1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Rampy J, Torres-Manzo AP, Hoffsmith K, Loberg MA, Sheng Q, Salas-Lucia F, Bianco AC, Arrojo E Drigo R, Wang H, Weiss VL, Carrasco N. Overnutrition directly impairs thyroid hormone biosynthesis and utilization, causing hypothyroidism, despite remarkable thyroidal adaptations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645596. [PMID: 40236234 PMCID: PMC11996416 DOI: 10.1101/2025.03.31.645596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Thyroid hormones (THs: T 3 and T 4 ) are key regulators of metabolic rate and nutrient metabolism. They are controlled centrally and peripherally in a coordinated manner to elegantly match T 3 -mediated energy expenditure (EE) to energy availability. Hypothyroidism reduces EE and has long been blamed for obesity; however, emerging evidence suggests that, instead, obesity may drive thyroid dysfunction. Thus, we used a mouse model of diet-induced obesity to determine its direct effects on thyroid histopathology and function, deiodinase activity, and T 3 action. Strikingly, overnutrition induced hypothyroidism within 3 weeks. Levels of thyroidal THs and their precursor protein thyroglobulin decreased, and ER stress was induced, indicating that thyroid function was directly impaired. We also observed pronounced histological and vascular expansion in the thyroid. Overnutrition additionally suppressed T 4 activation, rendering the mice resistant to T 4 and reducing EE. Our findings collectively show that overnutrition deals a double strike to TH biosynthesis and action, despite large efforts to adapt-but, fortunately, thyroid dysfunction in mice can be reversed by weight loss. In humans, BMI correlated with thyroidal vascularization, importantly demonstrating initial translatability. These studies lay the groundwork for novel obesity therapies that tackle hypothyroidism-which are much-needed, as no current obesity treatment works for everyone.
Collapse
|
3
|
Halbout M, Kopp PA. The Human Thyroid-Derived CI-huThyrEC Cell Line Expresses the Thyrotropin (TSH) Receptor and Thyroglobulin but Lacks Other Essential Characteristics of Thyroid Follicular Cells. Biomolecules 2025; 15:375. [PMID: 40149910 PMCID: PMC11940677 DOI: 10.3390/biom15030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Thyroid hormone synthesis requires the normal function of thyroid follicular cells and adequate nutritional intake of iodine. For in vitro studies on thyroid cell pathophysiology, the immortalized FRTL5 rat thyroid cell line and a derivative thereof, the PCCL3 cell line, are widely used. However, a permanent human thyroid cell line is currently lacking. A recent report described a cell line obtained from human thyroid cells designated as Cl-huThyrEC. Methods: Four clones of Cl-huThyrEC cells were obtained and cultured in the presence of thyroid stimulating hormone (TSH). The expression of key genes defining the thyroid follicular cell phenotype was determined by reverse-transcription PCR (RT-PCR) in FRTL5, PCCL3, and Cl-huThyrEC cells. The latter were cultured as monolayers and as organoids in Matrigel. Iodide uptake was measured and compared among the cell lines. Results: Gene expression analysis reveals that Cl-huThyrEC cells express the thyroid-restricted transcription factors (PAX8, NKX2.1, FOXE1), the TSH receptor (TSHR), and thyroglobulin (TG), but they do not express the sodium-iodide symporter (NIS), thyroid peroxidase (TPO), and pendrin (SLC26A4). In functional studies, Cl-huThyrEC cells are unable to concentrate iodide. Conclusions: Despite the expression of certain key genes that are limited or restricted to thyroid follicular cells, Cl-huThyrEC cells lack some of the essential characteristics of thyroid follicular cells, in particular, NIS. Hence, their utility as a model system for thyroid follicular cells is limited.
Collapse
Affiliation(s)
- Mathias Halbout
- Division of Endocrinology, Diabetes and Metabolism, University Hospital of Lausanne, University of Lausanne, Hôtel des Patients, Avenue de la Sallaz 08, CH-1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Peter A. Kopp
- Division of Endocrinology, Diabetes and Metabolism, University Hospital of Lausanne, University of Lausanne, Hôtel des Patients, Avenue de la Sallaz 08, CH-1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Azeredo DBC, Sousa Anselmo DD, Falcão Veríssimo AC, Souza LLD, Lisboa PC, Soares P, Santos-Silva AP, Graceli JB, Carvalho DPD, Magliano D, Miranda-Alves L. Endocrine-disrupting chemical, methylparaben, in environmentally relevant exposure promotes hazardous effects on the hypothalamus-pituitary-thyroid axis. Mol Cell Endocrinol 2025; 598:112444. [PMID: 39725349 DOI: 10.1016/j.mce.2024.112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Methylparaben (MP) belongs to the paraben class and is widely used as a preservative in personal care products, medicines, and some foods. MP acts as an endocrine disrupting chemical (EDC) on the hypothalamic-pituitary-thyroid (HPT) axis. However, the effects of MP have not yet been completely elucidated, as published results are scarce and controversial. The objective of this work was to evaluate the effects of subacute exposure to MP on the HPT axis of male rats. To achieve this, in this study the animals were divided into four experimental groups: control, MP3, MP30 and MP300 (3, 30 and 300 μg/kg/day, respectively). The rats were gavage for 14 days and sacrificed at the end of MP treatment. Our findings demonstrated that MP can promote important changes in thyroid morphology, including a decrease in follicular area, colloid area, epithelial area, and epithelial height, affecting the homeostasis of the HPT axis, and affecting the expression of genes related to hormonal biosynthesis. Furthermore, changes in interstitial collagen deposition were also demonstrated. Finally, we conclude that exposure to MP can be harmful to health, as it is involved in the dysregulation of the thyroid gland, affecting its morphophysiology, suggesting that even doses considered safe by current legislation can be dangerous and should be reconsidered.
Collapse
Affiliation(s)
- Damáris Barcelos Cunha Azeredo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Denilson de Sousa Anselmo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Ana Clara Falcão Veríssimo
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Luana Lopes de Souza
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Paula Soares
- i3S- Instituto de Investigação e Inovação em Saúde, Cell Signaling & Metabolism Group, Universidade do Porto, Portugal
| | - Ana Paula Santos-Silva
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Brazil
| | - Jones Bernardes Graceli
- Laboratório de Toxicologia e Endocrinologia Celular, Departamento de Morfologia, Universidade Federal do Espírito Santo, Brazil; Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Denise Pires de Carvalho
- Centro de Pesquisas em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil
| | - D'Angelo Magliano
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Núcleo de Pesquisa em Morfologia e Metabolismo, Universidade Federal do Fluminense, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Condello V, Marchettini C, Ihre-Lundgren C, Nilsson JN, Juhlin CC. Comprehensive Gene Expression Analysis in Papillary Thyroid Carcinoma Reveals a Transcriptional Profile Associated with Reduced Radioiodine Avidity. Endocr Pathol 2025; 36:4. [PMID: 39982585 PMCID: PMC11845550 DOI: 10.1007/s12022-025-09849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Papillary thyroid carcinoma (PTC) is the most common form of well-differentiated thyroid cancer (WDTC) and generally has a favorable prognosis. However, subsets of these tumors can metastasize, leading to aggressive disease progression and poorer clinical outcomes. Radioactive iodine (RAI) therapy is routinely given in the adjuvant setting following thyroidectomy and lymph node dissection for WDTC. Nevertheless, its therapeutic efficacy is limited to tumors with high iodine avidity. Early post-surgical classification of thyroid cancers as either iodine-avid or refractory is crucial for enabling more personalized and effective treatment strategies. In this study, we aimed to identify transcriptomic determinants associated with RAI refractoriness (RAI-R) to improve prognostication. We collected clinicopathologic data and conducted RNA-seq on 36 tissue samples (18 high-avidity and 18 low-avidity), each uniquely characterized by ex vivo iodine concentration measurements taken directly from surgical specimens. Whole-transcriptomic analysis identified 63 differentially expressed genes, with six (S100A4, CRTC2, ANO1, WWTR1, DEPTOR, MT1G) showing consistent deregulation. The expression of ANO1, an established iodine transporter at the apical membrane of the thyroid follicular cells, correlated significantly with iodine avidity (r = 0.54). Validation via RT-qPCR confirmed differential expression trends. Gene ontology and pathway enrichment analyses highlighted thyroid hormone synthesis, PI3K-AKT, and MAPK signaling pathways as key regulators of RAI avidity. A refined multivariate predictive model incorporating ANO1 mRNA expression, histological subtypes, and sample type demonstrated strong predictive performance (adjusted R2 = 0.55). These findings suggest ANO1 as a promising biomarker for predicting iodine avidity in thyroid cancer.
