucleus accumbens shell, anterior cingulate cortex and insular cortex and tended to decrease Fos expression in the nucleus accumbens core. Based on these results, we suggest that naloxone blocks social buffering of conditioned fear responses in male rats.
Collapse
Affiliation(s)
- Takumi Yamasaki
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Kamiński P, Lorek M, Baszyński J, Tadrowski T, Gorzelańczyk EJ, Feit J, Tkaczenko H, Owoc J, Woźniak A, Kurhaluk N. Role of antioxidants in the neurobiology of drug addiction: An update. Biomed Pharmacother 2024; 175:116604. [PMID: 38692055 DOI: 10.1016/j.biopha.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Relationships between protective enzymatic and non-enzymatic pro-antioxidant mechanisms and addictive substances use disorders (SUDs) are analyzed here, based on the results of previous research, as well as on the basis of our current own studies. This review introduces new aspects of comparative analysis of associations of pro-antixidant and neurobiological effects in patients taking psychoactive substances and complements very limited knowledge about relationships with SUDs from different regions, mainly Europe. In view of the few studies on relations between antioxidants and neurobiological processes acting in patients taking psychoactive substances, this review is important from the point of view of showing the state of knowledge, directions of diagnosis and treatment, and further research needed explanation. We found significant correlations between chemical elements, pro-antioxidative mechanisms, and lipoperoxidation in the development of disorders associated with use of addictive substances, therefore elements that show most relations (Pr, Na, Mn, Y, Sc, La, Cr, Al, Ca, Sb, Cd, Pb, As, Hg, Ni) may be significant factors shaping SUDs. The action of pro-antioxidant defense and lipid peroxidation depends on the pro-antioxidative activity of ions. We explain the strongest correlations between Mg and Sb, and lipoperoxidation in addicts, which proves their stimulating effect on lipoperoxidation and on the induction of oxidative stress. We discussed which mechanisms and neurobiological processes change susceptibility to SUDs. The innovation of this review is to show that addicted people have lower activity of dismutases and peroxidases than healthy ones, which indicates disorders of antioxidant system and depletion of enzymes after long-term tolerance of stressors. We explain higher level of catalases, reductases, ceruloplasmin, bilirubin, retinol, α-tocopherol and uric acid of addicts. In view of poorly understood factors affecting addiction, analysis of interactions allows for more effective understanding of pathogenetic mechanisms leading to formation of addiction and development the initiation of directed, more effective treatment (pharmacological, hormonal) and may be helpful in the diagnosis of psychoactive changes.
Collapse
Affiliation(s)
- Piotr Kamiński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland; University of Zielona Góra, Faculty of Biological Sciences, Institute of Biological Sciences, Department of Biotechnology, Prof. Z. Szafran St. 1, Zielona Góra PL 65-516, Poland.
| | - Małgorzata Lorek
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Jędrzej Baszyński
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Division of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Tadeusz Tadrowski
- Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Dermatology and Venereology, Faculty of Medicine M. Skłodowska-Curie St. 9, Bydgoszcz PL 85-094, Poland
| | - Edward Jacek Gorzelańczyk
- Kazimierz Wielki University in Bydgoszcz, Institute of Philosophy, M.K. Ogińskiego St. 16, Bydgoszcz PL 85-092, Poland; Adam Mickiewicz University in Poznań, Faculty of Mathematics and Computer Science, Uniwersyt Poznański St, 4, Poznań PL 61-614, Poland; Primate Cardinal Stefan Wyszyński Provincial Hospital in Sieradz, Psychiatric Centre in Warta, Sieradzka St. 3, Warta PL 98-290, Poland; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Faculty of Pharmacy, Jagiellońska St. 15, Bydgoszcz PL 85-067, Poland
| | - Julia Feit
- Pallmed sp. z o.o., W. Roentgen St. 3, Bydgoszcz PL 85-796, Poland
| | - Halina Tkaczenko
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| | - Jakub Owoc
- National Institute of Geriatrics, Rheumatology and Rehabilitation named after prof. dr hab. Eleonora Reicher, MD, Spartańska St. 1, Warszawa PL 02-637, Poland
| | - Alina Woźniak
- Nicholaus Copernicus University, Collegium Medicum in Bydgoszcz, Department of Medical Biology and Biochemistry, M. Karłowicz St. 24, Bydgoszcz PL 85-092, Poland
| | - Natalia Kurhaluk
- Pomeranian University in Słupsk, Institute of Biology, Arciszewski St. 22 B, Słupsk PL 76-200, Poland
| |
Collapse
|
43
|
Conibear A, Bailey CP, Kelly E. Biased signalling in analgesic research and development. Curr Opin Pharmacol 2024; 76:102465. [PMID: 38830321 DOI: 10.1016/j.coph.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Ligand bias offers a novel means to improve the therapeutic profile of drugs. With regard to G protein-coupled receptors involved in analgesia, it could be advantageous to develop such drugs if the analgesic effect is mediated by a different cellular signalling pathway than the adverse effects associated with the drug. Whilst this has been explored over a number of years for the μ receptor, it remains unclear whether this approach offers significant benefit for the treatment of pain. Nevertheless, the development of biased ligands at other G protein-coupled receptors in the CNS does offer some promise for the development of novel analgesic drugs in the future. Here we summarise and discuss the recent evidence to support this.
