1
|
Hagar HT, Fernandez-Vega V, Wang KW, Jordan LMO, Shumate J, Scampavia L, Tapayan AS, Nguyen HM, Spicer TP, Kuo MH. Hyperphosphorylated tau-based Alzheimer's Disease drug discovery: Identification of inhibitors of tau aggregation and cytotoxicity. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100235. [PMID: 40319815 DOI: 10.1016/j.slasd.2025.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 30 million people worldwide. Underlying the progressive decline of cognitive functions are the neurofibrillary tangles (NFTs) in neurons of the brain. The spatiotemporal distribution of NFTs predicts the progression of cognitive symptoms. In contrast, the senile plaques of amyloid-β aggregates, another major biomarker for AD, do not correlate with the clinical symptom development, consistent with the negligible benefits to cognitive functions in patients receiving anti-Aβ immunotherapies. A new drug discovery avenue targeting tau pathologies is therefore urgently needed. Using a recombinant hyperphosphorylated tau (p-tau) that presents characters key to the disease, e.g., formation of neurotoxic aggregates, we conducted a fluorescence p-tau aggregation assay and completed a 100K-compound high-throughput screen (HTS) and identified inhibitors of p-tau aggregation and cytotoxicity. This dual functional screen resulted in several potent compounds that effectively curbed both p-tau aggregation and cytotoxicity. Results presented in this work are the first HTS for small-molecule compounds that target the cellular toxicity of hyperphosphorylated tau. Top hits found in this screen and their analogues to be developed in the near future may lead to breakthroughs in the therapeutic development for Alzheimer's disease and other neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Hsiao-Tien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Virneliz Fernandez-Vega
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Luis M Ortiz Jordan
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Justin Shumate
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - April Sweet Tapayan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
2
|
Oettinger D, Yamamoto A. Autophagy dysfunction and neurodegeneration: Where does it go wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Li Y, Qi W, Chen L, Chu F, Jiang W, Xu Z, Luo Y, Hu X, Götz J, Li C. Fyn-dependent Tau microcluster formation seeds and boosts extensive Tau pathology. Acta Neuropathol 2025; 149:48. [PMID: 40366450 DOI: 10.1007/s00401-025-02887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Tau seeding and propagation are defining features of all tauopathies, including Alzheimer's disease, but the underlying molecular drivers remain incompletely understood. Here, we reveal that Fyn expression boosts massive Tau pathology in the mouse brain and enhances Tau seeding induced by pathological Tau seeds in biosensor cells. However, even in the absence of seeds, Fyn itself, via its palmitoylation, triggers the de novo formation of small, plasma membrane-anchored Tau microclusters, which initiate pronounced and diverse intra- and transcellular Tau seeding in vitro and in vivo. Mechanistically, membrane-associated Fyn phosphorylates Tau at its Tyr310 epitope and then recruits and activates GSK3β locally, which further phosphorylates Tau at Ser/Thr sites in the microclusters, eliciting their full seeding capacity. Our data suggest that Fyn not only serves as a master switch that initiates Tau pathogenesis on its own, but also augments a pre-existing Tau pathology, leading to a vicious cycle of Tau aggregation.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Qi
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Chen
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Chu
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfeng Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zifeng Xu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuexin Luo
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xubo Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| | - Chuanzhou Li
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Foncea A, Franchini N, Tobar I, Thienel S, Retamal IN, Cancino GI, Cornejo F. Ptprd deficiency promotes tau hyperphosphorylation and impairs cognitive function in aged mice. Biol Res 2025; 58:26. [PMID: 40329347 PMCID: PMC12054186 DOI: 10.1186/s40659-025-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Tau phosphorylation is a tightly regulated process that ensures proper neuronal function. Indeed, hyperphosphorylation of tau closely contributes to neuronal dysfunction leading to neurodegenerative diseases, including tauopathies, which are characterized by excessive and aberrant tau phosphorylation and cognitive decline. Therefore, it is important to understand how to regulate its phosphorylation. In this regard, the protein tyrosine phosphatase receptor delta (PTPRD) has been genetically implicated in tau pathology in humans, but the mechanisms underlying its role in tau regulation remain unclear. This study investigates the impact of Ptprd deficiency on tau phosphorylation, cognitive function, neuroinflammation, and synaptic markers in aging mice. RESULTS Mice lacking Ptprd showed increased tau phosphorylation at multiple sites associated with its pathological aggregation. This effect was accompanied by the activation of the tau-related kinase Abl1, particularly in the hippocampus. Behavioral assessments revealed significant impairments in learning and memory, demonstrating the functional impact of these alterations. Moreover, Ptprd knockout mice showed increased microgliosis in both the entorhinal cortex and the hippocampus, suggesting a pro-inflammatory response. Furthermore, the synaptic protein PSD95 was also reduced in the cortex, indicating potential synaptic dysfunction. CONCLUSIONS The loss of Ptprd leads to increased tau phosphorylation, cognitive impairments, microgliosis, and synaptic alterations in older mice. Our findings also suggest that Ptprd plays a critical role in maintaining tau homeostasis through the Abl1 kinase. This indicates a new potential therapeutic approach for tauopathies, where PTPRD could serve a protective role against tau-related pathologies and may act as a key modulator in disease progression.
Collapse
Affiliation(s)
- Analía Foncea
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nayhara Franchini
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Isidora Tobar
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Sebastián Thienel
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Ignacio N Retamal
- Centro de Oncología de Precisión, Escuela de Medicina, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Gonzalo I Cancino
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Francisca Cornejo
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
5
|
Kelliny S, Zhou XF, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. J Neurosci Res 2025; 103:e70046. [PMID: 40387258 DOI: 10.1002/jnr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating form of dementia, with the number of affected individuals rising sharply. The main hallmarks of the disease include amyloid-beta plaque deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein, besides other pathological features that contribute to the disease's complexity. The causes of sporadic AD are multifactorial and mostly age-related and involve risk factors such as diabetes and cardiovascular or cerebrovascular disorders. Frontotemporal dementia (FTD) is another type of dementia characterized by a spectrum of behaviors, memory, and motor abnormalities and associated with abnormal depositions of protein aggregation, including tau protein. Currently approved medications are symptomatic, and no disease-modifying therapy is available to halt the disease progression. Therefore, the development of multi-targeted therapeutic approaches could hold promise for the treatment of AD and other neurodegenerative disorders, including tauopathies. In this article, we will discuss the pathophysiology of AD and FTD, the proposed hypotheses, and current therapeutic approaches, highlighting the development of novel drug candidates and the progress of clinical trials in this field of research.
Collapse
Affiliation(s)
- Sally Kelliny
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Posa A. Spike protein-related proteinopathies: A focus on the neurological side of spikeopathies. Ann Anat 2025; 260:152662. [PMID: 40254264 DOI: 10.1016/j.aanat.2025.152662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The spike protein (SP) is an outward-projecting transmembrane glycoprotein on viral surfaces. SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), responsible for COVID-19 (Coronavirus Disease 2019), uses SP to infect cells that express angiotensin converting enzyme 2 (ACE2) on their membrane. Remarkably, SP has the ability to cross the blood-brain barrier (BBB) into the brain and cause cerebral damage through various pathomechanisms. To combat the COVID-19 pandemic, novel gene-based products have been used worldwide to induce human body cells to produce SP to stimulate the immune system. This artificial SP also has a harmful effect on the human nervous system. STUDY DESIGN Narrative review. OBJECTIVE This narrative review presents the crucial role of SP in neurological complaints after SARS-CoV-2 infection, but also of SP derived from novel gene-based anti-SARS-CoV-2 products (ASP). METHODS Literature searches using broad terms such as "SARS-CoV-2", "spike protein", "COVID-19", "COVID-19 pandemic", "vaccines", "COVID-19 vaccines", "post-vaccination syndrome", "post-COVID-19 vaccination syndrome" and "proteinopathy" were performed using PubMed. Google Scholar was used to search for topic-specific full-text keywords. CONCLUSIONS The toxic properties of SP presented in this review provide a good explanation for many of the neurological symptoms following SARS-CoV-2 infection and after injection of SP-producing ASP. Both SP entities (from infection and injection) interfere, among others, with ACE2 and act on different cells, tissues and organs. Both SPs are able to cross the BBB and can trigger acute and chronic neurological complaints. Such SP-associated pathologies (spikeopathies) are further neurological proteinopathies with thrombogenic, neurotoxic, neuroinflammatory and neurodegenerative potential for the human nervous system, particularly the central nervous system. The potential neurotoxicity of SP from ASP needs to be critically examined, as ASPs have been administered to millions of people worldwide.
