1
|
Chen Y, Zhang F, Ren W, Zhou Y, Jiang S, Zhang S, Xu G, Ge X, Gao H. A strategy for evaluating the impact of processing of Chinese meteria medica on meridian tropism: the influence of salt-water processing of phellodendri chinensis cortex on renal transport proteins. Front Pharmacol 2025; 16:1558298. [PMID: 40260384 PMCID: PMC12009851 DOI: 10.3389/fphar.2025.1558298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction This study elucidated the potential mechanisms by which Phellodendri Chinensis Cortex with salt-water processing (SPC) enhances renal targeting efficacy, through investigating the effects of Phellodendri Chinensis Cortex (PC) on renal uptake and efflux transport capabilities before and after salt-water processing. Methods This study employed molecular docking, UPLC-TDQ-MS/MS, BCA, Western Blotting, and RT-PCR to assess the effects of raw Phellodendri Chinensis Cortex (RPC), SPC, berberine (BBR), and berberrubine (BBRR) on the transport capacity and expression of renal transport proteins OAT1, OAT3, OCT2, MATE1, MATE2K, P-gp, and MRP2 in HEK-293 cells. Results Analyses demonstrated that BBR and BBRR exhibited a strong affinity for OCT2, P-gp, MRP2. Compared to RPC, SPC can increase the uptake capacity and expression of OCT2, while it can decrease efflux capacity and expression of P-gp and MRP2. Simultaneously, BBRR showed similar effects on OCT2, P-gp, and MRP2, compared to BBR. Therefore, the enhanced renal targeting effect of SPC can be attributed to the differential impact of the partial conversion of BBR to BBRR on the transport capacity of the renal transporters OCT2, P-gp, and MRP2. Conclusion This study investigated the interactions between renal transporter proteins and drugs, with the objective of elucidating the mechanism by which SPC enhances renal targeting efficacy. The findings of this study offer new insights and methodologies for exploring the effects of Processing of Chinese Materia Medica (PCMM) on the meridian tropism of other traditional Chinese medicines (TCMs).
Collapse
|
2
|
Awuah WA, Ben-Jaafar A, Karkhanis S, Nkrumah-Boateng PA, Kong JSH, Mannan KM, Shet V, Imran S, Bone M, Boye ANA, Ranganathan S, Shah MH, Abdul-Rahman T, Atallah O. Cancer stem cells in meningiomas: novel insights and therapeutic implications. Clin Transl Oncol 2025; 27:1438-1459. [PMID: 39316249 PMCID: PMC12000263 DOI: 10.1007/s12094-024-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Vallabh Shet
- University of Connecticut New Britain Program, New Britain, Connecticut, USA
| | - Shahzeb Imran
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Matan Bone
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
3
|
Thuy VT, Viet NL, Nghia NT, Cangelosi G, Petrelli F, Nguyen CTT. The impact of the solute carrier gene superfamily polymorphisms on tyrosine kinase inhibitors responses among chronic myeloid leukemia: A meta-analysis. Leuk Res 2025; 151:107673. [PMID: 40048815 DOI: 10.1016/j.leukres.2025.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are currently the first-line therapy for chronic myeloid leukemia (CML), but proportion of treatment responses may be influenced by genetic polymorphisms, especially, the solute carrier gene superfamily (SLC). This study was conducted to evaluate the relationship of polymorphisms in the SLC genes family and treatment responses to TKIs among CML patients. METHODS A systematic search was conducted from four databases, including PubMed, Cochrane Library, Embase and Web of Science, up to March 2023. The relationship between SLC polymorphisms and TKI efficacy was assessed by pooled odds ratios (ORs) of the complete cytogenetic response (CCyR) and major molecular biological response (MMR) with 95 % confidence intervals (95 %CIs) across five genetic models (dominant, recessive, homozygote, heterozygote, and allele). Meta-analyses, heterogeneity between studies, publication bias, sensitivity, meta-regression and subgroup analysis were all performed. RESULTS A total of 19/983 studies meeting the criteria were included in the meta-analysis, with eight variants belonging to three genes (SLC22A1, SLCO1B3, and SLC22A4). The results showed that there was a statistically significant association between the SLC22A1 rs683369 variant and a lower rate of achieving MMR in all 05 genetic models. Similar results were also recorded in the dominant and homozygote models of the SLC22A1 rs628031 variant (OR= 0.61 (95 %CI= 0.46-0.82); OR= 0.46 (95 %CI= 0.23-0.94), respectively); particularly in Asian patients. No relationship was identified between MMR and other genes, as well as that of CCyR and all variants. CONCLUSION SLC variants can be predictive signals of imatinib responses among CML; Asian patients should be paid attention during the treatment.
Collapse
Affiliation(s)
- Vu Thi Thuy
- Falculty of Pharmacy, Ho Chi Minh City University of Technology, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Linh Viet
- Falculty of Pharmacy, Ho Chi Minh City University of Technology, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Trong Nghia
- Falculty of Pharmacy, Ho Chi Minh City University of Technology, Ho Chi Minh City 70000, Vietnam
| | | | - Fabio Petrelli
- School of Pharmacy, Polo Medicina Sperimentale e Sanità Pubblica, Camerino 62032, Italy
| | - Cuc Thi Thu Nguyen
- Falculty of Pharmaceutical Management and Economics, Hanoi University of Pharmacy, Hanoi 100000, Vietnam.
| |
Collapse
|
4
|
Kölz C, Gaugaz FZ, Handin N, Schaeffeler E, Tremmel R, Winter S, Klein K, Zanger UM, Artursson P, Schwab M, Nies AT. In silico and biological analyses of missense variants of the human biliary efflux transporter ABCC2: effects of novel rare missense variants. Br J Pharmacol 2024; 181:4593-4609. [PMID: 39096023 DOI: 10.1111/bph.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE The ATP-dependent biliary efflux transporter ABCC2, also known as multidrug resistance protein 2 (MRP2), is essential for the cellular disposition and detoxification of various xenobiotics including drugs as well as endogenous metabolites. Common functionally relevant ABCC2 genetic variants significantly alter drug responses and contribute to side effects. The aim of this study was to determine functional consequences of rare variants identified in subjects with European ancestry using in silico tools and in vitro analyses. EXPERIMENTAL APPROACH Targeted next-generation sequencing of the ABCC2 gene was used to identify novel variants in European subjects (n = 143). Twenty-six in silico tools were used to predict functional consequences. For biological validation, transport assays were carried out with membrane vesicles prepared from cell lines overexpressing the newly identified ABCC2 variants and estradiol β-glucuronide and carboxydichlorofluorescein as the substrates. KEY RESULTS Three novel rare ABCC2 missense variants were identified (W227R, K402T, V489F). Twenty-five in silico tools predicted W227R as damaging and one as potentially damaging. Prediction of functional consequences was not possible for K402T and V489F and for the common linked variants V1188E/C1515Y. Characterisation in vitro showed increased function of W227R, V489F and V1188E/C1515Y for both substrates, whereas K402T function was only increased for carboxydichlorofluorescein. CONCLUSION AND IMPLICATIONS In silico tools were unable to accurately predict the substrate-dependent increase in function of ABCC2 missense variants. In vitro biological studies are required to accurately determine functional activity to avoid misleading consequences for drug therapy.
Collapse
Affiliation(s)
- Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Nguyen TNH, Horowitz LF, Krilov T, Lockhart E, Kenerson HL, Gujral TS, Yeung RS, Arroyo-Currás N, Folch A. Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. SCIENCE ADVANCES 2024; 10:eadn5875. [PMID: 39241078 PMCID: PMC11378948 DOI: 10.1126/sciadv.adn5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Functional assays on intact tumor biopsies can complement genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key therapeutic response determinants, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Most of these assays rely on fluorescent labeling, a semiquantitative method best suited for single-time-point assays or labor-intensive immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Because of the sensor's high affinity, it primarily tracks rising concentrations of cytochrome C, capturing dynamic changes during apoptosis. This approach could help develop more advanced cancer disease models and apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Timothy Krilov
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Pego ÁMG, Marques MP, Moreira FDL, Paz T, Tarozzo MMDB, Mattos RP, Dos Santos Melli PP, Duarte G, Cavalli RC, Lanchote VL. In Vivo Activity of Intestinal P-Glycoprotein and Hepatic Organic Anion Transporters Polypeptide in Pregnancy and Postpartum. J Clin Pharmacol 2024. [PMID: 39189980 DOI: 10.1002/jcph.6125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
This study investigates the influence of pregnancy on the in vivo activity of the intestinal P-glycoprotein (P-gp) and hepatic organic anion transporters polypeptide (OATP/BCRP) using, respectively, fexofenadine and rosuvastatin as probe drugs. Eleven healthy participants were investigated during the third trimester of pregnancy (Phase 1, 28 to 38 weeks of gestation) and in the postpartum period (Phase 2, 8 to 12 weeks postpartum). In both phases, after administration of a single oral dose of fexofenadine (60 mg) and rosuvastatin (5 mg), serial blood samples were collected for up to 24 h. Rosuvastatin and fexofenadine in plasma were analyzed by LC-MS/MS using previously validated methods. The pharmacokinetic parameters of fexofenadine and rosuvastatin (Phoenix WinNonLin software) with normal distribution (Shapiro-Wilk test) are presented as geometric mean and 90% confidence interval. Phases 1 and 2 were compared using the t test (P < .05). Fexofexadine AUC0-24 values do not differ (P-value: .0715) between Phase 1 (641.9 ng h/mL [500.6-823.1]) and Phase 2 (823.8 ng h/mL [641.5-1057.6]) showing that pregnancy (third trimester) does not alter intestinal P-gp activity. However, rosuvastatin AUC0-24 values are higher (P-value: .00005) in Phase 1 (18.7 ng h/mL [13.3-26.4]) when compared to Phase 2 (9.5 ng h/mL [6.7-13.4]), suggesting inhibition of OATP1B1/OATP1B3 transporters. In conclusion, pregnancy assessed during the third trimester does not alter the intestinal P-gp activity but reduces the activity of hepatic OATP1B1/OATP1B3 transporters. Therefore, adjustments in dosage regimens may be necessary for drugs with low therapeutic index, substrates of the OATP1B1/OATP1B3 transporters, administered during the third trimester of pregnancy.
