1
|
Xian Z, Tian L, Yao Z, Cao L, Jia Z, Li G. Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression. Mol Neurobiol 2025; 62:5484-5500. [PMID: 39551913 DOI: 10.1007/s12035-024-04614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common post-transcriptional RNA modifications, which plays a critical role in various bioprocesses such as immunological processes, stress response, cell self-renewal, and proliferation. The abnormal expression of m6A-related proteins may occur in the central nervous system, affecting neurogenesis, synapse formation, brain development, learning and memory, etc. Accumulating evidence is emerging that dysregulation of m6A contributes to the initiation and progression of psychiatric disorders including depression. Until now, the specific pathogenesis of depression has not been comprehensively clarified, and further investigations are warranted. Stress, inflammation, neurogenesis, and synaptic plasticity have been implicated as possible pathophysiological mechanisms underlying depression, in which m6A is extensively involved. Considering the extensive connections between depression and neurofunction and the critical role of m6A in regulating neurological function, it has been increasingly proposed that m6A may have an important role in the pathogenesis of depression; however, the results and the specific molecular mechanisms of how m6A methylation is involved in major depressive disorder (MDD) were varied and not fully understood. In this review, we describe the underlying molecular mechanisms between m6A and depression from several aspects including inflammation, stress, neuroplasticity including neurogenesis, and brain structure, which contain the interactions of m6A with cytokines, the HPA axis, BDNF, and other biological molecules or mechanisms in detail. Finally, we summarized the perspectives for the improved understanding of the pathogenesis of depression and the development of more effective treatment approaches for this disorder.
Collapse
Affiliation(s)
- Zhuohang Xian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liangjing Tian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhixuan Yao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhilin Jia
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Brugia F, Ivanov K, Aroviita A, Giniatullina R, Lehtonen M, Malm T, Savinainen J, Giniatullin R, Della Pietra A. Inhibition of endocannabinoid hydrolases MAGL, FAAH and ABHD6 by AKU-005 reduces ex vivo cortical spreading depression. J Headache Pain 2025; 26:85. [PMID: 40269679 PMCID: PMC12016430 DOI: 10.1186/s10194-025-02030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Migraine is a common neurovascular disorder that remains currently untreated in half of the patients. One third of migraine patients experience aura, which is associated with the development of cortical spreading depolarization (CSD), a wave of depolarization involving neurons and glial cells. Cannabinoids have proven to be a promising class of compounds for the treatment of migraine pain. In this study, we are proposing a new strategy to counteract development of CSD and downstream events via multicomponent enhancement of the endocannabinoid system (ECS) by using a AKU-005, to simultaneously target several key endocannabinoids hydrolases. To this end, we profiled the activity of selective endocannabinoid hydrolases and their inhibition by AKU-005 and analyzed the effect of AKU-005 on the development of CSD in an ex vivo cortical slice model. METHODS The inhibitory profile of AKU-005 was evaluated by a glycerol assay of lysates from HEK293 cells expressing mouse and human MAGL and ABHD6. After ex vivo treatment of cortex slices of Wistar rats and C57 BL/6 J-OlaHsd mice, endocannabinoids were quantified by mass spectrometry (LC-MS/MS), and activity of the hydrolases MAGL, FAAH, and ABHD6 were measured by activity-based protein profiling (ABPP). The effect of AKU-005 on ex vivo CSD wave in cortical slices was studied by live calcium imaging. RESULTS Ex vivo, AKU-005 inhibited MAGL, FAAH, and ABHD6, increasing 2-arachidonoylglycerol (2-AG) and anandamide (AEA) levels in rat cortex under both basal and CSD conditions. In mice, AKU-005 showed a milder effect, inhibiting MAGL only under CSD conditions and increasing 2-AG levels in both basal and CSD states. In vitro analyses confirmed the ex vivo findings for rats and revealed basal MAGL inhibition in mice cortex. AKU-005, previously reported as a double MAGL/FAAH-inhibitor, also inhibited overexpressed mouse and human ABHD6, a little studied 2-AG-hydrolyzing enzyme in brain. In line with these results, AKU-005 reduced CSD events in cortical slices from both rodent species, with higher efficacy in rats. CONCLUSIONS Given the distinct profile of endocannabinoids hydrolases activities between rats and mice in the brain areas associated with migraine, AKU-005 may target multiple endocannabinoid hydrolases to serve as an efficient treatment option for migraine with aura.
Collapse
Affiliation(s)
- Flavia Brugia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Konstantin Ivanov
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Auni Aroviita
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha Savinainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Ottria R, Casati S, Xynomilakis O, Veselinović A, Ciuffreda P. Discovery of MAGL Inhibition by Lophine Derivatives: An Unexpected Finding from Chemiluminescent Assay Development. Molecules 2025; 30:1605. [PMID: 40286255 PMCID: PMC11990452 DOI: 10.3390/molecules30071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The inhibitory effects of two novel lophine derivatives were unexpectedly discovered during the development of a chemiluminescent monoacylglycerol lipase (MAGL) assay. The proposed lophine derivatives were found to exhibit concentration-dependent inhibitory effects on MAGL with the octanoic and palmitic acid esters of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole showing the strongest activity. Reversibility assays using a fluorometric method confirmed that these compounds interact with MAGL in a stable, irreversible manner. To further investigate their mode of interaction, docking studies were performed, supporting the hypothesis that compounds 3 and 4 may act as competitive and irreversible inhibitors. Lophine derivatives were initially designed and synthesized as potential chemiluminescence pro-enhancers. However, assay optimization revealed no signal production upon MAGL hydrolysis, precluding their use as chemiluminescent probes. These findings suggest that lophine is a promising candidate for the development of MAGL inhibitors, although further optimization is needed to enhance binding affinity and selectivity.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milano, Italy; (S.C.); (O.X.); (P.C.)
| | - Silvana Casati
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milano, Italy; (S.C.); (O.X.); (P.C.)
| | - Ornella Xynomilakis
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milano, Italy; (S.C.); (O.X.); (P.C.)
| | - Aleksandar Veselinović
- Department of Chemistry, Faculty of Medicine, University of Niš, Blvd. Dr. Zorana Đinđića 81, 18000 Niš, Serbia;
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milano, Italy; (S.C.); (O.X.); (P.C.)
| |
Collapse
|
4
|
He Y, Zheng M, Gu J, Reichert L, Trimborn J, Zhang H, Keller C, Crosby M, Collin L, Heer D, Pavlovic A, Topp A, Wittwer MB, Grether U, Gobbi L, Schibli R, Huang Y, Mu L. Exploration of (R)-[ 11C]YH168 as a PET tracer for imaging monoacylglycerol lipase in the brain: from mice to non-human primates. Eur J Nucl Med Mol Imaging 2025; 52:1556-1565. [PMID: 39673602 PMCID: PMC11839854 DOI: 10.1007/s00259-024-07013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
PURPOSE The monoacylglycerol lipase (MAGL) plays a pivotal role in modulating the endocannabinoid system and is considered an attractive therapeutic target for diseases in both the central nervous system and periphery. The current study aimed to develop and evaluate a suitable carbon-11 labeled tracer for imaging MAGL in preclinical studies. METHODS (R)-YH168 was synthesized via a multi-step pathway and its half-maximal inhibitory concentration (IC50) values were measured using an enzymatic assay. Radiosynthesis of (R)-[11C]YH168 was accomplished by 11C-methylation via Suzuki cross-coupling of a pinacol boron precursor. In vitro autoradiography was performed using brain tissues from MAGL knockout and the corresponding wild-type mice. The metabolic stability of (R)-[11C]YH168 in mouse brain and plasma was assessed 5 min after injection. Dynamic PET scans were conducted on anesthetized mice and rhesus monkey. For studies in non-human primates, arterial blood samples were analyzed to obtain the input function for kinetic modeling. Blocking studies with the irreversible MAGL inhibitor PF-06795071 were performed to assess the binding specificity of (R)-[11C]YH168. RESULTS (R)-[11C]YH168 was synthesized via Suzuki coupling of the phenyl boronic ester with [11C]CH3I in the presence of palladium catalyst. In vitro autoradiography revealed a heterogeneous distribution pattern of (R)-[11C]YH168 with higher binding to MAGL-rich brain regions in wild-type mouse brain slices compared to that of MAGL knockout mice. Dynamic PET imaging in wild-type and MAGL knockout mice confirmed its high specificity and selectivity in mouse brains. In the rhesus monkey, (R)-[11C]YH168 displayed good brain permeability. High levels of radioactivity uptake were seen in the cingulate cortex, frontal cortex, cerebellum, occipital cortex, and hippocampus, consistent with MAGL expression. The one-tissue compartment model was appropriate for fitting the regional time-activity curves and provided reliable volume of distribution values across all brain regions. Pretreatment with PF-06795071 (0.1 mg/kg) resulted in almost complete blockade (> 95%) of radioactivity uptake, demonstrating binding specificity of (R)-[11C]YH168 to MAGL in the non-human primate brain. The regional non-displaceable binding potential follows the rank order of cingulate cortex ~ frontal cortex ~ insula > putamen > temporal cortex > caudate ~ occipital cortex ~ thalamus > nucleus accumbens ~ hippocampus ~ cerebellum ~ globus pallidus > substantia nigra > amygdala. CONCLUSION (R)-[11C]YH168 is a promising PET probe for imaging and quantifying MAGL in the brains of mice and non-human primates. This 11C-labeled tracer holds great potential for translation into human subjects and offers the possibility of performing multiple PET scans on the same subject within a single day.