Collapse
Affiliation(s)
- Andreas Posa
- University Clinics and Outpatient Clinics for Radiology, Neuroradiology and Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, Halle 06120, Germany.
| |
Collapse
|
7
|
Hage A, Janes M, Best SM. A No-Brainer! The Therapeutic Potential of TRIM Proteins in Viral and Central Nervous System Diseases. Viruses 2025; 17:562. [PMID: 40285004 PMCID: PMC12031127 DOI: 10.3390/v17040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Tripartite motif (TRIM) proteins comprise an important class of E3 ubiquitin ligases that regulate numerous biological processes including protein expression, cellular signaling pathways, and innate immunity. This ubiquitous participation in fundamental aspects of biology has made TRIM proteins a focus of study in many fields and has illuminated the negative impact they exert when functioning improperly. Disruption of TRIM function has been linked to the success of various pathogens and separately to the occurrence and development of several neurodegenerative diseases, making TRIM proteins an appealing candidate to study for novel therapeutic approaches. Here, we review the current findings on TRIM proteins that demonstrate their analogous properties in the distinct fields of viral infection and central nervous system (CNS) disorders. We also examine recent advancements in drug development and targeted protein degradation as potential strategies for TRIM-mediated therapeutic treatments and discuss the implications these technologies have on future research directions.
Collapse
Affiliation(s)
- Adam Hage
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (M.J.); (S.M.B.)
| | | | | |
Collapse
|
8
|
Muguruma K, Takahashi T, Tagane Y, Nazere K, Hara N, Nakamori M, Yamazaki Y, Morino H, Maruyama H. Intracellular anionic substances cause tau liquid-liquid phase separation. Biochem Biophys Res Commun 2025; 757:151605. [PMID: 40107109 DOI: 10.1016/j.bbrc.2025.151605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Tau protein aggregation plays an important role in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease and Niemann-Pick disease type C. Liquid-liquid phase separation has emerged as a key mechanism in the early stages of protein aggregation for these disorders. Tau protein incubated with heparin undergoes liquid-liquid phase separation to form liquid droplets in vitro. However, whether tau liquid droplet formation occurs in vivo remains unresolved. To investigate cellular conditions that promote tau droplet formation, we treated tau-expressing human embryonic kidney 293T cells with reagents that introduced anionic substances or induced intracellular vesicle accumulation. Suppression of Niemann-Pick disease type C1 protein, a lysosomal membrane protein involved in mediating intracellular cholesterol trafficking, or the introduction of negatively charged dextran into cultured cells, increased the formation of tau-positive puncta with liquid droplet characteristics in a concentration-dependent manner. After prolonged observation, these puncta transitioned from a dynamic liquid state to a more solid-like gel phase, indicating progressive aggregation. Our findings suggest that intracellular enrichment of negatively charged substances or vesicles induces tau phase separation, potentially contributing to its pathological aggregation. These results provide insight into the molecular mechanisms underlying tauopathies and highlight potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kazuki Muguruma
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan; Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, 555-36 Kurose Gakuendai, Higashihiroshima-shi, Hiroshima, 739-2695, Japan; Department of Neurology, MNES Inc., 1-2-27 Shinonomehonmachi, Minami-ku, Hiroshima-shi, Hiroshima, 734-0023, Japan.
| | - Yuichiro Tagane
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Keyoumu Nazere
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan.
| | - Naoyuki Hara
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, 1-2-1 Kameyamaminami, Asakita-ku, Hiroshima-shi, Hiroshima, 731-0293, Japan.
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| |
Collapse
|
9
|
Antón-Fernández A, Ruiz de Alegría Á, Mariscal-Casero A, Roldán-Lázaro M, Peinado-Cauchola R, Ávila J, Hernández F. Partial reprogramming by cyclical overexpression of Yamanaka factors improves pathological phenotypes of tauopathy mouse model of human Alzheimer's disease. Prog Neurobiol 2025; 247:102743. [PMID: 40021076 DOI: 10.1016/j.pneurobio.2025.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Partial reprogramming induced by the controlled and cyclical overexpression of Yamanaka factors in the nervous system has so far succeeded in reversing some aging-associated phenotypes, such as improving memory function. These promising results suggest that partial reprogramming could be a potential strategy to prevent or mitigate aging-related pathologies like tauopathies, including Alzheimer's disease. Here, we explore the potential of this strategy in addressing tauopathy development in the P301S mouse model. To achieve this, a new transgenic animal was created that can inducibly overexpress Yamanaka factors upon doxycycline administration and carries the Tau-P301S mutation, which leads to tauopathy development. The results of this study show a significant improvement in key pathological features of tauopathies in the hippocampus, including reversed tauopathy, alleviated reactive astrogliosis, age-related reduction of the H3K9me3 epigenetic marker, along with improved spatial memory, which has been described as deteriorated in this model. These findings reinforce the potential of partial reprogramming as a therapeutic strategy to combat brain pathologies associated with aging.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain.
| | - Álvaro Ruiz de Alegría
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Ana Mariscal-Casero
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Marta Roldán-Lázaro
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Rocío Peinado-Cauchola
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Serrano 117, Madrid 28006, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Nicolás Cabrera, 1, Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
10
|
Wang RN, Li L, Zhou J, Ran J. Multifaceted roles of UFMylation in health and disease. Acta Pharmacol Sin 2025; 46:805-815. [PMID: 39775503 PMCID: PMC11950361 DOI: 10.1038/s41401-024-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Ru-Na Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
11
|
Mahendran TS, Singh A, Srinivasan S, Jennings CM, Neureuter C, Gindra BH, Parekh SH, Banerjee PR. Decoupling Phase Separation and Fibrillization Preserves Activity of Biomolecular Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643977. [PMID: 40166274 PMCID: PMC11957012 DOI: 10.1101/2025.03.18.643977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Age-dependent transition of metastable, liquid-like protein condensates to amyloid fibrils is an emergent phenomenon of numerous neurodegeneration-linked protein systems. A key question is whether the thermodynamic forces underlying reversible phase separation and maturation to irreversible amyloids are distinct and separable. Here, we address this question using an engineered version of the microtubule-associated protein Tau, which forms biochemically active condensates. Liquid-like Tau condensates exhibit rapid aging to amyloid fibrils under quiescent, cofactor-free conditions. Tau condensate interface promotes fibril nucleation, impairing their activity to recruit tubulin and catalyze microtubule assembly. Remarkably, a small molecule metabolite, L-arginine, selectively impedes condensate-to-fibril transition without perturbing phase separation in a valence and chemistry-specific manner. By heightening the fibril nucleation barrier, L-arginine counteracts age-dependent decline in the biochemical activity of Tau condensates. These results provide a proof-of-principle demonstration that small molecule metabolites can enhance the metastability of protein condensates against a liquid-to-amyloid transition, thereby preserving condensate function.