Collapse
Affiliation(s)
- Álef Machado Gomes Pego
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Paula Marques
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda de Lima Moreira
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago Paz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Martha de Barros Tarozzo
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogério Pereira Mattos
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Geraldo Duarte
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Carvalho Cavalli
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Li S, Liu Y. Intestinal absorption mechanism and nutritional synergy promotion strategy of dietary flavonoids: transintestinal epithelial pathway mediated by intestinal transport proteins. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39086266 DOI: 10.1080/10408398.2024.2387320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Dietary flavonoids exhibit a variety of physiological functions in regulating glucose and lipid metabolism, improving cardiovascular function, and enhancing stress resistance. However, poor intestinal absorption limits their health benefits. Previous studies on improving the absorption efficiency of flavonoids have focused on targeted release, enhanced gastrointestinal stability and prolonged retention time in digestive tract. But less attention has been paid to promoting the uptake and transport of flavonoids by intestinal epithelial cells through modulation of transporter protein-mediated pathways. Interestingly, some dietary nutrients have been found to modulate the expression or function of transporter proteins, thereby synergistically or antagonistically affecting flavonoid absorption. Therefore, this paper proposed an innovative regulatory strategy known as the "intestinal transport protein-mediated pathway" to promote intestinal absorption of dietary flavonoids. The flavonoid absorption mechanism in the intestinal epithelium, mediated by intestinal transport proteins, was summarized. The functional differences between the uptake transporter and efflux transporters during flavonoid trans-intestinal cellular transport were discussed. Finally, from the perspective of nutritional synergy promotion of absorption, the feasibility of promoting flavonoid intestinal absorption by regulating the expression/function of transport proteins through dietary nutrients was emphasized. This review provides a new perspective and developing precise dietary nutrient combinations for efficient dietary flavonoid absorption.
Collapse
Affiliation(s)
- Shuqiong Li
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
8
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Optimisation of analytical methods for tuberculosis drug detection in wastewater: A multinational study. Heliyon 2024; 10:e30720. [PMID: 38770326 PMCID: PMC11103419 DOI: 10.1016/j.heliyon.2024.e30720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Wastewater-based epidemiology (WBE) is a robust tool for disease surveillance and monitoring of pharmaceutical consumption. However, monitoring tuberculosis (TB) drug consumption faces challenges due to limited data availability. This study aimed to optimise methods for detecting TB drugs in treated and untreated wastewater from four African countries: South Africa, Nigeria, Kenya, and Cameroon. The limit of detection (LOD) for these drugs ranged from a minimum of 2.20 (±1.02) for rifampicin to a maximum of 2.95 (±0.79) for pyrazinamide. A parallel trend was observed concerning the limit of quantification (LOQ), with rifampicin reporting the lowest average LOQ of 7.33 (±3.44) and pyrazinamide showing the highest average LOQ of 9.81 (±2.64). The variance in LOD and LOQ values could be attributed to factors such as drug polarity. Erythromycin and rifampicin exhibited moderately polar LogP values (2.6 and 2.95), indicating higher lipid affinity and lower water affinity. Conversely, ethambutol, pyrazinamide, and isoniazid displayed polar LogP values (-0.059, -0.6, and -0.7), suggesting lower lipid affinity and greater water affinity. The study revealed that storing wastewater samples for up to 5 days did not result in significant drug concentration loss, with concentration reduction remaining below 1 log throughout the storage period. Application of the optimised method for drug detection and quantification in both treated and untreated wastewater unveiled varied results. Detection frequencies varied among drugs, with ethambutol consistently most detected, while pyrazinamide and isoniazid were least detected in wastewater from only two countries. Most untreated wastewater samples had undetectable drug concentrations, ranging from 1.21 ng/mL for erythromycin to 54.61 ng/mL for isoniazid. This variability may suggest differences in drug consumption within connected communities. In treated wastewater samples, detectable drug concentrations ranged from 1.27 ng/mL for isoniazid to 10.20 ng/mL for ethambutol. Wastewater treatment plants exhibited variable removal efficiencies for different drugs, emphasising the need for further optimisation. Detecting these drugs in treated wastewater suggests potential surface water contamination and subsequent risks of human exposure, underscoring continued research's importance.
Collapse
Affiliation(s)
- Hlengiwe N. Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D. Amoah
- The University of Arizona, The Department of Environmental Science, Shantz Building Rm 4291177 E 4th St, Tucson, AZ, 85721, USA
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
9
|
Chen Q, Fang C, Xia F, Wang Q, Li F, Ling D. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm Sin B 2024; 14:1132-1149. [PMID: 38486992 PMCID: PMC10934341 DOI: 10.1016/j.apsb.2023.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| |
Collapse
|
10
|
Shi Y, Reker D, Byrne JD, Kirtane AR, Hess K, Wang Z, Navamajiti N, Young CC, Fralish Z, Zhang Z, Lopes A, Soares V, Wainer J, von Erlach T, Miao L, Langer R, Traverso G. Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning. Nat Biomed Eng 2024; 8:278-290. [PMID: 38378821 DOI: 10.1038/s41551-023-01128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/01/2023] [Indexed: 02/22/2024]
Abstract
In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug-transporter relationships. For 24 drugs with well-characterized drug-transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug-transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model's predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety.
Collapse
Affiliation(s)
- Yunhua Shi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - James D Byrne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Ameya R Kirtane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Hess
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhuyi Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natsuda Navamajiti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Cameron C Young
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Fralish
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zilu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aaron Lopes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vance Soares
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Wainer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas von Erlach
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Miao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Nguyen TNH, Horowitz L, Krilov T, Lockhart E, Kenerson HL, Yeung RS, Arroyo-Currás N, Folch A. Label-Free, Real-Time Monitoring of Cytochrome C Responses to Drugs in Microdissected Tumor Biopsies with a Multi-Well Aptasensor Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578278. [PMID: 38352494 PMCID: PMC10862797 DOI: 10.1101/2024.01.31.578278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Functional assays on intact tumor biopsies can potentially complement and extend genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key determinants of therapeutic response, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Currently, most of these assays rely on fluorescent labeling, a semi-quantitative method best suited to be a single-time-point terminal assay or labor-intensive terminal immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of increases of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Since the aptamer probe can be easily exchanged to recognize different targets, the platform could be adapted for multiplexed monitoring of various biomarkers, providing critical information on the tumor and its microenvironment. This approach could not only help develop more advanced cancer disease models but also apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
|
12
|
Kwon J, Kim MS, Blagojevic C, Mailloux J, Medwid S, Tirona RG, Wang R, Schwarz UI. Differential effects of OATP2B1 on statin accumulation and toxicity in a beta cell model. Toxicol Mech Methods 2024; 34:130-147. [PMID: 37771097 DOI: 10.1080/15376516.2023.2262568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
An increased risk of new-onset diabetes mellitus has been recently reported for statin therapy, and experimental studies have shown reduced glucose-stimulated insulin secretion (GSIS) and mitochondrial dysfunction in beta cells with effects differing among agents. Organic anion transporting polypeptide (OATP) 2B1 contributes to hepatic uptake of rosuvastatin, atorvastatin and pravastatin, three known substrates. Since OATP2B1 is present in beta cells of the human pancreas, we investigated if OATP2B1 facilitates the local accumulation of statins in a rat beta cell model INS-1 832/13 (INS-1) thereby amplifying statin-induced toxicity. OATP2B1 overexpression in INS-1 cells via adenoviral transduction showed 2.5-, 1.8- and 1.4-fold higher cellular retention of rosuvastatin, atorvastatin and pravastatin, respectively, relative to LacZ control, while absolute intracellular concentration was about twice as high for the lipophilic atorvastatin compared to the more hydrophilic rosuvastatin and pravastatin. After 24 h statin treatment at high concentrations, OATP2B1 enhanced statin toxicity involving activation of intrinsic apoptosis (caspase 3/7 activation) and mitochondrial dysfunction (NADH dehydrogenase activity) following rosuvastatin and atorvastatin, which was partly reversed by isoprenoids. OATP2B1 had no effect on statin-induced reduction in GSIS, mitochondrial electron transport chain complex expression or caspase 9 activation. We confirmed a dose-dependent reduction in insulin secretion by rosuvastatin and atorvastatin in native INS-1 with a modest change in cellular ATP. Collectively, our results indicate a role of OATP2B1, which is abundant in human beta cells, in statin accumulation and statin-induced toxicity but not insulin secretion of rosuvastatin and atorvastatin in INS-1 cells.