Collapse
Affiliation(s)
- Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - MingQiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jiwei Gu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Lisa Reichert
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Johannes Trimborn
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Hui Zhang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Mallory Crosby
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| | - Anto Pavlovic
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| | - Andreas Topp
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| | - Matthias Beat Wittwer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland.
| |
Collapse
|
5
|
Straub VM, Barti B, Tandar ST, Stevens AF, van Egmond N, van der Wel T, Zhu N, Rüegger J, van der Horst C, Heitman LH, Li Y, Stella N, van Hasselt JGC, Katona I, van der Stelt M. The endocannabinoid 2-arachidonoylglycerol is released and transported on demand via extracellular microvesicles. Proc Natl Acad Sci U S A 2025; 122:e2421717122. [PMID: 39977325 PMCID: PMC11873938 DOI: 10.1073/pnas.2421717122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
While it is known that endocannabinoids (eCB) modulate multiple neuronal functions, the molecular mechanism governing their release and transport remains elusive. Here, we propose an "on-demand release" model, wherein the formation of microvesicles, a specific group of extracellular vesicles (EVs) containing the eCB, 2-arachidonoylglycerol (2-AG), is an important step. A coculture model system that combines a reporter cell line expressing the fluorescent eCB sensor, G protein-coupled receptor-based (GRAB)eCB2.0, and neuronal cells revealed that neurons release EVs containing 2-AG, but not anandamide, in a stimulus-dependent process regulated by protein kinase C, Diacylglycerol lipase, Adenosinediphosphate (ADP) ribosylation factor 6 (Arf6), and which was sensitive to inhibitors of eCB facilitated diffusion. A vesicle contained approximately 2,000 2-AG molecules. Accordingly, hippocampal eCB-mediated synaptic plasticity was modulated by Arf6 and transport inhibitors. The "on-demand release" model, supported by mathematical analysis, offers a cohesive framework for understanding eCB trafficking at the molecular level and suggests that microvesicles carrying signaling lipids in their membrane regulate neuronal functions in parallel to canonical synaptic vesicles.
Collapse
Affiliation(s)
- Verena M. Straub
- Department of Molecular Physiology, Leiden University, Leiden2333 CC, The Netherlands
| | - Benjamin Barti
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN47405-2204
| | - Sebastian T. Tandar
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden2333 CC, The Netherlands
| | - A. Floor Stevens
- Department of Molecular Physiology, Leiden University, Leiden2333 CC, The Netherlands
| | - Noëlle van Egmond
- Department of Molecular Physiology, Leiden University, Leiden2333 CC, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden University, Leiden2333 CC, The Netherlands
| | - Na Zhu
- Department of Molecular Physiology, Leiden University, Leiden2333 CC, The Netherlands
| | - Joel Rüegger
- Department of Molecular Physiology, Leiden University, Leiden2333 CC, The Netherlands
| | - Cas van der Horst
- Department of Medicinal Chemistry, Leiden University, Leiden2333 CC, The Netherlands
| | - Laura H. Heitman
- Department of Medicinal Chemistry, Leiden University, Leiden2333 CC, The Netherlands
- Oncode Institute, Leiden2333 CC, The Netherlands
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Beijing100871, China
| | - Nephi Stella
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA98195
| | - J. G. Coen van Hasselt
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden2333 CC, The Netherlands
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN47405-2204
- Molecular Neurobiology Research Group, Hungarian Research Network, Institute of Experimental Medicine, BudapestH-1083, Hungary
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, Leiden2333 CC, The Netherlands
- Oncode Institute, Leiden2333 CC, The Netherlands
| |
Collapse
|
6
|
Arnanz MA, Ferrer M, Grande MT, de Martín Esteban SR, Ruiz-Pérez G, Cravatt BF, Mostany R, Lobo VJSA, Romero J, Martínez-Relimpio AM. Fatty acid amide hydrolase gene inactivation induces hetero-cellular potentiation of microglial function in the 5xFAD mouse model of Alzheimer's disease. Glia 2025; 73:352-367. [PMID: 39474846 DOI: 10.1002/glia.24638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/22/2024]
Abstract
Neuroinflammation has recently emerged as a crucial factor in Alzheimer's disease (AD) etiopathogenesis. Microglial cells play an important function in the inflammatory response; specifically, the emergence of disease-associated microglia (DAM) has offered new insights into the conflicting perspectives on the detrimental or beneficial roles of microglia. We previously showed that modulating the endocannabinoid tone by fatty acid amide hydrolase (FAAH) inactivation renders beneficial effects in an amyloidosis context, paradoxically accompanied by an exacerbated neuroinflammatory response and the enrichment of DAM population. Here, we aim to elucidate the role of microglial cells in FAAH-lacking mice in the 5xFAD mouse model of AD by using RNA-sequencing analysis, molecular determinations, and morphological studies by using in vivo multiphoton microscopy. FAAH-lacking AD mice displayed upregulated inflammatory genes and exhibited a DAM genetic profile. Conversely, genes linked to AD were downregulated. Depleting microglia using PLX5622 revealed that plaque-associated microglia in FAAH-deficient AD mice had a more stable, ramified morphology and increased Aβ uptake, leading to reduced plaque growth compared to control mice. Importantly, FAAH expression was negligible in microglial cells, thus suggesting a role for FAAH in the cellular interplay in the central nervous system. Our findings show that Faah gene inactivation triggers a hetero-cellular enhancement of microglial function that was paradoxically paralleled by an exacerbated inflammatory response. Taken together, the present data highlight FAAH as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- María Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - María Ferrer
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Cell Biology, The Scripps Research Institute, San Diego, California, USA
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, San Diego, California, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Víctor Javier Sánchez-Arévalo Lobo
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | |
Collapse
|
7
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
8
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
9
|
Larauche M, Mulak A, Ha C, Million M, Arnett S, Germano P, Pearson JP, Currie MG, Taché Y. FAAH inhibitor URB597 shows anti-hyperalgesic action and increases brain and intestinal tissues fatty acid amides in a model of CRF 1 agonist mediated visceral hypersensitivity in male rats. Neurogastroenterol Motil 2024; 36:e14927. [PMID: 39344695 PMCID: PMC11781189 DOI: 10.1111/nmo.14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND AND AIMS The endocannabinoid (eCB) system includes ligands (anandamide and 2-arachidonoyl glycerol, 2-AG), receptors and catabolizing enzymes (fatty acid amide hydrolase, FAAH and monoacylglycerol lipase) expressed in both the brain and gut. We investigated whether the FAAH inhibitor, URB597, influenced visceral pain to colorectal distension (CRD) in an acute stress-related model of visceral hypersensitivity induced by the selective corticotropin-releasing factor receptor subtype 1 (CRF1) agonist, cortagine. METHODS Male Sprague-Dawley rats were injected subcutaneously (SC) with URB597 (3 mg/kg) or vehicle and 2 h later, intraperitoneally with cortagine (10 μg/kg) or vehicle. The visceromotor responses (VMR) were assessed to a first CRD (baseline) before injections, and to a second CRD 15 min after the last treatment. Brain, jejunum, and proximal colon were collected from treated and naïve rats for levels quantification of three fatty acid amides (FAAs) [anandamide (arachidonyl-ethanolamide, AEA), oleoyl-ethanolamide (OEA) and palmitoyl-ethanolamide (PEA)], and 2-AG. In separate animals, defecation/diarrhea were monitored after URB597 and cortagine. KEY RESULTS URB597 inhibited cortagine-induced increased VMR at 40 mmHg (89.0 ± 14.8% vs. 132.5 ± 15.6% for vehicle SC, p < 0.05) and 60 mmHg (107.5 ± 16.1% vs. 176.9 ± 24.4% for vehicle SC, p < 0.001) while not influencing basal VMR. In URB597 plus cortagine group, FAAs levels increased in the brain and intestinal tissue while 2-AG did not change. URB597 did not modify cortagine-induced defecation/diarrhea versus vehicle. CONCLUSIONS AND INFERENCES URB597 shows efficacy to elevate brain and intestinal FAAs and to counteract the colonic hypersensitivity induced by peripheral activation of CRF1 signaling supporting a potential strategy of FAAH inhibitors to alleviate stress-related visceral hypersensitivity.