Collapse
Affiliation(s)
- Tharun Selvam Mahendran
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Anurag Singh
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Sukanya Srinivasan
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Christian M. Jennings
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Christian Neureuter
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Bhargavi H. Gindra
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Sapun H. Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Priya R. Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
12
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi MR, Phinney BS, Bu G, Zhao N, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. Mol Neurodegener 2025; 20:32. [PMID: 40082954 PMCID: PMC11905455 DOI: 10.1186/s13024-025-00817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the mechanisms underlying the diversity of neuronal and glial tau pathology in different tauopathies are poorly understood. While there is a growing understanding of tauopathy-specific differences in tau isoforms and fibrillar structures, the specific composition of heterogenous tau lesions remains unknown. Here we study the protein composition of tau aggregates in four major tauopathies: Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP). METHODS We developed an approach for in situ proximity labeling and isolation of aggregate-associated proteins using glass slides with formalin-fixed paraffin-embedded (FFPE) human postmortem brain tissue, termed Probe-dependent Proximity Profiling (ProPPr). We used ProPPr for the analysis of proteomes associated with AT8-positive cellular lesions from frontal cortices. Isolated proximity proteomes were analyzed by data-independent acquisition mass spectrometry. Co-immunofluorescence staining and quantitative data analysis for selected proteins in human brain tissue was performed to further investigate associations with diverse tau pathologies. RESULTS Proteomics data analysis identified numerous common and tauopathy-specific proteins associated with phospho-tau aggregates. Extensive validations of candidates through quantitative immunofluorescence imaging of distinct aggregates across disease cases demonstrate successful implementation of ProPPr for unbiased discovery of aggregate-associated proteins in in human brain tissue. Our results reveal the association of retromer complex component vacuolar protein sorting-associated protein 35 (VPS35) and lysosome-associated membrane glycoprotein 2 (LAMP2) with specific types of phospho-tau lesions in tauopathies. Furthermore, we discovered a disease-specific association of certain proteins with distinct pathological lesions, including glycogen synthase kinase alpha (GSK3α), ferritin light chain (FTL), and the neuropeptide precursor VGF. Notably, the identification of FTL-positive microglia in CBD astrocytic plaques indicate their potential role in the pathogenesis of these lesions. CONCLUSIONS Our findings demonstrate the suitability of the ProPPr approach in FFPE brain tissue for unbiased discovery of local proteomes that provide valuable insights into the underlying proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes in a range of distinct tauopathies enhances our understanding of disease heterogeneity and mechanisms, informing strategies for the development of diagnostic biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa C Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nora Pobitzer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Brett S Phinney
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Present address: Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | |
Collapse
|
13
|
Géraudie A, De Rossi P, Canney M, Carpentier A, Delatour B. Effects of blood-brain barrier opening using ultrasound on tauopathies: A systematic review. J Control Release 2025; 379:1029-1044. [PMID: 39875073 DOI: 10.1016/j.jconrel.2025.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Blood-brain barrier opening with ultrasound can potentiate drug efficacy in the treatment of brain pathologies and also provides therapeutic effects on its own. It is an innovative tool to transiently, repeatedly and safely open the barrier, with studies showing beneficial effects in both preclinical models for Alzheimer's disease and recent clinical studies. The first preclinical and clinical work has mainly shown a decrease in amyloid burden in mice models and in patients. However, Alzheimer's disease pathology also encompasses tauopathy, which is closely related to cognitive decline, making it a crucial therapeutic target. The effects of blood-brain barrier opening with ultrasound have been rarely assessed on tau and are still unclear. METHODS This systematic review, conducted through searches using Pubmed, Embase, Web of Science and Cochrane Central databases, extracted results of 15 studies reporting effects of blood-brain barrier opening using ultrasound on tau proteins. RESULTS This review of the literature indicates that blood-brain barrier opening using ultrasound can decrease the extent of the tau pathology or potentialize the effect of a therapeutic drug. However, selected studies report paradoxically that blood-brain barrier opening can increase tau pathology burden and induce brain damage. DISCUSSION Apparent discrepancies between reports could originate from the variability in protocols or analytical methods that may impact the effects of blood-brain barrier opening with ultrasound on tauopathies, glial populations, tissue integrity and functional outcomes. CONCLUSION This calls for a better standardization effort combined with improved methodologies allowing between-studies comparisons, and for further understanding of the effects of blood-brain barrier opening on tau pathology as an essential prerequisite before translation to clinic.
Collapse
Affiliation(s)
- Amandine Géraudie
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France.
| | | | | | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Faculty of Medicine, Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France
| | - Benoît Delatour
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France
| |
Collapse
|
14
|
Alhadidy MM, Stemmer PM, Kanaan NM. O-GlcNAc modification differentially regulates microtubule binding and pathological conformations of tau isoforms in vitro. J Biol Chem 2025; 301:108263. [PMID: 39909381 PMCID: PMC11927755 DOI: 10.1016/j.jbc.2025.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Tau proteins undergo several posttranslational modifications in physiological and disease conditions. In Alzheimer's disease, O-GlcNAcylation modification of serine/threonine (S/T) residues in tau is reduced. In mouse models of tauopathy, O-GlcNAcase inhibitors lead to increased O-GlcNAcylation and decreased filamentous aggregates of tau. However, various nonfilamentous tau conformations, linked to toxicity and neurodegeneration in tauopathies, involve processes like oligomerization, misfolding, and greater exposure of the phosphatase-activating domain in the amino terminus of tau. Additionally, it is becoming clearer that posttranslational modifications may differently regulate tau pathobiology in an isoform-dependent manner. Therefore, it is crucial to investigate the effects of O-GlcNAcylation on nonfilamentous conformations of both the four-repeat (4R, e.g., hT40) and three-repeat (3R, e.g., hT39) tau isoforms. In this study, we assessed how O-GlcNAcylation impacts pathological tau conformations of the longest 4R and 3R tau isoforms (hT40 and hT39, respectively) using recombinant proteins. Mass spectrometry showed that tau is modified with O-GlcNAc at multiple S/T residues, primarily in the proline-rich domain and the C-terminal region. O-GlcNAcylation of hT40 and hT39 does not affect microtubule polymerization but has opposite effects on hT40 (increases) and hT39 (decreases) binding to preformed microtubules. Although O-GlcNAcylation interferes with forming filamentous hT40 aggregates, it does not alter the formation of pathological nonfilamentous tau conformations. On the other hand, O-GlcNAcylation increases the formation of pathological nonfilamentous hT39 conformations. These findings suggest that O-GlcNAcylation differentially modulates microtubule binding and the adoption of pathological tau conformations in the longest 4R and 3R tau isoforms.
Collapse
Affiliation(s)
- Mohammed M Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States; Neuroscience Program, Michigan State University, East Lansing, Michigan, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States; Neuroscience Program, Michigan State University, East Lansing, Michigan, United States.
| |
Collapse
|
15
|
Li L, Li M, Zhou Y, Kakhniashvili D, Wang X, Liao FF. OTULIN Interactome Reveals Immune Response and Autophagy Associated with Tauopathy in a Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636114. [PMID: 39974971 PMCID: PMC11839074 DOI: 10.1101/2025.02.07.636114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Tauopathies are neurodegenerative diseases that are pathologically characterized by accumulation of misfolded microtubule-associated protein tau aggregates in the brain. Deubiquitination, particularly by OTULIN, a unique deubiquitinase targeting methionine-1 (M1) linkages from linear ubiquitin chain assembly complex (LUBAC)), is reportedly associated with the accumulation of neurotoxic proteins in several neurodegenerative diseases, likely including tauopathies. To investigate the potential roles of OTULIN in tauopathies, we analyzed the OTULIN interactome in hippocampal tissues from PS19 transgenic (Tg) mice and their non-transgenic (nTg) littermate controls using affinity purification-mass spectrometry (AP-MS). We identified 705 and 800 proteins enriched in Tg and nTg samples, respectively, with a protein false discovery rate (FDR) of <1%. Of these, 189 and 205 proteins were classified as probable OTULIN interactors in Tg and nTg groups, respectively, based on Significance Analysis of INTeractome (SAINT) score of ≥0.80 and FDR of ≤ 5%. A total of 84 proteins were identified as OTULIN interactors in the PS19 Tg group, while 100 proteins were associated with OTULIN in the nTg controls. Functional enrichment analyses revealed that OTULIN-interacting proteins in the nTg group were enriched in pathways related to spliceosome, complement and coagulation cascades, and ribosome, whereas those in the Tg group were associated with immune response and autophagy. These findings suggest that OTULIN-interacting proteins may play a critical role in the pathogenesis of tauopathy in this mouse model.
Collapse
Affiliation(s)
- Ling Li
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Mingqi Li
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Yuyang Zhou
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - David Kakhniashvili
- Proteomics & Metabolomics Core Facility, Office of Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Xusheng Wang
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
16
|
Li CH, Fan SP, Shih MC, Weng YH, Chen TF, Li H, Cheng MF, Kuo MC, Peng PL, Higuchi M, Hsiao IT, Lin KJ, Lin CH. Subcortical tau burden correlates with regional brain atrophy and plasma markers in four-repeat tauopathy parkinsonism. JOURNAL OF PARKINSON'S DISEASE 2025; 15:214-226. [PMID: 39973504 DOI: 10.1177/1877718x241298192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background18F-florzolotau positron emission tomography (PET) assists in the in vivo diagnosis of progressive supranuclear palsy (PSP).ObjectiveWe aimed to investigate the relationship between 18F-florzolotau uptake and clinical severity, structural volume changes, and plasma markers in four-repeat tauopathies.MethodsA total of 80 participants were recruited: 35 with PSP (11 with PSP-Richardson syndrome and 24 with PSP non-Richardson syndrome), 9 with corticobasal syndrome (CBS), 10 with Alzheimer's disease (AD), 8 with Parkinson's disease, and 18 controls. All participants underwent 18F-florzolotau PET, brain magnetic resonance imaging (MRI), and plasma biomarker investigation (total and phosphorylated tau [pTau181], neurofilament light chain, and glial fibrillary acidic protein [GFAP]).Results18F-Florzolotau uptake was significantly higher in the subcortical regions of the pallidum, subthalamic nucleus (STN), midbrain, red nucleus, and raphe nucleus in PSP patients compared to the other groups (all p < 0.01). Subcortical tau tracer retention assisted in distinguishing PSP and CBS from controls (AUC = 0.836, p < 0.001). Tau tracer retention could differentiate PSP and CBS from AD in cortical (p < 0.001) and subcortical regions (p = 0.028). The motor severity of PSP positively correlated with tau burden in STN (p = 0.044) and substantia nigra (p = 0.035). Tau tracer uptake was associated with cortical volume changes in CBS (p = 0.031), PSP non-Richardson syndrome (p = 0.003), and AD (p = 0.044). Cortical tau retention correlated with plasma levels of GFAP (p = 0.001) and pTau181 (p = 0.036).ConclusionsSubcortical 18F-Florzolotau uptake assist the diagnosis of 4R tauopathy parkinsonism. Additionally, regional tau burden contributes to structural brain volume changes and correlates with plasma levels of GFAP and pTau181.
