1
|
Fatima SA, Akhtar B, Sharif A, Khan MI, Shahid M, Anjum F, Hussain F, Mobashar A, Ashraf M. Implications of nociceptor receptors and immune modulation: emerging therapeutic targets for autoimmune diseases. Inflammopharmacology 2025; 33:959-977. [PMID: 39955696 DOI: 10.1007/s10787-025-01653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Chronic painful autoimmune disorders such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatoid arthritis (RA) induce significant discomfort. They are defined by persistent inflammation and immune-mediated tissue injury. The activation and sensitisation of nociceptors, mutated in various disorders, are fundamental components contributing to the pain experienced in these conditions. Recent discoveries indicate that immunological mediators and nociceptive receptors interact functionally within peripheral and central sensitisation pathways, amplifying chronic pain. This research examines the involvement of nociceptors in rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. It explores how immune cells and pro-inflammatory cytokines induce, sensitise and regulate various nociceptive receptors (P2X, TRPA1 and TRPV1). Finally, we address possible future directions with respect to the treatment of long-lasting effects on immunity, and what new drug targets could be pursued as well, in order to counteract such either neuro-immune interactions in conditions involving the immunological system. By studying nociceptive mechanisms across autoimmune illnesses, we want to identify shared pathways and activation of nociceptors specific to individual diseases. This will shed insight on potential therapies for managing pain associated with autoimmune diseases.
Collapse
Affiliation(s)
- Syeda Asloob Fatima
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, Faculty of Health and Pharmaceutical Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Fatma Hussain
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Maham Ashraf
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Parichatikanond W, Duangrat R, Nuamnaichati N, Mangmool S. Role of A 1 adenosine receptor in cardiovascular diseases: Bridging molecular mechanisms with therapeutic opportunities. Exp Mol Pathol 2025; 141:104952. [PMID: 39879680 DOI: 10.1016/j.yexmp.2025.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Adenosine serves as a critical homeostatic regulator, exerting influence over physiological and pathological conditions in the cardiovascular system. During cellular stress, increased extracellular adenosine levels have been implicated in conferring cardioprotective effects through the activation of adenosine receptors with the A1 adenosine receptor subtype showing the highest expression in the heart. A1 adenosine receptor stimulation inhibits adenylyl cyclase activity via heterotrimeric Gi proteins, leading to the activation of distinct downstream effectors involved in cardiovascular homeostasis. While the comprehensive characterization of the pharmacological functions and intracellular signaling pathways associated with the A1 adenosine receptor subtype is still ongoing, this receptor is widely recognized as a crucial pharmacological target for the treatment of various states of cardiovascular diseases (CVDs). In this review, we focus on elucidating signal transduction of A1 adenosine receptor, particularly Gi protein-dependent and -independent pathways, and their relevance to cardiovascular protective effects as well as pathological consequences during cellular and tissue stresses in the cardiovascular system. Additionally, we provide comprehensive updates and detailed insights into a range of A1 adenosine receptor agonists and antagonists, detailing their development and evaluation through preclinical and clinical studies with a specific focus on their potential for the management of CVDs, especially heart diseases.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Narawat Nuamnaichati
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Lutomski CA, Bennett JL, El-Baba TJ, Wu D, Hinkle JD, Burnap SA, Liko I, Mullen C, Syka JEP, Struwe WB, Robinson CV. Defining proteoform-specific interactions for drug targeting in a native cell signalling environment. Nat Chem 2025; 17:204-214. [PMID: 39806141 PMCID: PMC11794133 DOI: 10.1038/s41557-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Understanding the dynamics of membrane protein-ligand interactions within a native lipid bilayer is a major goal for drug discovery. Typically, cell-based assays are used, however, they are often blind to the effects of protein modifications. In this study, using the archetypal G protein-coupled receptor rhodopsin, we found that the receptor and its effectors can be released directly from retina rod disc membranes using infrared irradiation in a mass spectrometer. Subsequent isolation and dissociation by infrared multiphoton dissociation enabled the sequencing of individual retina proteoforms. Specifically, we categorized distinct proteoforms of rhodopsin, localized labile palmitoylations, discovered a Gβγ proteoform that abolishes membrane association and defined lipid modifications on G proteins that influence their assembly. Given reports of undesirable side-effects involving vision, we characterized the off-target drug binding of two phosphodiesterase 5 inhibitors, vardenafil and sildenafil, to the retina rod phosphodiesterase 6 (PDE6). The results demonstrate differential off-target reactivity with PDE6 and an interaction preference for lipidated proteoforms of G proteins. In summary, this study highlights the opportunities for probing proteoform-ligand interactions within natural membrane environments.
Collapse
Affiliation(s)
- Corinne A Lutomski
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jack L Bennett
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Tarick J El-Baba
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Sean A Burnap
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Niebrügge N, Trovato O, Praschberger R, Lieb A. Disease-Associated Dopamine Receptor D2 Variants Exhibit Functional Consequences Depending on Different Heterotrimeric G-Protein Subunit Combinations. Biomedicines 2024; 13:46. [PMID: 39857630 PMCID: PMC11761627 DOI: 10.3390/biomedicines13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Dopamine receptors (DRs) are G-protein-coupled receptors (GPCRs) found in the central nervous system (CNS). DRs are essential for mediating various downstream signaling cascades and play a critical role in regulating the dopaminergic nigrostriatal pathway, which is involved in motor control. Recently, mutations in DRD2 (WT), p.Ile212Phe (I212F), and p.Met345Arg (M345R) have been associated with hyperkinetic movement disorders and shown to alter heterotrimeric G-protein complex signaling and β-arrestin recruitment. Methods: To conduct a detailed investigation of the I212F and M345R functional phenotypes, we used the TRansdUcer PATHway (TRUPATH) assay to study heterotrimeric G-protein recruitment and the Parallel Receptorome Expression and Screening via Transcriptional Output (PRESTO-Tango) assay to evaluate transcriptional activation following arrestin translocation for β-arrestin recruitment. Results: In our study, we could confirm the reported mutant's loss-of-function phenotype in β-arrestin 2 recruitment (reduced agonist potency and decreased maximal signaling efficacy in comparison to the WT). However, a detailed analysis of basal/constitutive activity also revealed a gain-of-function phenotype for mutant M345R. For a more comprehensive investigation of heterotrimeric G-protein complex signaling, we investigated the impact of WT mutants in combination with (i) a specifically suggested assay, and (ii) the most abundantly expressed heterotrimeric G-protein complex combinations in WT receptor-enriched regions. We were able to confirm the reported gain-of-function phenotype by Rodriguez-Contreras et al. and extend it by the use of the most abundant heterotrimeric G-protein subunits, GαoA and Gαi1, β1 and β2, and γ3 and γ7, in mouse and human basal ganglia. Conclusions: Although our results indicate that the interaction of the two variants with the most highly expressed heterotrimeric G-protein complex subunit combinations also results in a gain-of-function phenotype, they also clearly demonstrate that the phenotype can be significantly altered, dependent on heterotrimeric G-protein complex expression.
Collapse
Affiliation(s)
- Nele Niebrügge
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Olga Trovato
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Roman Praschberger
- Institute of Human Genetic, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Lieb
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
6
|
Brands J, Bravo S, Jürgenliemke L, Grätz L, Schihada H, Frechen F, Alenfelder J, Pfeil C, Ohse PG, Hiratsuka S, Kawakami K, Schmacke LC, Heycke N, Inoue A, König G, Pfeifer A, Wachten D, Schulte G, Steinmetzer T, Watts VJ, Gomeza J, Simon K, Kostenis E. A molecular mechanism to diversify Ca 2+ signaling downstream of Gs protein-coupled receptors. Nat Commun 2024; 15:7684. [PMID: 39227390 PMCID: PMC11372221 DOI: 10.1038/s41467-024-51991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
A long-held tenet in inositol-lipid signaling is that cleavage of membrane phosphoinositides by phospholipase Cβ (PLCβ) isozymes to increase cytosolic Ca2+ in living cells is exclusive to Gq- and Gi-sensitive G protein-coupled receptors (GPCRs). Here we extend this central tenet and show that Gs-GPCRs also partake in inositol-lipid signaling and thereby increase cytosolic Ca2+. By combining CRISPR/Cas9 genome editing to delete Gαs, the adenylyl cyclase isoforms 3 and 6, or the PLCβ1-4 isozymes, with pharmacological and genetic inhibition of Gq and G11, we pin down Gs-derived Gβγ as driver of a PLCβ2/3-mediated cytosolic Ca2+ release module. This module does not require but crosstalks with Gαs-dependent cAMP, demands Gαq to release PLCβ3 autoinhibition, but becomes Gq-independent with mutational disruption of the PLCβ3 autoinhibited state. Our findings uncover the key steps of a previously unappreciated mechanism utilized by mammalian cells to finetune their calcium signaling regulation through Gs-GPCRs.