Collapse
Affiliation(s)
- Jihoon Kwon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michelle S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Christina Blagojevic
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaymie Mailloux
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samantha Medwid
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Jadranin M, Savić D, Lupšić E, Podolski-Renić A, Pešić M, Tešević V, Milosavljević S, Krstić G. LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:4181. [PMID: 38140508 PMCID: PMC10747863 DOI: 10.3390/plants12244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes' chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.
Collapse
Affiliation(s)
- Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Danica Savić
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Ema Lupšić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
| | - Slobodan Milosavljević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
- Serbian Academy of Science and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Gordana Krstić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
| |
Collapse
|
14
|
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska‐Kortylewicz J, Le J, Fletcher CV, Ether SA, Avedissian SN. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med 2023; 12:21075-21096. [PMID: 37997517 PMCID: PMC10726873 DOI: 10.1002/cam4.6647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.
Collapse
Affiliation(s)
- Johid Reza Malik
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Anthony T. Podany
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Parvez Khan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher L. Shaffer
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jawed A. Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jennifer Le
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesSan DiegoCaliforniaUSA
| | - Courtney V. Fletcher
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sadia Afruz Ether
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sean N. Avedissian
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
15
|
Veiga-Matos J, Morales AI, Prieto M, Remião F, Silva R. Study Models of Drug-Drug Interactions Involving P-Glycoprotein: The Potential Benefit of P-Glycoprotein Modulation at the Kidney and Intestinal Levels. Molecules 2023; 28:7532. [PMID: 38005253 PMCID: PMC10673607 DOI: 10.3390/molecules28227532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
P-glycoprotein (P-gp) is a crucial membrane transporter situated on the cell's apical surface, being responsible for eliminating xenobiotics and endobiotics. P-gp modulators are compounds that can directly or indirectly affect this protein, leading to changes in its expression and function. These modulators can act as inhibitors, inducers, or activators, potentially causing drug-drug interactions (DDIs). This comprehensive review explores diverse models and techniques used to assess drug-induced P-gp modulation. We cover several approaches, including in silico, in vitro, ex vivo, and in vivo methods, with their respective strengths and limitations. Additionally, we explore the therapeutic implications of DDIs involving P-gp, with a special focus on the renal and intestinal elimination of P-gp substrates. This involves enhancing the removal of toxic substances from proximal tubular epithelial cells into the urine or increasing the transport of compounds from enterocytes into the intestinal lumen, thereby facilitating their excretion in the feces. A better understanding of these interactions, and of the distinct techniques applied for their study, will be of utmost importance for optimizing drug therapy, consequently minimizing drug-induced adverse and toxic effects.
Collapse
Affiliation(s)
- Jéssica Veiga-Matos
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Ana I. Morales
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Marta Prieto
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
17
|
Verhagen NE, Koenderink JB, Blijlevens NMA, Janssen JJWM, Russel FGM. Transporter-Mediated Cellular Distribution of Tyrosine Kinase Inhibitors as a Potential Resistance Mechanism in Chronic Myeloid Leukemia. Pharmaceutics 2023; 15:2535. [PMID: 38004514 PMCID: PMC10675650 DOI: 10.3390/pharmaceutics15112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematologic neoplasm characterized by the expression of the BCR::ABL1 oncoprotein, a constitutively active tyrosine kinase, resulting in uncontrolled growth and proliferation of cells in the myeloid lineage. Targeted therapy using tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, bosutinib, ponatinib and asciminib has drastically improved the life expectancy of CML patients. However, treatment resistance occurs in 10-20% of CML patients, which is a multifactorial problem that is only partially clarified by the presence of TKI inactivating BCR::ABL1 mutations. It may also be a consequence of a reduction in cytosolic TKI concentrations in the target cells due to transporter-mediated cellular distribution. This review focuses on drug-transporting proteins in stem cells and progenitor cells involved in the distribution of TKIs approved for the treatment of CML. Special attention will be given to ATP-binding cassette transporters expressed in lysosomes, which may facilitate the extracytosolic sequestration of these compounds.
Collapse
Affiliation(s)
- Noor E. Verhagen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Jan B. Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Nicole M. A. Blijlevens
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Jeroen J. W. M. Janssen
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| |
Collapse
|
18
|
Fu T, Zeng S, Zheng Q, Zhu F. The Important Role of Transporter Structures in Drug Disposition, Efficacy, and Toxicity. Drug Metab Dispos 2023; 51:1316-1323. [PMID: 37295948 DOI: 10.1124/dmd.123.001275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters are critical determinants of drug disposition, clinical efficacy, and toxicity as they specifically mediate the influx and efflux of various substrates and drugs. ABC transporters can modulate the pharmacokinetics of many drugs via mediating the translocation of drugs across biologic membranes. SLC transporters are important drug targets involved in the uptake of a broad range of compounds across the membrane. However, high-resolution experimental structures have been reported for a very limited number of transporters, which limits the study of their physiologic functions. In this review, we collected structural information on ABC and SLC transporters and described the application of computational methods in structure prediction. Taking P-glycoprotein (ABCB1) and serotonin transporter (SLC6A4) as examples, we assessed the pivotal role of structure in transport mechanisms, details of ligand-receptor interactions, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms. The data collected contributes toward safer and more effective pharmacological treatments. SIGNIFICANCE STATEMENT: The experimental structure of ATP-binding cassette and solute carrier transporters was collected, and the application of computational methods in structure prediction was described. P-glycoprotein and serotonin transporter were used as examples to reveal the pivotal role of structure in transport mechanisms, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Su Zeng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Qingchuan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| |
Collapse
|
19
|
Kong X, Lin K, Wu G, Tao X, Zhai X, Lv L, Dong D, Zhu Y, Yang S. Machine Learning Techniques Applied to the Study of Drug Transporters. Molecules 2023; 28:5936. [PMID: 37630188 PMCID: PMC10459831 DOI: 10.3390/molecules28165936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
With the advancement of computer technology, machine learning-based artificial intelligence technology has been increasingly integrated and applied in the fields of medicine, biology, and pharmacy, thereby facilitating their development. Transporters have important roles in influencing drug resistance, drug-drug interactions, and tissue-specific drug targeting. The investigation of drug transporter substrates and inhibitors is a crucial aspect of pharmaceutical development. However, long duration and high expenses pose significant challenges in the investigation of drug transporters. In this review, we discuss the present situation and challenges encountered in applying machine learning techniques to investigate drug transporters. The transporters involved include ABC transporters (P-gp, BCRP, MRPs, and BSEP) and SLC transporters (OAT, OATP, OCT, MATE1,2-K, and NET). The aim is to offer a point of reference for and assistance with the progression of drug transporter research, as well as the advancement of more efficient computer technology. Machine learning methods are valuable and attractive for helping with the study of drug transporter substrates and inhibitors, but continuous efforts are still needed to develop more accurate and reliable predictive models and to apply them in the screening process of drug development to improve efficiency and success rates.
Collapse
Affiliation(s)
- Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Gaolei Wu
- Department of Pharmacy, Dalian Women and Children’s Medical Group, Dalian 116024, China;
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (X.K.); (K.L.); (X.T.); (X.Z.); (L.L.); (D.D.)
| |
Collapse
|
20
|
Dvorak V, Superti-Furga G. Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opin Drug Discov 2023; 18:1099-1115. [PMID: 37563933 DOI: 10.1080/17460441.2023.2244760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Solute carriers (SLCs) represent the largest group of membrane transporters in the human genome. They play a central role in controlling the compartmentalization of metabolism and most of this superfamily is linked to human disease. Despite being in general considered druggable and attractive therapeutic targets, many SLCs remain poorly annotated, both functionally and structurally. AREAS COVERED The aim of this review is to provide an overview of functional and structural parameters of SLCs that play important roles in their druggability. To do this, the authors provide an overview of experimentally solved structures of human SLCs, with emphasis on structures solved in complex with chemical modulators. From the functional annotations, the authors focus on SLC localization and SLC substrate annotations. EXPERT OPINION Recent progress in the structural and functional annotations allows to refine the SLC druggability index. Particularly the increasing number of experimentally solved structures of SLCs provides insights into mode-of-action of a significant number of chemical modulators of SLCs.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Dabral S, Khan IA, Pant T, Khan S, Prakash P, Parvez S, Saha N. Deciphering the Precise Target for Saroglitazar Associated Antiangiogenic Effect: A Computational Synergistic Approach. ACS OMEGA 2023; 8:14985-15002. [PMID: 37151537 PMCID: PMC10157850 DOI: 10.1021/acsomega.2c07570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Antidiabetic drugs that have a secondary pharmacological effect on angiogenesis inhibition may help diabetic patients delay or avoid comorbidities caused by angiogenesis including malignancies. In recent studies, saroglitazar has exhibited antiangiogenic effects in diabetic retinopathy. The current study investigates the antiangiogenic effects of saroglitazar utilizing the chicken chorioallantoic membrane (CAM) assay and then identifies its precise mode of action on system-level protein networks. To determine the regulatory effect of saroglitazar on the protein-protein interaction network (PIN), 104 target genes were retrieved and tested using an acid server and Swiss target prediction tools. A string-based interactome was created and analyzed using Cytoscape. It was determined that the constructed network was scale-free, making it biologically relevant. Upon topological analysis of the network, 37 targets were screened on the basis of centrality values. Submodularization of the interactome resulted in the formation of four clusters. A total of 20 common targets identified in topological analysis and modular analysis were filtered. A total of 20 targets were compiled and were integrated into the pathway enrichment analysis using ShinyGO. The majority of hub genes were associated with cancer and PI3-AKT signaling pathways. Molecular docking was utilized to reveal the most potent target, which was validated by using molecular dynamic simulations and immunohistochemical staining on the chicken CAM. The comprehensive study offers an alternate research paradigm for the investigation of antiangiogenic effects using CAM assays. This was followed by the identification of the precise off-target use of saroglitazar using system biology and network pharmacology to inhibit angiogenesis.