Collapse
Affiliation(s)
- Muriel Larauche
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Agata Mulak
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Present Affiliation: Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Chrysanthy Ha
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Present Affiliation: Community Memorial Healthcare, Ventura, CA, USA
| | - Mulugeta Million
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Stacy Arnett
- Present Affiliation: Department of Pathology, St. Louis University, St. Louis, MO, USA
| | - Peter Germano
- Present Affiliation: Auron Therapeutics, Inc., Newton, MA, USA
| | - James P. Pearson
- Present Affiliation: Sea Pharmaceuticals LLC, Cambridge, MA, USA
| | - Mark G. Currie
- Present Affiliation: Sea Pharmaceuticals LLC, Cambridge, MA, USA
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
10
|
Li YS, Feng CF, Chen HR, Yang WG, Liu F, Su ML, Yuan R, Zhang LQ, Liang WB. Concentration and activation biresponsive strategy in one analysis system with simultaneous use of G4 structure-specific signal probe and enzyme-catalyzed reaction. Anal Chim Acta 2024; 1329:343246. [PMID: 39396307 DOI: 10.1016/j.aca.2024.343246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Enzymes with critical effects on life systems are regulated by expression and activation to modulate life processes. However, further insights into enzyme functions and mechanisms in various physiological processes are limited to concentration or activation analysis only. Currently, enzyme analysis has received notable attention, particularly simultaneous analysis of their concentration and activation in one system. Herein, N-methyl mesoporphyrin IX (NMM), a specific dye with notable structural selectivity for parallel G-quadruplex nucleic acid enzyme (G4h DNAzyme), is employed for the analysis of its concentration. In addition, the peroxidase activity of G4h DNAzyme is characterized based on G4h DNAzyme-catalyzed decomposition of H2O2 to continuously consume luminol. Accordingly, an increased fluorescence (FL) response of NMM and a decreased FL response of luminol could be simultaneously employed to analyze the concentration and activation of G4h DNAzyme. RESULT Herein, a novel concentration and activation biresponsive strategy is proposed using a G4h DNAzyme-based model that simultaneously employs a G4h structure-specific signal probe for enzyme concentration analysis and G4h DNAzyme-catalyzed reactions for enzyme activation analysis. Under optimal conditions, the biresponsive strategy can be effectively used for the simultaneous analysis of G4h DNAzyme concentration and activation, with detection limits of 718.7 pM and 233.4 nM respectively, delivering acceptable performances both in cell and in vitro. SIGNIFICANCE This strategy can not only be applied to concentration and activation analyses of G4h DNAzyme but can also be easily extended to other enzymes by simultaneously combining concentration analysis via target-induced direct reaction and activation analysis via target-induced catalytic reaction, offering deeper insights into various enzymes and enabling their effective implementation in bioanalysis and biochemistry.
Collapse
Affiliation(s)
- Yu-Shu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chun-Feng Feng
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei-Guo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Fei Liu
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Li-Qun Zhang
- Department of Clinical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
12
|
Velasco M, Posada-Ayala M, Pérez-Fernández E, Loria F, Amores M, Ramos JM, Jaime E, Guijarro C, Romero J, Pazos MR. Circulating endocannabinoid levels in SARS-CoV-2 infection and their potential role in the inflammatory response. Sci Rep 2024; 14:19558. [PMID: 39174572 PMCID: PMC11341693 DOI: 10.1038/s41598-024-70172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Plasma levels of endocannabinoids (eCBs) are very dynamic and variable in different circumstances and pathologies. The aim of the study was to determine the levels of the main eCBs and N-acylethanolamines (NAEs) in COVID-19 patients during the acute and post-acute phase of SARS-CoV-2 infection. Samples collected before December 31, 2020 were used for the determination of circulating eCB levels by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The association between plasma eCB measurements and biochemical and hematological parameters, as well as serum IL-6 levels, was evaluated. Samples of 64 individuals were analysed, n = 18 healthy donors, n = 30 acute, and n = 16 post-acute patients. Plasma levels of 2-arachidonoylglycerol (2-AG), were significantly elevated in COVID-19 patients when compared to healthy individuals. Plasma N-palmitoylethanolamide (PEA) and N-arachidonoylethanolamide (AEA) levels were found to be decreased in post-acute patient samples. These results suggest that 2-AG plays an important role in the inflammatory cascade in COVID-19 disease; in addition, eCBs might be involved in the post-acute pathogenesis of COVID-19. This study provides evidence of altered levels of circulating eCBs as a consequence of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maria Velasco
- Unidad de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain.
- Departamento de Especialidades Médicas y Salud Pública, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain.
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain.
| | - Maria Posada-Ayala
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Elia Pérez-Fernández
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain
| | - Frida Loria
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain
| | - Mario Amores
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain
| | - José Miguel Ramos
- Unidad de Medicina Interna, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain
| | - Elena Jaime
- Servicio de Análisis Clínicos, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain
| | - Carlos Guijarro
- Departamento de Especialidades Médicas y Salud Pública, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
- Unidad de Medicina Interna, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain
| | - Julián Romero
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Maria Ruth Pazos
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, 28922, Alcorcón, Madrid, Spain.
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
13
|
Maglaviceanu A, Peer M, Rockel J, Bonin RP, Fitzcharles MA, Ladha KS, Bhatia A, Leroux T, Kotra L, Kapoor M, Clarke H. The State of Synthetic Cannabinoid Medications for the Treatment of Pain. CNS Drugs 2024; 38:597-612. [PMID: 38951463 DOI: 10.1007/s40263-024-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Synthetic cannabinoids are compounds made in the laboratory to structurally and functionally mimic phytocannabinoids from the Cannabis sativa L. plant, including delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids (SCs) can signal via the classical endogenous cannabinoid system (ECS) and the greater endocannabidiome network, highlighting their signalling complexity and far-reaching effects. Dronabinol and nabilone, which mimic THC signalling, have been approved by the Food and Drug Administration (FDA) for treating nausea associated with cancer chemotherapy and/or acquired immunodeficiency syndrome (AIDS). However, there is ongoing interest in these two drugs as potential analgesics for a variety of other clinical conditions, including neuropathic pain, spasticity-related pain, and nociplastic pain syndromes including fibromyalgia, osteoarthritis, and postoperative pain, among others. In this review, we highlight the signalling mechanisms of FDA-approved synthetic cannabinoids, discuss key clinical trials that investigate their analgesic potential, and illustrate challenges faced when bringing synthetic cannabinoids to the clinic.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Jason Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, McGill University, Montreal, Canada
- Alan Edwards Pain Management Unit, McGill University, Montreal, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Anuj Bhatia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, Toronto Western Hospital-University Health Network, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Timothy Leroux
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Lakshmi Kotra
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Krembil Research Institute, University Health Network, Toronto, Canada.
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.
- Transitional Pain Service, Pain Research Unit, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
14
|
Ciuffreda P, Xynomilakis O, Casati S, Ottria R. Fluorescence-Based Enzyme Activity Assay: Ascertaining the Activity and Inhibition of Endocannabinoid Hydrolytic Enzymes. Int J Mol Sci 2024; 25:7693. [PMID: 39062935 PMCID: PMC11276806 DOI: 10.3390/ijms25147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.
Collapse
Affiliation(s)
| | | | | | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (P.C.); (O.X.); (S.C.)
| |
Collapse
|
15
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Pota V, Sansone P, De Sarno S, Aurilio C, Coppolino F, Barbarisi M, Barbato F, Fiore M, Cosenza G, Passavanti MB, Pace MC. Amyotrophic Lateral Sclerosis and Pain: A Narrative Review from Pain Assessment to Therapy. Behav Neurol 2024; 2024:1228194. [PMID: 38524401 PMCID: PMC10960655 DOI: 10.1155/2024/1228194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent neurodegenerative disease of the motor system that affects upper and lower motor neurons, leading to progressive muscle weakness, spasticity, atrophy, and respiratory failure, with a life expectancy of 2-5 years after symptom onset. In addition to motor symptoms, patients with ALS have a multitude of nonmotor symptoms; in fact, it is currently considered a multisystem disease. The purpose of our narrative review is to evaluate the different types of pain, the correlation between pain and the disease's stages, the pain assessment tools in ALS patients, and the available therapies focusing above all on the benefits of cannabis use. Pain is an underestimated and undertreated symptom that, in the last few years, has received more attention from research because it has a strong impact on the quality of life of these patients. The prevalence of pain is between 15% and 85% of ALS patients, and the studies on the type and intensity of pain are controversial. The absence of pain assessment tools validated in the ALS population and the dissimilar study designs influence the knowledge of ALS pain and consequently the pharmacological therapy. Several studies suggest that ALS is associated with changes in the endocannabinoid system, and the use of cannabis could slow the disease progression due to its neuroprotective action and act on pain, spasticity, cramps, sialorrhea, and depression. Our research has shown high patients' satisfaction with the use of cannabis for the treatment of spasticity and related pain. However, especially due to the ethical problems and the lack of interest of pharmaceutical companies, further studies are needed to ensure the most appropriate care for ALS patients.