Collapse
Affiliation(s)
- Vincenzo Condello
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | - Catharina Ihre-Lundgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumors, and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Joachim N Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Nerella SG, Eldridge MAG, Innis RB, Pike VW. PET Reporter Probes for Brain Imaging of Transduced Gene and Cell Expression: Status and Challenges. J Med Chem 2025; 68:2198-2218. [PMID: 39879224 DOI: 10.1021/acs.jmedchem.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Gene therapy and cell transduction are gaining interest as therapeutic strategies for neurological and psychiatric disorders. Positron emission tomography (PET) has been established as a uniquely powerful modality for brain molecular imaging in vivo. The utility of PET depends on the development and application of suitably specific radiotracers and/or reporter probes. PET probes are potentially useful to confirm the success of gene therapy or cell transduction without the need for brain biopsy or necroscopy. Probes are needed to target proteins expressed by specific exogenous transgenes or cells and could play a crucial role in elucidating neurobiological mechanisms and in longitudinal tracking of expression for therapeutic applications. This perspective article describes the current status and ongoing challenges for the design and development of PET reporter probes for verifying the expression of reporter genes and cells in the brain. Radiochemical aspects, applications, and translational challenges for diagnostic and therapeutic interventions are highlighted.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, U.K
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| |
Collapse
|
7
|
Pishdad R, Santhanam P. Current and Emerging Radiotracers and Technologies for Detection of Advanced Differentiated Thyroid Cancer: A Narrative Review. Cancers (Basel) 2025; 17:425. [PMID: 39941793 PMCID: PMC11816070 DOI: 10.3390/cancers17030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Differentiated thyroid cancer (DTC), which includes papillary and follicular thyroid cancers, differs significantly in pathology compared to other thyroid malignancies such as medullary thyroid cancer (MTC), anaplastic thyroid cancer (ATC), and Hurthle cell carcinoma [...].
Collapse
Affiliation(s)
- Reza Pishdad
- Division of Endocrinology, Diabetes & Metabolism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Prasanna Santhanam
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| |
Collapse
|
8
|
Shafi S, Khan MA, Ahmad J, Rabbani SA, Singh S, Najmi AK. Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach. Curr Drug Targets 2025; 26:109-131. [PMID: 39377414 DOI: 10.2174/0113894501335877240926101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024]
Abstract
Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, Ras Al Khaimah College of Pharmacy, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah, United Arab Emirates
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
9
|
Carro GH, Martín M, Savy S, Peyret V, Geysels RC, Montes FA, Bernal Barquero CE, Ricci V, Masnata ME, Masini-Repiso AM, Papendieck P, Tellechea ML, Chiesa AE, Nicola JP. Functional characterization of novel compound heterozygous missense SLC5A5 gene variants causing congenital dyshormonogenic hypothyroidism. Front Endocrinol (Lausanne) 2024; 15:1465176. [PMID: 39749016 PMCID: PMC11693440 DOI: 10.3389/fendo.2024.1465176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Biallelic loss-of-function variants in the NIS-coding SLC5A5 gene cause congenital dyshormonogenic hypothyroidism due to a defect in the accumulation of iodide, which is required for thyroid hormonogenesis. Objective We aimed to identify, and if so to functionally characterize, novel pathogenic SLC5A5 gene variants in a patient diagnosed with severe congenital dyshormonogenic hypothyroidism characterized by undetectable radioiodide accumulation in a eutopic thyroid gland, as well as in the salivary glands. Methods The coding region of the SLC5A5 gene was sequenced using whole-exome sequencing. In silico analysis and in vitro functional characterization of missense SLC5A5 gene variants were performed. Results Proposita's whole-exome sequencing revealed a novel pair of compound heterozygous missense variants in the SLC5A5 gene, c.1,627G>A (p.G543R) and c.1,684T>A (p.L562M). The parents were heterozygous carriers of the variants as determined by Sanger sequencing of the SLC5A5 gene. The p.G543R variant in the homozygous state has previously been associated with congenital hypothyroidism. The novel p.L562M variant was not reported in the Genome Aggregation Consortium dataset. In silico analysis of the pathogenic impact of the p.L562M variant yielded inconclusive results. Functional in vitro studies showed that the p.L562M variant reduces iodide accumulation due to defective expression of the mutant NIS protein at the plasma membrane. Notably, the aliphatic residue Leu at position 562 in the carboxy terminus of the protein, which is highly conserved in NIS orthologues, is required for NIS plasma membrane expression. Conclusions We report novel compound heterozygous missense SLC5A5 gene variants causing defective iodide accumulation, thus leading to congenital dyshormonogenic hypothyroidism.
Collapse
Affiliation(s)
- Gerardo Hernán Carro
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Sofía Savy
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Francisco Andrés Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Valentina Ricci
- División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá, Consejo Nacional de Investigaciones Científicas y Técnicas (CEDIE-CONICET), Buenos Aires, Argentina
| | - María Eugenia Masnata
- División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá, Consejo Nacional de Investigaciones Científicas y Técnicas (CEDIE-CONICET), Buenos Aires, Argentina
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Patricia Papendieck
- División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá, Consejo Nacional de Investigaciones Científicas y Técnicas (CEDIE-CONICET), Buenos Aires, Argentina
| | - Mariana Lorena Tellechea
- División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá, Consejo Nacional de Investigaciones Científicas y Técnicas (CEDIE-CONICET), Buenos Aires, Argentina
| | - Ana Elena Chiesa
- División de Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
- Centro de Investigaciones Endocrinológicas Dr. César Bergadá, Consejo Nacional de Investigaciones Científicas y Técnicas (CEDIE-CONICET), Buenos Aires, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
10
|
Atapattu N, Jayatissa R, de Silva H, Adlan MA, Obuobie EK, Premawardhana LD. Thyroid Autoimmunity During Universal Salt Iodisation-Possible Short-Term Modulation with Longer-Term Stability. Nutrients 2024; 16:4299. [PMID: 39770919 PMCID: PMC11677496 DOI: 10.3390/nu16244299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Universal salt iodisation (USI) plays an essential role in the provision of iodine (I) to populations worldwide. Countries adopting USI programmes, adhering to strict criteria laid down by expert organisations such as the Iodine Global Network, are estimated to have reduced the prevalence of I deficiency by 75% (protecting 720 million individuals worldwide). Despite this success, doubts have been raised as to the desirability of continuing such programmes because of (a) the need to reduce salt intake for cardiovascular prevention and (b) the induction of thyroid autoimmunity. We present current evidence from cross-sectional studies in several disparate populations of the possible short-term modulation of thyroid autoimmune markers, thyroid peroxidase (TPOAb) and thyroglobulin antibodies (TgAb), with minimal disruption of biochemical thyroid function. We also present evidence from longer term, mainly cross-sectional studies, that indicate a reduction in the prevalence of TPOAb and TgAb, and the persistence of normal biochemical thyroid function over as long as two decades of USI. We believe these studies indicate that USI is safe, and that long-term salt iodisation does not cause an increase in autoimmune thyroid disease in the populations studied and should not be a safety concern based on current evidence. More long-term and better-designed studies are required.
Collapse
Affiliation(s)
- Navoda Atapattu
- Departments of Paediatrics and Paediatric Endocrinology, Lady Ridgeway Hospital, Colombo 08, Sri Lanka; (N.A.); (H.d.S.)
| | - Renuka Jayatissa
- Faculty of Food and Nutrition, International Institute of Health Sciences, Colombo 12, Sri Lanka;
| | - Harendra de Silva
- Departments of Paediatrics and Paediatric Endocrinology, Lady Ridgeway Hospital, Colombo 08, Sri Lanka; (N.A.); (H.d.S.)
| | - Mohamed A. Adlan
- Department of Endocrinology and Diabetes, Aneurin Bevan University Health Board, Newport NP20 2UB, UK; (M.A.A.); (E.K.O.)
| | - Emmanuel K. Obuobie
- Department of Endocrinology and Diabetes, Aneurin Bevan University Health Board, Newport NP20 2UB, UK; (M.A.A.); (E.K.O.)
| | - Lakdasa D. Premawardhana
- Thyroid Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
11
|
Undeutsch HJ, Posabella A, Alber AB, Bawa PS, Villacorta-Martin C, Wang F, Ikonomou L, Kotton DN, Hollenberg AN. Derivation of transplantable human thyroid follicular epithelial cells from induced pluripotent stem cells. Stem Cell Reports 2024; 19:1690-1705. [PMID: 39515316 PMCID: PMC11751801 DOI: 10.1016/j.stemcr.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
The production of mature functioning thyroid follicular cells (TFCs) from human induced pluripotent stem cells (iPSCs) is critical for potential novel therapeutic approaches to post-surgical and congenital hypothyroidism. To accomplish this, we developed a novel human iPSC line that expresses fluorophores targeted to the NKX2-1 and PAX8 loci, allowing for the identification and purification of cells destined to become TFCs. Optimizing a sequence of defined, serum-free media to promote stepwise developmental directed differentiation, we found that bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2) stimulated lineage specification into TFCs from multiple iPSC lines. Single-cell RNA sequencing demonstrated that BMP4 withdrawal after lineage specification promoted TFC maturation, with mature TFCs representing the majority of cells present within 1 month. After xenotransplantation into athyreotic immunodeficient mice, engrafted cells exhibited thyroid follicular organization with thyroglobulin protein detected in the lumens of NKX2-1-positive follicles. While our iPSC-derived TFCs presented durable expression of thyroid-specific proteins, they were unable to rescue hypothyroidism in vivo.