Collapse
Affiliation(s)
- Swarna Dabral
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Imran Ahmd Khan
- Department
of Chemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Tarun Pant
- Department
of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Sabina Khan
- Department
of Pathology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prem Prakash
- Protein
Assembly Laboratory, JH-Institute of Molecular Medicine, Jamia Hamdard University, New Delhi 110062, India
| | - Suhel Parvez
- Department
of Medical Elementology and Toxicology, School of Chemical and Life
Science, Jamia Hamdard University, New Delhi 110062, India
| | - Nilanjan Saha
- Centre
for Translational and Clinical Research, School of Chemical and Life
Science, Jamia Hamdard UniversityNew Delhi 110062, India
- . Phone: 9873013366
| |
Collapse
|
22
|
Zhang J, Chen Y, Fan W, Li L, Ma Y, Wang Z, Shi R, Yang L. Study on herb-herb interaction between active components of Plantago asiatica L. seed and Coptis chinensis Franch. rhizoma based on transporters using UHPLC-MS/MS. J Pharm Biomed Anal 2023; 227:115234. [PMID: 36773541 DOI: 10.1016/j.jpba.2023.115234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
The combined efficacy in lowering serum lipid levels and increasing kidney protection of Plantago asiatica L. seed (Plantago) and Coptis chinensis Franch. rhizoma (Coptis) is far better than the effects of either herb alone. This finding suggests that there must be some degree of herb-herb interactions (HHI) affect potency. Here, we chose geniposidic acid (GPA), acteoside (ACT), and plantagoamidinic acid A (PLA) as active components in Plantago, and berberine (BBR) as the active component in Coptis, and, using transporter gene-transfected Madin-Darby canine kidney (MDCK) cells in combination with specific substrates and inhibitors, investigated Plantago- Coptis HHIs. We also established a UPLC-MS/MS analytical method to determine substrate content. Results showed that PLA in Plantago was a substrate of rOCT1/2 and rMATE1, and had inhibitory effects on rOCT2 and rMATE1. We also found that ACT is a substrate of rMATE1, but GPA was not a substrate of any transporter that we investigated. When BBR was used as the substrate, the inhibition rate of 10 μM PLA was 53.6% on rOCT2 and 31.5% on rMATE1. The inhibition rates of 30 μM ACT and 30 μM GPA on rMATE1 were 47.0% and 31.0%, respectively. Thus, our findings suggest that GPA, ACT, PLA, and BBR have competitive interactions that are driven by the rOCT2 and rMATE1 transporters. These interactions affect the transport and excretion of compounds and result in efficacy changes after co-administration.
Collapse
Affiliation(s)
- Jieyu Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Chen
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenxiang Fan
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medical, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
23
|
Song J, Ren T, Duan Y, Guo H, Wang G, Gan Y, Bai M, Dong X, Zhao Z, An J. Near-infrared fluorescence imaging of hepatocellular carcinoma cells regulated by β-catenin signaling pathway. Front Oncol 2023; 13:1140256. [PMID: 37064109 PMCID: PMC10090467 DOI: 10.3389/fonc.2023.1140256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundNear-infrared fluorescence (NIRF) imaging has recently emerged as a promising tool for noninvasive cancer imaging. However, lack of tumor sensitivity and specificity restricts the application of NIRF dyes in surgical navigation.MethodsHerein, we investigated the imaging features of NIRF dye MHI-148 and indocyanine green (ICG) in live cell imaging and xenograft nude mice models. TCGA dataset analysis and immunohistochemistry were conducted to investigate the expression of OATPs or ABCGs in hepatocellular carcinoma (HCC) tissues. OATPs or ABCGs were knocked down and overexpressed in HCC cells using transient transfection by siRNA and plasmids or stable transfection by lentivirus. Further, qRT-PCR ,Western blotting and the use of agonists or inhibitors targeting β-catenin signaling pathway were applied to explore its important role in regulation of OATP2B1 and ABCG2 expression.ResultsHere we demonstrated that NIRF dye MHI-148 was biocompatible as indocyanine green (ICG) but with higher imaging intensity and preferential uptake and retention in hepatocellular carcinoma (HCC) cells and tissues. Moreover, our data indicated that membrane transporters OATP2B1 and ABCG2, which regulated by β-catenin signaling pathway, mediated tumor-specific accumulation and retention of MHI-148 in HCC cells. In addition, the treatment with β-catenin inhibitor significantly enhanced the accumulation of MHI-148 in HCC tissues and improved the efficacy of tumor imaging with MHI-148 in vivo.ConclusionsOur study uncovers a mechanism that links the distribution and expression of the membrane transporters OATP2B1 and ABCG2 to the tumor-specific accumulation of MHI-148, and provides evidence supporting a regulating role of the β-catenin signaling pathway in OATP2B1 and ABCG2- induced retention of MHI-148 inHCC tissues, and strategy targeting key components of MHI-148 transport machinery may be a potential approach to improve HCC imaging.
Collapse
Affiliation(s)
- Jian Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tingting Ren
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Jiaze An, ; Tingting Ren, ; Zheng Zhao,
| | - Yanheng Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Haitao Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Gang Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Yu Gan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Mengcai Bai
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiaotian Dong
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Zhao
- Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi’an, China
- *Correspondence: Jiaze An, ; Tingting Ren, ; Zheng Zhao,
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Jiaze An, ; Tingting Ren, ; Zheng Zhao,
| |
Collapse
|
24
|
Bi Y, Wang X, Ding H, He F, Han L, Zhang Y. Transporter-mediated Natural Product-Drug Interactions. PLANTA MEDICA 2023; 89:119-133. [PMID: 35304735 DOI: 10.1055/a-1803-1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
| | - Hui Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
25
|
Canlas J, Myers AL. Interactions of Betel Quid Constituents with Drug Disposition Pathways: An Overview. Curr Drug Metab 2023; 24:92-105. [PMID: 36852799 PMCID: PMC11271041 DOI: 10.2174/1389200224666230228142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Global estimates indicate that over 600 million individuals worldwide consume the areca (betel) nut in some form. Nonetheless, its consumption is associated with a myriad of oral and systemic ailments, such as precancerous oral lesions, oropharyngeal cancers, liver toxicity and hepatic carcinoma, cardiovascular distress, and addiction. Users commonly chew slivers of areca nut in a complex consumable preparation called betel quid (BQ). Consequently, the user is exposed to a wide array of chemicals with diverse pharmacokinetic behavior in the body. However, a comprehensive understanding of the metabolic pathways significant to BQ chemicals is lacking. Henceforth, we performed a literature search to identify prominent BQ constituents and examine each chemical's interplay with drug disposition proteins. In total, we uncovered over 20 major chemicals (e.g., arecoline, nicotine, menthol, quercetin, tannic acid) present in the BQ mixture that were substrates, inhibitors, and/or inducers of various phase I (e.g., CYP, FMO, hydrolases) and phase II (e.g., GST, UGT, SULT) drug metabolizing enzymes, along with several transporters (e.g., P-gp, BCRP, MRP). Altogether, over 80 potential interactivities were found. Utilizing this new information, we generated theoretical predictions of drug interactions precipitated by BQ consumption. Data suggests that BQ consumers are at risk for drug interactions (and possible adverse effects) when co-ingesting other substances (multiple therapeutic classes) with overlapping elimination mechanisms. Until now, prediction about interactions is not widely known among BQ consumers and their clinicians. Further research is necessary based on our speculations to elucidate the biological ramifications of specific BQ-induced interactions and to take measures that improve the health of BQ consumers.
Collapse
Affiliation(s)
- Jasmine Canlas
- Department of Pharmaceutical & Biomedical Sciences, The University of Georgia, Athens, GA 30602, United States
| | - Alan L. Myers
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| |
Collapse
|
26
|
Tu MJ, Yu AM. Recent Advances in Novel Recombinant RNAs for Studying Post-transcriptional Gene Regulation in Drug Metabolism and Disposition. Curr Drug Metab 2023; 24:175-189. [PMID: 37170982 PMCID: PMC10825985 DOI: 10.2174/1389200224666230425232433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 05/13/2023]
Abstract
Drug-metabolizing enzymes and transporters are major determinants of the absorption, disposition, metabolism, and excretion (ADME) of drugs, and changes in ADME gene expression or function may alter the pharmacokinetics/ pharmacodynamics (PK/PD) and further influence drug safety and therapeutic outcomes. ADME gene functions are controlled by diverse factors, such as genetic polymorphism, transcriptional regulation, and coadministered medications. MicroRNAs (miRNAs) are a superfamily of regulatory small noncoding RNAs that are transcribed from the genome to regulate target gene expression at the post-transcriptional level. The roles of miRNAs in controlling ADME gene expression have been demonstrated, and such miRNAs may consequently influence cellular drug metabolism and disposition capacity. Several types of miRNA mimics and small interfering RNA (siRNA) reagents have been developed and widely used for ADME research. In this review article, we first provide a brief introduction to the mechanistic actions of miRNAs in post-transcriptional gene regulation of drug-metabolizing enzymes, transporters, and transcription factors. After summarizing conventional small RNA production methods, we highlight the latest advances in novel recombinant RNA technologies and applications of the resultant bioengineered RNA (BioRNA) agents to ADME studies. BioRNAs produced in living cells are not only powerful tools for general biological and biomedical research but also potential therapeutic agents amenable to clinical investigations.