Collapse
Affiliation(s)
- Julian Brands
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Sergi Bravo
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Lars Jürgenliemke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 2873, University of Bonn, Bonn, Germany
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Fabian Frechen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Cy Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paul Georg Ohse
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
| | - Luna C Schmacke
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Gabriele König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Jesús Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Pelletier OB, Brunori G, Wang Y, Robishaw JD. Post-transcriptional regulation and subcellular localization of G-protein γ7 subunit: implications for striatal function and behavioral responses to cocaine. Front Neuroanat 2024; 18:1394659. [PMID: 38764487 PMCID: PMC11100332 DOI: 10.3389/fnana.2024.1394659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
The striatal D1 dopamine receptor (D1R) and A2a adenosine receptor (A2aR) signaling pathways play important roles in drug-related behaviors. These receptors activate the Golf protein comprised of a specific combination of αolfβ2γ7 subunits. During assembly, the γ7 subunit sets the cellular level of the Golf protein. In turn, the amount of Golf protein determines the collective output from both D1R and A2aR signaling pathways. This study shows the Gng7 gene encodes multiple γ7 transcripts differing only in their non-coding regions. In striatum, Transcript 1 is the predominant isoform. Preferentially expressed in the neuropil, Transcript 1 is localized in dendrites where it undergoes post-transcriptional regulation mediated by regulatory elements in its 3' untranslated region that contribute to translational suppression of the γ7 protein. Earlier studies on gene-targeted mice demonstrated loss of γ7 protein disrupts assembly of the Golf protein. In the current study, morphological analysis reveals the loss of the Golf protein is associated with altered dendritic morphology of medium spiny neurons. Finally, behavioral analysis of conditional knockout mice with cell-specific deletion of the γ7 protein in distinct populations of medium spiny neurons reveals differential roles of the Golf protein in mediating behavioral responses to cocaine. Altogether, these findings provide a better understanding of the regulation of γ7 protein expression, its impact on Golf function, and point to a new potential target and mechanisms for treating addiction and related disorders.
Collapse
Affiliation(s)
- Oliver B. Pelletier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gloria Brunori
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yingcai Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Janet D. Robishaw
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Stott JB, Greenwood IA. G protein βγ regulation of KCNQ-encoded voltage-dependent K channels. Front Physiol 2024; 15:1382904. [PMID: 38655029 PMCID: PMC11035767 DOI: 10.3389/fphys.2024.1382904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The KCNQ family is comprised of five genes and the expression products form voltage-gated potassium channels (Kv7.1-7.5) that have a major impact upon cellular physiology in many cell types. Each functional Kv7 channel forms as a tetramer that often associates with proteins encoded by the KCNE gene family (KCNE1-5) and is critically reliant upon binding of phosphatidylinositol bisphosphate (PIP2) and calmodulin. Other modulators like A-kinase anchoring proteins, ubiquitin ligases and Ca-calmodulin kinase II alter Kv7 channel function and trafficking in an isoform specific manner. It has now been identified that for Kv7.4, G protein βγ subunits (Gβγ) can be added to the list of key regulators and is paramount for channel activity. This article provides an overview of this nascent field of research, highlighting themes and directions for future study.
Collapse
Affiliation(s)
| | - Iain A. Greenwood
- Vascular Biology Research Group, Institute of Molecular and Clinical Sciences, St George’s University of London, London, United Kingdom
| |
Collapse
|
9
|
Voss JH. Recommended Tool Compounds: Application of YM-254890 and FR900359 to Interrogate Gα q/11-Mediated Signaling Pathways. ACS Pharmacol Transl Sci 2023; 6:1790-1800. [PMID: 38093837 PMCID: PMC10714435 DOI: 10.1021/acsptsci.3c00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2024]
Abstract
The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are natural products, which inhibit heterotrimeric Gαq/11 proteins with high potency and outstanding selectivity. Historically, pharmacological modulation of Gα proteins was only achieved by treatment with pertussis toxin and cholera toxin, whose application can be tedious and is restricted to the inhibition of Gαi/o proteins and activation of Gαs proteins, respectively. The breakthrough discovery and characterization of YM and FR rendered the closely related Gαq, Gα11, and Gα14 proteins amenable to pharmacological inhibition, and since then, both compounds have become widely used in molecular pharmacology and were also proven to be efficacious in animal models of disease. In the past years, both YM and FR were thoroughly characterized and have substantially contributed to an improved understanding of Gαq/11 signaling on a molecular and cellular level. Yet, the possibilities to interrogate Gαq/11 signaling in complex systems have only been exploited in a very limited number of studies, whose promising initial results warrant further application of YM and FR in basic and translational research. As both compounds have become commercially available as of late, this review focuses on their application in cell-based assays and in vivo systems, highlighting their qualities as tool compounds and providing instructions for their use.
Collapse
Affiliation(s)
- Jan Hendrik Voss
- Department of Physiology and Pharmacology,
Section of Receptor Biology and Signaling, Karolinska Institutet, S-171 65 Stockholm, Sweden
| |
Collapse
|
10
|
Lin J, Scullion L, Garland CJ, Dora K. Gβγ subunit signalling underlies neuropeptide Y-stimulated vasoconstriction in rat mesenteric and coronary arteries. Br J Pharmacol 2023; 180:3045-3058. [PMID: 37460913 PMCID: PMC10953346 DOI: 10.1111/bph.16192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Raised serum concentrations of the sympathetic co-transmitter neuropeptide Y (NPY) are linked to cardiovascular diseases. However, the signalling mechanism for vascular smooth muscle (VSM) constriction to NPY is poorly understood. Therefore, the present study investigated the mechanisms of NPY-induced vasoconstriction in rat small mesenteric (RMA) and coronary (RCA) arteries. EXPERIMENTAL APPROACH Third-order mesenteric or intra-septal arteries from male Wistar rats were assessed in wire myographs for isometric tension, VSM membrane potential and VSM intracellular Ca2+ events. KEY RESULTS NPY stimulated concentration-dependent vasoconstriction in both RMA and RCA, which was augmented by blocking NO synthase or endothelial denudation in RMA. NPY-mediated vasoconstriction was blocked by the selective Y1 receptor antagonist BIBO 3304 and Y1 receptor protein expression was detected in both the VSM and endothelial cells in RMA and RCA. The selective Gβγ subunit inhibitor gallein and the PLC inhibitor U-73122 attenuated NPY-induced vasoconstriction. Signalling via the Gβγ-PLC pathway stimulated VSM Ca2+ waves and whole-field synchronised Ca2+ flashes in RMA and increased the frequency of Ca2+ flashes in myogenically active RCA. Furthermore, in RMA, the Gβγ pathway linked NPY to VSM depolarization and generation of action potential-like spikes associated with intense vasoconstriction. This depolarization activated L-type voltage-gated Ca2+ channels, as nifedipine abolished NPY-mediated vasoconstriction. CONCLUSIONS AND IMPLICATIONS These data suggest that the Gβγ subunit, which dissociates upon Y1 receptor activation, initiates VSM membrane depolarization and Ca2+ mobilisation to cause vasoconstriction. This model may help explain the development of microvascular vasospasm during raised sympathetic nerve activity.