Collapse
Affiliation(s)
- Hendrik J Undeutsch
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA; Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Alberto Posabella
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA; University Center of Gastrointestinal and Liver Diseases - Clarunis, University of Basel Faculty of Medicine, Basel, Switzerland
| | - Andrea B Alber
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA; Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Pushpinder S Bawa
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA; Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Carlos Villacorta-Martin
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA; Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Feiya Wang
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA; Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA; Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Darrell N Kotton
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA; Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA; Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
12
|
Yang Q, Zhang Q, Pan F, Zha B. STAT6 blockade ameliorates thyroid function in Graves' disease via downregulation of the sodium/iodide symporter. Endocr Connect 2024; 13:e240428. [PMID: 39393405 PMCID: PMC11623256 DOI: 10.1530/ec-24-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Background Signal transducer and activator of transcription 6 (STAT6) is an important nuclear transcription factor. Previous studies demonstrated that blocking STAT6 can ameliorate thyroid function by reducing serum T3 and T4. Sodium/iodide symporter (NIS) is a key protein that mediates active iodine uptake and plays an important role in regulating thyroid function. This study explored the interaction between STAT6 and NIS. Methods Immunohistochemical staining was performed for detecting the expression of NIS in different tissues. RT-PCR was performed for evaluating the mRNA level of NIS when Nthy-ori 3-1 cells were incubated with IL4, thyroid stimulating hormone (TSH), or monoclonal thyroid-specific stimulatory autoantibody (TSAb) for 24 h. Quantitative RT-PCR, western blot, and immunofluorescence analysis were performed for detecting NIS expression after inhibiting STAT6 phosphorylation by AS1517499. Finally, we used luciferase reporter assays to explore the ability of STAT6 to regulate the promoter activity of the NIS-coding gene. Results NIS was highly expressed in thyroid epithelial cells of EAGD mice or Graves' disease (GD) patients, and TSAb increased the expression of NIS. We show that a STAT6 phosphorylation inhibitor can attenuate the effect of TSAb on increasing NIS protein and mRNA levels. Finally, we confirm that transcription factor STAT6 can mediate NIS transcription and co-activator P100 protein can enhance STAT6-dependent transcriptional activation. Conclusion In GD, TSAb induces STAT6 signaling to upregulate NIS expression, and STAT6 blockade ameliorates thyroid function via downregulation of the NIS. Our study furthers understanding of the effects of STAT6 on thyroid function and reveals new avenues for GD treatment.
Collapse
Affiliation(s)
- Qian Yang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Qinnan Zhang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Fanfan Pan
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Otani K, Zeniya T, Kawashima H, Moriguchi T, Nakano A, Han C, Murata S, Nishimura K, Koshino K, Yamahara K, Inubushi M, Iida H. Spatial and temporal tracking of multi-layered cells sheet using reporter gene imaging with human sodium iodide symporter: a preclinical study using a rat model of myocardial infarction. Eur J Nucl Med Mol Imaging 2024; 52:74-87. [PMID: 39207487 PMCID: PMC11599416 DOI: 10.1007/s00259-024-06889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This study aimed to evaluate a novel technique for cell tracking by visualising the activity of the human sodium/iodide symporter (hNIS) after transplantation of hNIS-expressing multilayered cell sheets in a rat model of chronic myocardial infarction. METHODS Triple-layered cell sheets were generated from mouse embryonic fibroblasts (MEFs) derived from mice overexpressing hNIS (hNIS-Tg). Myocardial infarction was induced by permanent ligation of the left anterior descending coronary artery in F344 athymic rats, and a triple-layered MEFs sheets were transplanted to the infarcted area two weeks after surgery. To validate the temporal tracking and kinetic analysis of the transplanted MEFs sheets, sequential cardiac single-photon emission computed tomography (SPECT) examinations with a 99mTcO4- injection were performed. The cell sheets generated using MEFs of wild-type mice (WT) served as controls. RESULTS A significantly higher amount of 99mTcO4- was taken into the hNIS-Tg MEFs than into WT MEFs (146.1 ± 30.9-fold). The obvious accumulation of 99mTcO4- was observed in agreement with the region where hNIS-Tg MEFs were transplanted, and these radioactivities peaked 40-60 min after 99mTcO4- administration. The volume of distribution of the hNIS-Tg MEF sheets declined gradually after transplantation, implying cellular malfunction and a loss in the number of transplanted cells. CONCLUSION The reporter gene imaging with hNIS enables the serial tracking and quantitative kinetic analysis of cell sheets transplanted to infarcted hearts.
Collapse
Affiliation(s)
- Kentaro Otani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Tsutomu Zeniya
- Graduate School of Science and Technology, Hirosaki University, Aomori, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuaki Moriguchi
- Tandem Accelerator Complex (UTTAC), University of Tsukuba, Ibaraki, Japan
| | - Atsushi Nakano
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Chunlei Han
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Shunsuke Murata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kazuhiro Koshino
- Department of Systems and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, Hyogo, Japan
| | - Masayuki Inubushi
- Division of Nuclear Medicine, Department of Radiology, Kawasaki Medical School, Okayama, Japan
| | - Hidehiro Iida
- Turku PET Centre, Turku University Hospital, Turku, Finland.
- Turku PET Centre, University of Turku and Turku University Hospital, Building 14, Kiinamyllynkatu 4-8, Turku, 20520, Finland.
| |
Collapse
|
14
|
Zaletel K, Mihovec A, Gaberscek S. Characteristics of exposure to radioactive iodine during a nuclear incident. Radiol Oncol 2024; 58:459-468. [PMID: 39365660 PMCID: PMC11604265 DOI: 10.2478/raon-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND During a nuclear accident, numerous products of nuclear fission are released, including isotopes of radioactive iodine. Among them is iodine-131, with a half-life of 8.02 days, which emits β radiation. For decades, it has been effectively and safely used in medicine. However, in the event of a nuclear accident, uncontrolled exposure can have harmful biological effects. The main sources of internal contamination with iodine-131 are contaminated air, food and water. The most exposed organ is the thyroid gland, where radioactive iodine accumulates via the Na+/I- symporter (NIS). NIS does not distinguish between radioactive iodine isotopes and the stable isotope iodine-127, which is essential for the synthesis of thyroid hormones. Exposure to radioactive iodine during a nuclear accident is primarily associated with papillary thyroid cancer, whose incidence begins to increase a few years after exposure. Children and adolescents are at the highest risk, and the risk is particularly significant for individuals living in iodine-deficient areas. CONCLUSIONS Ensuring an adequate iodine supply is therefore crucial for lowering the risk of the harmful effects of exposure to radioactive iodine at the population level. Protecting the thyroid with potassium iodide tablets significantly reduces radiation exposure, as stable iodine prevents the entry of radioactive iodine into the thyroid. Such protection is effective only within a narrow time window - a few hours before and after the exposure and is recommended only for those under 40 years of age, as the risks of excessive iodine intake outweigh the potential benefits in older individuals.
Collapse
Affiliation(s)
- Katja Zaletel
- Division of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Simona Gaberscek
- Division of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Zhang FY, Fang Y, Zhang CX, Zhang HY, Dong M, Zhang KW, Wu CY, Song HD, Chen G. The effects of disturbance on hypothalamus-pituitary-thyroid axis in zebrafish larvae after exposure to polyvinyl alcohol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117396. [PMID: 39603223 DOI: 10.1016/j.ecoenv.2024.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
In recent years, considerable concerns have been raised regarding environmental pollution caused by water-soluble polymers (WSPs). Polyvinyl alcohol (PVA), used in the textile industry and in the manufacture of medical consumables, is one type of WSPs. After use, PVA is discharged and enters aquatic ecosystems, but most of it cannot be completely biodegraded in the environment. In this study, we investigated the effects of PVA on developmental toxicity and thyroid endocrine disruption using a zebrafish (Danio rerio) model. We treated zebrafish embryos with 10 g/L and 5 mg/L PVA for 96 h and found that the proportion of coagulated embryos significantly increased, resulting in a remarkable decrease in hatching rate and larval survival. The body length of zebrafish larvae in the exposed group was remarkably shorter than that of the control group (Control: 3.64 ± 0.03 mm vs. 10 g/L PVA: 3.46 ± 0.03 mm; p=0.001). Compared to the control group, the levels of T3 and T4 in embryos of the exposed group were significantly lower, while thyroid stimulating hormone (TSH) levels were significantly increased. Notable up-regulation of trh, tshβ, and tshr genes, as well as down-regulation of trα , tg, ttr, dio1, and dio2 genes, were observed in embryos of the exposed group. Collectively, these findings suggest that PVA negatively influences the development and function of the thyroid gland during zebrafish embryogenesis. These effects may be partly attributed to the disruption of hypothalamic-pituitary-thyroid (HPT) axis regulation. Therefore, raising awareness about the possible thyroid toxicity associated with PVA is crucial.
Collapse
Affiliation(s)
- Fei-Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Ya Fang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| | - Cao-Xu Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China.
| | - Hai-Yang Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kai-Wen Zhang
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| | - Chen-Yang Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
16
|
Gilbert ME, Hawks MG, Bell KS, Oshiro W, Wood C, George BJ, Thomas R, Ford J. Iodine Deficiency Exacerbates Thyroidal and Neurological Effects of Developmental Perchlorate Exposure in the Neonatal and Adult Rat. TOXICS 2024; 12:842. [PMID: 39771057 PMCID: PMC11679215 DOI: 10.3390/toxics12120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring. We observed modest reductions in thyroxine (T4) in the serum of dams and no effect on T4 in pup serum in response to maternal exposure to 300 ppm of perchlorate in the drinking water. Likewise, serum T4 was reduced in ID dams, but, as with perchlorate, no effects were evident in the pup. However, when ID was coupled with perchlorate, reductions in pup serum THs and transcriptional alterations in the thyroid gland and pup brain were detected. These observations were accompanied by reductions in the number of cortical inhibitory interneurons containing the calcium-binding protein parvalbumin (Pvalb). Alterations in Pvalb expression in the neonatal brain were associated with deficits in the prepulse inhibition of acoustic startle in adult male offspring and enhanced fear conditioning in females. These findings support and extend structural defects in the brain previously reported in this model. Further, they underscore the critical need to consider additional non-chemical stressors in the determination of hazards and risks posed by environmental contaminants that affect the thyroid system.