Collapse
Affiliation(s)
- Vincenzo Pota
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sara De Sarno
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Caterina Aurilio
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Manlio Barbarisi
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Marco Fiore
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gianluigi Cosenza
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child, General and Specialistic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
17
|
Hao Q, Shi J, Zhang Z, Yang G, Zhi Y, Wang K, Ma D, Fu S, Dong H, Zhi Z, Zhang W, Li T, Wang J. Discovery of a novel class of reversible monoacylglycerol lipase inhibitors for potential treatment of depression. Eur J Med Chem 2024; 268:116285. [PMID: 38428273 DOI: 10.1016/j.ejmech.2024.116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Biological studies on the endocannabinoid system (ECS) have suggested that monoacylglycerol lipase (MAGL), an essential enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), is a novel target for developing antidepressants. A decrease of 2-AG levels in the hippocampus of the brain has been observed in depressive-like models induced by chronic stress. Herein, employing a structure-based approach, we designed and synthesized a new class of (piperazine-1-carbonyl) quinolin-2(1H)-one derivatives as potent, reversible and selective MAGL inhibitors. And detailed structure-activity relationships (SAR) studies were discussed. Compound 27 (IC50 = 10.3 nM) exhibited high bioavailability (92.7%) and 2-AG elevation effect in vivo. Additionally, compound 27 exerted rapid antidepressant effects caused by chronic restraint stress (CRS) and didn't show signs of addictive properties in the conditioned place preference (CPP) assays. Our study is the first to report that reversible MAGL inhibitors can treat chronic stress-induced depression effectively, which may provide a new potential therapeutic strategy for the discovery of an original class of safe, rapid antidepressant drugs.
Collapse
Affiliation(s)
- Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junwei Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhilan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guoqing Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunbao Zhi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dingchen Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengnan Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhuoer Zhi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenting Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Rosado‐Franco JJ, Ellison AL, White CJ, Price AS, Moore CF, Williams RE, Fridman LB, Weerts EM, Williams DW. Roadmap for the expression of canonical and extended endocannabinoid system receptors and metabolic enzymes in peripheral organs of preclinical animal models. Physiol Rep 2024; 12:e15947. [PMID: 38408761 PMCID: PMC10896677 DOI: 10.14814/phy2.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system have not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were no receptors with identical expression patterns among mice (three males and two females), rats (six females), and rhesus macaques (four males). Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.
Collapse
Affiliation(s)
- J. J. Rosado‐Franco
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - A. L. Ellison
- Department of Molecular Microbiology and ImmunologyJohns Hopkins University‐Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - C. J. White
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - A. S. Price
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - C. F. Moore
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University Bayview CampusBaltimoreMarylandUSA
| | - R. E. Williams
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - L. B. Fridman
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - E. M. Weerts
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - D. W. Williams
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
- Department of Molecular Microbiology and ImmunologyJohns Hopkins University‐Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
- Division of Clinical PharmacologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
19
|
Shi Y, Wu S, Zhang X, Cao Y, Zhang L. Lipid metabolism-derived FAAH is a sensitive marker for the prognosis and immunotherapy of osteosarcoma patients. Heliyon 2024; 10:e23499. [PMID: 38169921 PMCID: PMC10758879 DOI: 10.1016/j.heliyon.2023.e23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Lipid metabolism in cancer refers to the alterations in how cancer cells process and utilize lipids, a type of fat molecule. It was investigated how lipid metabolism relates to osteosarcoma. Genes relevant to lipid metabolism were gathered to create lipid metabolism-associated clusters and locate the dangerous marker. We investigated FAAH's prognostic significance, route annotation, immunotherapy response, and medication prediction. Besides, FAAH is proven to be a potent, dangerous marker that may promote growth and migration and inhibit the apoptosis of osteosarcoma. FAAH exhibits higher expression levels in tumor tissues as compared to normal tissues. In conclusion, FAAH is identified in this work as a potentially dangerous gene and immunotherapy determinant. This study requires more investigation to determine how FAAH influences the immune response in osteosarcoma.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yangbo Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
20
|
Rosse G. Novel Pyrazolopyridine Inhibitors of Monoacylglycerol Lipase for the Treatment of Neurodegenerative Diseases and Neuroinflammation. ACS Med Chem Lett 2024; 15:19-20. [PMID: 38229740 PMCID: PMC10788934 DOI: 10.1021/acsmedchemlett.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
This work highlights the use of bicyclic heterocyclic compounds as monoacylglycerol lipase inhibitors potentially in the treatment of Alzheimer's disease, Parkinson's disease, ALS, traumatic brain injury, and multiple sclerosis.
Collapse
Affiliation(s)
- Gerard Rosse
- Arrival Discovery, LLC, 12396 World Trade Drive, San Diego, California 92128, United States
| |
Collapse
|
21
|
Papadogkonaki S, Spyridakos D, Lapokonstantaki E, Chaniotakis N, Makriyannis A, Malamas MS, Thermos K. Investigating the Effects of Exogenous and Endogenous 2-Arachidonoylglycerol on Retinal CB1 Cannabinoid Receptors and Reactive Microglia in Naive and Diseased Retina. Int J Mol Sci 2023; 24:15689. [PMID: 37958673 PMCID: PMC10650178 DOI: 10.3390/ijms242115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.
Collapse
Affiliation(s)
- Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | | | - Nikos Chaniotakis
- Department of Chemistry, University of Crete, Heraklion, 71003 Crete, Greece; (E.L.); (N.C.)
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| |
Collapse
|
22
|
Ekodo Voundi M, Hanekamp W, Lehr M. Synthesis, activity and metabolic stability of propan-2-one substituted tetrazolylalkanoic acids as dual inhibitors of cytosolic phospholipase A 2α and fatty acid amide hydrolase. RSC Med Chem 2023; 14:2079-2088. [PMID: 37859716 PMCID: PMC10583809 DOI: 10.1039/d3md00224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023] Open
Abstract
The serine hydrolases cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are interesting targets for the development of new anti-inflammatory and analgesic drugs. Structural modifications of a potent dual inhibitor with a propan-2-one substituted tetrazolylpropionic acid moiety led to compounds with also nanomolar activity against both enzymes but better physicochemical properties. The structure-activity relationships showed that the variations had partially divergent effects on the inhibitory activity of the compounds towards cPLA2α and FAAH reflecting differences in the binding mode to the enzymes. Furthermore, the metabolic stability of the target structures was investigated in vitro.
Collapse
Affiliation(s)
- Merlin Ekodo Voundi
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Walburga Hanekamp
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| |
Collapse
|
23
|
Bornscheuer L, Lundin A, Forsell Y, Lavebratt C, Melas PA. Functional Variation in the FAAH Gene Is Directly Associated with Subjective Well-Being and Indirectly Associated with Problematic Alcohol Use. Genes (Basel) 2023; 14:1826. [PMID: 37761966 PMCID: PMC10530831 DOI: 10.3390/genes14091826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme that degrades anandamide, an endocannabinoid that modulates mesolimbic dopamine release and, consequently, influences states of well-being. Despite these known interactions, the specific role of FAAH in subjective well-being remains underexplored. Since well-being is a dynamic trait that can fluctuate over time, we hypothesized that we could provide deeper insights into the link between FAAH and well-being using longitudinal data. To this end, we analyzed well-being data collected three years apart using the WHO (Ten) Well-Being Index and genotyped a functional polymorphism in the FAAH gene (rs324420, Pro129Thr) in a sample of 2822 individuals. We found that the A-allele of rs324420, which results in reduced FAAH activity and elevated anandamide levels, was associated with lower well-being scores at both time points (Wave I, B: -0.52, p = 0.007; Wave II, B: -0.41, p = 0.03, adjusted for age and sex). A subsequent phenome-wide association study (PheWAS) affirmed our well-being findings in the UK Biobank (N = 126,132, alternative C-allele associated with elevated happiness, p = 0.008) and revealed an additional association with alcohol dependence. In our cohort, using lagged longitudinal mediation analyses, we uncovered evidence of an indirect association between rs324420 and problematic alcohol use (AUDIT-P) through the pathway of lower well-being (indirect effect Boot: 0.015, 95% CI [0.003, 0.030], adjusted for AUDIT in Wave I). We propose that chronically elevated anandamide levels might influence disruptions in the endocannabinoid system-a biological contributor to well-being-which could, in turn, contribute to increased alcohol intake, though multiple factors may be at play. Further genetic studies and mediation analyses are needed to validate and extend these findings.