Collapse
Affiliation(s)
- JinHeng Lin
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - Kim Dora
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
11
|
Rysiewicz B, Błasiak E, Mystek P, Dziedzicka-Wasylewska M, Polit A. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi 3 heterotrimers. Cell Commun Signal 2023; 21:279. [PMID: 37817242 PMCID: PMC10566112 DOI: 10.1186/s12964-023-01307-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Specific interactions between G protein-coupled receptors (GPCRs) and G proteins play a key role in mediating signaling events. While there is little doubt regarding receptor preference for Gα subunits, the preferences for specific Gβ and Gγ subunits and the effects of different Gβγ dimer compositions on GPCR signaling are poorly understood. In this study, we aimed to investigate the subcellular localization and functional response of Gαi3-based heterotrimers with different combinations of Gβ and Gγ subunits. METHODS Live-cell imaging microscopy and colocalization analysis were used to investigate the subcellular localization of Gαi3 in combination with Gβ1 or Gβ2 heterotrimers, along with representative Gγ subunits. Furthermore, fluorescence lifetime imaging microscopy (FLIM-FRET) was used to investigate the nanoscale distribution of Gαi3-based heterotrimers in the plasma membrane, specifically with the dopamine D2 receptor (D2R). In addition, the functional response of the system was assessed by monitoring intracellular cAMP levels and conducting bioinformatics analysis to further characterize the heterotrimer complexes. RESULTS Our results show that Gαi3 heterotrimers mainly localize to the plasma membrane, although the degree of colocalization is influenced by the accompanying Gβ and Gγ subunits. Heterotrimers containing Gβ2 showed slightly lower membrane localization compared to those containing Gβ1, but certain combinations, such as Gαi3β2γ8 and Gαi3β2γ10, deviated from this trend. Examination of the spatial arrangement of Gαi3 in relation to D2R and of changes in intracellular cAMP level showed that the strongest functional response is observed for those trimers for which the distance between the receptor and the Gα subunit is smallest, i.e. complexes containing Gβ1 and Gγ8 or Gγ10 subunit. Deprivation of Gαi3 lipid modifications resulted in a significant decrease in the amount of protein present in the cell membrane, but did not always affect intracellular cAMP levels. CONCLUSION Our studies show that the composition of G protein heterotrimers has a significant impact on the strength and specificity of GPCR-mediated signaling. Different heterotrimers may exhibit different conformations, which further affects the interactions of heterotrimers and GPCRs, as well as their interactions with membrane lipids. This study contributes to the understanding of the complex signaling mechanisms underlying GPCR-G-protein interactions and highlights the importance of the diversity of Gβ and Gγ subunits in G-protein signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
12
|
Bardwell L, Thorner J. Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective. Enzymes 2023; 54:137-170. [PMID: 37945169 DOI: 10.1016/bs.enz.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
13
|
Vilardaga JP, Clark LJ, White AD, Sutkeviciute I, Lee JY, Bahar I. Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocr Rev 2023; 44:474-491. [PMID: 36503956 PMCID: PMC10461325 DOI: 10.1210/endrev/bnac032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling. These include transient signaling at the plasma membrane and sustained signaling from internalized PTH1R within early endosomes mediated by PTH. Here we discuss recent structural, cell signaling, and in vivo studies that unveil potential pharmacological outputs of the spatial versus temporal dimension of PTH1R signaling via cAMP. Notably, the combination of molecular dynamics simulations and elastic network model-based methods revealed how precise modulation of PTH signaling responses is achieved through structure-encoded allosteric coupling within the receptor and between the peptide hormone binding site and the G protein coupling interface. The implications of recent findings are now being explored for addressing key questions on how location bias in receptor signaling contributes to pharmacological functions, and how to drug a difficult target such as the PTH1R toward discovering nonpeptidic small molecule candidates for the treatment of metabolic bone and mineral diseases.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lisa J Clark
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alex D White
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Khan SM, Martin RD, Bayne A, Pétrin D, Bourque K, Jones-Tabah J, Bouazza C, Blaney J, Lau J, Martins-Cannavino K, Gora S, Zhang A, MacKinnon S, Trieu P, Clarke PBS, Trempe JF, Tanny JC, Hébert TE. Gβγ subunits colocalize with RNA polymerase II and regulate transcription in cardiac fibroblasts. J Biol Chem 2023; 299:103064. [PMID: 36841480 PMCID: PMC10060754 DOI: 10.1016/j.jbc.2023.103064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Gβγ subunits mediate many different signaling processes in various compartments of the cell, including the nucleus. To gain insight into the functions of nuclear Gβγ signaling, we investigated the functional role of Gβγ signaling in the regulation of GPCR-mediated gene expression in primary rat neonatal cardiac fibroblasts. We identified a novel, negative, regulatory role for the Gβ1γ dimer in the fibrotic response. Depletion of Gβ1 led to derepression of the fibrotic response at the mRNA and protein levels under basal conditions and an enhanced fibrotic response after sustained stimulation of the angiotensin II type I receptor. Our genome-wide chromatin immunoprecipitation experiments revealed that Gβ1 colocalized and interacted with RNA polymerase II on fibrotic genes in an angiotensin II-dependent manner. Additionally, blocking transcription with inhibitors of Cdk9 prevented association of Gβγ with transcription complexes. Together, our findings suggest that Gβ1γ is a novel transcriptional regulator of the fibrotic response that may act to restrict fibrosis to conditions of sustained fibrotic signaling. Our work expands the role for Gβγ signaling in cardiac fibrosis and may have broad implications for the role of nuclear Gβγ signaling in other cell types.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Andrew Bayne
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Celia Bouazza
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jacob Blaney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jenny Lau
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | - Sarah Gora
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Andy Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Sarah MacKinnon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Phan Trieu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jean-François Trempe
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
15
|
Structural Basis of the Interaction of the G Proteins, Gαi 1, Gβ 1γ 2 and Gαi 1β 1γ 2, with Membrane Microdomains and Their Relationship to Cell Localization and Activity. Biomedicines 2023; 11:biomedicines11020557. [PMID: 36831093 PMCID: PMC9953545 DOI: 10.3390/biomedicines11020557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
GPCRs receive signals from diverse messengers and activate G proteins that regulate downstream signaling effectors. Efficient signaling is achieved through the organization of these proteins in membranes. Thus, protein-lipid interactions play a critical role in bringing G proteins together in specific membrane microdomains with signaling partners. Significantly, the molecular basis underlying the membrane distribution of each G protein isoform, fundamental to fully understanding subsequent cell signaling, remains largely unclear. We used model membranes with lipid composition resembling different membrane microdomains, and monomeric, dimeric and trimeric Gi proteins with or without single and multiple mutations to investigate the structural bases of G protein-membrane interactions. We demonstrated that cationic amino acids in the N-terminal region of the Gαi1 and C-terminal region of the Gγ2 subunit, as well as their myristoyl, palmitoyl and geranylgeranyl moieties, define the differential G protein form interactions with membranes containing different lipid classes (PC, PS, PE, SM, Cho) and the various microdomains they may form (Lo, Ld, PC bilayer, charged, etc.). These new findings in part explain the molecular basis underlying amphitropic protein translocation to membranes and localization to different membrane microdomains and the role of these interactions in cell signal propagation, pathophysiology and therapies targeted to lipid membranes.
Collapse
|
16
|
Multiple potassium channel tetramerization domain (KCTD) family members interact with Gβγ, with effects on cAMP signaling. J Biol Chem 2023; 299:102924. [PMID: 36736897 PMCID: PMC9976452 DOI: 10.1016/j.jbc.2023.102924] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) initiate an array of intracellular signaling programs by activating heterotrimeric G proteins (Gα and Gβγ subunits). Therefore, G protein modifiers are well positioned to shape GPCR pharmacology. A few members of the potassium channel tetramerization domain (KCTD) protein family have been found to adjust G protein signaling through interaction with Gβγ. However, comprehensive details on the KCTD interaction with Gβγ remain unresolved. Here, we report that nearly all the 25 KCTD proteins interact with Gβγ. In this study, we screened Gβγ interaction capacity across the entire KCTD family using two parallel approaches. In a live cell bioluminescence resonance energy transfer-based assay, we find that roughly half of KCTD proteins interact with Gβγ in an agonist-induced fashion, whereas all KCTD proteins except two were found to interact through coimmunoprecipitation. We observed that the interaction was dependent on an amino acid hot spot in the C terminus of KCTD2, KCTD5, and KCTD17. While KCTD2 and KCTD5 require both the Bric-à-brac, Tramtrack, Broad complex domain and C-terminal regions for Gβγ interaction, we uncovered that the KCTD17 C terminus is sufficient for Gβγ interaction. Finally, we demonstrated the functional consequence of the KCTD-Gβγ interaction by examining sensitization of the adenylyl cyclase-cAMP pathway in live cells. We found that Gβγ-mediated sensitization of adenylyl cyclase 5 was blunted by KCTD. We conclude that the KCTD family broadly engages Gβγ to shape GPCR signal transmission.