Collapse
Affiliation(s)
- Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris P Bailey
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
44
|
Sah D, Shoffel-Havakuk H, Tsur N, Uhelski ML, Gottumukkala V, Cata JP. Opioids and Cancer: Current Understanding and Clinical Considerations. Curr Oncol 2024; 31:3086-3098. [PMID: 38920719 PMCID: PMC11203256 DOI: 10.3390/curroncol31060235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Pain is one of the most common symptoms in patients with cancer. Pain not only negatively affects the quality of life of patients with cancer, but it has also been associated with reduced survival. Pain management is therefore a critical component of cancer care. Prescription opioids remain the first-line approach for the management of moderate-to-severe pain associated with cancer. However, there has been increasing interest in understanding whether these analgesics could impact cancer progression. Furthermore, epidemiological data link a possible association between prescription opioid usage and cancer development. Until more robust evidence is available, patients with cancer with moderate-to-severe pain may receive opioids to decrease suffering. However, future studies should be conducted to evaluate the role of opioids and opioid receptors in specific cancers.
Collapse
Affiliation(s)
- Dhananjay Sah
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
- Anesthesiology and Surgical Oncology Research Group (ASORG), Houston, TX 77030, USA
| | - Hagit Shoffel-Havakuk
- Department of Otolaryngology-Head and Neck Surgery, Rabin Medical Center, Petach Tiqva 4941492, Israel; (H.S.-H.); (N.T.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Tsur
- Department of Otolaryngology-Head and Neck Surgery, Rabin Medical Center, Petach Tiqva 4941492, Israel; (H.S.-H.); (N.T.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Megan L. Uhelski
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Vijaya Gottumukkala
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (V.G.)
- Anesthesiology and Surgical Oncology Research Group (ASORG), Houston, TX 77030, USA
| |
Collapse
|
45
|
Yang H, Liu Z, Liu F, Wu H, Huang X, Huang R, Saw PE, Cao M. TET1-Lipid Nanoparticle Encapsulating Morphine for Specific Targeting of Peripheral Nerve for Pain Alleviation. Int J Nanomedicine 2024; 19:4759-4777. [PMID: 38828199 PMCID: PMC11141738 DOI: 10.2147/ijn.s453608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Opioids are irreplaceable analgesics owing to the lack of alternative analgesics that offer opioid-like pain relief. However, opioids have many undesirable central side effects. Restricting opioids to peripheral opioid receptors could reduce those effects while maintaining analgesia. Methods To achieve this goal, we developed Tet1-LNP (morphine), a neural-targeting lipid nanoparticle encapsulating morphine that could specifically activate the peripheral opioid receptor in the dorsal root ganglion (DRG) and significantly reduce the side effects caused by the activation of opioid receptors in the brain. Tet1-LNP (morphine) were successfully prepared using the thin-film hydration method. In vitro, Tet1-LNP (morphine) uptake was assessed in differentiated neuron-like PC-12 cells and dorsal root ganglion (DRG) primary cells. The uptake of Tet1-LNP (morphine) in the DRGs and the brain was assessed in vivo. Von Frey filament and Hargreaves tests were used to assess the antinociception of Tet1-LNP (morphine) in the chronic constriction injury (CCI) neuropathic pain model. Morphine concentration in blood and brain were evaluated using ELISA. Results Tet1-LNP (morphine) had an average size of 131 nm. Tet1-LNP (morphine) showed high cellular uptake and targeted DRG in vitro. CCI mice treated with Tet1-LNP (morphine) experienced prolonged analgesia for nearly 32 h compared with 3 h with free morphine (p < 0.0001). Notably, the brain morphine concentration in the Tet1-LNP (morphine) group was eight-fold lower than that in the morphine group (p < 0.0001). Conclusion Our study presents a targeted lipid nanoparticle system for peripheral neural delivery of morphine. We anticipate Tet1-LNP (morphine) will offer a safe formulation for chronic neuropathic pain treatment, and promise further development for clinical applications.