Collapse
Affiliation(s)
- Mary E. Gilbert
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - MaryAnn G. Hawks
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Kiersten S. Bell
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Wendy Oshiro
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Carmen Wood
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Barbara Jane George
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Ryne Thomas
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Jermaine Ford
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
17
|
Inoue K, Bashir MT, Warner AL, Ebrahimi R, Neverova NV, Currier JW, Sohn SY, Rhee CM, Lee ML, Leung AM. Cardiac Electrical and Structural Changes after Iodinated Contrast Media Administration: A Longitudinal Cohort Analysis. Thyroid 2024; 34:1163-1170. [PMID: 39163054 DOI: 10.1089/thy.2024.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Background: Iodinated contrast is commonly used for radiological procedures, with one dose delivering several hundred-fold the daily requirements needed for normal thyroid hormone production. Risks of excess iodine include incident thyroid dysfunction, which is associated with adverse cardiac outcomes, yet there are no prospective studies investigating the changes in cardiac physiology following iodine contrast administration. This study was conducted to investigate the longitudinal relationships between the amount of iodinated contrast administration and changes in cardiac electrophysiology and structure. Methods: A longitudinal cohort study was conducted with prospectively enrolled participants who received iodine contrast for elective computed tomography or coronary angiography. Serum thyroid function tests, electrocardiograms (EKG), and transthoracic echocardiograms were obtained serially until 36 months. Trends of electrical and structural cardiac changes following iodine contrast administration were assessed using mixed effect models. Results: The cohort was composed of 129 patients (median age, 70 [interquartile range: 63, 75] years; 98% male). Larger amounts of iodine exposure were associated with increases in QRS and QTc durations and decreased ejection fraction (EF), and these associations were still observed for follow-up EF after additionally adjusting for baseline values (the high-iodine contrast group vs. the low-iodine contrast group, -4.23% [confidence interval, -7.66% to -0.79%]). Dose-response analyses also showed lower EF with larger amounts of iodine received; these trends were not significant for the EKG parameters studied. Conclusions: Over a period of up to 36 months, a larger amount of administered iodine contrast was associated with lower EF among participants. Further investigation is needed to elucidate the long-term trends of electrical and structural cardiac function after iodine contrast administration.
Collapse
Affiliation(s)
- Kosuke Inoue
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Hakubi Center, Kyoto University, Kyoto, Japan
| | - Muhammad T Bashir
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Alberta L Warner
- Division of Cardiology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Ramin Ebrahimi
- Division of Cardiology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Natalia V Neverova
- Division of Cardiology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Jesse W Currier
- Division of Cardiology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Seo Young Sohn
- Division of Endocrinology, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea
| | - Connie M Rhee
- Division of Nephrology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Nephrology, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Martin L Lee
- Veterans Affairs Health Services Research & Development Center for the Study of Health Care Innovation, Implementation, and Policy, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Biostatistics, University of California Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Angela M Leung
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
18
|
Lin Y, Sato N, Hong S, Nakamura K, Ferrante EA, Yu ZX, Chen MY, Nakamura DS, Yang X, Clevenger RR, Hunt TJ, Taylor JL, Jeffries KR, Keeran KJ, Neidig LE, Mehta A, Schwartzbeck R, Yu SJ, Kelly C, Navarengom K, Takeda K, Adler SS, Choyke PL, Zou J, Murry CE, Boehm M, Dunbar CE. Long-term engraftment and maturation of autologous iPSC-derived cardiomyocytes in two rhesus macaques. Cell Stem Cell 2024; 31:974-988.e5. [PMID: 38843830 PMCID: PMC11227404 DOI: 10.1016/j.stem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 07/08/2024]
Abstract
Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.
Collapse
Affiliation(s)
- Yongshun Lin
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Noriko Sato
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Sogun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Elisa A Ferrante
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zu Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Daisy S Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Timothy J Hunt
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Joni L Taylor
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Karen J Keeran
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Lauren E Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Atul Mehta
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Robin Schwartzbeck
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Shiqin Judy Yu
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Conor Kelly
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Keron Navarengom
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core, CBER, FDA, Silver Spring, MD, USA
| | - Stephen S Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Peter L Choyke
- Laboratory of Cellular Therapeutics, Molecular Imaging Branch, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Manfred Boehm
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Tian R, Zhang Y, Kang H, Zhang F, Jin Z, Wang J, Zhang P, Zhou X, Lanyon JM, Sneath HL, Woolford L, Fan G, Li S, Seim I. Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria. Nat Commun 2024; 15:5568. [PMID: 38956050 PMCID: PMC11219930 DOI: 10.1038/s41467-024-49769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Yaolei Zhang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Zhang
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Jin
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Jiahao Wang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Helen L Sneath
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China.
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
20
|
Petranović Ovčariček P, Calderoni L, Campenni A, Fanti S, Giovanella L. Molecular imaging of thyroid and parathyroid diseases. Expert Rev Endocrinol Metab 2024; 19:317-333. [PMID: 38899737 DOI: 10.1080/17446651.2024.2365776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Molecular imaging of thyroid and parathyroid diseases has changed in recent years due to the introduction of new radiopharmaceuticals and new imaging techniques. Accordingly, we provided an clinicians-oriented overview of such techniques and their indications. AREAS COVERED A review of the literature was performed in the PubMed, Web of Science, and Scopus without time or language restrictions through the use of one or more fitting search criteria and terms as well as through screening of references in relevant selected papers. Literature up to and including December 2023 was included. Screening of titles/abstracts and removal of duplicates was performed and the full texts of the remaining potentially relevant articles were retrieved and reviewed. EXPERT OPINION Thyroid and parathyroid scintigraphy remains integral in patients with thyrotoxicosis, thyroid nodules, differentiated thyroid cancer and, respectively, hyperparathyroidism. In the last years positron-emission tomography with different tracers emerged as a more accurate alternative in evaluating indeterminate thyroid nodules [18F-fluorodeoxyglucose (FDG)], differentiated thyroid cancer [124I-iodide, 18F-tetrafluoroborate, 18F-FDG] and hyperparathyroidism [18F-fluorocholine]. Other PET tracers are useful in evaluating relapsing/advanced forms of medullary thyroid cancer (18F-FDOPA) and selecting patients with advanced follicular and medullary thyroid cancers for theranostic treatments (68Ga/177Ga-somatostatin analogues).
Collapse
Affiliation(s)
- Petra Petranović Ovčariček
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Letizia Calderoni
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfredo Campenni
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Unit of Nuclear Medicine, University of Messina, Messina, Italy
| | - Stefano Fanti
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luca Giovanella
- Department of Nuclear Medicine, Gruppo Ospedaliero Moncucco, Lugano, Switzerland
- Clinic for Nuclear Medicine, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
21
|
Liang C, Wu C, Liu L, Zhong J. Update on lacrimal apparatus dysfunction associated with differentiated thyroid cancer after I-131 therapy. Int Ophthalmol 2024; 44:257. [PMID: 38909080 DOI: 10.1007/s10792-024-03192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE The most prevalent lacrimal apparatus dysfunctions associated with differentiated thyroid cancer(DTC) after I-131 therapy are dry eye and nasolacrimal duct obstruction(NLDO), leading to ocular discomfort and lower quality of life for patients. It is crucial to diagnose and manage lacrimal apparatus dysfunction associated with I-131 therapy for DTC. Therefore, this review aims to comprehensively summarize and analyze the advances in mechanisms and therapeutic options underlying lacrimal apparatus dysfunction induced by I-131 therapy for DTC. METHODS A comprehensive search of CNKI, PubMed, and Wed of Science was performed from the database to December of 2023. Key search terms were "Thyroid cancer", "I-131", "Complications", "Dry eye", "Epiphora", "Tear", "Nasolacrimal duct" and "NLDO". RESULTS The research indicates that I-131 therapy for DTC causes damage to the lacrimal glands and nasolacrimal duct system, resulting in symptoms such as dry eye, epiphora, and mucoid secretions. Moreover, recent research has focused on exploring relevant risk factors of the condition and experimental and clinical treatments. However, there is some controversy regarding the mechanisms involved, whether it is due to the passive flow of I-131 in tears, active uptake of I-131 by the sodium-iodide symporter (NIS) in the lacrimal sac and nasolacrimal duct, or secondary metabolic and hormonal disturbances caused by I-131. CONCLUSION It is crucial for early detection and preventive measures by ophthalmologists and the need for further studies to elucidate the mechanisms underlying the disease.