Collapse
|
17
|
Zhang H, Ren L, Shivnaraine RV. Targeting GPCRs to treat cardiac fibrosis. Front Cardiovasc Med 2022; 9:1011176. [PMID: 36277752 PMCID: PMC9582444 DOI: 10.3389/fcvm.2022.1011176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis occurs ubiquitously in ischemic heart failure, genetic cardiomyopathies, diabetes mellitus, and aging. It triggers myocardial stiffness, which impairs cardiac function, ultimately progressing to end-stage heart failure and increased mortality. Although several targets for anti-fibrotic therapies have been identified, including TGF-β and receptor tyrosine kinase, there is currently no FDA-approved drug specifically targeting cardiac fibrosis. G protein-coupled receptors (GPCRs) are integral, multipass membrane-bound receptors that exhibit diverse and cell-specific expression, offering novel and unrealized therapeutic targets for cardiac fibrosis. This review highlights the emerging roles of several GPCRs and briefly explores their downstream pathways that are crucial in cardiac fibrosis. We will not only provide an overview of the GPCRs expressed on cardiac fibroblasts that are directly involved in myofibroblast activation but also describe those GPCRs which contribute to cardiac fibrosis via indirect crosstalk mechanisms. We also discuss the challenges of identifying novel effective therapies for cardiac fibrosis and offer strategies to circumvent these challenges.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Hao Zhang
| | - Lu Ren
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
18
|
Zhang Y, Yang X, Han C, Wang D, Ma Y, Wei W. Paeoniflorin‑6'O‑benzene sulfonate suppresses fibroblast‑like synoviocytes proliferation and migration in rheumatoid arthritis through regulating GRK2‑Gβγ interaction. Exp Ther Med 2022; 24:523. [DOI: 10.3892/etm.2022.11450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuwen Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Dandan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
19
|
Roy Choudhury S, Pandey S. SymRK-dependent phosphorylation of Gα protein and its role in signaling during soybean (Glycine max) nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:277-291. [PMID: 35048428 DOI: 10.1111/tpj.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Heterotrimeric G proteins, comprised of Gα, Gβ and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gβγ, potentially allowing for constitutive signaling by the freed Gβγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
20
|
Vincenzi M, Milella MS, D’Ottavio G, Caprioli D, Reverte I, Maftei D. Targeting Chemokines and Chemokine GPCRs to Enhance Strong Opioid Efficacy in Neuropathic Pain. Life (Basel) 2022; 12:life12030398. [PMID: 35330149 PMCID: PMC8955776 DOI: 10.3390/life12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain (NP) originates from an injury or disease of the somatosensory nervous system. This heterogeneous origin and the possible association with other pathologies make the management of NP a real challenge. To date, there are no satisfactory treatments for this type of chronic pain. Even strong opioids, the gold-standard analgesics for nociceptive and cancer pain, display low efficacy and the paradoxical ability to exacerbate pain sensitivity in NP patients. Mounting evidence suggests that chemokine upregulation may be a common mechanism driving NP pathophysiology and chronic opioid use-related consequences (analgesic tolerance and hyperalgesia). Here, we first review preclinical studies on the role of chemokines and chemokine receptors in the development and maintenance of NP. Second, we examine the change in chemokine expression following chronic opioid use and the crosstalk between chemokine and opioid receptors. Then, we examine the effects of inhibiting specific chemokines or chemokine receptors as a strategy to increase opioid efficacy in NP. We conclude that strong opioids, along with drugs that block specific chemokine/chemokine receptor axis, might be the right compromise for a favorable risk/benefit ratio in NP management.
Collapse
Affiliation(s)
- Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.V.); (I.R.)
| | - Michele Stanislaw Milella
- Toxicology and Poison Control Center Unit, Department of Emergency, Anesthesia and Critical Care, Policlinico Umberto I Hospital-Sapienza University of Rome, 00161 Rome, Italy;
| | - Ginevra D’Ottavio
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Caprioli
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Ingrid Reverte
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Correspondence: (M.V.); (I.R.)
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
| |
Collapse
|
21
|
Ferré S, Ciruela F, Dessauer CW, González-Maeso J, Hébert TE, Jockers R, Logothetis DE, Pardo L. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Pharmacol Ther 2022; 231:107977. [PMID: 34480967 PMCID: PMC9375844 DOI: 10.1016/j.pharmthera.2021.107977] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest group of receptors involved in cellular signaling across the plasma membrane and a major class of drug targets. The canonical model for GPCR signaling involves three components - the GPCR, a heterotrimeric G protein and a proximal plasma membrane effector - that have been generally thought to be freely mobile molecules able to interact by 'collision coupling'. Here, we synthesize evidence that supports the existence of GPCR-effector macromolecular membrane assemblies (GEMMAs) comprised of specific GPCRs, G proteins, plasma membrane effector molecules and other associated transmembrane proteins that are pre-assembled prior to receptor activation by agonists, which then leads to subsequent rearrangement of the GEMMA components. The GEMMA concept offers an alternative and complementary model to the canonical collision-coupling model, allowing more efficient interactions between specific signaling components, as well as the integration of the concept of GPCR oligomerization as well as GPCR interactions with orphan receptors, truncated GPCRs and other membrane-localized GPCR-associated proteins. Collision-coupling and pre-assembled mechanisms are not exclusive and likely both operate in the cell, providing a spectrum of signaling modalities which explains the differential properties of a multitude of GPCRs in their different cellular environments. Here, we explore the unique pharmacological characteristics of individual GEMMAs, which could provide new opportunities to therapeutically modulate GPCR signaling.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Addiction, Intramural Research Program, NIH, DHHS, Baltimore, MD, USA.
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBELL, University of Barcelona, L’Hospitalet de Llobregat, Spain
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec
| | - Ralf Jockers
- University of Paris, Institute Cochin, INSERM, CNRS, Paris, France
| | - Diomedes E. Logothetis
- Laboratory of Electrophysiology, Departments of Pharmaceutical Sciences, Chemistry and Chemical Biology and Center for Drug Discovery, School of Pharmacy at the Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
22
|
Urakubo H, Yagishita S, Kasai H, Kubota Y, Ishii S. The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. PLoS Comput Biol 2021; 17:e1009364. [PMID: 34591840 PMCID: PMC8483376 DOI: 10.1371/journal.pcbi.1009364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.
Collapse
Affiliation(s)
- Hidetoshi Urakubo
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- Section of Electron Microscopy, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Yoshiyuki Kubota
- Section of Electron Microscopy, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| |
Collapse
|
23
|
Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 2021; 321:F50-F68. [PMID: 34029142 PMCID: PMC8321805 DOI: 10.1152/ajprenal.00077.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA sequencing and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/) using multiple online data sources. We used this list to mine segment-specific and cell type-specific expression data from RNA-sequencing studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micropuncture studies confirmed patterns of expression for well-known receptors and identified poorly studied GPCRs that are likely to play roles in the regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors to provide guidance for future studies.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Cai Z, Yu C, Li S, Wang C, Fan Y, Ji Q, Chen F, Li W. A Novel Classification of Glioma Subgroup, Which Is Highly Correlated With the Clinical Characteristics and Tumor Tissue Characteristics, Based on the Expression Levels of Gβ and Gγ Genes. Front Oncol 2021; 11:685823. [PMID: 34222011 PMCID: PMC8250418 DOI: 10.3389/fonc.2021.685823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Glioma is a classical type of primary brain tumors that is most common seen in adults, and its high heterogeneity used to be a reference standard for subgroup classification. Glioma has been diagnosed based on histopathology, grade, and molecular markers including IDH mutation, chromosome 1p/19q loss, and H3K27M mutation. This subgroup classification cannot fully meet the current needs of clinicians and researchers. We, therefore, present a new subgroup classification for glioma based on the expression levels of Gβ and Gγ genes to complement studies on glioma and Gβγ subunits, and to support clinicians to assess a patient’s tumor status. Methods Glioma samples retrieved from the CGGA database and the TCGA database. We clustered the gliomas into different groups by using expression values of Gβ and Gγ genes extracted from RNA sequencing data. The Kaplan–Meier method with a two-sided log-rank test was adopted to compare the OS of the patients between GNB2 group and non-GNB2 group. Univariate Cox regression analysis was referred to in order to investigate the prognostic role of each Gβ and Gγ genes. KEGG and ssGSEA analysis were applied to identify highly activated pathways. The “estimate” package, “GSVA” package, and the online analytical tools CIBERSORTx were employed to evaluate immune cell infiltration in glioma samples. Results Three subgroups were identified. Each subgroup had its own specific pathway activation pattern and other biological characteristics. High M2 cell infiltration was observed in the GNB2 subgroup. Different subgroups displayed different sensitivities to chemotherapeutics. GNB2 subgroup predicted poor survival in patients with gliomas, especially in patients with LGG with mutation IDH and non-codeleted 1p19q. Conclusion The subgroup classification we proposed has great application value. It can be used to select chemotherapeutic drugs and the prognosis of patients with target gliomas. The unique relationships between subgroups and tumor-related pathways are worthy of further investigation to identify therapeutic Gβγ heterodimer targets.