Collapse
Affiliation(s)
- Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
27
|
Abdelghany TM, Hedya SA, De Santis C, Abd El-Rahman SS, Gill JH, Abdelkader NF, Wright MC. Potential for cardiac toxicity with methylimidazolium ionic liquids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114439. [PMID: 37272551 DOI: 10.1016/j.ecoenv.2022.114439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/06/2023]
Abstract
Methylimidazolium ionic liquids (MILs) are solvent chemicals used in industry. Recent work suggests that MILs are beginning to contaminate the environment and lead to exposure in the general population. In this study, the potential for MILs to cause cardiac toxicity has been examined. The effects of 5 chloride MIL salts possessing increasing alkyl chain lengths (2 C, EMI; 4 C, BMI; 6 C; HMI, 8 C, M8OI; 10 C, DMI) on rat neonatal cardiomyocyte beat rate, beat amplitude and cell survival were initially examined. Increasing alkyl chain length resulted in increasing adverse effects, with effects seen at 10-5 M at all endpoints with M8OI and DMI, the lowest concentration tested. A limited sub-acute toxicity study in rats identified potential cardiotoxic effects with longer chain MILs (HMI, M8OI and DMI) based on clinical chemistry. A 5 month oral/drinking water study with these MILs confirmed cardiotoxicity based on histopathology and clinical chemistry endpoints. Since previous studies in mice did not identify the heart as a target organ, the likely cause of the species difference was investigated. qRT-PCR and Western blotting identified a marked higher expression of p-glycoprotein-3 (also known as ABCB4 or MDR2) and the breast cancer related protein transporter BCRP (also known as ABCG2) in mouse, compared to rat heart. Addition of the BCRP inhibitor Ko143 - but not the p-glycoproteins inhibitor cyclosporin A - increased mouse cardiomyocyte HL-1 cell sensitivity to longer chain MILs to a limited extent. MILs therefore have a potential for cardiotoxicity in rats. Mice may be less sensitive to cardiotoxicity from MILs due in part, to increased excretion via higher levels of cardiac BCRP expression and/or function. MILs alone, therefore may represent a hazard in man in the future, particularly if use levels increase. The impact that MILs exposure has on sensitivity to cardiotoxic drugs, heart disease and other chronic diseases is unknown.
Collapse
Affiliation(s)
- Tarek M Abdelghany
- Institute Translational and Clinical Research, Level 4 Leech, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE24HH, United Kingdom
| | - Shireen A Hedya
- Institute Translational and Clinical Research, Level 4 Leech, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Carol De Santis
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | | | - Jason H Gill
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Matthew C Wright
- Institute Translational and Clinical Research, Level 4 Leech, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
28
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs (miRNAs): Novel potential therapeutic targets in colorectal cancer. Front Oncol 2022; 12:1054846. [PMID: 36591525 PMCID: PMC9794577 DOI: 10.3389/fonc.2022.1054846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant tumor and one of the most lethal malignant tumors in the world. Despite treatment with a combination of surgery, radiotherapy, and/or systemic treatment, including chemotherapy and targeted therapy, the prognosis of patients with advanced CRC remains poor. Therefore, there is an urgent need to explore novel therapeutic strategies and targets for the treatment of CRC. MicroRNAs (miRNAs/miRs) are a class of short noncoding RNAs (approximately 22 nucleotides) involved in posttranscriptional gene expression regulation. The dysregulation of its expression is recognized as a key regulator related to the development, progression and metastasis of CRC. In recent years, a number of miRNAs have been identified as regulators of drug resistance in CRC, and some have gained attention as potential targets to overcome the drug resistance of CRC. In this review, we introduce the miRNAs and the diverse mechanisms of miRNAs in CRC and summarize the potential targeted therapies of CRC based on the miRNAs.
Collapse
|
29
|
Buzea CA, Manu P, Dima L, Correll CU. Drug-drug interactions involving combinations of antipsychotic agents with antidiabetic, lipid-lowering, and weight loss drugs. Expert Opin Drug Metab Toxicol 2022; 18:729-744. [PMID: 36369828 DOI: 10.1080/17425255.2022.2147425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Patients with severe mental illness (SMI) have a high risk for diabetes, dyslipidemia, and other components of metabolic syndrome. Patients with these metabolic comorbidities and cardiac risk factors should receive not only antipsychotics but also medications aiming to reduce cardiovascular risk. Therefore, many patients may be exposed to clinically relevant drug-drug interactions. AREAS COVERED This narrative review summarizes data regarding the known or potential drug-drug interactions between antipsychotics and medications treating metabolic syndrome components, except for hypertension, which has been summarized elsewhere. A literature search in PubMed and Scopus up to 7/31/2021 was performed regarding interactions between antipsychotics and drugs used to treat metabolic syndrome components, aiming to inform clinicians' choice of medication for patients with SMI and cardiometabolic risk factors in need of pharmacologic interventions. EXPERT OPINION The cytochrome P450 system and, to a lesser extent, the P-glycoprotein transporter is involved in the pharmacokinetic interactions between antipsychotics and some statins or saxagliptin. Regarding pharmacodynamic interactions, the available information is based mostly on small studies, and for newer classes, like PCSK9 inhibitors or SGLT2 inhibitors, data are still lacking. However, there is sufficient information to guide clinicians in the process of selecting safer antipsychotic-cardiometabolic risk reduction drug combinations.
Collapse
Affiliation(s)
- Catalin Adrian Buzea
- Department 5 - Internal Medicine, Carol Davila' University of Medicine and Pharmacy, 37 Dionisie Lupu, Bucharest, Romania.,Cardiology, Clinical Hospital Colentina, 19-21 Stefan cel Mare, Bucharest, Romania
| | - Peter Manu
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Medical Services, South Oaks Hospital, Northwell Health System, Amityville, NY, USA
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Nicolae Balcescu Str 59, 500019, Brașov, Romania
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charite Universitaetsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Psychiatry, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, USA
| |
Collapse
|
30
|
van Groen BD, Allegaert K, Tibboel D, de Wildt SN. Innovative approaches and recent advances in the study of ontogeny of drug metabolism and transport. Br J Clin Pharmacol 2022; 88:4285-4296. [PMID: 32851677 PMCID: PMC9545189 DOI: 10.1111/bcp.14534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/30/2022] Open
Abstract
The disposition of a drug is driven by various processes, such as drug metabolism, drug transport, glomerular filtration and body composition. These processes are subject to developmental changes reflecting growth and maturation along the paediatric continuum. However, knowledge gaps exist on these changes and their clinical impact. Filling these gaps may aid better prediction of drug disposition and creation of age-appropriate dosing guidelines. We present innovative approaches to study these developmental changes in relation to drug metabolism and transport. First, analytical methods such as including liquid chromatography-mass spectrometry for proteomic analyses allow quantitation of the expressions of a wide variety of proteins, e.g. membrane transporters, in a small piece of organ tissue. The latter is specifically important for paediatric research, where tissues are scarcely available. Second, innovative study designs using radioactive labelled microtracers allowed study-without risk for the child-of the oral bioavailability of compounds used as markers for certain drug metabolism pathways. Third, the use of modelling and simulation to support dosing recommendations for children is supported by both the European Medicines Agency and the US Food and Drug Administration. This may even do away with the need for a paediatric trial. Physiologically based pharmacokinetics models, which include age-specific physiological information are, therefore, increasingly being used, not only to aid paediatric drug development but also to improve existing drug therapies.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU LeuvenLeuvenBelgium
- Department of Pharmacy and Pharmaceutical Sciences, KU LeuvenLeuvenBelgium
- Department of Clinical Pharmacy, Erasmus MCRotterdamthe Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute of Health Sciences, Radboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
31
|
Chedik L, Mias-Lucquin D, Fardel O, Delalande O, Bruyere A. Interactions of organophosphorus pesticides with ATP-Binding Cassette (ABC) drug transporters. Xenobiotica 2022; 52:644-652. [PMID: 36149323 DOI: 10.1080/00498254.2022.2128467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although pharmaceutical companies have to study drug transporter interaction, environmental contaminant interactions with these transporters are not well characterized. In this study, we demonstrated using in vitro transfected cell line that some organophosphorus pesticides are able to interact with drug efflux transporters like P-glycoprotein, BCRP and MRPs.According to our results, dibrom was found to inhibit only Hoechst binding site of P-gp with an IC50 closed to 77 µM, phosmet inhibited BCRP efflux with an IC50 of 42 µM and only profenofos was able to inhibit BCRP, MRPs and two P-gp binding sites. As profenofos appeared to be a potent ABC transporter inhibitor, we studied its potential substrate property towards P-gp.Using a docking approach, we developed an in silico tool to study pesticide properties to be a probe or inhibitor of P-gp transporter. From both in silico and in vitro results, profenofos was not considered as a P-gp substrate.Combining both in vitro and docking methods appears to be an attractive approach to select pesticides that would not pass into the blood systemic circulation.