Collapse
Affiliation(s)
- Chunlan Liang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Changlin Wu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| | - Jingxiang Zhong
- Department of Ophthalmology, The Sixth Affiliated Hospital of Jinan University, No. 88, Changdong Road, Dongguan, 523573, China.
| |
Collapse
|
22
|
Fu M, Ren Z, Gao Y, Zhang H, Guo W, Zhang W. Study of iodine transport and thyroid hormone levels in the human placenta under different iodine nutritional status. Br J Nutr 2024; 131:1488-1496. [PMID: 38221821 DOI: 10.1017/s0007114524000084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Iodine and thyroid hormones (TH) transport in the placenta are essential for fetal growth and development, but there is little research focus on the human placenta. The research aimed to investigate iodine and TH transport mechanisms in the human placenta. The placenta was collected from sixty healthy pregnant women. Urinary iodine concentration (UIC), serum iodine concentration (SIC), placenta iodine storage (PIS) and the concentration of serum and placenta TH were examined. Five pregnant women were selected as insufficient intake (II), adequate intake (AI) and above requirements intake (ARI) groups. Localisation/expression of placental sodium/iodide symporter (NIS) and Pendrin were also studied. Results showed that PIS positively correlated with the UIC (R = 0·58, P < 0·001) and SIC (R = 0·55, P < 0·001), and PIS was higher in the ARI group than that in the AI group (P = 0·017). NIS in the ARI group was higher than that in the AI group on the maternal side of the placenta (P < 0·05). NIS in the II group was higher than that in the AI group on the fetal side (P < 0·05). In the II group, NIS on the fetal side was higher than on the maternal side (P < 0·05). Pendrin was higher in the II group than in the AI group on the maternal side (P < 0·05). Free triiodothyronine (r = 0·44, P = 0·0067) and thyroid-stimulating hormone (r = 0·75, P < 0·001) between maternal and fetal side is positively correlated. This study suggests that maternal iodine intake changes the expression of NIS and Pendrin, thereby affecting PIS. Serum TH levels were not correlated with placental TH levels.
Collapse
Affiliation(s)
- Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Zhiyuan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Yuanpeng Gao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Haixia Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Wenxing Guo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Wanqi Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin300070, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, People's Republic of China
| |
Collapse
|
23
|
Rudresh BB, Tater AK, Barot V, Patel N, Desai A, Mitra S, Deshpande A. Development and experimental validation of 3D QSAR models for the screening of thyroid peroxidase inhibitors using integrated methods of computational chemistry. Heliyon 2024; 10:e29756. [PMID: 38660252 PMCID: PMC11040118 DOI: 10.1016/j.heliyon.2024.e29756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The intricate network of glands and organs that makes up the endocrine system. Hormones are used to regulate and synchronize the nervous and physiological systems. The agents which perturbate an endocrine system are called endocrine disruptors and they can eventually affect cellular proliferation and differentiation in target tissues. A subclass of endocrine disruptors known as thyroid disruptors (TDs) or thyroid disrupting chemicals (TDCs) influence the hypothalamo-pituitary-thyroid axis or directly interfere with thyroid function by binding to thyroid hormone receptors. Thyroid hormone levels in circulation are now included in more test guidelines (OECD TG 441, 407, 408, 414, 421/422, 443/416). Although these might be adequate to recognize thyroid adversity, they are unable to explain the underlying mechanism of action. Thyroid peroxidase (TPO) and sodium iodide symporter (NIS), two proteins essential in the biosynthesis of thyroid hormones, are well-accepted molecular targets for inhibition. The screening of a large number of molecules using high throughput screening (HTS) requires a minimum quantity of sample, cost, and time consuming. Whereas 3-dimensional quantitative structure-activity relationship (3D-QSAR) analysis can screen the TDCs before synthesizing a compound. In the present study, the human TPO (hTPO) and NIS (hNIS) structures were modelled using homology modeling and the quality of the structures was validated satisfactorily using MD simulation for 100ns. Further, 190 human TPO inhibitors with IC50 were curated from Comptox and docked with the modelled structure of TPO using D238, H239 and D240 centric grid. The binding conformation of a molecule with low binding energy was used as a reference and the rest other molecules were aligned after generating the possible conformers. The activity-stratified partition was performed for aligned molecules and training set (139), test set (51) were defined. The machine learning models such as k Nearest Neighbor (kNN) and Random Forest (RF) models were built and validated using external experimental dataset containing 10 molecules. Among the 10 molecules, all 10 molecules were identified as TPO inhibitors and demonstrated 100 % accuracy qualitatively. To confirm the selective TPO inhibition all 10 molecules were docked with the modelled structure of hNIS and the results have demonstrated the selective TPO inhibition.
Collapse
Affiliation(s)
| | | | - Vaibav Barot
- Jai Research Foundation, Valvada, Vapi, Gujarat, 396105, India
| | - Nitin Patel
- Jai Research Foundation, Valvada, Vapi, Gujarat, 396105, India
| | - Ashita Desai
- Jai Research Foundation, Valvada, Vapi, Gujarat, 396105, India
| | - Sreerupa Mitra
- Jai Research Foundation, Valvada, Vapi, Gujarat, 396105, India
| | - Abhay Deshpande
- Jai Research Foundation, Valvada, Vapi, Gujarat, 396105, India
| |
Collapse
|
24
|
Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH, Davydova J. Oncolytic Adenovirus for the Targeting of Paclitaxel-Resistant Breast Cancer Stem Cells. Viruses 2024; 16:567. [PMID: 38675909 PMCID: PMC11054319 DOI: 10.3390/v16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Sacha Robert
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Christopher J. LaRocca
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Smyth PPA, O’Dowd CD. Climate changes affecting global iodine status. Eur Thyroid J 2024; 13:e230200. [PMID: 38471306 PMCID: PMC11046319 DOI: 10.1530/etj-23-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Abstract
Global warming is now universally acknowledged as being responsible for dramatic climate changes with rising sea levels, unprecedented temperatures, resulting fires and threatened widespread species loss. While these effects are extremely damaging, threatening the future of life on our planet, one unexpected and paradoxically beneficial consequence could be a significant contribution to global iodine supply. Climate change and associated global warming are not the primary causes of increased iodine supply, which results from the reaction of ozone (O3) arising from both natural and anthropogenic pollution sources with iodide (I-) present in the oceans and in seaweeds (macro- and microalgae) in coastal waters, producing gaseous iodine (I2). The reaction serves as negative feedback, serving a dual purpose, both diminishing ozone pollution in the lower atmosphere and thereby increasing I2. The potential of this I2 to significantly contribute to human iodine intake is examined in the context of I2 released in a seaweed-abundant coastal area. The bioavailability of the generated I2 offers a long-term possibility of increasing global iodine status and thereby promoting thyroidal health. It is hoped that highlighting possible changes in iodine bioavailability might encourage the health community to address this issue.
Collapse
Affiliation(s)
- Peter PA Smyth
- UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Colin D O’Dowd
- Ryan Institute’s Centre for Climate & Air Pollution Studies, School of Physics, University of Galway, Ireland
| |
Collapse
|
26
|
Luo NF, Li JL, Lv J, Chen FK, Li YN, Tang M, Liu PJ. Role of sodium/iodide symporter overexpression in inhibiting thyroid cancer cell invasion and stem cell maintenance by inhibiting the β-catenin/LEF-1 pathway. Heliyon 2024; 10:e27840. [PMID: 38545139 PMCID: PMC10965522 DOI: 10.1016/j.heliyon.2024.e27840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Background In thyroid cancers, a reduction in the expression of the sodium/iodide symporter (NIS) is observed concomitant with a diminution in cancer cell differentiation. The β-catenin/LEF-1 pathway emerges as a crucial regulatory pathway influencing the functional expression of NIS in human thyroid cancer cells. Further research is required to comprehensively elucidate the role of NIS overexpression in impeding the progression of thyroid cancer cells. Methods Human papillary thyroid carcinoma (PTC) cell lines, specifically PTC-1 and KTC-1, were subjected to Scratch and Transwell assays, colony formation, and tumor sphere formation tests to investigate invasion and migration, focusing on the impact of NIS overexpression. The assessment involved the use of western blot to analyze the expression levels of β-catenin, NIS, CD133, SRY-related HMG box2 (Sox2), lymphoid enhancer-binding factor 1 (LEF-1), NANOG, octamer-binding transcription factor 4 (Oct4), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and epithelial cellular adhesion molecule (EpCAM). Statistical analysis was conducted using SPSS version 20.0, and the graphs were developed using GraphPad Prism 7 (GraphPad Software, Inc.). Results Our observations revealed that Nthy-ori-3-1 cell lines exhibited notably higher average expression levels of NIS, yet significantly lower levels of LEF-1 and β-catenin compared to PTC-1 and KTC-1 cell lines. Furthermore, the overexpression of β-catenin resulted in reduced binding of LEF-1 to NIF promotion but concurrently increased the expression of NIS. The downregulation of NIS markedly enhanced the expression of ALDH1A1, CD133, OCT4, Nanog, SOX2, and EpCam-all of which are targets within the Wnt/β-catenin signaling pathway. Conversely, the upregulation of NIS suppressed the expression of these proteins. Moreover, cells treated with β-catenin activators demonstrated an increased capability to form more spheroids and displayed heightened aggressiveness. Conversely, the NIS overexpression (OE) group exhibited suppressed abilities in invasion and colony formation. Conclusion Thyroid cancer cells exhibit diminished expression of NIS, and the invasion and maintenance of stem cells in thyroid cancer cells were hindered by NIS OE through the inhibition of the β-catenin/LEF-1 pathway. Further research is warranted to comprehensively assess this outcome, which holds promise as a potential targeted treatment for thyroid cancer.
Collapse
Affiliation(s)
- Nan-Fang Luo
- Department of Cardiac Function, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Jia-Li Li
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Fu-Kun Chen
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ya-Nan Li
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ming Tang
- Department of Pathology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Peng-Jie Liu
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| |
Collapse
|
27
|
Harmych SJ, Tydings CW, Meiler J, Singh B. Sequence and structural insights of monoleucine-based sorting motifs contained within the cytoplasmic domains of basolateral proteins. Front Cell Dev Biol 2024; 12:1379224. [PMID: 38495621 PMCID: PMC10940456 DOI: 10.3389/fcell.2024.1379224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Delivery to the correct membrane domain in polarized epithelial cells is a critical regulatory mechanism for transmembrane proteins. The trafficking of these proteins is directed by short amino acid sequences known as sorting motifs. In six basolaterally-localized proteins lacking the canonical tyrosine- and dileucine-based basolateral sorting motifs, a monoleucine-based sorting motif has been identified. This review will discuss these proteins with an identified monoleucine-based sorting motif, their conserved structural features, as well as the future directions of study for this non-canonical basolateral sorting motif.