Collapse
Affiliation(s)
- Zehao Cai
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Chunna Yu
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Shenglan Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Can Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Yaqiong Fan
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Qiang Ji
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| |
Collapse
|
25
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
26
|
Ma Q, Cao Z, Li H, Wang W, Tian Y, Yan L, Liao Y, Chen X, Chen Y, Shi Y, Tang S, Zhou N. Two naturally occurring mutations of human GPR103 define distinct G protein selection bias. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119046. [PMID: 33872671 DOI: 10.1016/j.bbamcr.2021.119046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
The neuropeptide 26RFa plays important roles in the regulation of many physiological functions. 26RFa has been recognized as an endogenous ligand for receptor GPR103. In the present study, we demonstrate that GPR103 dually couples to Gαq and Gαi/o proteins. However, two naturally occurring missense mutations were identified from a young male patient. In the first, Y68H, induction of Ca2+ mobilization was noted without detection of ERK1/2 activation. In the second, R371W, the potential to activate ERK1/2 signaling was retained but with failure to evoke Ca2+ mobilization. Further analysis provides evidence that Gαq, L-type Ca2+ channel and PKCβI and βII are involved in the Y68H-mediated signaling pathway, whereas Gαi/o, Gβγ, and PKCζ are implicated in the R371W-induced signaling. Our results demonstrate that two point mutations, Y68H and R371W, affect the equilibrium between the different receptor conformations, leading to alteration of G protein-coupling preferences. Importantly, these findings provide a foundation for future elucidation of GPCR-mediated biased signaling and the physiological implications of their bias.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, MOE Frontier Center of Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanzheng Li
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuan Liao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangnan Chen
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shaohua Tang
- Wenzhou Key Laboratory of Birth Defects, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 32500, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
27
|
Kwon HM, Kim HS, Kim SB, Park JH, Nam DE, Lee AJ, Nam SH, Hwang S, Chung KW, Choi BO. Clinical and Neuroimaging Features in Charcot-Marie-Tooth Patients with GNB4 Mutations. Life (Basel) 2021; 11:life11060494. [PMID: 34071515 PMCID: PMC8227704 DOI: 10.3390/life11060494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023] Open
Abstract
Charcot–Marie–Tooth disease (CMT) is the most common inherited peripheral neuropathy. Mutations in the GNB4 gene cause dominant intermediate CMT type F (CMTDIF). The aim of this study is to investigate phenotypic heterogeneities and characteristics of CMT patients with GNB4 mutations. We enrolled 1143 Korean CMT families and excluded 344 families with a PMP22 duplication. We further analyzed the 799 remaining families to find their GNB4 mutations using whole-exome sequencing (WES). We identified two mutations (p.Gly77Arg and p.Lys89Glu) in three families, among which a heterozygous p.Gly77Arg mutation was novel. In addition, a significant uncertain variant (p.Thr177Asn) was observed in one family. The frequency of the GNB4 mutation in the Korean population is 0.38% in PMP22 duplication-negative families. All three families showed de novo mutation. Electrophysiological findings regarding the p.Lys89Glu mutation showed that the motor nerve conduction velocity (MNCV) of the median nerve was markedly reduced, indicating demyelinating neuropathy, and sural nerve biopsy revealed severe loss of myelinated axons with onion bulb formation. Lower extremity Magnetic Resonance Imaging (MRI) demonstrated relatively more severe intramuscular fat infiltrations in demyelinating type (p.Lys89Glu mutation) patients compared to intermediate type (p.Gly77Arg mutation) patients. The anterolateral and superficial posterior compartment muscles of the distal calf were preferentially affected in demyelinating type patients. Therefore, it seems that the investigated GNB4 mutations do cause not only the known intermediate type but also demyelinating-type neuropathy. We first presented three Korean families with GNB4 mutations and found phenotypic heterogeneities of both intermediate and demyelinating neuropathy. We suggest that those findings are useful for the differential diagnosis of CMT patients with unknown GNB4 variants.
Collapse
Affiliation(s)
- Hye Mi Kwon
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.M.K.); (J.H.P.)
| | - Hyun Su Kim
- Departments of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 06351, Korea;
| | - Jae Hong Park
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.M.K.); (J.H.P.)
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (D.E.N.); (A.J.L.)
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (D.E.N.); (A.J.L.)
| | - Soo Hyun Nam
- Institute of Stem Cell and Regenerative Medicine, Samsung Medical Center, Seoul 06351, Korea;
| | - Soohyun Hwang
- Department of Pathology and Translational Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (D.E.N.); (A.J.L.)
- Correspondence: (K.W.C.); (B.-O.C.); Tel.: +82-41-850-8506 (K.W.C.); +82-2-3410-1296 (B.-O.C.); Fax: +82-41-850-0957 (K.W.C.); +82-2-3410-0052 (B.-O.C.)
| | - Byung-Ok Choi
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.M.K.); (J.H.P.)
- Institute of Stem Cell and Regenerative Medicine, Samsung Medical Center, Seoul 06351, Korea;
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (K.W.C.); (B.-O.C.); Tel.: +82-41-850-8506 (K.W.C.); +82-2-3410-1296 (B.-O.C.); Fax: +82-41-850-0957 (K.W.C.); +82-2-3410-0052 (B.-O.C.)
| |
Collapse
|
28
|
Tian M, Wu Z, Heng J, Chen F, Guan W, Zhang S. Novel advances in understanding fatty acid-binding G protein-coupled receptors and their roles in controlling energy balance. Nutr Rev 2021; 80:187-199. [PMID: 34027989 DOI: 10.1093/nutrit/nuab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/10/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes, obesity, and other metabolic diseases have been recognized as the main factors that endanger human health worldwide. Most of these metabolic syndromes develop when the energy balance in the body is disrupted. Energy balance depends upon the systemic regulation of food intake, glucose homeostasis, and lipid metabolism. Fatty acid-binding G protein-coupled receptors (GPCRs) are widely expressed in various types of tissues and cells involved in energy homeostasis regulation. In this review, the distribution and biological functions of fatty acid-binding GPCRs are summarized, particularly with respect to the gut, pancreas, and adipose tissue. A systematic understanding of the physiological functions of the fatty acid-binding GPCRs involved in energy homeostasis regulation will help in identifying novel pharmacological targets for metabolic diseases.
Collapse
Affiliation(s)
- Min Tian
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinghui Heng
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | | |
Collapse
|
29
|
Martemyanov KA. Mechanisms of Gβγ Release upon GPCR Activation. Trends Biochem Sci 2021; 46:703-704. [PMID: 34034924 DOI: 10.1016/j.tibs.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Gβγ release is a key event in the transduction of GPCR signals. However, the molecular mechanisms of this process have been unclear. A recent report by Knight et al. provides important clues into the sequence of events that lead to the liberation of Gβγ upon G protein activation by GPCRs.
Collapse
Affiliation(s)
- Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, USA.
| |
Collapse
|
30
|
Biological characterization of ligands targeting the human CC chemokine receptor 8 (CCR8) reveals the biased signaling properties of small molecule agonists. Biochem Pharmacol 2021; 188:114565. [PMID: 33872569 DOI: 10.1016/j.bcp.2021.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
The human CC chemokine receptor 8 (CCR8) is a promising drug target for cancer immunotherapy and autoimmune disease. Besides human and viral chemokines, previous studies revealed diverse classes of CCR8-targeting small molecules. We characterized a selection of these CCR8 ligands (hCCL1, vCCL1, ZK756326, AZ6; CCR8 agonists and a naphthalene-sulfonamide-based CCR8 antagonist), in in vitro cell-based assays (hCCL1AF647 binding, calcium mobilization, cellular impedance, cell migration, β-arrestin 1/2 recruitment), and used pharmacological tools to determine G protein-dependent and -independent signaling pathways elicited by these ligands. Our data reveal differences in CCR8-mediated signaling induced by chemokines versus small molecules, which was most pronounced in cell migration studies. Human CCL1 most efficiently induced cell migration whereby Gβγ signaling was indispensable. In contrast, Gβγ signaling did not contribute to cell migration induced by other CCR8 ligands (vCCL1, ZK756326, AZ6). Although all tested CCR8 agonists were full agonists for calcium mobilization, a significant contribution for Gβγ signaling herein was only apparent for human and viral CCL1. Despite both Gαi- and Gαq-signaling regulate intracellular Ca2+-release, cellular impedance experiments showed that CCR8 agonists predominantly induce Gαi-dependent signaling. Finally, small molecule agonists displayed higher efficacy in β-arrestin 1 recruitment, which occurred independently of Gαi signaling. Also in this latter assay, only hCCL1-induced activity was dependent on Gβγ-signaling. Our study provides insight into CCR8 signaling and function and demonstrates differential CCR8 activation by different classes of ligands. This reflects the ability of CCR8 small molecules to evoke different subsets of the receptor's signaling repertoire, which categorizes them as biased agonists.