Collapse
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Mias-Lucquin
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes1, 35043 Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Olivier Delalande
- Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes1, 35043 Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
32
|
Li J, Wang S, Tian F, Zhang SQ, Jin H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals (Basel) 2022; 15:ph15091126. [PMID: 36145347 PMCID: PMC9502688 DOI: 10.3390/ph15091126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As the use of herbs has become more popular worldwide, there are increasing reports of herb-drug interactions (HDIs) following the combination of herbs and drugs. The active components of herbs are complex and have a variety of pharmacological activities, which inevitably affect changes in the pharmacokinetics of chemical drugs in vivo. The absorption, distribution, metabolism, and excretion of drugs in vivo are closely related to the expression of drug transporters. When the active components of herbs inhibit or induce the expression of transporters, this can cause changes in substrate pharmacokinetics, resulting in changes in the efficacy and toxicity of drugs. In this article, the tissue distribution and physiological functions of drug transporters are summarized through literature retrieval, and the effects of herbs on drug transporters and the possible mechanism of HDIs are analyzed and discussed in order to provide ideas and a reference for further guiding of safe clinical drug use.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fengjie Tian
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
| | - Shuang-Qing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, 29 Nanwei Road, Beijing 100050, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| |
Collapse
|
33
|
Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis. Int J Mol Sci 2022; 23:ijms23179815. [PMID: 36077209 PMCID: PMC9456284 DOI: 10.3390/ijms23179815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Solute carrier (SLC) and ATP-binding cassette (ABC) transporters comprise a variety of proteins expressed on cell membranes responsible for intrusion or extrusion of substrates, respectively, including nutrients, xenobiotics, and chemotherapeutic agents. These transporters mediate the cellular disposition of tyrosine kinase inhibitors (TKIs), and their genetic variants could affect its function, potentially predisposing patients to chronic myeloid leukaemia (CML) and modulating treatment response. We explored the impact of genetic variability (single nucleotide variants—SNVs) of drug transporter genes (ABCB1, ABCG2, SLC22A1, and SLC22A5) on CML susceptibility, drug response, and BCR-ABL1 mutation status. We genotyped 10 SNVs by tetra-primers-AMRS-PCR in 198 CML patients and 404 controls, and assessed their role in CML susceptibility and prognosis. We identified five SNVs associated with CML predisposition, with some variants increasing disease risk, including TT genotype ABCB1 (rs1045642), and others showing a protective effect (GG genotype SLC22A5 rs274558). We also observed different haplotypes and genotypic profiles associated with CML predisposition. Relating to drug response impact, we found that CML patients with the CC genotype (rs2231142 ABCG2) had an increased risk of TKI resistance (six-fold). Additionally, CML patients carrying the CG genotype (rs683369 SLC22A1) presented a 4.54-fold higher risk of BCR-ABL1 mutations. Our results suggest that drug transporters’ SNVs might be involved in CML susceptibility and TKI response, and predict the risk of BCR-ABL1 mutations, highlighting the impact that SNVs could have in therapeutic selection.
Collapse
|
34
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N. Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D. Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S. Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
35
|
Alshabeeb M, Alomar FA, Khan A. Impact of SLCO1B1*5 on Flucloxacillin and Co-Amoxiclav-Related Liver Injury. Front Pharmacol 2022; 13:882962. [PMID: 35754504 PMCID: PMC9214039 DOI: 10.3389/fphar.2022.882962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Idiosyncratic drug-induced liver injury (DILI) is a serious uncommon disease that may develop as a result of the intake of certain drugs such as the antimicrobials flucloxacillin and co-amoxiclav. The reported cases showed significant associations between DILI and various human leukocyte (HLA) markers. The solute carrier organic anion transporter 1B1 (SLCO1B1), a non-HLA candidate gene, was previously reported as a risk factor for liver injury induced by rifampin and methimazole. This study presumed that SLCO1B1 may play a general role in the DILI susceptibility and therefore investigated the association of rs4149056 (SLCO1B1*5, T521C) polymorphism with flucloxacillin- and co-amoxiclav-induced liver injury. Methodology: We recruited 155 and 165 DILI cases of white ancestral origin from various European countries but mainly from the United Kingdom owing to flucloxacillin and co-amoxiclav, respectively. Only adult patients (≥18 years) who were diagnosed with liver injury and who showed i) clinical jaundice or bilirubin >2x the upper limit of normal (ULN), ii) alanine aminotransferase (ALT) >5x ULN or iii) alkaline phosphatase (ALP) >2x ULN and bilirubin > ULN were selected. The population reference sample (POPRES), a European control group (n = 282), was used in comparison with the investigated cases. TaqMan SNP genotyping custom assay designed by Applied Biosystems was used to genotype both DILI cohorts for SLCO1B1 polymorphism (rs4149056). Allelic discrimination analysis was performed using a step one real-time PCR machine. Genotype differences between cases and controls were examined using Fisher's exact test. GraphPad Prism version 5.0 was used to determine the p-value, odds ratio, and 95% confidence interval. Compliance of the control group with Hardy-Weinberg equilibrium was proven using a web-based calculator available at https://wpcalc.com/en/equilibrium-hardy-weinberg/. Results: A small number of cases failed genotyping in each cohort. Thus, only 149 flucloxacillin and 162 co-amoxiclav DILI cases were analyzed. Genotyping of both DILI cohorts did not show evidence of association with the variant rs4149056 (T521C) (OR = 0.71, 95% CI = 0.46-1.12; p = 0.17 for flucloxacillin cases and OR = 0.87, 95% CI = 0.56-1.33; p = 0.58 for co-amoxiclav), although slightly lower frequency (22.8%) of positive flucloxacillin cases was noticed than that of POPRES controls (29.4%). Conclusion: Carriage of the examined allele SLCO1B1*5 is not considered a risk factor for flucloxacillin DILI or co-amoxiclav DILI as presumed. Testing a different allele (SLCO1B1*1B) and another family member gene (SLCO1B3) may still be needed to provide a clearer role of SLCO1B drug transporters in DILI development-related to the chosen antimicrobials.
Collapse
Affiliation(s)
- Mohammad Alshabeeb
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amjad Khan
- Department of Biological Sciences (Zoology), Faculty of Science, University of Lakki Marwat, Lakki Marwat, Pakistan
| |
Collapse
|
36
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
37
|
Combination of Elacridar with Imatinib Modulates Resistance Associated with Drug Efflux Transporters in Chronic Myeloid Leukemia. Biomedicines 2022; 10:biomedicines10051158. [PMID: 35625893 PMCID: PMC9138473 DOI: 10.3390/biomedicines10051158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) development has emerged as a complication that compromises the success of several chemotherapeutic agents. In chronic myeloid leukemia (CML), imatinib resistance has been associated with changes in BCR-ABL1 and intracellular drug concentration, controlled by SLC and ABC transporters. We evaluate the therapeutic potential of a P-glycoprotein and BCRP inhibitor, elacridar, in sensitive (K562 and LAMA-84) and imatinib-resistant (K562-RC and K562-RD) CML cell lines as monotherapy and combined with imatinib. Cell viability was analyzed by resazurin assay. Drug transporter activity, cell death, cell proliferation rate, and cell cycle distribution were analyzed by flow cytometry. Both resistant models presented an increased activity of BCRP and P-gP compared to K562 cells. Elacridar as monotherapy did not reach IC50 in any CML models but activated apoptosis without cytostatic effect. Nevertheless, the association of elacridar (250 nM) with imatinib overcomes resistance, re-sensitizing K562-RC and K562-RD cells with five and ten times lower imatinib concentrations, respectively. Drug combination induced apoptosis with increased cleaved-caspases-3, cleaved-PARP and DNA damage, reduced cell proliferation rate, and arrested CML cells in the S phase. These data suggest that elacridar combined with imatinib might represent a new therapeutic option for overcoming TKI resistance involving efflux transporters.
Collapse
|
38
|
Console L, Scalise M. Extracellular Vesicles and Cell Pathways Involved in Cancer Chemoresistance. Life (Basel) 2022; 12:life12050618. [PMID: 35629286 PMCID: PMC9143651 DOI: 10.3390/life12050618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a pharmacological condition that allows transformed cells to maintain their proliferative phenotype in the presence of administered anticancer drugs. Recently, extracellular vesicles, including exosomes, have been identified as additional players responsible for the chemoresistance of cancer cells. These are nanovesicles that are released by almost all cell types in both physiological and pathological conditions and contain proteins and nucleic acids as molecular cargo. Extracellular vesicles released in the bloodstream reach recipient cells and confer them novel metabolic properties. Exosomes can foster chemoresistance by promoting prosurvival and antiapoptotic pathways, affecting cancer stem cells and immunotherapies, and stimulating drug efflux. In this context, a crucial role is played by membrane transporters belonging to ABC, SLC, and P-type pump families. These proteins are fundamental in cell metabolism and drug transport in either physiological or pathological conditions. In this review, different roles of extracellular vesicles in drug resistance of cancer cells will be explored.