Collapse
Affiliation(s)
- Lisa Bornscheuer
- Department of Public Health Sciences, Stockholm University, 10691 Stockholm, Sweden;
| | - Andreas Lundin
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden;
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Philippe A. Melas
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| |
Collapse
|
24
|
Bloch Priel S, Yitzhaky A, Gurwitz D, Hertzberg L. Cannabinoid receptor gene CNR1 is downregulated in subcortical brain samples and upregulated in blood samples of individuals with schizophrenia: A participant data systematic meta-analysis. Eur J Neurosci 2023; 58:3540-3554. [PMID: 37611908 DOI: 10.1111/ejn.16122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Cannabis use leads to symptom exacerbation in schizophrenia patients, and endocannabinoid ligands have been studied as tentative schizophrenia therapeutics. Here, we aimed to characterise the connection between schizophrenia and the cannabinoid receptor 1 gene (CNR1) and explore possible mechanisms affecting its expression in schizophrenia. We performed a participant data systematic meta-analysis of CNR1 gene expression and additional endocannabinoid system genes in both brain (subcortical areas) and blood samples. We integrated eight brain sample datasets (overall 316 samples; 149 schizophrenia and 167 controls) and two blood sample datasets (overall 90 samples; 53 schizophrenia and 37 controls) while following the PRISMA meta-analysis guidelines. CNR1 was downregulated in subcortical regions and upregulated in blood samples of patients with schizophrenia. CNR2 and genes encoding endocannabinoids synthesis and degradation did not show differential expression in the brain or blood, except fatty acid amide hydrolase (FAAH), which showed a downregulation trend in blood. In addition, the brain expression levels of CNR1 and three GABA receptor genes, GABRA1, GABRA6 and GABRG2, were positively correlated (R = .57, .36, .54; p = 2.7 × 10-14 , 6.9 × 10-6 and 1.1 × 10-12 , respectively). Brain CNR1 downregulation and the positive correlation with three GABA receptor genes suggest an association with GABA neurotransmission and possible effects on negative schizophrenia symptoms. Further studies are required for clarifying the opposite CNR1 dysregulation in the brain and blood of schizophrenia patients and the potential of endocannabinoid ligands as schizophrenia therapeutics.
Collapse
Affiliation(s)
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, affiliated with the Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
26
|
Toczek M, Ryszkiewicz P, Remiszewski P, Schlicker E, Krzyżewska A, Kozłowska H, Malinowska B. Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis. Int J Mol Sci 2023; 24:10942. [PMID: 37446125 DOI: 10.3390/ijms241310942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Hemodynamic parameters were assessed in conscious animals via radiotelemetry and tail-cuff methods and then evaluated by the area under the curve (AUC). Single administration of JZL195 induced dose-dependent weak hypotensive and bradycardic responses in SHR but not in WKY. Similarly, its chronic application revealed only a slight hypotensive potential which, however, effectively prevented the progression of hypertension and did not undergo tolerance. In addition, multiple JZL195 administrations slightly decreased heart rate only in WKY and prevented the gradual weight gain in both groups. JZL195 did not affect organ weights, blood glucose level, rectal temperature and plasma oxidative stress markers. In conclusion, chronic dual FAAH/MAGL inhibition prevents the progression of hypertension in SHR without affecting some basal functions of the body. In addition, our study clearly proves the suitability of AUC for the evaluation of weak blood pressure changes.
Collapse
Affiliation(s)
- Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Piotr Ryszkiewicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| |
Collapse
|
27
|
Rosado-Franco JJ, Ellison AL, White CJ, Price AS, Moore CF, Williams RE, Fridman LB, Weerts EM, Williams DW. Roadmap For The Expression Of Canonical and Extended Endocannabinoid System Receptors and Proteins in Peripheral Organs of Preclinical Animal Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544455. [PMID: 37333264 PMCID: PMC10274867 DOI: 10.1101/2023.06.10.544455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system has not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were only five receptors (CB2, GPR18, GPR55, TRPV2, and FAAH) that had identical expression patterns in mice, rats, and rhesus macaques. Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has profound implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.
Collapse
Affiliation(s)
- J J Rosado-Franco
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - A L Ellison
- Department of Microbiology and Molecular Immunology, Johns Hopkins University-Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - C J White
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - A S Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - C F Moore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University Bayview Campus, Baltimore, Maryland, USA
| | - R E Williams
- Department of Neuroscience, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - L B Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - E M Weerts
- Department of Neuroscience, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - D W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Molecular Immunology, Johns Hopkins University-Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Clinical Pharmacology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Lee M, Landers K, Chan J. Activity-Based Photoacoustic Probes for Detection of Disease Biomarkers beyond Oncology. ACS BIO & MED CHEM AU 2023; 3:223-232. [PMID: 37363076 PMCID: PMC10288495 DOI: 10.1021/acsbiomedchemau.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
The earliest activity-based photoacoustic (PA) probes were developed as diagnostic agents for cancer. Since this seminal work over a decade ago that specifically targeted matrix metalloproteinase-2, PA instrumentation, dye platforms, and probe designs have advanced considerably, allowing for the detection of an impressive list of cancer types. However, beyond imaging for oncology purposes, the ability to selectively visualize a given disease biomarker, which can range from aberrant enzymatic activity to the overproduction of reactive small molecules, is also being exploited to study a myriad of noncancerous disease states. In this review, we have assembled a collection of recent papers to highlight the design principles that enable activity-based sensing via PA imaging with respect to biomarker identification and strategies to trigger probe activation under specific conditions.
Collapse
Affiliation(s)
- Michael
C. Lee
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Kayla Landers
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Jefferson Chan
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| |
Collapse
|
29
|
Hao J, Chen Q, Feng Y, Jiang Q, Sun H, Deng B, Huang X, Guan J, Chen Q, Liu X, Wang Y, Cao P, Feng F, Li X. Combination treatment with FAAH inhibitors/URB597 and ferroptosis inducers significantly decreases the growth and metastasis of renal cell carcinoma cells via the PI3K-AKT signaling pathway. Cell Death Dis 2023; 14:247. [PMID: 37024452 PMCID: PMC10079857 DOI: 10.1038/s41419-023-05779-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Ferroptosis, a nonapoptotic form of programmed cell death characterized by significant iron-dependent peroxidation of phospholipids, is regulated by cellular metabolism, redox homeostasis, and various cancer-related signaling pathways. Recently, considerable progress has been made in demonstrating the critical role of lipid metabolism in regulating ferroptosis, indicating the potential of combinational strategies for treating cancer in the future. In this study, we explored the combinational effects of lipid metabolism compounds and ferroptosis inducers on renal cell carcinoma (RCC) cells. We found potent synergy of the fatty acid amide hydrolase (FAAH) inhibitor URB597 with ferroptosis inducer (1S, 3R)-RSL3 (RSL3) in inhibiting the growth and metastasis of RCC cells both in vitro and in vivo via induction of G1 cell cycle arrest and promotion of the production of lipid peroxides, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and cytosolic reactive oxygen species (ROS). In addition, inhibition of FAAH increased the sensitivity of RCC cells to ferroptosis. Genome-wide RNA sequencing indicated that the combination of URB597 and RSL3 has more significant effects on regulation of the expression of genes related to cell proliferation, the cell cycle, cell migration and invasion, and ferroptosis than either single agent alone. Moreover, we found that combinational treatment modulated the sensitivity of RCC cells to ferroptosis via the phosphatidylinositol 3 kinase (PI3K)-AKT signaling pathway. These data demonstrate that dual targeting of FAAH and ferroptosis could be a promising strategy for treating RCC.
Collapse
Affiliation(s)
- Junfeng Hao
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of General practice medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Qiguang Chen
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yongmin Feng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qiyu Jiang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Huiwei Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Botian Deng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xin Huang
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of General practice medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Jibin Guan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qiuping Chen
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xincheng Liu
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanjin Wang
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Peng Cao
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, 110016, China.
| | - Fan Feng
- Clinical Laboratory, The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Xiaoyu Li
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
30
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
31
|
Mangiatordi GF, Cavalluzzi MM, Delre P, Lamanna G, Lumuscio MC, Saviano M, Majoral JP, Mignani S, Duranti A, Lentini G. Endocannabinoid Degradation Enzyme Inhibitors as Potential Antipsychotics: A Medicinal Chemistry Perspective. Biomedicines 2023; 11:biomedicines11020469. [PMID: 36831006 PMCID: PMC9953700 DOI: 10.3390/biomedicines11020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The endocannabinoid system (ECS) plays a very important role in numerous physiological and pharmacological processes, such as those related to the central nervous system (CNS), including learning, memory, emotional processing, as well pain control, inflammatory and immune response, and as a biomarker in certain psychiatric disorders. Unfortunately, the half-life of the natural ligands responsible for these effects is very short. This perspective describes the potential role of the inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), which are mainly responsible for the degradation of endogenous ligands in psychic disorders and related pathologies. The examination was carried out considering both the impact that the classical exogenous ligands such as Δ9-tetrahydrocannabinol (THC) and (-)-trans-cannabidiol (CBD) have on the ECS and through an analysis focused on the possibility of predicting the potential toxicity of the inhibitors before they are subjected to clinical studies. In particular, cardiotoxicity (hERG liability), probably the worst early adverse reaction studied during clinical studies focused on acute toxicity, was predicted, and some of the most used and robust metrics available were considered to select which of the analyzed compounds could be repositioned as possible oral antipsychotics.