Collapse
Affiliation(s)
- Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chieh Shih
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsin Weng
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsun Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Che Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Pei-Ling Peng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Makoto Higuchi
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ing-Tsung Hsiao
- Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Dias D, Socodato R. Beyond Amyloid and Tau: The Critical Role of Microglia in Alzheimer's Disease Therapeutics. Biomedicines 2025; 13:279. [PMID: 40002692 PMCID: PMC11852436 DOI: 10.3390/biomedicines13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is traditionally viewed through the lens of the amyloid cascade hypothesis, implicating amyloid-beta and tau protein aggregates as the main pathological culprits. However, burgeoning research points to the brain's resident immune cells, microglia, as critical players in AD pathogenesis, progression, and potential therapeutic interventions. This review examines the dynamic roles of microglia within the intricate framework of AD. We detail the involvement of these immune cells in neuroinflammation, explaining how their activation and response fluctuations may influence the disease trajectory. We further elucidate the complex relationship between microglia and amyloid-beta pathology. This study highlights the dual nature of these cells, which contribute to both aggregation and clearance of the amyloid-beta protein. Moreover, an in-depth analysis of the interplay between microglia and tau unveils the significant, yet often overlooked, impact of this interaction on neurodegeneration in AD. Shifting from the conventional therapeutic approaches, we assess the current AD treatments primarily targeting amyloid and tau and introduce novel strategies that involve manipulating microglial functions. These innovative methods herald a potential paradigm shift in the management of AD. Finally, we explore the burgeoning field of precision diagnosis and the pursuit of robust AD biomarkers. We underline how a more profound comprehension of microglial biology could enrich these essential areas, potentially paving the way for more accurate diagnostic tools and tailored treatment strategies. In conclusion, this review expands on the conventional perspective of AD pathology and treatment, drawing attention to the multifaceted roles of microglia. As we continue to enhance our understanding of these cells, microglial-focused therapeutic interventions emerge as a promising frontier to bolster our arsenal to fight against AD.
Collapse
Affiliation(s)
- Daniela Dias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-022 Porto, Portugal;
- ESS—Escola Superior de Saúde do Politécnico do Porto, 4200-072 Porto, Portugal
| | - Renato Socodato
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-022 Porto, Portugal;
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Krzesinski BJ, Holub TJ, Gabani ZY, Margittai M. Cellular Uptake of Tau Aggregates Triggers Disulfide Bond Formation in Four-Repeat Tau Monomers. ACS Chem Neurosci 2025; 16:171-180. [PMID: 39714208 PMCID: PMC11740991 DOI: 10.1021/acschemneuro.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Oxidative stress is an important driver of aging and has been linked to numerous neurodegenerative disorders, including Alzheimer's disease. A key pathological hallmark of Alzheimer's are filamentous inclusions made of the microtubule associated protein Tau. Based on alternative splicing, Tau protein can feature either three or four microtubule binding repeats. Distinctively, three-repeat Tau contains a single cysteine; four-repeat Tau contains two. Although there is evidence that the cysteines in pathological Tau filaments exist in the reduced form, very little is known about the alternative disulfide-bonded state. It is unclear whether it can exist nontransiently in the reducing environment of the cytosol. Such knowledge, however, is important as different redox states of Tau could modulate aggregation. To address this question, we transfected HEK293 cells expressing the P301S variant of four-repeat Tau with fibril seeds composed of compact, disulfide-bonded Tau monomers. In vitro, these fibrils are observed to recruit only compact Tau, but not Tau in which the cysteines are reduced or replaced by alanines or serines. In line with this characteristic, the fibrils dissociate when treated with a reducing agent. When offered to HEK293 cells, variant Tau protein is recruited to the seeds forming intracellular fibrils with the same seeding properties as the in vitro counterparts. Markedly, the proteins in these fibrils have a compact, disulfide-bonded configuration and dissociate upon reduction. These findings reveal that uptake of exogeneous fibril seeds triggers oxidation of Tau monomers, modulating intracellular aggregation.
Collapse
Affiliation(s)
- Brad J. Krzesinski
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Tyler J. Holub
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Zachariah Y. Gabani
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Martin Margittai
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
19
|
Afzal M, Hameed H, Paiva-Santos AC, Saleem M, Hameed A, Ahmad SM. Bioengineered exosomes: Cellular membrane-camouflaged biomimetic nanocarriers for Parkinson's disease management. Eur J Pharmacol 2025; 987:177199. [PMID: 39662659 DOI: 10.1016/j.ejphar.2024.177199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease is a prevalent neurological condition that affects around 1% of adults over 60 worldwide. Deep brain stimulation and dopamine replacement therapy are common therapies for Parkinson's disease, yet they are unable to reverse the disease it simply because of the blood brain barrier. The use of bioengineered exosomes to treat Parkinson's disease is being studied because they have the ability to cross the blood-brain barrier. Their natural ability to cross the blood-brain barrier (BBB) and their biocompatibility make them highly suitable for delivering therapeutic agents to manage PD, specifically the role of astrocytes, microglial cells, and alpha-synuclein. It also explores the biogenesis and preparation of these bioengineered exosomes. In comparison to conventional nanocarriers, the modified exosomal-membrane-camouflaged abiotic nanocarriers show improved resilience and compatibility. Improved cellular absorption and targeted delivery of therapeutic payloads, such as medications and enzymes, are being shown in laboratory trials. A viable strategy for treating PD involves combining abiotic nanocarriers with bioengineered exosomal membranes. Despite their promising potential, successful clinical application requires overcoming hurdles related to scalable production, regulatory approval, and long-term safety evaluation. Nevertheless, the innovative use of bioengineered exosomes holds significant promise for advancing PD management and improving patient outcomes through more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Maham Afzal
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Makkia Saleem
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Syed Muhammad Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| |
Collapse
|
20
|
Zheng N, Li K, Cao J, Wang Z, Zhang L, Zhao Z, He J, Wang Y, Zhu X, Chen Y, Meng J, Zhao D, Niu M, Luo H, Zhang X, Sun H, Zhang YW. Electrophysiology-based screening identifies neuronal HtrA serine peptidase 2 (HTRA2) as a synaptic plasticity regulator participating in tauopathy. Transl Psychiatry 2025; 15:5. [PMID: 39794315 PMCID: PMC11724108 DOI: 10.1038/s41398-025-03227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are widely used to study synaptic plasticity. However, whether proteins regulating LTP and LTD are altered in cognitive disorders and contribute to disease onset remains to be determined. Herein, we induced LTP and LTD in the hippocampal CA3-CA1 Schaffer collateral pathway, respectively, and then performed proteomic analysis of the CA1 region. We identified 20 differentially expressed proteins (DEPs) shared by the LTP and the LTD processes. Among them, we found that HtrA serine peptidase 2 (HTRA2) was mainly expressed in neurons and that HTRA2 levels were increased in both the LTP and the LTD processes in C57BL/6 mice. HTRA2 downregulation impaired synapses and reduced ATP production in cultured primary neurons. Furthermore, adeno-associated virus (AAV)-mediated HTRA2 downregulation in the hippocampus impaired synaptic plasticity and cognitive function in C57BL/6 mice. Moreover, we found that HTRA2 expression decreased in the brains of Alzheimer's disease patients, frontotemporal lobar degeneration with ubiquitin inclusions patients, and tauopathy model mice. Finally, we showed that lentivirus-mediated HTRA2 overexpression in the hippocampus rescued PP2B reduction, alleviated tau hyperphosphorylation, and partially attenuated synaptic plasticity and cognitive deficits in the PS19 tauopathy model mice. Our study not only indicates that HTRA2 in neurons plays an important role in regulating synaptic plasticity under both physiological and pathological conditions, but also provides a novel, electrophysiology-based strategy to identify proteins regulating synaptic plasticity systematically.