Collapse
Affiliation(s)
- Lara Console
- Correspondence: (L.C.); (M.S.); Tel.: +39-0984-492919 (L.C.); +39-0984-492938 (M.S.)
| | | |
Collapse
|
39
|
Ding Z, Zhang C, Zhang B, Li Q. Unraveling the Proteomic Landscape of Intestinal Epithelial Cell-Derived Exosomes in Mice. Front Physiol 2022; 13:773671. [PMID: 35283765 PMCID: PMC8905357 DOI: 10.3389/fphys.2022.773671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to identify the biological functions of small intestine intestinal epithelial cell derived exosomes (IEC-Exos) and further distinguished the difference proteins in IEC-Exos between ileum and jejunum related to function of the digestive system and occurrence of several diseases. Materials and Methods IECs of Male C57BL/6J mice were isolated. IEC-Exos were extracted from jejunum and ileum epithelial cell culture fluid by ultracentrifugation. In addition, isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to detect IEC-Exo proteins and conduct biological information analysis. Results The results showed that compared with jejunum IEC-Exos from ileum IEC-Exos, there were 393 up-regulated proteins and 346 down-regulated proteins. IECs-Exos, especially derived from jejunum, were rich in angiotensin-converting enzyme 2 (ACE2). The highly expressed proteins from ileum IEC-Exos were mostly enriched in genetic information processing pathways, which mainly mediate the processes of bile acid transport, protein synthesis and processing modification. In contrast, the highly expressed proteins from jejunum IEC-Exos were mainly enriched in metabolic pathways involved in sugar, fatty acid, amino acid, drug, and bone metabolism, etc. The differentially expressed proteins between ileum and jejunum IEC-Exos were not only related to the function of the digestive system but also closely related to the occurrence of infectious diseases, endocrine diseases and osteoarthritis, etc. Conclusion IEC-Exos there were many differentially expressed proteins between ileum and jejunum, which played different roles in regulating intestinal biological functions. ACE2, the main host cell receptor of SARS-CoV-2, was highly expressed in IEC-Exos, which indicated that IEC-Exos may be a potential route of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhenyu Ding
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuiyu Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baokun Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
40
|
Zhao K, Yao M, Zhang X, Xu F, Shao X, Wei Y, Wang H. Flavonoids and intestinal microbes interact to alleviate depression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1311-1318. [PMID: 34625972 DOI: 10.1002/jsfa.11578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/03/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids have a variety of biological activities that are beneficial to human health. However, owing to low bioavailability, most flavonoids exert beneficial effects in the intestine through metabolism by the flora into a variety of structurally different derivatives. Also, flavonoids can modulate the type and structure of intestinal microorganisms to improve human health. It has been reported that the development of depression is accompanied by changes in the type and number of intestinal microorganisms, and gut microbes can significantly improve depressive symptoms through the gut-brain axis. Therefore, the interaction between flavonoids and intestinal microbes to alleviate depression is discussed. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Mei Yao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Feng Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Yingying Wei
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Hongfei Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
41
|
Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism. Crit Rev Toxicol 2022; 51:754-787. [PMID: 35274591 DOI: 10.1080/10408444.2021.2024496] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ciprofloxacin (CIP) (human use) and enrofloxacin (ENR) (veterinary use) are synthetic anti-infectious medications that belong to the second generation of fluoroquinolones. They have a wide antimicrobial spectrum and strong bactericidal effects at very low concentrations via enzymatic inhibition of DNA gyrase and topoisomerase IV, which are required for DNA replication. They also have high bioavailability, rapid absorption with favorable pharmacokinetics and excellent tissue penetration, including cerebral spinal fluid. These features have made them the most applied antibiotics in both human and veterinary medicine. ENR is marketed exclusively for animal medicine and has been widely used as a therapeutic veterinary antibiotic, resulting in its residue in edible tissues and aquatic environments, as well as the development of resistance and toxicity. Estimation of the risks to humans due to antimicrobial resistance produced by CIP and ENR is important and of great interest. Moreover, in rare cases due to their overdose and/or prolonged administration, the development of CIP and ENR toxicity may occur. The toxicity of these fluoroquinolones antimicrobials is mainly related to reactive oxygen species (ROS) and oxidative stress (OS) generation, besides metabolism-related toxicity. Therefore, CIP is restricted in pregnant and lactating women, pediatrics and elderly similarly ENR do in the veterinary field. This review manuscript aims to identify the toxicity induced by ROS and OS as a common sequel of CIP and ENR. Furthermore, their metabolism and the role of metabolizing enzymes were reported.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - YaQin Yang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Aránzazu Martinez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
42
|
Gui H, Sun L, Liu R, Si X, Li D, Wang Y, Shu C, Sun X, Jiang Q, Qiao Y, Li B, Tian J. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion. Crit Rev Food Sci Nutr 2022; 63:5953-5966. [PMID: 35057688 DOI: 10.1080/10408398.2022.2026291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Potential roles for anthocyanins in preventing various chronic diseases have been reported. These compounds are highly sensitive to external conditions and are susceptible to degradation, which increases the complexity of their metabolism in vivo. This review discusses anthocyanin metabolism in the digestive tract, phase I and II metabolism, and enterohepatic circulation (EHC), as well as their distribution of anthocyanins in blood, urine, and several organs. In the oral cavity, anthocyanins are partly hydrolyzed by microbiota into aglycones which are then conjugated by glucuronidase. In stomach, anthocyanins are absorbed without deglycosylation via specific transporters, such as sodium-dependent glucose co-transporter 1 and facilitative glucose transporters 1, while in small intestine, they are mainly absorbed as aglycones. High polymeric anthocyanins are easily degraded into low-polymeric forms or smaller phenolic acids by colonic microbiota, which improves their absorption. Anthocyanins and their derivatives are modified by phase I and II metabolic enzymes in cells and are released into the blood via the gastrovascular cavity into EHC. Notably, interconversion can be occurred under the action of enzymes such as catechol-O-methyltransferase. Taking together, differences in anthocyanin absorption, distribution, metabolism, and excretion largely depend on their glycoside and aglycone structures.
Collapse
Affiliation(s)
- Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruihai Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yanyan Qiao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|
43
|
Influence of Potassium Ions on Act of Amphotericin B to the DPPC/Chol Mixed Monolayer at Different Surface Pressures. MEMBRANES 2022; 12:membranes12010084. [PMID: 35054610 PMCID: PMC8778265 DOI: 10.3390/membranes12010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Amphotericin B (AmB) is an antifungal drug that rarely develops resistance. It has an affinity with the cholesterol on mammalian cell membranes, disrupting the structure and function of the membranes, which are also affected by potassium ions. However, the mechanism is unclear. In this paper, the Langmuir monolayer method was used to study the effects of potassium ions on the surface pressure–mean molecular area of isotherms, elastic modulus and the surface pressure–time curves of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DPPC/Chol) monolayer and a DPPC/Chol/AmB monolayer. The morphology and thickness of the Langmuir–Blodgett films were studied via atomic force microscopy. The results showed that AmB can increase the mean molecular area of the DPPC/Chol mixed monolayer at low pressures (15 mN/m) but reduces it at high pressures (30 mN/m). The potassium ions may interfere with the effect of AmB in different ways. The potassium ions can enhance the influence of AmB on the stability of monolayer at low surface pressures, but weaken it at high surface pressures. The potassium ions showed significant interference with the interaction between AmB and the cholesterol-enriched region. The results are helpful for us to understand how the effect of amphotericin B on the phospholipid membrane is interfered with by potassium ions when amphotericin B enters mammalian cell membrane.
Collapse
|
44
|
Yin J, Li F, Li Z, Yu L, Zhu F, Zeng S. Feature, Function, and Information of Drug Transporter-Related Databases. Drug Metab Dispos 2022; 50:76-85. [PMID: 34426411 DOI: 10.1124/dmd.121.000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
With the rapid progress in pharmaceutical experiments and clinical investigations, extensive knowledge of drug transporters (DTs) has accumulated, which is valuable data for the understanding of drug metabolism and disposition. However, such data are largely dispersed in the literature, which hampers its utility and significantly limits its possibility for comprehensive analysis. A variety of databases have, therefore, been constructed to provide DT-related data, and they were reviewed in this study. First, several knowledge bases providing data regarding clinically important drugs and their corresponding transporters were discussed, which constituted the most important resources of DT-centered data. Second, some databases describing the general transporters and their functional families were reviewed. Third, various databases offering transporter information as part of their entire data collection were described. Finally, customized database functions that are available to facilitate DT-related research were discussed. This review provided an overview of the whole collection of DT-related databases, which might facilitate research on precision medicine and rational drug use. SIGNIFICANCE STATEMENT: A collection of well established databases related to drug transporters were comprehensively reviewed, which were organized according to their importance in drug absorption, distribution, metabolism, and excretion research. These databases could collectively contribute to the research on rational drug use.