Collapse
Affiliation(s)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giuseppe Lamanna
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Cristina Lumuscio
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100 Caserta, Italy
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Serge Mignani
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Université de Caen, 14032 Caen, France
- CQM—Centro de Química da Madeira, MMRG (Molecular Materials Research Group), Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
- Correspondence: ; Tel.: +39-0722-303501
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
32
|
Asher MJ, McMullan HM, Dong A, Li Y, Thayer SA. A Complete Endocannabinoid Signaling System Modulates Synaptic Transmission between Human Induced Pluripotent Stem Cell-Derived Neurons. Mol Pharmacol 2023; 103:100-112. [PMID: 36379717 PMCID: PMC9881009 DOI: 10.1124/molpharm.122.000555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The endocannabinoid system (ECS) modulates synaptic function to regulate many aspects of neurophysiology. It adapts to environmental changes and is affected by disease. Thus, the ECS presents an important target for therapeutic development. Despite recent interest in cannabinoid-based treatments, few preclinical studies are conducted in human systems. Human induced pluripotent stem cells (hiPSCs) provide one possible solution to this issue. However, it is not known if these cells have a fully functional ECS. Here, we show that hiPSC-derived neuron/astrocyte cultures exhibit a complete ECS. Using Ca2+ imaging and a genetically encoded endocannabinoid sensor, we demonstrate that they not only respond to exogenously applied cannabinoids but also produce and metabolize endocannabinoids. Synaptically driven [Ca2+]i spiking activity was inhibited (EC50 = 48 ± 13 nM) by the efficacious agonist [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol [1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate] (Win 55,212-2) and by the endogenous ligand 2-arachidonoyl glycerol (2-AG; EC50 = 2.0 ± 0.6 µm). The effects of Win 55212-2 were blocked by a CB1 receptor-selective antagonist. Δ9-Tetrahydrocannabinol acted as a partial agonist, maximally inhibiting synaptic activity by 47 ± 14% (EC50 = 1.4 ± 1.9 µm). Carbachol stimulated 2-AG production in a manner that was independent of Ca2+ and blocked by selective inhibition of diacylglycerol lipase. 2-AG returned to basal levels via a process mediated by monoacylglycerol lipase as indicated by slowed recovery in cultures treated with 4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester (JZL 184). Win 55,212-2 markedly desensitized CB1 receptor function following a 1-day exposure, whereas desensitization was incomplete following 7-day treatment with JZL 184. This human cell culture model is well suited for functional analysis of the ECS and as a platform for drug development. SIGNIFICANCE STATEMENT: Despite known differences between the human response to cannabinoids and that of other species, an in vitro human model demonstrating a fully functional endocannabinoid system has not been described. Human induced pluripotent stem cells (hiPSCs) can be obtained from skin samples and then reprogrammed into neurons for use in basic research and drug screening. Here, we show that hiPSC-derived neuronal cultures exhibit a complete endocannabinoid system suitable for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Melissa J Asher
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Hannah M McMullan
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Ao Dong
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Yulong Li
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| | - Stanley A Thayer
- Department of Pharmacology (M.J.A., H.M.M., S.A.T.), Graduate Program in Neuroscience (M.J.A., S.A.T.), and Molecular Pharmacology and Therapeutics Graduate Program (H.M.M., S.A.T.), University of Minnesota Medical School, Minneapolis, Minnesota; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences (A.D., Y.L.), IDG/McGovern Institute for Brain Research (A.D., Y.L.), and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies (A.D., Y.L.), Peking University, Beijing, China; and Chinese Institute for Brain Research, Beijing, China (Y.L.)
| |
Collapse
|
33
|
Stella N. THC and CBD: Similarities and differences between siblings. Neuron 2023; 111:302-327. [PMID: 36638804 PMCID: PMC9898277 DOI: 10.1016/j.neuron.2022.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) and its sibling, cannabidiol (CBD), are produced by the same Cannabis plant and have similar chemical structures but differ dramatically in their mechanisms of action and effects on brain functions. Both THC and CBD exhibit promising therapeutic properties; however, impairments and increased incidence of mental health diseases are associated with acute and chronic THC use, respectively, and significant side effects are associated with chronic use of high-dose CBD. This review covers recent molecular and preclinical discoveries concerning the distinct mechanisms of action and bioactivities of THC and CBD and their impact on human behavior and diseases. These discoveries provide a foundation for the development of cannabinoid-based therapeutics for multiple devastating diseases and to assure their safe use in the growing legal market of Cannabis-based products.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Department Psychiatry and Behavioral Sciences, Center for Cannabis Research, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Boyacıoğlu Ö, Korkusuz P. Cannabinoids as Prospective Anti-Cancer Drugs: Mechanism of Action in Healthy and Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:145-169. [PMID: 36396926 DOI: 10.1007/5584_2022_748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors. Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades. In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
35
|
van Zadelhoff G, van der Stelt M. Oxygenation of Anandamide by Lipoxygenases. Methods Mol Biol 2023; 2576:307-316. [PMID: 36152198 DOI: 10.1007/978-1-0716-2728-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are not only metabolized by serine hydrolases, such as fatty acid amide hydrolase, monoacylglycerol lipase, and α,β-hydrolases 6 and 12, but they also serve as substrates for cyclooxygenases, cytochrome P450s, and lipoxygenases. These enzymes oxygenate the 1Z,4Z-pentadiene system of the arachidonic acid backbone of endocannabinoids, thereby giving rise to an entirely new array of bioactive lipids. Hereby, a protocol is provided for the enzymatic synthesis, purification, and characterization of various oxygenated metabolites of anandamide generated by lipoxygenases, which enables the biological study and detection of these metabolites.
Collapse
Affiliation(s)
- Guus van Zadelhoff
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mario van der Stelt
- Department Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
36
|
Brierley SM, Greenwood-Van Meerveld B, Sarnelli G, Sharkey KA, Storr M, Tack J. Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol 2023; 20:5-25. [PMID: 36168049 DOI: 10.1038/s41575-022-00682-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Abstract
The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany
- Zentrum für Endoskopie, Starnberg, Germany
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Zhu Y, Zhang H, Mao H, Zhong S, Huang Y, Chen S, Yan K, Zhao Z, Hao X, Zhang Y, Yao H, Huang X, Wang M, Zhang W, Li J, Meng G, Qin X, Ye Z, Shen J, Song Y, Xu Y, Yang Z, Wang L, Zhang Y, Wen L. FAAH served a key membrane-anchoring and stabilizing role for NLRP3 protein independently of the endocannabinoid system. Cell Death Differ 2023. [PMID: 36104448 DOI: 10.1038/s41418-41022-00958-41415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
NLRP3, the sensor protein of the NLRP3 inflammasome, plays central roles in innate immunity. Over-activation of NLRP3 inflammasome contributes to the pathogenesis of a variety of inflammatory diseases, while gain-of-function mutations of NLRP3 cause cryopyrin-associated periodic syndromes (CAPS). NLRP3 inhibitors, particularly those that inhibit inflammasome assembly and activation, are being intensively pursued, but alternative approaches for targeting NLRP3 would be highly desirable. During priming NLRP3 protein is synthesized on demand and becomes attached to the membranes of ER and mitochondria. Here, we show that fatty acid amide hydrolase (FAAH), the key integral membrane enzyme in the endocannabinoid system, unexpectedly served the critical membrane-anchoring and stabilizing role for NLRP3. The specific interaction between NLRP3 and FAAH, mediated by the NACHT and LRR domains of NLRP3 and the amidase signature sequence of FAAH, was essential for preventing CHIP- and NBR1-mediated selective autophagy of NLRP3. Heterozygous knockout of FAAH, resulting in ~50% reduction in both FAAH and NLRP3 expression, was sufficient to substantially inhibit the auto-inflammatory phenotypes of the NLRP3-R258W knock-in mice, while homozygous FAAH loss almost completely abrogates these phenotypes. Interestingly, select FAAH inhibitors, in particular URB597 and PF-04457845, disrupted NLRP3-FAAH interaction and induced autophagic NLRP3 degradation, leading to diminished inflammasome activation in mouse macrophage cells as well as in peripheral blood mononuclear cells isolated from CAPS patients. Our results unraveled a novel NLRP3-stabilizing mechanism and pinpointed NLRP3-FAAH interaction as a potential drug target for CAPS and other NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yangyang Zhu
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Hao Zhang
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Huawei Mao
- Department of Immunology, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Suqin Zhong
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yubing Huang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Sirong Chen
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhibin Zhao
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohan Hao
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yue Zhang
- Department of Immunology, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Han Yao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowan Huang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Meimei Wang
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Wenbin Zhang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Juan Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology& Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology& Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Qin
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiani Shen
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Song
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Youcui Xu
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenyu Yang
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Liansheng Wang
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yunjiao Zhang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China.