Collapse
Affiliation(s)
- Naizhen Zheng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kun Li
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jing Cao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zijie Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Liang Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zihao Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiawei He
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yong Wang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiang Zhu
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yiqing Chen
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jian Meng
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dongdong Zhao
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mengxi Niu
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hong Luo
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xian Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hao Sun
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
21
|
Zeng Z, Tsay K, Vijayan V, Frost MP, Prakash S, Quddus A, Albert A, Vigers M, Srivastava M, Woerman AL, Han S. Passaging Human Tauopathy Patient Samples in Cells Generates Heterogeneous Fibrils with a Subpopulation Adopting Disease Folds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.19.549721. [PMID: 37502998 PMCID: PMC10370138 DOI: 10.1101/2023.07.19.549721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The discovery by cryo-electron microscopy (cryo-EM) that the neu-ropathological hallmarks of different tauopathies, including Alzheimer's disease, corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), are caused by unique misfolded conformations of the protein tau is among the most profound developments in neurodegenerative disease research. To capitalize on these discoveries for therapeutic development, one must achieve in vitro replication of tau fibrils that adopt the representative tauopathy disease folds, which represents a grand challenge for the field. A widely used approach has been seeded propagation using pathological tau fibrils derived from post-mortem patient samples in biosensor cells that expresses a fragment of the tau protein known as K18, or Tau4RD, containing the microtubule-binding repeat domain of tau as the substrate. The new insights from cryo-EM raised the question of whether the Tau4RD fragment is capable of adopting characteristic tau folds found in CBD and PSP patient fibrils, and whether cell-passaged and amplified tau fibrils can be used as seeds to achieve cell-free assembly of recombinant 4R tau into fibrils without the addition of cofactors. Using Double Electron Electron Resonance (DEER) spectroscopy, we discovered that cell-passaged pathological seeds generate heterogeneous fibrils that are, however, distinct between the CBD and PSP lysate-seeded fibrils, and vastly different from heparin-induced tau fibril structures. Moreover, the lysate-seeded fibrils contain a characteristic sub-population that resembles the disease fold corresponding to the respective starting patient sample. These findings indicate that templated propagation using CBD and PSP patient-derived fibrils is possible with a tau fragment that does not contain the entire pathological fibril core, but also that additional mechanisms must be tuned to converge on a homogeneous fibril population.
Collapse
|
22
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
23
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
24
|
Lucke-Wold B, Zasler ND, Ruchika FNU, Weisman S, Le D, Brunicardi J, Kong I, Ghumman H, Persad S, Mahan D, Delawan M, Shah S, Aghili-Mehrizi S. Supplement and nutraceutical therapy in traumatic brain injury. Nutr Neurosci 2024:1-35. [DOI: 10.1080/1028415x.2024.2404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Affiliation(s)
| | - Nathan D. Zasler
- Founder, CEO & CMO, Concussion Care Centre of Virginia, Ltd., Medical Director, Tree of Life, Richmond, VA, USA
- Professor, affiliate, Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Professor, Visiting, Department of Physical Medicine and Rehabilitation, University of Virginia, Charlottesville, VA, USA
- Vice-Chairperson, IBIA, London, UK
- Chair Emeritus, IBIA, London, UK
| | - FNU Ruchika
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Sydney Weisman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Dao Le
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Jade Brunicardi
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Iris Kong
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Haider Ghumman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Persad
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - David Mahan
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Maliya Delawan
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
25
|
Weir JS, Hanssen KS, Winter-Hjelm N, Sandvig A, Sandvig I. Evolving alterations of structural organization and functional connectivity in feedforward neural networks after induced P301L tau mutation. Eur J Neurosci 2024; 60:7228-7248. [PMID: 39622242 DOI: 10.1111/ejn.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Reciprocal structure-function relationships underlie both healthy and pathological behaviours in complex neural networks. Thus, understanding neuropathology and network dysfunction requires a thorough investigation of the complex interactions between structural and functional network reconfigurations in response to perturbation. Such adaptations are often difficult to study in vivo. For example, subtle, evolving changes in synaptic connectivity, transmission and the electrophysiological shift from healthy to pathological states, for example alterations that may be associated with evolving neurodegenerative disease, such as Alzheimer's, are difficult to study in the brain. Engineered in vitro neural networks are powerful models that enable selective targeting, manipulation and monitoring of dynamic neural network behaviour at the micro- and mesoscale in physiological and pathological conditions. In this study, we engineered feedforward cortical neural networks using two-nodal microfluidic devices with controllable connectivity interfaced with microelectrode arrays (mMEAs). We induced P301L mutated tau protein to the presynaptic node of these networks and monitored network dynamics over three weeks. Induced perturbation resulted in altered structural organization and extensive axonal retraction starting in the perturbed node. Perturbed networks also exhibited functional changes in intranodal activity, which manifested as an overall decline in both firing rate and bursting activity, with a progressive increase in synchrony over time and a decrease in internodal signal propagation between pre- and post-synaptic nodes. These results provide insights into dynamic structural and functional reconfigurations at the micro- and mesoscale as a result of evolving pathology and illustrate the utility of engineered networks as models of network function and dysfunction.
Collapse
Affiliation(s)
- Janelle S Weir
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Katrine Sjaastad Hanssen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurorehabilitation, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
26
|
Nagata K, Hashimoto S, Joho D, Fujioka R, Matsuba Y, Sekiguchi M, Mihira N, Motooka D, Liu YC, Okuzaki D, Kikuchi M, Murayama S, Saido TC, Kiyama H, Sasaguri H. Tau Accumulation Induces Microglial State Alterations in Alzheimer's Disease Model Mice. eNeuro 2024; 11:ENEURO.0260-24.2024. [PMID: 39592224 PMCID: PMC11628182 DOI: 10.1523/eneuro.0260-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Unique microglial states have been identified in Alzheimer's disease (AD) model mice and postmortem AD brains. Although it has been well documented that amyloid-β accumulation induces the alteration of microglial states, the relationship between tau pathology and microglial states remains incompletely understood because of a lack of suitable AD models. In the present study, we generated a novel AD model mouse by the intracerebral administration of tau purified from human brains with primary age-related tauopathy into App knock-in mice with humanized tau. Immunohistochemical analyses revealed that Dectin-1-positive disease-associated microglia were increased in the AD model mice after tau accumulation in the brain. We then performed single-nucleus RNA sequencing on the AD model mice to evaluate the differences in microglial states with and without tau propagation and accumulation. By taking advantage of spatial transcriptomics and existing single-cell RNA sequencing datasets, we showed for the first time that tau propagation and accumulation induce a disease-associated microglial phenotype at the expense of an age-related nonhomeostatic counterpart (namely, white matter-associated microglia) in an AD model mouse brain. Future work using spatial transcriptomics at single-cell resolution will pave the way for a more appropriate interpretation of microglial alterations in response to tau pathology in the AD brain.