Collapse
|
31
|
Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst 2021; 12:324-337.e5. [PMID: 33667409 DOI: 10.1016/j.cels.2021.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
The signal transduction by G-protein-coupled receptors (GPCRs) is mediated by heterotrimeric G proteins composed from one of the 16 Gα subunits and the inseparable Gβγ complex assembled from a repertoire of 5 Gβ and 12 Gγ subunits. However, the functional role of compositional diversity in Gβγ complexes has been elusive. Using optical biosensors, we examined the function of all Gβγ combinations in living cells and uncovered two major roles of Gβγ diversity. First, we demonstrate that the identity of Gβγ subunits greatly influences the kinetics and efficacy of GPCR responses at the plasma membrane. Second, we show that different Gβγ combinations are selectively dispatched from the plasma membrane to various cellular organelles on a timescale from milliseconds to minutes. We describe the mechanisms regulating these processes and document their implications for GPCR signaling via various Gα subunits, thereby illustrating a role for the compositional diversity of G protein heterotrimers.
Collapse
|
32
|
Pellowe KE, Leslie HM. Ecosystem service lens reveals diverse community values of small-scale fisheries. AMBIO 2021; 50:586-600. [PMID: 33141400 PMCID: PMC7882666 DOI: 10.1007/s13280-020-01405-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/09/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The ocean provides benefits to coastal communities around the world, however, the depth and complexity of people's interactions with marine ecosystems are not well represented in many marine management initiatives. Many fisheries are managed to maximize provisioning value, which is readily quantified, while ignoring cultural values. An ecosystem services approach that includes both provisioning and cultural services will enable managers to better account for the diverse values marine fisheries provide to coastal communities. In this study, we assess community values related to a top fished species, the Mexican chocolate clam, Megapitaria squalida, in Loreto, Baja California Sur, Mexico. We conducted an exploratory analysis based on 42 household surveys, and found that community members perceive multiple provisioning and cultural benefits from the clam, including community economic, historical, and identity values. Despite reporting infrequent harvest and consumption of clams, participants perceive the species as an important part of community identity, highlighting the role of Mexican chocolate clams as a cultural keystone species in the Loreto region. Fisheries management that recognizes the full range of ecosystem services a species contributes to coastal communities will be better equipped to sustain these diverse values into the future.
Collapse
Affiliation(s)
- Kara E. Pellowe
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 106 91 Stockholm, Sweden
- Darling Marine Center, University of Maine, 193 Clarks Cove Road, Walpole, ME 04573 USA
| | - Heather M. Leslie
- Darling Marine Center, University of Maine, 193 Clarks Cove Road, Walpole, ME 04573 USA
- School of Marine Sciences, University of Maine, Orono, MA 04469 USA
| |
Collapse
|
33
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
34
|
Chung YK, Wong YH. Re‐examining the ‘Dissociation Model’ of G protein activation from the perspective of Gβγ signaling. FEBS J 2020; 288:2490-2501. [DOI: 10.1111/febs.15605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yin Kwan Chung
- Division of Life Science and Biotechnology Research Institute Hong Kong University of Science and Technology Hong Kong China
| | - Yung Hou Wong
- Division of Life Science and Biotechnology Research Institute Hong Kong University of Science and Technology Hong Kong China
- State Key Laboratory of Molecular Neuroscience the Molecular Neuroscience Center Hong Kong University of Science and Technology Kowloon China
| |
Collapse
|
35
|
Mohammad Nezhady MA, Rivera JC, Chemtob S. Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery. iScience 2020; 23:101643. [PMID: 33103080 PMCID: PMC7569339 DOI: 10.1016/j.isci.2020.101643] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
GPCRs are the largest receptor family that are involved in virtually all biological processes. Pharmacologically, they are highly druggable targets, as they cover more than 40% of all drugs in the market. Our knowledge of biased signaling provided insight into pharmacology vastly improving drug design to avoid unwanted effects and achieve higher efficacy and selectivity. However, yet another feature of GPCR biology is left largely unexplored, location bias. Recent developments in this field show promising avenues for evolution of new class of pharmaceuticals with greater potential for higher level of precision medicine. Further consideration and understanding of this phenomenon with deep biochemical and molecular insights would pave the road to success. In this review, we critically analyze this perspective and discuss new avenues of investigation.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Sylvain Chemtob
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| |
Collapse
|
36
|
Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Front Pharmacol 2020; 11:1216. [PMID: 32903404 PMCID: PMC7435011 DOI: 10.3389/fphar.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-activated Inwardly Rectifying K+-channel (GIRK) modulates heart rate and neuronal excitability. Following G-Protein Coupled Receptor (GPCR)-mediated activation of heterotrimeric G proteins (Gαβγ), opening of the channel is obtained by direct binding of Gβγ subunits. Interestingly, GIRKs are solely activated by Gβγ subunits released from Gαi/o-coupled GPCRs, despite the fact that all receptor types, for instance Gαq-coupled, are also able to provide Gβγ subunits. It is proposed that this specificity and fast kinetics of activation stem from pre-coupling (or pre-assembly) of proteins within this signaling cascade. However, many studies, including our own, point towards a diffusion-limited mechanism, namely collision coupling. Here, we set out to address this long-standing question by combining electrophysiology, imaging, and mathematical modeling. Muscarinic-2 receptors (M2R) and neuronal GIRK1/2 channels were coexpressed in Xenopus laevis oocytes, where we monitored protein surface expression, current amplitude, and activation kinetics. Densities of expressed M2R were assessed using a fluorescently labeled GIRK channel as a molecular ruler. We then incorporated our results, along with available kinetic data reported for the G-protein cycle and for GIRK1/2 activation, to generate a comprehensive mathematical model for the M2R-G-protein-GIRK1/2 signaling cascade. We find that, without assuming any irreversible interactions, our collision coupling kinetic model faithfully reproduces the rate of channel activation, the changes in agonist-evoked currents and the acceleration of channel activation by increased receptor densities.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Etay Artzy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Hanna Parnas
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Department of Neonatology, Schneider Children's Hospital, Petah Tikva, Israel
| |
Collapse
|
37
|
Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 2020; 21:ijms21145038. [PMID: 32708832 PMCID: PMC7403958 DOI: 10.3390/ijms21145038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.