| | - Longping Wen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
38
|
Scheyer A, Yasmin F, Naskar S, Patel S. Endocannabinoids at the synapse and beyond: implications for neuropsychiatric disease pathophysiology and treatment. Neuropsychopharmacology 2023; 48:37-53. [PMID: 36100658 PMCID: PMC9700791 DOI: 10.1038/s41386-022-01438-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Endocannabinoids (eCBs) are lipid neuromodulators that suppress neurotransmitter release, reduce postsynaptic excitability, activate astrocyte signaling, and control cellular respiration. Here, we describe canonical and emerging eCB signaling modes and aim to link adaptations in these signaling systems to pathological states. Adaptations in eCB signaling systems have been identified in a variety of biobehavioral and physiological process relevant to neuropsychiatric disease states including stress-related disorders, epilepsy, developmental disorders, obesity, and substance use disorders. These insights have enhanced our understanding of the pathophysiology of neurological and psychiatric disorders and are contributing to the ongoing development of eCB-targeting therapeutics. We suggest future studies aimed at illuminating how adaptations in canonical as well as emerging cellular and synaptic modes of eCB signaling contribute to disease pathophysiology or resilience could further advance these novel treatment approaches.
Collapse
Affiliation(s)
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Saptarnab Naskar
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA.
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
39
|
Zhu M, Guo Q, Kang H, Peng R, Dong Y, Zhang Y, Wang S, Liu H, Zhao H, Dong Z, Song K, Xu S, Wang P, Chen L, Liu J, Li F. Inhibition of FAAH suppresses RANKL-induced osteoclastogenesis and attenuates ovariectomy-induced bone loss partially through repressing the IL17 pathway. FASEB J 2023; 37:e22690. [PMID: 36468880 DOI: 10.1096/fj.202200911r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Fatty amide hydrolase (FAAH) is a key degradation enzyme of the endocannabinoid system, mainly responsible for the hydrolysis of arachidonic acid ethanolamine (AEA). Previous investigations have shown that FAAH is involved in a series of biological processes, such as inflammation, immune regulation, and transmembrane signal transduction of neurons. Endogenous cannabinoids and cannabinoid receptors have been reported to participate in the regulation of bone homeostasis by regulating the differentiation of osteoblasts and osteoclasts. We hypothesized that FAAH may play an important role in osteoclastogenesis based on the above evidence. The present study found that the FAAH expression was increased at both mRNA and protein levels during RANKL-induced osteoclastogenesis. Pharmacological and genetic inhibition of FAAH in bone marrow-derived macrophages (BMMs) inhibited osteoclastogenesis, F-actin ring formation, bone resorption, and osteoclast-specific gene expression in vitro. Moreover, intragastric administration of the FAAH inhibitor PF-04457845(PF) ameliorated ovariectomy (OVX)-induced bone loss in mice. Further investigation revealed that nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways were inhibited by PF treatment and FAAH knockdown. RNAseq indicated that the IL17 pathway was blocked by PF, and administration of recombinant murine IL17 protein could partially restore osteoclastogenesis and activate NF-κB and MAPK pathways. To sum up, our findings demonstrate that targeting FAAH could be a promising candidate strategy for treating osteoclast-related diseases, especially osteoporosis.
Collapse
Affiliation(s)
- Meipeng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Zhu Y, Zhang H, Mao H, Zhong S, Huang Y, Chen S, Yan K, Zhao Z, Hao X, Zhang Y, Yao H, Huang X, Wang M, Zhang W, Li J, Meng G, Qin X, Ye Z, Shen J, Song Y, Xu Y, Yang Z, Wang L, Zhang Y, Wen L. FAAH served a key membrane-anchoring and stabilizing role for NLRP3 protein independently of the endocannabinoid system. Cell Death Differ 2023; 30:168-183. [PMID: 36104448 PMCID: PMC9883386 DOI: 10.1038/s41418-022-01054-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023] Open
Abstract
NLRP3, the sensor protein of the NLRP3 inflammasome, plays central roles in innate immunity. Over-activation of NLRP3 inflammasome contributes to the pathogenesis of a variety of inflammatory diseases, while gain-of-function mutations of NLRP3 cause cryopyrin-associated periodic syndromes (CAPS). NLRP3 inhibitors, particularly those that inhibit inflammasome assembly and activation, are being intensively pursued, but alternative approaches for targeting NLRP3 would be highly desirable. During priming NLRP3 protein is synthesized on demand and becomes attached to the membranes of ER and mitochondria. Here, we show that fatty acid amide hydrolase (FAAH), the key integral membrane enzyme in the endocannabinoid system, unexpectedly served the critical membrane-anchoring and stabilizing role for NLRP3. The specific interaction between NLRP3 and FAAH, mediated by the NACHT and LRR domains of NLRP3 and the amidase signature sequence of FAAH, was essential for preventing CHIP- and NBR1-mediated selective autophagy of NLRP3. Heterozygous knockout of FAAH, resulting in ~50% reduction in both FAAH and NLRP3 expression, was sufficient to substantially inhibit the auto-inflammatory phenotypes of the NLRP3-R258W knock-in mice, while homozygous FAAH loss almost completely abrogates these phenotypes. Interestingly, select FAAH inhibitors, in particular URB597 and PF-04457845, disrupted NLRP3-FAAH interaction and induced autophagic NLRP3 degradation, leading to diminished inflammasome activation in mouse macrophage cells as well as in peripheral blood mononuclear cells isolated from CAPS patients. Our results unraveled a novel NLRP3-stabilizing mechanism and pinpointed NLRP3-FAAH interaction as a potential drug target for CAPS and other NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yangyang Zhu
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Hao Zhang
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Huawei Mao
- Department of Immunology, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Suqin Zhong
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yubing Huang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Sirong Chen
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhibin Zhao
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohan Hao
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yue Zhang
- Department of Immunology, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Han Yao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowan Huang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Meimei Wang
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Wenbin Zhang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Juan Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology& Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology& Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Qin
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiani Shen
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Song
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China
| | - Youcui Xu
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenyu Yang
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Liansheng Wang
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yunjiao Zhang
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou, China.
| | - Longping Wen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Nephrology, Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
41
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
42
|
Duranti A, Beldarrain G, Álvarez A, Sbriscia M, Carloni S, Balduini W, Alonso-Alconada D. The Endocannabinoid System as a Target for Neuroprotection/Neuroregeneration in Perinatal Hypoxic-Ischemic Brain Injury. Biomedicines 2022; 11:biomedicines11010028. [PMID: 36672536 PMCID: PMC9855621 DOI: 10.3390/biomedicines11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases. This overview, therefore, gives a current description of the main components of the EC system (including cannabinoid receptors, ligands, and related enzymes), to later analyze the EC system as a target for neonatal neuroprotection with a special focus on its neurogenic potential after hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| | - Gorane Beldarrain
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Matilde Sbriscia
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| |
Collapse
|
43
|
Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition. Int J Mol Sci 2022; 23:ijms232415502. [PMID: 36555144 PMCID: PMC9779292 DOI: 10.3390/ijms232415502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation.
Collapse
|
44
|
Costa AC, Joaquim HPG, Pedrazzi JFC, Pain ADO, Duque G, Aprahamian I. Cannabinoids in Late Life Parkinson's Disease and Dementia: Biological Pathways and Clinical Challenges. Brain Sci 2022; 12:brainsci12121596. [PMID: 36552056 PMCID: PMC9775654 DOI: 10.3390/brainsci12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The use of cannabinoids as therapeutic drugs has increased among aging populations recently. Age-related changes in the endogenous cannabinoid system could influence the effects of therapies that target the cannabinoid system. At the preclinical level, cannabidiol (CBD) induces anti-amyloidogenic, antioxidative, anti-apoptotic, anti-inflammatory, and neuroprotective effects. These findings suggest a potential therapeutic role of cannabinoids to neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer. Emerging evidence suggests that CBD and tetrahydrocannabinol have neuroprotective therapeutic-like effects on dementias. In clinical practice, cannabinoids are being used off-label to relieve symptoms of PD and AD. In fact, patients are using cannabis compounds for the treatment of tremor, non-motor symptoms, anxiety, and sleep assistance in PD, and managing responsive behaviors of dementia such as agitation. However, strong evidence from clinical trials is scarce for most indications. Some clinicians consider cannabinoids an alternative for older adults bearing Parkinson's disease and Alzheimer's dementia with a poor response to first-line treatments. In our concept and experience, cannabinoids should never be considered a first-line treatment but could be regarded as an adjuvant therapy in specific situations commonly seen in clinical practice. To mitigate the risk of adverse events, the traditional dogma of geriatric medicine, starting with a low dose and proceeding with a slow titration regime, should also be employed with cannabinoids. In this review, we aimed to address preclinical evidence of cannabinoids in neurodegenerative disorders such as PD and AD and discuss potential off-label use of cannabinoids in clinical practice of these disorders.