Collapse
Affiliation(s)
- Sarah J. Harmych
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Claiborne W. Tydings
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Gilbert ME, Hassan I, O'Shaughnessy KL, Wood C, Stoker TE, Riutta C, Ford JL. Ammonium perchlorate: serum dosimetry, neurotoxicity, and resilience of the neonatal rat thyroid system. Toxicol Sci 2024; 198:113-127. [PMID: 38145495 PMCID: PMC11588387 DOI: 10.1093/toxsci/kfad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.
Collapse
Affiliation(s)
- Mary E Gilbert
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Office of Air Quality, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Carmen Wood
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Tammy E Stoker
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Cal Riutta
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, USA
| | - Jermaine L Ford
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
29
|
Zhang H, Xie H, Li L. Association of radioactive iodine treatment in differentiated thyroid cancer and cardiovascular death: a large population-based study. J Endocrinol Invest 2024; 47:443-453. [PMID: 37543985 DOI: 10.1007/s40618-023-02159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE The risk of cardiovascular diseases' death (CVD) in patients with differentiated thyroid cancer (DTC) treated with radioactive iodine (RAI) after surgery has not been adequately studied. METHODS Data of DTC patients who received RAI after surgery were retrieved from the Surveillance, Epidemiology, and End Result (SEER) database (2004-2015). Standardized mortality rate (SMR) analysis was used to evaluate the CVD risk in patients with RAI vs general population. A 1:1 propensity score matching (PSM) was applied to balance inter-group bias, and Pearson's correlation coefficient was used to detect collinearity between variables. The Cox proportional hazard model and multivariate competing risk model were utilized to evaluate the impact of RAI on CVD. At last, we curved forest plots to compare differences in factors significantly associated with CVD or cancer-related deaths. RESULTS DTC patients with RAI treatment showed lower SMR for CVD than general population (RAI: SMR = 0.66, 95% CI 0.62-0.71, P < 0.05). After PSM, Cox proportional hazard regression demonstrated a decreased risk of CVD among patients with RAI compared to patients without (HR = 0.76, 95% CI 0.6-0.97, P = 0.029). However, in competing risk regression analysis, there was no significant difference (adjusted HR = 0.82, 95% CI 0.66-1.01, P = 0.11). The independent risk factors associated with CVD were different from those associated with cancer-related deaths. CONCLUSION The CVD risk between DTC patients treated with RAI and those who did not was no statistical difference. Noteworthy, they had decreased CVD risk compared with the general population.
Collapse
Affiliation(s)
- H Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - H Xie
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - L Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
30
|
Alkhatib D, Shi Z, Ganji V. Dietary Patterns and Hypothyroidism in U.S. Adult Population. Nutrients 2024; 16:382. [PMID: 38337667 PMCID: PMC10857224 DOI: 10.3390/nu16030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The thyroid gland produces hormones that are essential for various body functions. Hypothyroidism is defined as insufficient thyroid hormone production. Several studies have found associations between specific micronutrients and overall thyroid function; however, the amount of evidence regarding the relationship between dietary patterns and hypothyroidism among the U.S. population is limited. Data from three cycles of National Health and Nutrition Examination Surveys (NHANES), 2007-2008, 2009-2010, and 2011-2012, were used (n = 8317). Subjects with serum thyroid stimulating hormone >4.5 mIU/L or on levothyroxine were considered to have hypothyroidism. Age, sex, race/ethnicity, body mass index, and several lifestyle factors were considered as covariates. Three patterns were extracted using factor analysis. These were labeled as fat-processed grains-sugars-meats (FPSM), oils-nuts-potatoes-low-fat meats (ONPL), and fruits-whole grains-vegetables-dairy (FWVD) patterns. In a weighted multiple logistic regression, FPSM and ONPL were inversely associated with hypothyroidism (OR, 0.75; 95% CI, 0.57-1; p = 0.049 and OR, 0.81; 95% CI, 0.67-0.97; p = 0.025, respectively). However, FWVD demonstrated no association with hypothyroidism (p = 0.63). In conclusion, FPSM and ONPL patterns but not FWVD patterns were associated with hypothyroidism in U.S. adults. Nutrient deficiencies and their interactions may be linked to hypothyroidism.
Collapse
Affiliation(s)
- Dana Alkhatib
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.A.); (Z.S.)
| | - Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (D.A.); (Z.S.)
| | - Vijay Ganji
- Department of Nutrition and Dietetics, School of Health & Human Sciences, Indiana University Indianapolis, 1050 Wishard Blvd, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Zhao S, Zhao Y, Zhao Y, Wang G. Pathogenesis and signaling pathways related to iodine-refractory differentiated thyroid cancer. Front Endocrinol (Lausanne) 2024; 14:1320044. [PMID: 38313845 PMCID: PMC10836590 DOI: 10.3389/fendo.2023.1320044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Thyroid cancer is the most common malignant neoplasm within the endocrine system and the field of head and neck surgery. Although the majority of thyroid cancers, more than 90%, are well-differentiated thyroid carcinomas with a favourable prognosis, the escalating incidence of this disease has contributed to an increasing number of patients with a propensity for recurrent disease, rapid disease progression, and poor or no response to conventional treatments. These clinical challenges are commonly attributed to alterations in key thyroid oncogenes or signaling pathways, thereby initiating tumour cell dedifferentiation events, accompanied by reduced or virtually absent expression of the sodium/iodine symporter (NIS). As a result, the disease evolves into iodine-refractory differentiated thyroid cancer (RAIR-DTC), an entity that is insensitive to conventional radioiodine therapy. Despite being classified as a differentiated thyroid cancer, RAIR-DTC has an extremely poor clinical prognosis, with a 10-year survival rate of less than 10%. Therefore, it is of paramount importance to comprehensively elucidate the underlying pathogenesis of RAIR-DTC and provide specific targeted interventions. As the pathogenic mechanisms of RAIR-DTC remain elusive, here we aim to review recent advances in understanding the pathogenesis of RAIR-DTC and provide valuable insights for the development of future molecularly targeted therapeutic approaches.
Collapse
Affiliation(s)
- Simeng Zhao
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuejia Zhao
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yongfu Zhao
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Guangzhi Wang
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Uppalapati SS, Guha L, Kumar H, Mandoli A. Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction. Curr Cancer Drug Targets 2024; 24:245-270. [PMID: 37424349 DOI: 10.2174/1568009623666230707155145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| |
Collapse
|
33
|
Singh NK, Ramamourthy B, Hage N, Nagaraju S, Kappagantu KM. Radioactive Iodine in Differentiated Carcinoma of Thyroid: An Overview. Curr Radiopharm 2024; 17:2-6. [PMID: 37877561 DOI: 10.2174/0118744710249684231013072013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023]
Abstract
Thyroid cancer is the fifth most prevalent cancer in women and the fastest-growing malignancy. Although surgery is still the basis of treatment, internal radiation therapy (Brachytherapy) with radioactive iodine-131, which functions by releasing beta particles with low tissue penetration and causing DNA damage, is also a potential option. The three basic aims of RAI therapy in well-differentiated thyroid tumors are ablation of the remnant, adjuvant therapy, and disease management. Radioactive iodine dose is selected in one of two ways, empiric and dosimetric, which relies on numerous criteria. The dosage for ablation is 30-100 mCi, 30-150 mCi for adjuvant therapy, and 100-200 mCi for treatment. The RAI treatment effectively aids in the treatment to achieve complete removal of the disease and increase survival. The present review intends to emphasize the significance of radioactive iodine in the management of differentiated thyroid cancer and put forward the current breakthroughs in therapy.
Collapse
Affiliation(s)
- Namit Kant Singh
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Balaji Ramamourthy
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Neemu Hage
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Sushmitha Nagaraju
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Krishna Medha Kappagantu
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| |
Collapse
|
34
|
Singh SB, Bhandari S, Siwakoti S, Kumar M, Singh R, Bhusal S, Sharma K, Bhandari S, Khanal K. PET/CT in the Evaluation of CAR-T Cell Immunotherapy in Hematological Malignancies. Mol Imaging 2024; 23:15353508241257924. [PMID: 38952399 PMCID: PMC11208886 DOI: 10.1177/15353508241257924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 07/03/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell-based immunotherapy has emerged as a path-breaking strategy for certain hematological malignancies. Assessment of the response to CAR-T therapy using quantitative imaging techniques such as positron emission tomography/computed tomography (PET/CT) has been broadly investigated. However, the definitive role of PET/CT in CAR-T therapy remains to be established. [18F]FDG PET/CT has demonstrated high sensitivity and specificity for differentiating patients with a partial and complete response after CAR-T therapy in lymphoma. The early therapeutic response and immune-related adverse effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome can also be detected on [18F]FDG PET images. In otherwise asymptomatic lymphoma patients with partial response following CAR-T therapy, the only positive findings could be abnormal PET/CT results. In multiple myeloma, a negative [18F]FDG PET/CT after receiving B-cell maturation antigen-directed CAR-T therapy has been associated with a favorable prognosis. In leukemia, [18F]FDG PET/CT can detect extramedullary metastases and treatment responses after therapy. Hence, PET/CT is a valuable imaging tool for patients undergoing CAR-T therapy for pretreatment evaluation, monitoring treatment response, assessing safety, and guiding therapeutic strategies. Developing guidelines with standardized cutoff values for various PET parameters and tumor cell-specific tracers may improve the efficacy and safety of CAR-T therapy.