Collapse
Affiliation(s)
- Hongmei Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Zhongqi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Fan Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| | - Haixuan Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Xiaoyan Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Rong Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Phei Er Saw
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| |
Collapse
|
46
|
Zimmerman A, Laitman A. Safe Management of Adverse Effects Associated with Prescription Opioids in the Palliative Care Population: A Narrative Review. J Clin Med 2024; 13:2746. [PMID: 38792289 PMCID: PMC11121850 DOI: 10.3390/jcm13102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
In the palliative care population, prescription opioids are often considered viable pain relief options. However, in this complex patient population, the adverse effects of opioid medications should be identified and managed without delay. Common adverse effects can include constipation, nausea, somnolence, dizziness, vomiting, and pruritus. Less common adverse effects can include potentially lethal respiratory depression and cardiovascular effects. Critical aspects of safe opioid prescribing are recognition of side effects and knowledge of effective management strategies; prompt management is necessary for uninterrupted pain relief. Most complications are managed with general approaches such as dose reduction, opioid rotation, alternate routes of administration, and symptomatic management. The only opioid-induced complication for which US Food and Drug Administration-approved treatments currently exist is constipation. Treating laxative-refractory opioid-induced constipation (OIC) with peripherally acting mu-opioid receptor antagonists (PAMORAs), which block gastrointestinal opioid receptors, can restore gastrointestinal motility and fluid secretion. This narrative review discusses key complications of prescription opioid treatment and their management in the palliative care setting.
Collapse
Affiliation(s)
| | - Adam Laitman
- Salix Pharmaceuticals, Bridgewater, NJ 08807, USA;
| |
Collapse
|
47
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Hu J, Song Y, Huang X, Li C, Jin X, Cen L, Zhang C, Ding B, Lian J. Opioids-Induced Long QT Syndrome: A Challenge to Cardiac Health. Cardiovasc Toxicol 2024; 24:472-480. [PMID: 38630336 PMCID: PMC11076354 DOI: 10.1007/s12012-024-09853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
The challenge posed by opioid overdose has become a significant concern for health systems due to the complexities associated with drug prohibition, widespread clinical use, and potential abuse. In response, healthcare professionals have primarily concentrated on mitigating the hallucinogenic and respiratory depressant consequences of opioid overdose to minimize associated risks. However, it is crucial to acknowledge that most opioids possess the capacity to prolong the QT interval, particularly in cases of overdose, thereby potentially resulting in severe ventricular arrhythmias and even sudden death if timely intervention is not implemented. Consequently, alongside addressing the typical adverse effects of opioids, it is imperative to consider their cardiotoxicity. To enhance comprehension of the correlation between opioids and arrhythmias, identify potential targets for prompt intervention, and mitigate the hazards associated with clinical utilization, an exploration of the interaction between drugs and ion channels, as well as their underlying mechanisms, becomes indispensable. This review primarily concentrates on elucidating the impact of opioid drugs on diverse ion channels, investigating recent advancements in this domain, and attaining a deeper understanding of the mechanisms underlying the prolongation of the QT interval by opioid drugs, along with potential interventions.
Collapse
Affiliation(s)
- Jiale Hu
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Yongfei Song
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Xiaoyan Huang
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Chongrong Li
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Xiaojun Jin
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Lichao Cen
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Chuanjin Zhang
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Beilei Ding
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China
| | - Jiangfang Lian
- Department of Cardiology, Ningbo University Health Science Center Affiliated Lihuili Hospital, Ningbo University, Zhejiang, China.