Collapse
Affiliation(s)
- Alana C. Costa
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, Brazil
| | - Helena P. G. Joaquim
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - João F. C. Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 05403-903, Brazil
| | - Andreia de O. Pain
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Gustavo Duque
- Division of Geriatric Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ivan Aprahamian
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
45
|
Punt J, van der Vliet D, van der Stelt M. Chemical Probes to Control and Visualize Lipid Metabolism in the Brain. Acc Chem Res 2022; 55:3205-3217. [PMID: 36283077 PMCID: PMC9670861 DOI: 10.1021/acs.accounts.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Signaling lipids, such as the endocannabinoids, play an important role in the brain. They regulate synaptic transmission and control various neurophysiological processes, including pain sensation, appetite, memory formation, stress, and anxiety. Unlike classical neurotransmitters, lipid messengers are produced on demand and degraded by metabolic enzymes to control their lifespan and signaling actions. Chemical biology approaches have become one of the main driving forces to study and unravel the physiological role of lipid messengers in the brain. Here, we review how the development and use of chemical probes has allowed one to study endocannabinoid signaling by (i) inhibiting the biosynthetic and metabolic enzymes; (ii) visualizing the activity of these enzymes; and (iii) controlling the release and transport of the endocannabinoids. Activity-based probes were instrumental to guide the discovery of highly selective and in vivo active inhibitors of the biosynthetic (DAGL, NAPE-PLD) and metabolic (MAGL, FAAH) enzymes of endocannabinoids. These inhibitors allowed one to study the role of these enzymes in animal models of disease. For instance, the DAGL-MAGL axis was shown to control neuroinflammation and the NAPE-PLD-FAAH axis to regulate emotional behavior. Activity-based protein profiling and chemical proteomics were essential to guide the drug discovery and development of compounds targeting MAGL and FAAH, such as ABX-1431 (Lu AG06466) and PF-04457845, respectively. These experimental drugs are now in clinical trials for multiple indications, including multiple sclerosis and post-traumatic stress disorders. Activity-based probes have also been used to visualize the activity of these lipid metabolizing enzymes with high spatial resolution in brain slices, thereby showing the cell type-specific activity of these lipid metabolizing enzymes. The transport, release, and uptake of signaling lipids themselves cannot, however, be captured by activity-based probes in a spatiotemporal controlled manner. Therefore, bio-orthogonal lipids equipped with photoreactive, photoswitchable groups or photocages have been developed. These chemical probes were employed to investigate the protein interaction partners of the endocannabinoids, such as putative membrane transporters, as well as to study the functional cellular responses within milliseconds upon irradiation. Finally, genetically encoded sensors have recently been developed to monitor the real-time release of endocannabinoids with high spatiotemporal resolution in cultured neurons, acute brain slices, and in vivo mouse models. It is anticipated that the combination of chemical probes, highly selective inhibitors, and sensors with advanced (super resolution) imaging modalities, such as PharmacoSTORM and correlative light-electron microscopy, will uncover the fundamental basis of lipid signaling at nanoscale resolution in the brain. Furthermore, chemical biology approaches enable the translation of these fundamental discoveries into clinical solutions for brain diseases with aberrant lipid signaling.
Collapse
|
46
|
He Y, Grether U, Taddio MF, Meier C, Keller C, Edelmann MR, Honer M, Huber S, Wittwer MB, Heer D, Richter H, Collin L, Hug MN, Hilbert M, Postmus AGJ, Stevens AF, van der Stelt M, Krämer SD, Schibli R, Mu L, Gobbi LC. Multi-parameter optimization: Development of a morpholin-3-one derivative with an improved kinetic profile for imaging monoacylglycerol lipase in the brain. Eur J Med Chem 2022; 243:114750. [PMID: 36137365 DOI: 10.1016/j.ejmech.2022.114750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained substantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [11C]7 was synthesized via direct 11CO2 fixation method and successfully mapped MAGL distribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [11C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [11C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [11C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [11C]7 ([11C]RO7284390) showed promising results warranting further clinical evaluation.
Collapse
Affiliation(s)
- Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Marco F Taddio
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Carla Meier
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Martin R Edelmann
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Sylwia Huber
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Matthias B Wittwer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Hans Richter
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Melanie N Hug
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Manuel Hilbert
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Annemarieke G J Postmus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Anna Floor Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, CH-8091, Zurich, Switzerland.
| | - Luca C Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| |
Collapse
|
47
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
48
|
Gur Maz T, Turanlı S, Caliskan HB, Çalışkan B, Banoglu E. Development and molecular modeling studies of new thiadiazole piperazine urea derivatives as potential fatty acid amide hydrolase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200082. [PMID: 35500130 DOI: 10.1002/ardp.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
A series of novel piperazine urea derivatives with thiadiazole moieties were designed, synthesized, and investigated for their inhibition potential against human fatty acid amide hydrolase (hFAAH). The urea derivatives possessing p-chlorophenylthiadiazole and benzylpiperazine fragments (19-22) were effective inhibitors of hFAAH. Notably, compounds with 4-chlorobenzyl (19) and 4-fluorobenzyl (20) tails at the piperazine side were identified as the most active inhibitors with IC50 values of 0.13 and 0.22 µM, respectively. The preincubation test of 19 was in agreement with the irreversible binding mechanism. Molecular docking was performed to explore the potential binding interactions with key amino acid residues at the FAAH active site. These newly identified inhibitors could serve as leads for the further development of potent and selective FAAH inhibitors for FAAH-associated diseases.
Collapse
Affiliation(s)
- Tugce Gur Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sumeyye Turanlı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
49
|
Grams RJ, Hsu KL. Reactive chemistry for covalent probe and therapeutic development. Trends Pharmacol Sci 2022; 43:249-262. [PMID: 34998611 PMCID: PMC8840975 DOI: 10.1016/j.tips.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Bioactive small molecules that form covalent bonds with a target protein are important tools for basic research and can be highly effective drugs. This review highlights reactive groups found in a collection of thiophilic and oxophilic drugs that mediate pharmacological activity through a covalent mechanism of action (MOA). We describe the application of advanced proteomic and bioanalytical methodologies for assessing selectivity of these covalent agents to guide and inspire the search for additional electrophiles suitable for covalent probe and therapeutic development. While the emphasis is on chemistry for modifying catalytic serine, threonine or cysteine residues, we devote a substantial fraction of the review to a collection of exploratory reactive groups of understudied residues on proteins.
Collapse
Affiliation(s)
- R. Justin Grams
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
50
|
Davies AK, Alecu JE, Ziegler M, Vasilopoulou CG, Merciai F, Jumo H, Afshar-Saber W, Sahin M, Ebrahimi-Fakhari D, Borner GHH. AP-4-mediated axonal transport controls endocannabinoid production in neurons. Nat Commun 2022; 13:1058. [PMID: 35217685 PMCID: PMC8881493 DOI: 10.1038/s41467-022-28609-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/08/2022] [Indexed: 01/20/2023] Open
Abstract
The adaptor protein complex AP-4 mediates anterograde axonal transport and is essential for axon health. AP-4-deficient patients suffer from a severe neurodevelopmental and neurodegenerative disorder. Here we identify DAGLB (diacylglycerol lipase-beta), a key enzyme for generation of the endocannabinoid 2-AG (2-arachidonoylglycerol), as a cargo of AP-4 vesicles. During normal development, DAGLB is targeted to the axon, where 2-AG signalling drives axonal growth. We show that DAGLB accumulates at the trans-Golgi network of AP-4-deficient cells, that axonal DAGLB levels are reduced in neurons from a patient with AP-4 deficiency, and that 2-AG levels are reduced in the brains of AP-4 knockout mice. Importantly, we demonstrate that neurite growth defects of AP-4-deficient neurons are rescued by inhibition of MGLL (monoacylglycerol lipase), the enzyme responsible for 2-AG hydrolysis. Our study supports a new model for AP-4 deficiency syndrome in which axon growth defects arise through spatial dysregulation of endocannabinoid signalling. Davies et al. identify a putative mechanism underlying the childhood neurological disorder AP-4 deficiency syndrome. In the absence of AP-4, an enzyme that makes 2-AG is not transported to the axon, leading to axonal growth defects, which can be rescued by inhibition of 2-AG breakdown.
Collapse
Affiliation(s)
- Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| | - Julian E Alecu
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marvin Ziegler
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, Heidelberg, 69120, Germany
| | - Catherine G Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Fabrizio Merciai
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.,Department of Pharmacy and PhD Program in Drug Discovery and Development, University of Salerno, 84084, Fisciano, SA, Italy
| | - Hellen Jumo
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wardiya Afshar-Saber
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|