Collapse
Affiliation(s)
| | | | - Shisir Siwakoti
- Kathmandu University School of Medical Sciences, Kavre, Nepal
| | - Manoj Kumar
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gunnarsdóttir I, Brantsæter AL. Iodine: a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10369. [PMID: 38187800 PMCID: PMC10770700 DOI: 10.29219/fnr.v67.10369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/27/2022] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Iodine is essential for the synthesis of the thyroid hormones thyroxine (T4) and triiodothyronine (T3). As in many other parts of the world, insufficient iodine intake and consequently insufficient iodine status is a public health challenge in the Nordic and Baltic countries. The main dietary sources of iodine in the Nordic and Baltic countries include cow's milk, saltwater fish, eggs, products containing iodised salt, and iodised table salt. Only Denmark (DK), Finland (FI) and Sweden (SE) have implemented mandatory (DK) or voluntary (SE, FI) salt iodisation. New data, as well as recent studies from the Nordic and Baltic countries, strengthen the evidence that the main health challenges related to insufficient iodine intake remain thyroid function and thyroid disease, mental development, and cognitive function. Excessive intakes can also cause hyperthyroidism, autoimmune thyroid disease, and thyroid cancer.
Collapse
Affiliation(s)
- Ingibjörg Gunnarsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
- Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik, Iceland
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
36
|
Gilbert ME, O’Shaughnessy KL, Bell KS, Ford JL. Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate. TOXICS 2023; 11:1027. [PMID: 38133428 PMCID: PMC10747616 DOI: 10.3390/toxics11121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements induced by pharmaceuticals that reduce the hormone synthesis enzyme thyroperoxidase. In this report, we extend these observations to the environmental contaminant perchlorate, an agent that interferes with thyroid status by inhibiting iodine uptake into the thyroid gland. Pregnant rat dams were administered perchlorate in their drinking water (0, 30, 100, 300, 1000 ppm) from gestational day (GD) 6 until the weaning of pups on postnatal day (PN) 21. Serum T4 was reduced in dams and fetuses in late gestation and remained lower in lactating dams. Pup serum and brain T4, however, were not reduced beyond PN0, and small PVHs were evident in the brains of offspring when assessed on PN14. To emulate the developmental time window of the brain in humans, a second study was conducted in which pups from perchlorate-exposed dams were administered perchlorate orally from PN0 to PN6. This treatment reduced serum and brain T4 in the pup and resulted in large PVH. A third study extended the period of serum and brain TH suppression in pups by coupling maternal perchlorate exposure with maternal dietary iodine deficiency (ID). No PVHs were evident in the pups from ID dams, small PVHs were observed in the offspring of dams exposed to 300 ppm of perchlorate, and very large PVHs were present in the brains of pups born to dams receiving ID and perchlorate. These findings underscore the importance of the inclusion of serum hormone profiles in pregnant dams and fetuses in in vivo screens for thyroid-system-disrupting chemicals and indicate that chemical-induced decreases in fetal rat serum that resolve in the immediate postnatal period may still harbor considerable concern for neurodevelopment in humans.
Collapse
Affiliation(s)
- Mary E. Gilbert
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Katherine L. O’Shaughnessy
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Kiersten S. Bell
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jermaine L. Ford
- National Center for Computational Toxicology, Office of Research and Development, Environmental Protection Agency, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
37
|
Achonu CU, Olopade OB, Yusuf BO, Fadeyi AA, Fasanmade OA. Case Report of Graves' Disease in a 45-Year-Old Woman Secondary to Herceptin Treatment for Breast Cancer. Monoclon Antib Immunodiagn Immunother 2023; 42:194-202. [PMID: 38156888 DOI: 10.1089/mab.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Graves' disease is the most common cause of thyrotoxicosis and is characterized by ophthalmopathy with proptosis, chemosis, or conjunctival injection; pretibial myxedema; and thyroid acropachy. It is an autoimmune disease that can be genetic or influenced by coexisting environmental factors such as exposure to anticancer drugs, including immune checkpoint inhibitors. The incidence rate of breast cancer is increasing due to rising awareness of risk factors and screening for breast cancer, and the mortality rate is decreasing due to recent advances in cancer treatment. However, there are side effects that are attributed to these treatment modalities, manifesting in various forms in breast cancer survivors, which are reflected in the patient in this case study.
Collapse
Affiliation(s)
- Chinmeri U Achonu
- Faculty of Clinical Sciences, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Oluwarotimi B Olopade
- Department of Medicine, Endocrinology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Bashir O Yusuf
- Department of Medicine, Federal Teaching Hospital Katsina, Katsina, Nigeria
| | - Abimbola A Fadeyi
- Department of Radiodiagnosis, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Olufemi A Fasanmade
- Department of Medicine, Endocrinology, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
38
|
Wang C, Zhang Y. Current Application of Nanoparticle Drug Delivery Systems to the Treatment of Anaplastic Thyroid Carcinomas. Int J Nanomedicine 2023; 18:6037-6058. [PMID: 37904863 PMCID: PMC10613415 DOI: 10.2147/ijn.s429629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Anaplastic thyroid carcinomas (ATCs) are a rare subtype of thyroid cancers with a low incidence but extremely high invasiveness and fatality. The treatment of ATCs is very challenging, and currently, a comprehensive individualized therapeutic strategy involving surgery, radiotherapy (RT), chemotherapy, BRAF/MEK inhibitors (BRAFi/MEKi) and immunotherapy is preferred. For ATC patients in stage IVA/IVB, a surgery-based comprehensive strategy may provide survival benefits. Unfortunately, ATC patients in IVC stage barely get benefits from the current treatment. Recently, nanoparticle delivery of siRNAs, targeted drugs, cytotoxic drugs, photosensitizers and other agents is considered as a promising anti-cancer treatment. Nanoparticle drug delivery systems have been mainly explored in the treatment of differentiated thyroid cancer (DTC). With the rapid development of drug delivery techniques and nanomaterials, using hybrid nanoparticles as the drug carrier to deliver siRNAs, targeted drugs, immune drugs, chemotherapy drugs and phototherapy drugs to ATC patients have become a hot research field. This review aims to describe latest findings of nanoparticle drug delivery systems in the treatment of ATCs, thus providing references for the further analyses.
Collapse
Affiliation(s)
- Chonggao Wang
- Department of Thyroid Surgery, Nanjing Hospital of Chinese Medicine, Nanjing, 210001, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, 210001, People’s Republic of China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
39
|
Borjihan Q, Liang X, Chen T, Xiao D, Zhang Y, Wu H, Zhang Q, Dong A. Biological regulation on iodine using nano-starch for preventing thyroid dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132200. [PMID: 37651936 DOI: 10.1016/j.jhazmat.2023.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023]
Abstract
The growing incidence of thyroid disease triggered by excess iodine uptake poses a severe health threat throughout the world. Extracellular interference therapies impede iodine transport across the sodium-iodide symporter (NIS) membrane protein and thus prevent excessive iodine uptake by thyroid cells, which may lessen the occurrence of disease. Herein, we for the first time utilized nano-starch particles (St NPs) to regulate iodine transport across the NIS protein of thyroid cells by using extracellular interference therapy. By precisely encapsulating iodine within the cavity of a glucan α-helix via hydrogen bonding, extracellular St NPs prevented excess iodine uptake by thyroid cells in vitro and in vivo; this down-regulated the expression of NIS protein (0.06-fold) and autophagy protein LC3B-II (0.35-fold). We also found that St NPs regulated the metabolic pathway of iodine in zebrafish. We believe this proposed strategy offers a novel insight into controlling iodine uptake by the thyroid and indicates a new direction for preventing iodine-induced thyroid disease.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Xuefang Liang
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Ting Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Qing Zhang
- College of Chemistry, Tangshan Normal University, Tangshan 063000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
40
|
Kitzberger C, Shehzad K, Morath V, Spellerberg R, Ranke J, Steiger K, Kälin RE, Multhoff G, Eiber M, Schilling F, Glass R, Weber WA, Wagner E, Nelson PJ, Spitzweg C. Interleukin-6-controlled, mesenchymal stem cell-based sodium/iodide symporter gene therapy improves survival of glioblastoma-bearing mice. Mol Ther Oncolytics 2023; 30:238-253. [PMID: 37701849 PMCID: PMC10493263 DOI: 10.1016/j.omto.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
New treatment strategies are urgently needed for glioblastoma (GBM)-a tumor resistant to standard-of-care treatment with a high risk of recurrence and extremely poor prognosis. Based on their intrinsic tumor tropism, adoptively applied mesenchymal stem cells (MSCs) can be harnessed to deliver the theranostic sodium/iodide symporter (NIS) deep into the tumor microenvironment. Interleukin-6 (IL-6) is a multifunctional, highly expressed cytokine in the GBM microenvironment including recruited MSCs. MSCs engineered to drive NIS expression in response to IL-6 promoter activation offer the possibility of a new tumor-targeted gene therapy approach of GBM. Therefore, MSCs were stably transfected with an NIS-expressing plasmid controlled by the human IL-6 promoter (IL-6-NIS-MSCs) and systemically applied in mice carrying orthotopic GBM. Enhanced radiotracer uptake by 18F-Tetrafluoroborate-PET/magnetic resonance imaging (MRI) was detected in tumors after IL-6-NIS-MSC application as compared with mice that received wild-type MSCs. Ex vivo analysis of tumors and non-target organs showed tumor-specific NIS protein expression. Subsequent 131I therapy after IL-6-NIS-MSC application resulted in significantly delayed tumor growth assessed by MRI and improved median survival up to 60% of GBM-bearing mice as compared with controls. In conclusion, the application of MSC-mediated NIS gene therapy focusing on IL-6 biology-induced NIS transgene expression represents a promising approach for GBM treatment.