Collapse
Affiliation(s)
- Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Daisuke Joho
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yu-Chen Liu
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kikuchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba 277-0882, Japan
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
- Shijonawate Gakuen University, Osaka 574-0001, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Tian X, Le N, Zhao Y, Alawamleh D, Schwartz A, Meyer L, Helm E, Wu C. Upregulating ANKHD1 in PS19 mice reduces Tau phosphorylation and mitigates Tau-toxicity-induced cognitive deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623890. [PMID: 39605390 PMCID: PMC11601383 DOI: 10.1101/2024.11.15.623890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Abnormal accumulation of Tau protein in the brain disrupts normal cellular function and leads to neuronal death linked with many neurodegenerative disorders such as Alzheimer's disease. An attractive approach to mitigate Tau-induced neurodegeneration is to enhance the clearance of toxic Tau aggregates. We previously showed that upregulation of the fly gene mask protects against FUS- and Tau-induced photoreceptor degeneration in fly disease models. Here we have generated a transgenic mouse line carrying Cre-inducible ANKHD1, the mouse homolog of mask, to determine whether the protective role of mask is conserved from flies to mammals. Utilizing the TauP301S-PS19 mouse model for Tau-related dementia, we observed that ANKHD1 significantly reduced hyperphosphorylated human Tau in 6-month-old mice. Additionally, there was a notable trend towards reduced gliosis levels in these mice, suggesting a protective role of ANKHD1 against TauP301S-linked degeneration. Further analysis of 9-month-old mice revealed a similar trend of effects. Moreover, we found that ANKHD1 also suppresses the cognitive defect of 9-month-old PS19 female mice in novel object recognition (NOR) behavioral assay. Unlike previous therapeutic strategies that primarily focus on inhibiting Tau phosphorylation or directly clearing aggregates, this study highlights the novel role of ANKHD1 in promoting autophagy as a means to mitigate Tau pathology. This novel mechanism not only underscores ANKHD1's potential as a unique therapeutic target for tauopathies but also provides new insights into autophagy-based interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaolin Tian
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Nathan Le
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Yuhai Zhao
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dina Alawamleh
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
- Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA70112, USA
| | - Andrew Schwartz
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
- LSU Health Shreveport, School of Medicine, 1501 Kings Highway, Shreveport, Louisiana 71103, USA
| | - Lauren Meyer
- Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA70112, USA
| | - Elizabeth Helm
- Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA70112, USA
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| |
Collapse
|
28
|
Jiang X, Wang Y, Lin Z, Li C, Wang Q, Zhang J, Liu X, Li Z, Cui C. Polygonatum sibiricum polysaccharides: A promising strategy in the treatment of neurodegenerative disease. Neurochem Int 2024; 181:105902. [PMID: 39542041 DOI: 10.1016/j.neuint.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases (NDDs), as a neurological disorder characterised by neuronal degeneration and death, are a serious threat to human health and have long attracted attention due to their complex pathogenesis and the ineffectiveness of therapeutic drugs. Existing studies have shown that Polygonatum Sibiricum polysaccharides (PSP) have immunoregulatory, antioxidant, anti-inflammatory and other pharmacological effects, and their neuroprotective effects have been demonstrated in several scientific studies. This paper reviews the main pharmacological effects and mechanisms of PSP in the protection and treatment of NDDs, to provide a reference for the clinical application and basic research of PSP in NDDs.
Collapse
Affiliation(s)
- Xue Jiang
- Shandong Medicine Technician College, 271000, Taian, China; Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Yumei Wang
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Zhaochen Lin
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Chao Li
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Qian Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Junyan Zhang
- College of Life Sciences, Northwest A & F University, 710000, Xi'an, China
| | - Xiuhua Liu
- Shandong Taishan Sealwort Biotechnology Limited Liability Company, 271000, Taian, China
| | - Ziye Li
- Xiangya School of Public Health, Central South University, 410078, Changsha, China
| | - Chao Cui
- Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China; Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China.
| |
Collapse
|
29
|
Yadav S, Graham A, Al Hammood F, Garbark C, Vasudevan D, Pandey U, Asara JM, Rajasundaram D, Parkhitko AA. Unique tau- and synuclein-dependent metabolic reprogramming in neurons distinct from normal aging. Aging Cell 2024; 23:e14277. [PMID: 39137949 PMCID: PMC11561663 DOI: 10.1111/acel.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Neuronal cells are highly specialized cells and have a specific metabolic profile to support their function. It has been demonstrated that the metabolic profiles of different cells/tissues undergo significant reprogramming with advancing age, which has often been considered a contributing factor towards aging-related diseases including Alzheimer's (AD) and Parkinson's (PD) diseases. However, it is unclear if the metabolic changes associated with normal aging predispose neurons to disease conditions or a distinct set of metabolic alterations happen in neurons in AD or PD which might contribute to disease pathologies. To decipher the changes in neuronal metabolism with age, in AD, or in PD, we performed high-throughput steady-state metabolite profiling on heads in wildtype Drosophila and in Drosophila models relevant to AD and PD. Intriguingly, we found that the spectrum of affected metabolic pathways is dramatically different between normal aging, Tau, or Synuclein overexpressing neurons. Genetic targeting of the purine and glutamate metabolism pathways, which were dysregulated in both old age and disease conditions partially rescued the neurodegenerative phenotype associated with the overexpression of wildtype and mutant tau. Our findings support a "two-hit model" to explain the pathological manifestations associated with AD where both aging- and Tau/Synuclein- driven metabolic reprogramming events cooperate with each other, and targeting both could be a potent therapeutic strategy.
Collapse
Affiliation(s)
- Shweta Yadav
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Aidan Graham
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Farazdaq Al Hammood
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| | - Chris Garbark
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Deepika Vasudevan
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Udai Pandey
- Department of Pediatrics, Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Andrey A. Parkhitko
- Aging Institute of UPMC and the University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
30
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
31
|
Sakuragi S, Uchida T, Kato N, Zhao B, Takahashi T, Hattori A, Sakata Y, Soeda Y, Takashima A, Yoshimura H, Matsumoto G, Bannai H. Inducing aggresome and stable tau aggregation in Neuro2a cells with an optogenetic tool. Biophys Physicobiol 2024; 21:e210023. [PMID: 39963597 PMCID: PMC11832247 DOI: 10.2142/biophysico.bppb-v21.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/26/2024] [Indexed: 02/20/2025] Open
Abstract
Tauopathy is a spectrum of diseases characterized by fibrillary tau aggregate formation in neurons and glial cells in the brain. Tau aggregation originates in the brainstem and entorhinal cortex and then spreads throughout the brain in Alzheimer's disease (AD), which is the most prevalent type of tauopathy. Understanding the mechanism by which locally developed tau pathology propagates throughout the brain is crucial for comprehending AD pathogenesis. Therefore, a novel model of tau pathology that artificially induces tau aggregation in targeted cells at specific times is essential. This study describes a novel optogenetic module, OptoTau, which is a human tau with the P301L mutation fused with a photosensitive protein CRY2olig, inducing various forms of tau according to the temporal pattern of blue light illumination pattern. Continuous blue light illumination for 12 h to Neuro2a cells that stably express OptoTau (OptoTauKI cells) formed clusters along microtubules, many of which eventually accumulated in aggresomes. Conversely, methanol-resistant tau aggregation was formed when alternating light exposure and darkness in 30-min cycles for 8 sets per day were repeated over 8 days. Methanol-resistant tau was induced more rapidly by repeating 5-min illumination followed by 25-min darkness over 24 h. These results indicate that OptoTau induced various tau aggregation stages based on the temporal pattern of blue light exposure. Thus, this technique exhibits potential as a novel approach to developing specific tau aggregation in targeted cells at desired time points.
Collapse
Affiliation(s)
- Shigeo Sakuragi
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Tomoya Uchida
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Naoki Kato
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Boxiao Zhao
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Toshiki Takahashi
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Akito Hattori
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
- Present address: Department of Medical Laboratory Science, Kitasato University School of Health Sciences, Minami-Uonuma, Niigata 949-7241, Japan
| | - Yoshihiro Sakata
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gen Matsumoto
- Department of Neurological Disease Control, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| |
Collapse
|
32
|
Tyagi M, Chadha R, de Hoog E, Sullivan KR, Walker AC, Northrop A, Fabian B, Fuxreiter M, Hyman BT, Shepherd JD. Arc mediates intercellular tau transmission via extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619703. [PMID: 39484489 PMCID: PMC11526995 DOI: 10.1101/2024.10.22.619703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular neurofibrillary tangles that consist of misfolded tau protein1 cause neurodegeneration in Alzheimer's disease (AD) and frontotemporal dementia (FTD). Tau pathology spreads cell-to-cell2 but the exact mechanisms of tau release and intercellular transmission remain poorly defined. Tau is released from neurons as free protein or in extracellular vesicles (EVs)3-5 but the role of these different release mechanisms in intercellular tau transmission is unclear. Here, we show that the neuronal gene Arc is critical for packaging tau into EVs. Brain EVs purified from human tau (hTau) transgenic rTg4510 mice (rTgWT) contain high levels of hTau that are capable of seeding tau pathology. In contrast, EVs purified from rTgWT crossed with Arc knock-out mice (rTgArc KO) have significantly less hTau and cannot seed tau aggregation. Arc facilitates the release of hTau in EVs produced via the I-BAR protein IRSp53, but not free tau. Arc protein directly binds hTau to form a fuzzy complex that we identified in both mouse and human brain tissue. We find that pathological intracellular hTau accumulates in neurons in rTgArc KO mice, which correlates with accelerated neuron loss in the hippocampus. Finally, we find that intercellular tau transmission is significantly abrogated in Arc KO mice. We conclude that Arc-dependent release of tau in EVs plays a significant role in intracellular tau elimination and intercellular tau transmission.