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
49
|
Kakei Y, Ioroi T, Miyakoda K, Ito T, Kashin M, Shirai T, Hasegawa T, Sakane T, Yano I, Akashi M. Assessment of Patient Characteristics Influencing the Analgesic Effects of Ibuprofen Gargle After Mandibular Third Molar Extractions. Cureus 2024; 16:e57516. [PMID: 38572179 PMCID: PMC10989207 DOI: 10.7759/cureus.57516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction In our previous work, we investigated the analgesic effects of ibuprofen gargle after mandibular third molar extractions. However, a subsequent detailed review of individual patient data revealed variations in postoperative pain reduction among patients. Consequently, the present study was designed to conduct post-hoc subanalyses that identified factors contributing to variation in the analgesic response to ibuprofen gargle after third molar extractions. Materials and methods This study involved thirty-five Japanese patients from a prior randomized, double-blind, placebo-controlled, crossover study, which focused on the analgesic effects of ibuprofen gargle after mandibular third molar extractions. Participants were categorized as responders (n = 13) and non-responders (n = 22) based on the within-subject difference (ibuprofen-placebo, IP) of visual analog scale (VAS) changes. Baseline characteristics were compared, along with variables, such as age, sex, the reason for extraction, extraction site, Pell Gregory (space and depth) classification, Winter's classification, surgeon's experience, and surgery time. Baseline characteristics predicting responder status were examined using multivariate logistic regression. Results In the univariate analysis, variables such as age, sex, and baseline VAS scores with p-values <0.2 were evaluated using a stepwise approach. This analysis identified age (per -10 years) with an odds ratio of 4.163 (95% confidence interval (CI): 1.170-31.952, p = 0.0233) and sex (female) with an odds ratio of 9.977 (95% CI: 1.336-208.256, p = 0.0213) as significant predictors of responder status. Conclusions In young and female patients, ibuprofen gargle decreased postoperative pain after mandibular third molar extractions.
Collapse
Affiliation(s)
- Yasumasa Kakei
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | | | - Keiko Miyakoda
- Clinical and Translational Research Center, Kobe University Hospital, Kobe, JPN
| | | | - Masahiko Kashin
- Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Tatsuya Shirai
- Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Takumi Hasegawa
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Toshiyasu Sakane
- Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, JPN
| | - Ikuko Yano
- Pharmacy, Kobe University Hospital, Kobe, JPN
| | - Masaya Akashi
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| |
Collapse
|
50
|
Jia Z, Wei X, Chen N, Xu X, Zhao G, Fu X, Wang H, Goldring MB, Goldring SR, Wang D. Thermoresponsive Polymeric Hydromorphone Prodrug Provides Sustained Local Analgesia without Apparent Adverse Effects. Mol Pharm 2024; 21:1838-1847. [PMID: 38413029 PMCID: PMC11210938 DOI: 10.1021/acs.molpharmaceut.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The extensive use of opioids for chronic pain management has contributed significantly to the current opioid epidemic. While many alternative nonopioid analgesics are available, opioids remain the most potent analgesics for moderate to severe pain management. In addition to the implementation of multimodal analgesia, there is a pressing need for the development of more effective and safer opioids. In this study, we developed a thermoresponsive N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based hydromorphone (HMP) prodrug (ProGel-HMP, HMP content = 16.2 wt %, in base form). The aqueous solution of ProGel-HMP was free-flowing at 4 °C but became a hydrogel when the temperature was raised to ≥37 °C, allowing sustained local retention when administered in vivo. When tested in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis (OA), ProGel-HMP was retained after intra-articular injection in the OA knee joint for at least 2 weeks postinjection, with low extra-articular distribution. ProGel-HMP was not detected in the central nervous system (CNS). A single dose of ProGel-HMP produced rapid and sustained joint pain resolution for greater than 14 days when compared to saline and dose-equivalent HMP controls, likely mediated through peripheral μ-opioid receptors in the knee joint. Systemic analgesia effect was absent in the DMM mice treated with ProGel-HMP, as evident in the lack of difference in tail flick response between the ProGel-HMP-treated mice and the controls (i.e., Healthy, Saline, and Sham). Repeated dosing of ProGel-HMP did not induce tolerance. Collectively, these data support the further development of ProGel-HMP as a potent, safe, long-acting and nonaddictive analgesic for better clinical pain management.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Gang Zhao
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Xin Fu
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Hanjun Wang
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-4455, USA
| | | | - Steven R. Goldring
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Hospital for Special Surgery, New York, NY, 10021, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Department of Orthopaedic and Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5640, USA
| |
Collapse
|