Collapse
Affiliation(s)
- Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Fengcheng Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Zhaorong Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Feng Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| |
Collapse
|
45
|
Is the Mitochondrial Membrane Potential (∆Ψ) Correctly Assessed? Intracellular and Intramitochondrial Modifications of the ∆Ψ Probe, Rhodamine 123. Int J Mol Sci 2022; 23:ijms23010482. [PMID: 35008907 PMCID: PMC8745654 DOI: 10.3390/ijms23010482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial membrane potential (∆Ψ) is the driving force providing the electrical component of the total transmembrane potential of hydrogen ions generated by proton pumps, which is utilized by the ATP synthase. The role of ∆Ψ is not limited to its role in bioenergetics since it takes part in other important intracellular processes, which leads to the mandatory requirement of the homeostasis of ∆Ψ. Conventionally, ∆Ψ in living cells is estimated by the fluorescence of probes such as rhodamine 123, tetramethylrodamine, etc. However, when assessing the fluorescence, the possibility of the intracellular/intramitochondrial modification of the rhodamine molecule is not taken into account. Such changes were revealed in this work, in which a comparison of normal (astrocytic) and tumor (glioma) cells was conducted. Fluorescent microscopy, flow cytometry, and mass spectrometry revealed significant modifications of rhodamine molecules developing over time, which were prevented by amiodarone apparently due to blocking the release of xenobiotics from the cell and their transformation with the participation of cytochrome P450. Obviously, an important role in these processes is played by the increased retention of rhodamines in tumor cells. Our data require careful evaluation of mitochondrial ∆Ψ potential based on the assessment of the fluorescence of the mitochondrial probe.
Collapse
|
46
|
Qiang T, Li Y, Wang K, Lin W, Niu Z, Wang D, Wang X. Evaluation of potential herb-drug interactions based on the effect of Suxiao Jiuxin Pill on CYP450 enzymes and transporters. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114408. [PMID: 34252529 DOI: 10.1016/j.jep.2021.114408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Suxiao jiuxin pill (SJP) is a Chinese medical drug with anti-inflammatory, anti-apoptotic, and vasodilatory function. It is widely used in combination with other drugs for the treatment of coronary heart disease (CHD) and angina. Nevertheless, the effect of SJP on Cytochrome P450 (CYP450) enzymes and transporters' activity related to drug metabolism is rarely studied. OBJECTIVE The aim of this study was to investigate the effect of SJP on the activity of drug-metabolizing enzyme CYP450 and transporters. MATERIALS AND METHODS Human primary hepatocytes were used in present study. Probe substrates of CYP450 enzymes were incubated in human liver microsomes (HLMs) with and without SJP while IC50 values were calculated. The inhibitory effect of SJP on the activity of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 was evaluated. The inducing effect of SJP on the activity of CYP1A2, 2B6 and 3A4 was accessed. The inhibition of SJP on human OATP1B1 was investigated through cell-based assay. The inhibition of SJP on human MDR1 and BCRP was also estimated by means of the vesicles assay. RESULTS The results showed that the SJP under the concentration of 1000 μg/mL could inhibit the activity of CYP1A2, 2B6, 2C19, and 3A4, with IC50 values of 189.7, 308.2, 331.2 and 805.7 μg/mL, respectively. There was no inhibitory effect found in the other 3 liver drug enzyme subtypes. In addition, SJP showed no induction effect on CYP1A2, 2B6 and 3A4, however it had a significant inhibitory effect on human-derived OATP1B1 at the concentration of 100 and 1000 μg/mL, with the IC50 value of 21.9 μg/mL. Simultaneously, the SJP inhibited BCRP at high concentration of 1000 μg/mL but did not affect human MDR1. CONCLUSIONS Based on these research results above, it is suggested that the SJP can affect some of the CYP450 enzymes and transporters' activity. When used in combination with related conventional drugs, potential herb-drug interactions should be considered.
Collapse
Affiliation(s)
- Tingting Qiang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiping Li
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Keyan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenyong Lin
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhenchao Niu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
47
|
Fu T, Li F, Zhang Y, Yin J, Qiu W, Li X, Liu X, Xin W, Wang C, Yu L, Gao J, Zheng Q, Zeng S, Zhu F. VARIDT 2.0: structural variability of drug transporter. Nucleic Acids Res 2021; 50:D1417-D1431. [PMID: 34747471 PMCID: PMC8728241 DOI: 10.1093/nar/gkab1013] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The structural variability data of drug transporter (DT) are key for research on precision medicine and rational drug use. However, these valuable data are not sufficiently covered by the available databases. In this study, a major update of VARIDT (a database previously constructed to provide DTs' variability data) was thus described. First, the experimentally resolved structures of all DTs reported in the original VARIDT were discovered from PubMed and Protein Data Bank. Second, the structural variability data of each DT were collected by literature review, which included: (a) mutation-induced spatial variations in folded state, (b) difference among DT structures of human and model organisms, (c) outward/inward-facing DT conformations and (d) xenobiotics-driven alterations in the 3D complexes. Third, for those DTs without experimentally resolved structural variabilities, homology modeling was further applied as well-established protocol to enrich such valuable data. As a result, 145 mutation-induced spatial variations of 42 DTs, 1622 inter-species structures originating from 292 DTs, 118 outward/inward-facing conformations belonging to 59 DTs, and 822 xenobiotics-regulated structures in complex with 57 DTs were updated to VARIDT (https://idrblab.org/varidt/ and http://varidt.idrblab.net/). All in all, the newly collected structural variabilities will be indispensable for explaining drug sensitivity/selectivity, bridging preclinical research with clinical trial, revealing the mechanism underlying drug-drug interaction, and so on.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuedong Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xingang Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenwen Xin
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengzhao Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
48
|
DHAHIR RK, AL-NIMA AM, AL-BAZZAZ F. Nanoemulsions as Ophthalmic Drug Delivery Systems. Turk J Pharm Sci 2021; 18:652-664. [PMID: 34708428 PMCID: PMC8562122 DOI: 10.4274/tjps.galenos.2020.59319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Nanoemulsions are liquid-in-liquid dispersion with a droplet size of about 100 nm. They have a transparent appearance, high rate of bioavailability, and increased shelf life. Nanoemulsions mainly consist of oil, water, surfactant, and cosurfactant and can be prepared by high- and low-energy methods. Diluted nanoemulsions are utilized for the delivery of ophthalmic drugs due to their capability to penetrate the deep layers of the ocular structure, provide a sustained release effect, and reduce the frequency of administration and side effects. These nanoemulsions are subjected to certain tests, such as safety, stability, pH profile, rheological studies, and so on. Cationic nanoemulsions are prepared for topical ophthalmic delivery of active ingredients from cationic agents to increase the drug residence time on the ocular surface, reducing their clearance from the ocular surface and improving drug bioavailability. This review article summarizes the main characteristics of nanoemulsions, ophthalmic nanoemulsions, and cationic nanoemulsions and their components, methods of preparation, and the evaluation parameters for ophthalmic nanoemulsions.
Collapse
Affiliation(s)
- Rasha Khalid DHAHIR
- Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq
| | | | - Fadia AL-BAZZAZ
- Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
49
|
Reversal of ABCG2/BCRP-Mediated Multidrug Resistance by 5,3',5'-Trihydroxy-3,6,7,4'-Tetramethoxyflavone Isolated from the Australian Desert Plant Eremophila galeata Chinnock. Biomolecules 2021; 11:biom11101534. [PMID: 34680166 PMCID: PMC8534154 DOI: 10.3390/biom11101534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance (MDR) is a major challenge in cancer treatment, and the breast cancer resistance protein (BCRP) is an important target in the search for new MDR-reversing drugs. With the aim of discovering new potential BCRP inhibitors, the crude extract of leaves of Eremophila galeata, a plant endemic to Australia, was investigated for inhibitory activity of parental (HT29par) as well as BCRP-overexpressing HT29 colon cancer cells resistant to the chemotherapeutic SN-38 (i.e., HT29SN38 cells). This identified a fraction, eluted with 40% acetonitrile on a solid-phase extraction column, which showed weak growth-inhibitory activity on HT29SN38 cells when administered alone, but exhibited concentration-dependent growth inhibition when administered in combination with SN-38. The major constituent in this fraction was isolated and found to be 5,3′,5′-trihydroxy-3,6,7,4′-tetramethoxyflavone (2), which at a concentration of 25 μg/mL potentiated the growth-inhibitory activity of SN-38 to a degree comparable to that of the known BCRP inhibitor Ko143 at 1 μM. A dye accumulation experiment suggested that 2 inhibits BCRP, and docking studies showed that 2 binds to the same BCRP site as SN-38. These results indicate that 2 acts synergistically with SN-38, with 2 being a BCRP efflux pump inhibitor while SN-38 inhibits topoisomerase-1.
Collapse
|
50
|
Folium Sennae Increased the Bioavailability of Methotrexate through Modulation on MRP 2 and BCRP. Pharmaceuticals (Basel) 2021; 14:ph14101036. [PMID: 34681260 PMCID: PMC8537691 DOI: 10.3390/ph14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
Folium Sennae (FS), a popular laxative (Senna), contains polyphenolic anthranoids, whose conjugation metabolites are probable modulators of multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). We suspected that the combined use of FS might alter the pharmacokinetics of various medicines transported by MRPs or BCRP. This study investigated the effect of FS on the pharmacokinetics of methotrexate (MTX), an anticancer drug and a probe substrate of MRPs/BCRP. Rats were orally administered MTX alone and with two dosage regimens of FS in a parallel design. The results show that 5.0 g/kg of FS significantly increased the AUC0–2880, AUC720–2880 and MRT of MTX by 45%, 102% and 42%, and the seventh dose of 2.5 g/kg of FS significantly enhanced the AUC720–2880 and MRT by 78% and 42%, respectively. Mechanism studies indicated that the metabolites of FS (FSM) inhibited MRP 2 and BCRP. In conclusion, the combined use of FS increased the systemic exposure and MRT of MTX through inhibition on MRP 2 and BCRP.
Collapse
|