Collapse
|
38
|
Lismont E, Verbakel L, Vogel E, Corbisier J, Degroot GN, Verdonck R, Verlinden H, Marchal E, Springael JY, Vanden Broeck J. Can BRET-based biosensors be used to characterize G-protein mediated signaling pathways of an insect GPCR, the Schistocerca gregaria CRF-related diuretic hormone receptor? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103392. [PMID: 32387240 DOI: 10.1016/j.ibmb.2020.103392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 05/26/2023]
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound receptors that are considered prime candidates for the development of novel insect pest management strategies. However, the molecular signaling properties of insect GPCRs remain poorly understood. In fact, most studies on insect GPCR signaling are limited to analysis of fluctuations in the secondary messenger molecules calcium (Ca2+) and/or cyclic adenosine monophosphate (cAMP). In the current study, we characterized a corticotropin-releasing factor-related diuretic hormone (CRF-DH) receptor of the desert locust, Schistocerca gregaria. This Schgr-CRF-DHR is mainly expressed in the nervous system and in brain-associated endocrine organs. The neuropeptide Schgr-CRF-DH induced Ca2+-dependent aequorin-based bioluminescent responses in CHO cells co-expressing this receptor with the promiscuous Gα16 protein. Furthermore, when co-expressed with the cAMP-dependent bioluminescence resonance energy transfer (BRET)-based CAMYEL biosensor in HEK293T cells, this receptor elicited dose-dependent agonist-induced responses with an EC50 in the nanomolar range (4.02 nM). In addition, we tested if vertebrate BRET-based G protein biosensors, can also be used to detect direct Gα protein subunit activation by an insect GPCR. Therefore, we analyzed ten different human BRET-based G protein biosensors, representing members of all four Gα protein subfamilies; Gαs, Gαi/o, Gαq/11 and Gα12/13. Our data demonstrate that stimulation of Schgr-CRF-DHR by Schgr-CRF-DH can dose-dependently activate Gαi/o and Gαs biosensors, while no significant effects were observed with the Gαq/11 and Gα12/13 biosensors. Our study paves the way for future biosensor-based studies to analyze the signaling properties of insect GPCRs in both fundamental science and applied research contexts.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elise Vogel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | | | | | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium; Imec, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
39
|
Dziedzic A, Miller E, Saluk-Bijak J, Bijak M. The GPR17 Receptor-A Promising Goal for Therapy and a Potential Marker of the Neurodegenerative Process in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21051852. [PMID: 32182666 PMCID: PMC7084627 DOI: 10.3390/ijms21051852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
One of the most important goals in the treatment of demyelinating diseases such as multiple sclerosis (MS) is, in addition to immunomodulation, reconstruction of the lost myelin sheath. The modulator of the central nervous system myelination is the metabotropic receptor coupled to the G-protein: GPR17. GPR17 receptors are considered to be sensors of local damage to the myelin sheath, and play a role in the reconstruction and repair of demyelinating plaques caused by ongoing inflammatory processes. GPR17 receptors are present on nerve cells and precursor oligodendrocyte cells. Under physiological conditions, they are responsible for the differentiation and subsequent maturation of oligodendrocytes, while under pathological conditions (during damage to nerve cells), their expression increases to become mediators in the demyelinating processes. Moreover, they are essential not only in both the processes of inducing damage and the death of neurons, but also in the local repair of the damaged myelin sheath. Therefore, GPR17 receptors may be recognized as the potential goal in creating innovative therapies for the treatment of the neurodegenerative process in MS, based on the acceleration of the remyelination processes. This review examines the role of GRP17 in pathomechanisms of MS development.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-4336
| |
Collapse
|
40
|
Peters A, Rabe P, Krumbholz P, Kalwa H, Kraft R, Schöneberg T, Stäubert C. Natural biased signaling of hydroxycarboxylic acid receptor 3 and G protein-coupled receptor 84. Cell Commun Signal 2020; 18:31. [PMID: 32102673 PMCID: PMC7045412 DOI: 10.1186/s12964-020-0516-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Medium-chain fatty acids and their 3-hydroxy derivatives are metabolites endogenously produced in humans, food-derived or originating from bacteria. They activate G protein-coupled receptors, including GPR84 and HCA3, which regulate metabolism and immune functions. Although both receptors are coupled to Gi proteins, share at least one agonist and show overlapping tissue expression, GPR84 exerts pro-inflammatory effects whereas HCA3 is involved in anti-inflammatory responses. Here, we analyzed signaling kinetics of both HCA3 and GPR84, to unravel signal transduction components that may explain their physiological differences. METHODS To study the signaling kinetics and components involved in signal transduction of both receptors we applied the label-free dynamic mass redistribution technology in combination with classical cAMP, ERK signaling and β-arrestin-2 recruitment assays. For phenotypical analyses, we used spheroid cell culture models. RESULTS We present strong evidence for a natural biased signaling of structurally highly similar agonists at HCA3 and GPR84. We show that HCA3 signaling and trafficking depends on dynamin-2 function. Activation of HCA3 by 3-hydroxyoctanoic acid but not 3-hydroxydecanoic acid leads to β-arrestin-2 recruitment, which is relevant for cell-cell adhesion. GPR84 stimulation with 3-hydroxydecanoic acid causes a sustained ERK activation but activation of GPR84 is not followed by β-arrestin-2 recruitment. CONCLUSIONS In summary, our results highlight that biased agonism is a physiological property of HCA3 and GPR84 with relevance for innate immune functions potentially to differentiate between endogenous, non-pathogenic compounds and compounds originating from e.g. pathogenic bacteria. Video Abstract.
Collapse
Affiliation(s)
- Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
41
|
Rogers TJ. Bidirectional Regulation of Opioid and Chemokine Function. Front Immunol 2020; 11:94. [PMID: 32076421 PMCID: PMC7006827 DOI: 10.3389/fimmu.2020.00094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The opioid family of GPCRs consists of the classical opioid receptors, designated μ-, κ-, and δ-opioid receptors, and the orphanin-FQ receptor, and these proteins are expressed on both neuronal and hematopoietic cells. A number of laboratories have reported that an important degree of cross-talk can occur between the opioid receptors and the chemokine and chemokine receptor families. As a part of this, the opioid receptors are known to regulate the expression of certain chemokines and chemokine receptors, including those that possess strong pro-inflammatory activity. At the level of receptor function, it is clear that certain members of the chemokine family can mediate cross-desensitization of the opioid receptors. Conversely, the opioid receptors are all able to induce heterologous desensitization of some of the chemokine receptors. Consequently, activation of one or more of the opioid receptors can selectively cross-desensitize chemokine receptors and regulate chemokine function. These cross-talk processes have significant implications for the inflammatory response, since the regulation of both the recruitment of inflammatory cells, as well as the sensation of pain, can be controlled in this way.
Collapse
Affiliation(s)
- Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
42
|
Greenwood IA, Stott JB. The Gβ1 and Gβ3 Subunits Differentially Regulate Rat Vascular Kv7 Channels. Front Physiol 2020; 10:1573. [PMID: 31992990 PMCID: PMC6971187 DOI: 10.3389/fphys.2019.01573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
Within the vasculature Kv7 channels are key regulators of basal tone and contribute to a variety of receptor mediated vasorelaxants. The Kv7.4 isoform, abundant within the vasculature, is key to these processes and was recently shown to have an obligatory requirement of G-protein βγ subunits for its voltage dependent activity. There is an increasing appreciation that with 5 Gβ subunits and 12 Gγ subunits described in mammalian cells that different Gβxγx combinations can confer selectivity in Gβγ effector stimulation. Therefore, we aimed to characterize the Gβ subunit(s) which basally regulate Kv7.4 channels and native vascular Kv7 channels. In Chinese Hamster Ovary cells overexpressing Kv7.4 and different Gβx subunits only Gβ1, Gβ3, and Gβ5 enhanced Kv7.4 currents, increasing the activation kinetics and negatively shifting the voltage dependence of activation. In isolated rat renal artery myocytes, proximity ligation assay detected an interaction of Kv7.4 with Gβ1 and Gβ3 subunits, but not other isoforms. Morpholino directed knockdown of Gβ1 in rat renal arteries did not alter Kv7 dependent currents but reduced Kv7.4 protein expression. Knockdown of Gβ3 in rat renal arteries resulted in decreased basal K+ currents which were not sensitive to pharmacological inhibition of Kv7 channels. These studies implicate the Gβ1 subunit in the synthesis or stability of Kv7.4 proteins, whilst revealing that the Gβ3 isoform is responsible for the basal activity of Kv7 channels in native rat renal myocytes. These findings demonstrate that different Gβ subunits have important individual roles in ion channel regulation.
Collapse
Affiliation(s)
- Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Jennifer B Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| |
Collapse
|
43
|
Barreto CAV, Baptista SJ, Preto AJ, Matos-Filipe P, Mourão J, Melo R, Moreira I. Prediction and targeting of GPCR oligomer interfaces. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:105-149. [PMID: 31952684 DOI: 10.1016/bs.pmbts.2019.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GPCR oligomerization has emerged as a hot topic in the GPCR field in the last years. Receptors that are part of these oligomers can influence each other's function, although it is not yet entirely understood how these interactions work. The existence of such a highly complex network of interactions between GPCRs generates the possibility of alternative targets for new therapeutic approaches. However, challenges still exist in the characterization of these complexes, especially at the interface level. Different experimental approaches, such as FRET or BRET, are usually combined to study GPCR oligomer interactions. Computational methods have been applied as a useful tool for retrieving information from GPCR sequences and the few X-ray-resolved oligomeric structures that are accessible, as well as for predicting new and trustworthy GPCR oligomeric interfaces. Machine-learning (ML) approaches have recently helped with some hindrances of other methods. By joining and evaluating multiple structure-, sequence- and co-evolution-based features on the same algorithm, it is possible to dilute the issues of particular structures and residues that arise from the experimental methodology into all-encompassing algorithms capable of accurately predict GPCR-GPCR interfaces. All these methods used as a single or a combined approach provide useful information about GPCR oligomerization and its role in GPCR function and dynamics. Altogether, we present experimental, computational and machine-learning methods used to study oligomers interfaces, as well as strategies that have been used to target these dynamic complexes.