Collapse
Affiliation(s)
- Mitali Tyagi
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Eric de Hoog
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | | | - Alicia C. Walker
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Ava Northrop
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Balazs Fabian
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Germany
| | - Monika Fuxreiter
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
33
|
Siddiqui AA, Merquiol E, Bruck-Haimson R, Hirbawi J, Boocholez H, Cohen I, Yan Y, Dong MQ, Blum G, Cohen E. Cathepsin B promotes Aβ proteotoxicity by modulating aging regulating mechanisms. Nat Commun 2024; 15:8564. [PMID: 39362844 PMCID: PMC11450018 DOI: 10.1038/s41467-024-52540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
While the activities of certain proteases promote proteostasis and prevent neurodegeneration-associated phenotypes, the protease cathepsin B (CTSB) enhances proteotoxicity in Alzheimer's disease (AD) model mice, and its levels are elevated in brains of AD patients. How CTSB exacerbates the toxicity of the AD-causing Amyloid β (Aβ) peptide is controversial. Using an activity-based probe, aging-altering interventions and the nematode C. elegans, we discovered that the CTSB CPR-6 promotes Aβ proteotoxicity but mitigates the toxicity of polyQ stretches. While the knockdown of cpr-6 does not affect lifespan, it alleviates Aβ toxicity by reducing the expression of swsn-3 and elevating the level of the protein SMK-1, both involved in the regulation of aging. These observations unveil a mechanism by which CTSB aggravates Aβ-mediated toxicity, indicate that it plays opposing roles in the face of distinct proteotoxic insults and highlight the importance of tailoring specific remedies for distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Emmanuelle Merquiol
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Reut Bruck-Haimson
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Joud Hirbawi
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Irit Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Yonghong Yan
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Meng Qiu Dong
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Galia Blum
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel.
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel.
| |
Collapse
|
34
|
Beach TG, Serrano GE, Zhang N, Driver-Dunckley ED, Sue LI, Shill HA, Mehta SH, Belden C, Tremblay C, Choudhury P, Atri A, Adler CH. Clinicopathological Heterogeneity of Lewy Body Diseases: The Profound Influence of Comorbid Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312864. [PMID: 39281742 PMCID: PMC11398443 DOI: 10.1101/2024.08.30.24312864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In recent years, proposals have been advanced to redefine or reclassify Lewy body disorders by merging the long-established entities of Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). These proposals reject the International DLB Consortium classification system that has evolved over three decades of consensus collaborations between neurologists, neuropsychologists and neuropathologists. While the Consortium's "one year rule" for separating PD and DLB has been criticized as arbitrary, it has been a pragmatic and effective tool for splitting the continuum between the two entities. In addition to the decades of literature supporting the non-homogeneity of PD and DLB, it has become increasingly apparent that Lewy body disorders may fundamentally differ in their etiology. Most PD subjects, as well as most clinically-presenting DLB subjects, might best be classified as having a "primary synucleinopathy" while most clinically-unidentified DLB subjects, who also have concurrent neuropathology-criteria AD (AD/DLB), as well as those with neuropathological AD and amygdala-predominant LBD insufficient for a DLB diagnosis, may best be classified as having a "secondary synucleinopathy. Importantly, the DLB Consortium recognized the importance of comorbid AD pathology by defining "Low", "Intermediate" and "High" subdivisions of DLB based on the relative brain stages of both Lewy body and AD pathology. If the one-year rule for separating PD from DLB, and for then dividing DLB into subtypes based on the presence and severity of comorbid AD pathology, is effective, then the divided groups should statistically differ in important ways. In this study we used the comprehensive clinicopathological database of the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND) to empirically test this hypothesis. Furthermore, we used multivariable statistical models to test the hypothesis that comorbid AD neuropathology is a major predictor of the presence and severity of postmortem Lewy synucleinopathy. The results confirm the clinicopathological heterogeneity of Lewy body disorders as well as the profound influence of comorbid AD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ
- Harvard & Brigham & Women's, Boston, MA
| | | |
Collapse
|
35
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
36
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
37
|
Lesport E, Commeau L, Genet M, Baulieu EE, Tawk M, Giustiniani J. A decrease in Fkbp52 alters autophagosome maturation and A152T-tau clearance in vivo. Front Cell Neurosci 2024; 18:1425222. [PMID: 39119047 PMCID: PMC11306173 DOI: 10.3389/fncel.2024.1425222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The failure of the autophagy-lysosomal pathway to clear the pathogenic forms of Tau exacerbates the pathogenesis of tauopathies. We have previously shown that the immunophilin FKBP52 interacts both physically and functionally with Tau, and that a decrease in FKBP52 protein levels is associated with Tau deposition in affected human brains. We have also shown that FKBP52 is physiologically present within the lysosomal system in healthy human neurons and that a decrease in FKBP52 expression alters perinuclear lysosomal positioning and Tau clearance during Tau-induced proteotoxic stress in vitro. In this study, we generate a zebrafish fkbp4 loss of function mutant and show that axonal retrograde trafficking of Lamp1 vesicles is altered in this mutant. Moreover, using our transgenic HuC::mCherry-EGFP-LC3 line, we demonstrate that the autophagic flux is impaired in fkbp4 mutant embryos, suggesting a role for Fkbp52 in the maturation of autophagic vesicles. Alterations in both axonal transport and autophagic flux are more evident in heterozygous rather than homozygous fkbp4 mutants. Finally, taking advantage of the previously described A152T-Tau transgenic fish, we show that the clearance of pathogenic A152T-Tau mutant proteins is slower in fkbp4 +/- mutants in comparison to fkbp4 +/+ larvae. Altogether, these results indicate that Fkbp52 is required for the normal trafficking and maturation of lysosomes and autophagic vacuoles along axons, and that its decrease is sufficient to hinder the clearance of pathogenic Tau in vivo.
Collapse
Affiliation(s)
- Emilie Lesport
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Lucie Commeau
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
| | - Mélanie Genet
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
| | - Etienne-Emile Baulieu
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Marcel Tawk
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Julien Giustiniani
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
38
|
Parra Bravo C, Krukowski K, Barker S, Wang C, Li Y, Fan L, Vázquez-Rosa E, Shin MK, Wong MY, McCullough LD, Kitagawa RS, Choi HA, Cacace A, Sinha SC, Pieper AA, Rosi S, Chen X, Gan L. Anti-acetylated-tau immunotherapy is neuroprotective in tauopathy and brain injury. Mol Neurodegener 2024; 19:51. [PMID: 38915105 PMCID: PMC11197196 DOI: 10.1186/s13024-024-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karen Krukowski
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Barker
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Li Fan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Edwin Vázquez-Rosa
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Man Ying Wong
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Subhash C Sinha
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Xu Chen
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, USA.