Collapse
Affiliation(s)
- Carlos A V Barreto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Salete J Baptista
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, LRS, Portugal
| | - António José Preto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro Matos-Filipe
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rita Melo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, LRS, Portugal
| | - Irina Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Science and Technology Faculty, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
44
|
Qiu M, Li Y, Zhang X, Xuan M, Zhang B, Ye W, Zheng X, Govers F, Wang Y. G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in Phytophthora sojae. PLoS Pathog 2020; 16:e1008138. [PMID: 31961913 PMCID: PMC7010300 DOI: 10.1371/journal.ppat.1008138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 02/10/2020] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic heterotrimeric guanine nucleotide-binding proteins consist of α, β, and γ subunits, which act as molecular switches to regulate a number of fundamental cellular processes. In the oomycete pathogen Phytophthora sojae, the sole G protein α subunit (Gα; encoded by PsGPA1) has been found to be involved in zoospore mobility and virulence, but how it functions remains unclear. In this study, we show that the Gα subunit PsGPA1 directly interacts with PsYPK1, a serine/threonine protein kinase that consists of an N-terminal region with unknown function and a C-terminal region with a conserved catalytic kinase domain. We generated knockout and knockout-complemented strains of PsYPK1 and found that deletion of PsYPK1 resulted in a pronounced reduction in the production of sporangia and oospores, in mycelial growth on nutrient poor medium, and in virulence. PsYPK1 exhibits a cytoplasmic-nuclear localization pattern that is essential for sporangium formation and virulence of P. sojae. Interestingly, PsGPA1 overexpression was found to prevent nuclear localization of PsYPK1 by exclusively binding to the N-terminal region of PsYPK1, therefore accounting for its negative role in sporangium formation. Our data demonstrate that PsGPA1 negatively regulates sporangium formation by repressing the nuclear localization of its downstream kinase PsYPK1.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Yaning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Mingrun Xuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Baiyu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Brust TF. Biased Ligands at the Kappa Opioid Receptor: Fine-Tuning Receptor Pharmacology. Handb Exp Pharmacol 2020; 271:115-135. [PMID: 33140224 DOI: 10.1007/164_2020_395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kappa opioid receptor (KOR) is a G protein-coupled receptor (GPCR) that can signal through multiple signaling pathways. KOR agonists are known to relieve pain and itch, as well as induce dysphoria, sedation, hallucinations, and diuresis. As is the case with many other GPCRs, specific signaling pathways downstream of the KOR have been linked to certain physiological responses induced by the receptor. Those studies motivated the search and discovery of a number of KOR ligands that preferentially activate one signaling pathway over another. Such compounds are termed functionally selective or biased ligands, and may present a way of inducing desired receptor effects with reduced adverse reactions. In this chapter, I review the molecular intricacies of KOR signaling and discuss the studies that have used biased signaling through the KOR as a way to selectively modulate in vivo physiology.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA.
| |
Collapse
|
46
|
Malerba N, De Nittis P, Merla G. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Cells 2019; 8:E1567. [PMID: 31817184 PMCID: PMC6952978 DOI: 10.3390/cells8121567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Environmental stimuli are perceived and transduced inside the cell through the activation of signaling pathways. One common type of cell signaling transduction network is initiated by G-proteins. G-proteins are activated by G-protein-coupled receptors (GPCRs) and transmit signals from hormones, neurotransmitters, and other signaling factors, thus controlling a number of biological processes that include synaptic transmission, visual photoreception, hormone and growth factors release, regulation of cell contraction and migration, as well as cell growth and differentiation. G-proteins mainly act as heterotrimeric complexes, composed of alpha, beta, and gamma subunits. In the last few years, whole exome sequencing and biochemical studies have shown causality of disease-causing variants in genes encoding G-proteins and human genetic diseases. This review focuses on the G-protein β subunits and their emerging role in the etiology of genetically inherited rare diseases in humans.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Giuseppe Merla
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| |
Collapse
|
47
|
Swain DM, Sahoo RK, Chandan RK, Ghosh S, Kumar R, Jha G, Tuteja N. Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. PLANTA 2019; 250:1505-1520. [PMID: 31332521 DOI: 10.1007/s00425-019-03241-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/15/2019] [Indexed: 05/12/2023]
Abstract
Our study demonstrates that simultaneous overexpression of RGB1 and RGG1 genes provides multiple stress tolerance in rice by inducing stress responsive genes and better management of ROS scavenging/photosynthetic machineries. The heterotrimeric G-proteins act as signalling molecules and modulate various cellular responses including stress tolerance in eukaryotes. The gamma (γ) subunit of rice G-protein (RGG1) was earlier reported to promote salinity stress tolerance in rice. In the present study, we report that a rice gene-encoding beta (β) subunit of G-protein (RGB1) gets upregulated during both biotic (upon a necrotrophic fungal pathogen, Rhizoctonia solani infection) and drought stresses. Marker-free transgenic IR64 rice lines that simultaneously overexpress both RGB1 and RGG1 genes under CaMV35S promoter were raised. The overexpressing (OE) lines showed enhanced tolerance to R. solani infection and salinity/drought stresses. Several defense marker genes including OsMPK3 were significantly upregulated in the R. solani-infected OE lines. We also found the antioxidant machineries to be upregulated during salinity as well as drought stress in the OE lines. Overall, the present study provides evidence that concurrent overexpression of G-protein subunits (RGG1 and RGB1) impart multiple (both biotic and abiotic) stress tolerance in rice which could be due to the enhanced expression of stress-marker genes and better management of reactive oxygen species (ROS)-scavenging/photosynthetic machinery. The current study suggests an improved approach for simultaneous improvement of biotic and abiotic stress tolerance in rice which remains a major challenge for its sustainable cultivation.
Collapse
Affiliation(s)
- Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ravindra Kumar Chandan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Central University of Gujrat, Sector-30, Gandhinagar, 382030, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
48
|
Smrcka AV, Fisher I. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Cell Mol Life Sci 2019; 76:4447-4459. [PMID: 31435698 PMCID: PMC6842434 DOI: 10.1007/s00018-019-03275-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
G-protein βγ subunits are key participants in G-protein signaling. These subunits facilitate interactions between receptors and G proteins that are critical for the G protein activation cycle at the plasma membrane. In addition, they play roles in directly transducing signals to an ever expanding range of downstream targets, including integral membrane and cytosolic proteins. Emerging data indicate that Gβγ may play additional roles at intracellular compartments including endosomes, the Golgi apparatus, and the nucleus. Here, we discuss the molecular and structural basis for their ability to coordinate this wide range of cellular activities.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA.
| | - Isaac Fisher
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY, 14629, USA
| |
Collapse
|
49
|
CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2019; 109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/04/2023]
Abstract
Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.
Collapse
|
50
|
Man KNM, Navedo MF, Horne MC, Hell JW. β 2 Adrenergic Receptor Complexes with the L-Type Ca 2+ Channel Ca V1.2 and AMPA-Type Glutamate Receptors: Paradigms for Pharmacological Targeting of Protein Interactions. Annu Rev Pharmacol Toxicol 2019; 60:155-174. [PMID: 31561738 DOI: 10.1146/annurev-pharmtox-010919-023404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formation of signaling complexes is crucial for the orchestration of fast, efficient, and specific signal transduction. Pharmacological disruption of defined signaling complexes has the potential for specific intervention in selected regulatory pathways without affecting organism-wide disruption of parallel pathways. Signaling by epinephrine and norepinephrine through α and β adrenergic receptors acts on many signaling pathways in many cell types. Here, we initially provide an overview of the signaling complexes formed between the paradigmatic β2 adrenergic receptor and two of its most important targets, the L-type Ca2+ channel CaV1.2 and the AMPA-type glutamate receptor. Importantly, both complexes contain the trimeric Gs protein, adenylyl cyclase, and the cAMP-dependent protein kinase, PKA. We then discuss the functional implications of the formation of these complexes, how those complexes can be specifically disrupted, and how such disruption could be utilized in the pharmacological treatment of disease.
Collapse
Affiliation(s)
- Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| |
Collapse
|