| | - Li Gan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
40
|
Princen K, Van Dooren T, van Gorsel M, Louros N, Yang X, Dumbacher M, Bastiaens I, Coupet K, Dupont S, Cuveliers E, Lauwers A, Laghmouchi M, Vanwelden T, Carmans S, Van Damme N, Duhamel H, Vansteenkiste S, Prerad J, Pipeleers K, Rodiers O, De Ridder L, Claes S, Busschots Y, Pringels L, Verhelst V, Debroux E, Brouwer M, Lievens S, Tavernier J, Farinelli M, Hughes-Asceri S, Voets M, Winderickx J, Wera S, de Wit J, Schymkowitz J, Rousseau F, Zetterberg H, Cummings JL, Annaert W, Cornelissen T, De Winter H, De Witte K, Fivaz M, Griffioen G. Pharmacological modulation of septins restores calcium homeostasis and is neuroprotective in models of Alzheimer's disease. Science 2024; 384:eadd6260. [PMID: 38815015 PMCID: PMC11827694 DOI: 10.1126/science.add6260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-β and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-β and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Xiaojuan Yang
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | | | | | - Shana Dupont
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Eva Cuveliers
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Carmans
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Hein Duhamel
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Jovan Prerad
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Claes
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | | | - Marinka Brouwer
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sam Lievens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | | | - Marieke Voets
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Joris Winderickx
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- Functional Biology, Department of Biology, KU Leuven, 3001 Leuven-Heverlee, Belgium
| | - Stefaan Wera
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- ViroVet NV, 3001 Leuven-Heverlee, Belgium
| | - Joris de Wit
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Koen De Witte
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Marc Fivaz
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | |
Collapse
|
41
|
Parra Bravo C, Giani AM, Madero-Perez J, Zhao Z, Wan Y, Samelson AJ, Wong MY, Evangelisti A, Cordes E, Fan L, Ye P, Zhu D, Pozner T, Mercedes M, Patel T, Yarahmady A, Carling GK, Sterky FH, Lee VMY, Lee EB, DeTure M, Dickson DW, Sharma M, Mok SA, Luo W, Zhao M, Kampmann M, Gong S, Gan L. Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. Cell 2024; 187:2446-2464.e22. [PMID: 38582079 PMCID: PMC11365117 DOI: 10.1016/j.cell.2024.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alice Maria Giani
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jesus Madero-Perez
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zeping Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yuansong Wan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alessandro Evangelisti
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ethan Cordes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pearly Ye
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daphne Zhu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tatyana Pozner
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maria Mercedes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tark Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allan Yarahmady
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Gillian K Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fredrik H Sterky
- Department of Laboratory Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Institute of Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mingrui Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
42
|
Tapella L, Dematteis G, La Vitola P, Leva S, Tonelli E, Raddi M, Delconti M, Dacomo L, La Macchia A, Murari E, Talmon M, Malecka J, Chrostek G, Grilli M, Colombo L, Salmona M, Forloni G, Genazzani AA, Balducci C, Lim D. Genetic deletion of astrocytic calcineurin B1 prevents cognitive impairment and neuropathology development in acute and chronic mouse models of Alzheimer's disease. Glia 2024; 72:899-915. [PMID: 38288580 DOI: 10.1002/glia.24509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/20/2024]
Abstract
Alzheimer's disease (AD) represents an urgent yet unmet challenge for modern society, calling for exploration of innovative targets and therapeutic approaches. Astrocytes, main homeostatic cells in the CNS, represent promising cell-target. Our aim was to investigate if deletion of the regulatory CaNB1 subunit of calcineurin in astrocytes could mitigate AD-related memory deficits, neuropathology, and neuroinflammation. We have generated two, acute and chronic, AD mouse models with astrocytic CaNB1 ablation (ACN-KO). In the former, we evaluated the ability of β-amyloid oligomers (AβOs) to impair memory and activate glial cells once injected in the cerebral ventricle of conditional ACN-KO mice. Next, we generated a tamoxifen-inducible astrocyte-specific CaNB1 knock-out in 3xTg-AD mice (indACNKO-AD). CaNB1 was deleted, by tamoxifen injection, in 11.7-month-old 3xTg-AD mice for 4.4 months. Spatial memory was evaluated using the Barnes maze; β-amyloid plaques burden, neurofibrillary tangle deposition, reactive gliosis, and neuroinflammation were also assessed. The acute model showed that ICV injected AβOs in 2-month-old wild type mice impaired recognition memory and fostered a pro-inflammatory microglia phenotype, whereas in ACN-KO mice, AβOs were inactive. In indACNKO-AD mice, 4.4 months after CaNB1 depletion, we found preservation of spatial memory and cognitive flexibility, abolishment of amyloidosis, and reduction of neurofibrillary tangles, gliosis, and neuroinflammation. Our results suggest that ACN is crucial for the development of cognitive impairment, AD neuropathology, and neuroinflammation. Astrocyte-specific CaNB1 deletion is beneficial for both the abolishment of AβO-mediated detrimental effects and treatment of ongoing AD-related pathology, hence representing an intriguing target for AD therapy.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Pietro La Vitola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Susanna Leva
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elisa Tonelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marco Raddi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marta Delconti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Letizia Dacomo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto La Macchia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elisa Murari
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Justyna Malecka
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gabriela Chrostek
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Laura Colombo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Mario Salmona
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
43
|
Santiago-Ruiz AN, Hugelier S, Bond CR, Lee EB, Lakadamyali M. Super-Resolution Imaging Uncovers Nanoscale Tau Aggregate Hyperphosphorylation Patterns in Human Alzheimer's Disease Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590893. [PMID: 38712162 PMCID: PMC11071528 DOI: 10.1101/2024.04.24.590893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tau aggregation plays a critical role in Alzheimer's Disease (AD), where tau neurofibrillary tangles (NFTs) are a key pathological hallmark. While much attention has been given to NFTs, emerging evidence underscores nano-sized pre-NFT tau aggregates as potentially toxic entities in AD. By leveraging DNA-PAINT super-resolution microscopy, we visualized and quantified nanoscale tau aggregates (nano-aggregates) in human postmortem brain tissues from intermediate and advanced AD, and Primary Age-Related Tauopathy (PART). Nano-aggregates were predominant across cases, with AD exhibiting a higher burden compared to PART. Hyperphosphorylated tau residues (p-T231, p-T181, and p-S202/T205) were present within nano-aggregates across all AD Braak stages and PART. Moreover, nano-aggregates displayed morphological differences between PART and AD, and exhibited distinct hyperphosphorylation patterns in advanced AD. These findings suggest that changes in nano-aggregate morphology and hyperphosphorylation patterns may exacerbate tau aggregation and AD progression. The ability to detect and profile nanoscale tau aggregates in human brain tissue opens new avenues for studying the molecular underpinnings of tauopathies.
Collapse
|
44
|
Smith ED, McKenna R, Mietzsch M, Borchelt DR, Prokop S, Chakrabarty P. Hyperacetylation mimetics within the tau filament core inhibits prion-like propagation of misfolded tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589253. [PMID: 38659970 PMCID: PMC11042196 DOI: 10.1101/2024.04.12.589253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Acetylation of key Lysine residues characterizes aggregates of the microtubule-associated protein tau constituting the neuropathological hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP). This has led to the idea that acetylation influences tau aggregation. Using a HEK293 cell-based aggregation assay, we tested whether acetylation-mimicking substitutions (K→Q) on five AD-associated acetyl-modified sites (AcK-311, 353, 369, 370, 375) influenced its propensity to aggregate when exposed to tau seeds derived from two clinically distinctive diseases - AD and PSP. In combination, the presence of 5K→Q sites ablated tau aggregation induced by seeds from both AD and PSP patients, indicating that acetylation within the filament core domain of tau could have an inhibitory effect on seed-mediated aggregation. We had previously identified that a phosphorylation-mimetic on Ser305 (S→E) abrogated tau aggregation by seeds from AD patients, without affecting seeding by PSP patients. Combining the S305→E to the 5K→Q acetyl-modified sites, we found that this tau could now be seeded only by PSP patients, but not by AD patients, confirming Ser305 as a critical determinant of strain-specific tau seeding. On the other hand, acetylation-nullifying substitutions (K→R or K→A) on these same Lys sites did not alter tau seeding abilities compared to the parental tau construct. Notably, the combined acetylation-nullifying Alanine substitutions on these 5 Lys sites resulted in spontaneous self-aggregation, with the filaments resembling amorphous deposits. All together, we demonstrate that cooperative acetyl-occupancy in the tau filament core influences seeded propagation of misfolded tau as well as drives self-aggregation.
Collapse
Affiliation(s)
- Ethan D Smith
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Center For Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Center For Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
45
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
46
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi M, Phinney BS, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585597. [PMID: 38585836 PMCID: PMC10996607 DOI: 10.1101/2024.03.25.585597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.
Collapse
|
47
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
48
|
Venkatramani A, Ashtam A, Panda D. EB1 Increases the Dynamics of Tau Droplets and Inhibits Tau Aggregation: Implications in Tauopathies. ACS Chem Neurosci 2024; 15:1219-1233. [PMID: 38445984 DOI: 10.1021/acschemneuro.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
EB1, a microtubule plus end-tracking protein (+TIP), regulates microtubule dynamics. Recent evidence indicates cross-talk between EB proteins and tau, a microtubule-associated neuronal protein that is important for the growth and stability of microtubules. We investigated the interaction between tau and EB1 and the effect of binding of EB1 on tau function and aggregation. EB1 colocalized with tau in SH-SY5Y cells and coimmunoprecipitated with tau. Further, purified EB1 impaired the ability of adult tau to induce tubulin polymerization in vitro. EB1 bound to tau with a dissociation constant of 2.5 ± 0.7 μM. EB1 reduced heparin-induced tau aggregation with a half-maximal inhibitory concentration of 4.3 ± 0.2 μM, and increased the dynamics of tau in phase-separated droplets. The fluorescence recovery rate in tau droplets increased from 0.02 ± 0.01 to 0.07 ± 0.03 s-1, while the half-time of recovery decreased from 44.5 ± 14 to 13.5 ± 6 s in the presence of 8 μM EB1, suggesting a delay in the transition of tau from the soluble to aggregated form in tau liquid-liquid phase separation. EB1 decreased the rate of aggregation and increased the critical concentration of tau aggregation. Dynamic light scattering, atomic force microscopy, dot blot assays, and SDS-PAGE analysis showed that EB1 inhibited the formation of oligomers and higher-order aggregates of tau. The data suggest a novel role for EB1 as a regulator of tau function and aggregation, and the findings indicated the role of the EB family proteins in neuronal function and neurodegeneration.
Collapse
Affiliation(s)
- Anuradha Venkatramani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
49
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
50
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|