Collapse
Affiliation(s)
- Carolin Kitzberger
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Khuram Shehzad
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Volker Morath
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rebekka Spellerberg
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julius Ranke
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Radiation Immuno-Oncology Group, Munich, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang A. Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Centre for System-Based Drug Research and Centre for Nanoscience, LMU Munich, Munich, Germany
| | - Peter J. Nelson
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Dzien P, Mackintosh A, Malviya G, Johnson E, Soloviev D, Brown G, Uribe AH, Nixon C, Lyons SK, Maddocks O, Blyth K, Lewis DY. Positron emission tomography imaging of the sodium iodide symporter senses real-time energy stress in vivo. Cancer Metab 2023; 11:14. [PMID: 37679822 PMCID: PMC10486058 DOI: 10.1186/s40170-023-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Tissue environment is critical in determining tumour metabolic vulnerability. However, in vivo drug testing is slow and waiting for tumour growth delay may not be the most appropriate endpoint for metabolic treatments. An in vivo method for measuring energy stress would rapidly determine tumour targeting in a physiologically relevant environment. The sodium-iodide symporter (NIS) is an imaging reporter gene whose protein product co-transports sodium and iodide, and positron emission tomography (PET) radiolabelled anions into the cell. Here, we show that PET imaging of NIS-mediated radiotracer uptake can rapidly visualise tumour energy stress within minutes following in vivo treatment. METHODS We modified HEK293T human embryonic kidney cells, and A549 and H358 lung cancer cells to express transgenic NIS. Next, we subjected these cells and implanted tumours to drugs known to induce metabolic stress to observe the impact on NIS activity and energy charge. We used [18F]tetrafluoroborate positron emission tomography (PET) imaging to non-invasively image NIS activity in vivo. RESULTS NIS activity was ablated by treating HEK293T cells in vitro, with the Na+/K+ ATPase inhibitor digoxin, confirming that radiotracer uptake was dependent on the sodium-potassium concentration gradient. NIS-mediated radiotracer uptake was significantly reduced (- 58.2%) following disruptions to ATP re-synthesis by combined glycolysis and oxidative phosphorylation inhibition in HEK293T cells and by oxidative phosphorylation inhibition (- 16.6%) in A549 cells in vitro. PET signal was significantly decreased (- 56.5%) within 90 min from the onset of treatment with IACS-010759, an oxidative phosphorylation inhibitor, in subcutaneous transgenic A549 tumours in vivo, showing that NIS could rapidly and sensitively detect energy stress non-invasively, before more widespread changes to phosphorylated AMP-activated protein kinase, phosphorylated pyruvate dehydrogenase, and GLUT1 were detectable. CONCLUSIONS NIS acts as a rapid metabolic sensor for drugs that lead to ATP depletion. PET imaging of NIS could facilitate in vivo testing of treatments targeting energetic pathways, determine drug potency, and expedite metabolic drug development.
Collapse
Affiliation(s)
- Piotr Dzien
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Agata Mackintosh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Emma Johnson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Dmitry Soloviev
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Gavin Brown
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Oliver Maddocks
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - David Y Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
42
|
Menon NN, Arora S, Dabas SK, Sharma A, Ranjan R, Gurung B, Shukla H, Tiwari S, Bhatti SS, Kumar A, Singal R, KrishnanVats A. Incidentally Detected 131-Iodine Avid Parotid Oncocytoma Coexistent with Papillary Carcinoma Thyroid. Indian J Otolaryngol Head Neck Surg 2023; 75:2598-2603. [PMID: 37636641 PMCID: PMC10447823 DOI: 10.1007/s12070-023-03804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/11/2023] [Indexed: 08/29/2023] Open
Abstract
131-I radioactive iodine (RAI) scan is an important modality in the management of differentiated thyroid cancer to detect recurrent or residual disease. Thus it is important to have knowledge about the possibility of false positive findings in these scans to avoid wrongful diagnosis and unnecessary treatment. We here by present a patient who underwent total thyroidectomy with lymph node dissection and followed by radioactive iodine therapy for papillary thyroid cancer. He had 131-I iodine avid nodular lesion in the left parotid gland which was later proven to be oncocytoma on histopathology. False positive findings on radioactive iodine scans are a possibility which should be known to surgeons as well as nuclear medicine physicians for accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
- Nandini N Menon
- Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Saurabh Arora
- Department of nuclear medicine, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Surendra K Dabas
- Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Ashwani Sharma
- Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Reetesh Ranjan
- Senior consultant in Surgical oncology, Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Bikas Gurung
- Senior consultant in Surgical oncology, Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Himanshu Shukla
- Senior consultant in Surgical oncology, Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Sukirti Tiwari
- Department of Surgical oncology, FHNO Fellow, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Sahibinder Singh Bhatti
- Department of Histopathology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Alka Kumar
- Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Rishu Singal
- Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| | - Abhinav KrishnanVats
- Department of Surgical oncology, BLK- MAX Super speciality hospital, Pusa road, Rajendra Place, 110005 Delhi, India
| |
Collapse
|
43
|
Nilsson JN, Siikanen J, Condello V, Jatta K, Saini R, Hedman C, Ihre Lundgren C, Juhlin CC. Iodine avidity in papillary and poorly differentiated thyroid cancer is predicted by immunohistochemical and molecular work-up. Eur Thyroid J 2023; 12:e230099. [PMID: 37352166 PMCID: PMC10388652 DOI: 10.1530/etj-23-0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/25/2023] Open
Abstract
Background Successful radioiodine treatment of differentiated thyroid cancer requires iodine avidity: that is, the concentration and retention of iodine in cancer tissue. Several parameters have previously been linked with lower iodine avidity. However, a comprehensive analysis of which factors best predict iodine avidity status, and the magnitude of their impact, is lacking. Methods Quantitative measurements of iodine avidity in surgical specimens (primary tumour and lymph node metastases) of 28 patients were compared to immunohistochemical expression of the thyroid-stimulating hormone receptor, thyroid peroxidase (TPO), pendrin, sodium-iodide symporter (NIS) and mutational status of BRAF and the TERT promoter. Regression analysis was used to identify independent predictors of poor iodine avidity. Results Mutations in BRAF and the TERT promoter were significantly associated with lower iodine avidity for lymph node metastases (18-fold and 10-fold, respectively). Membranous NIS localisation was found only in two cases but was significantly associated with high iodine avidity. TPO expression was significantly correlated with iodine avidity (r = 0.44). The multivariable modelling showed that tumour tissue localisation (primary tumour or lymph node metastasis), histological subtype, TPO and NIS expression and TERT promoter mutation were each independent predictors of iodine avidity that could explain 68% of the observed variation of iodine avidity. Conclusions A model based on histological subtype, TPO and NIS expression and TERT promoter mutation, all evaluated on initial surgical material, can predict iodine avidity in thyroid cancer tissue ahead of treatment. This could inform early adaptation with respect to expected treatment effect.
Collapse
Affiliation(s)
- Joachim N Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Siikanen
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vincenzo Condello
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kenbugul Jatta
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Ravi Saini
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Christel Hedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Stockholms Sjukhem Foundation's Research and Development Department, Stockholm, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Catharina Ihre Lundgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
45
|
Xiao J, Sha Y, Huang Y, Long K, Wu H, Mo Y, Yang Q, Dong S, Zeng Q, Wei X. Drinking water disinfection byproduct iodoacetic acid affects thyroid hormone synthesis in Nthy-ori 3-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114926. [PMID: 37094483 DOI: 10.1016/j.ecoenv.2023.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Iodoacetic acid (IAA) is an emerging and the most genotoxic iodinated disinfection byproduct to date. IAA can disrupt the thyroid endocrine function in vivo and in vitro, but the underlying mechanisms remain unclear. In this work, transcriptome sequencing was used to investigate the effect of IAA on the cellular pathways of human thyroid follicular epithelial cell line Nthy-ori 3-1 and determine the mechanism of IAA on the synthesis and secretion of thyroid hormone (TH) in Nthy-ori 3-1 cells. Results of transcriptome sequencing indicated that IAA affected the TH synthesis pathway in Nthy-ori 3-1 cells. IAA reduced the mRNA expression of thyroid stimulating hormone receptor, sodium iodide symporter, thyroid peroxidase, thyroglobulin, paired box 8 and thyroid transcription factor-2, inhibited the cAMP/PKA pathway and Na+-K+-ATPase, and decreased the iodine intake. The results were confirmed by our previous findings in vivo. Additionally, IAA downregulated glutathione and the mRNA expression of glutathione peroxidase 1, leading to increased reactive oxygen species production. This study is the first to elucidate the mechanisms of IAA on TH synthesis in vitro. The mechanisms are associated with down-regulating the expression of genes related to TH synthesis, inhibiting iodine uptake, and inducing oxidative stress. These findings may improve future health risk assessment of IAA on thyroid in human.
Collapse
Affiliation(s)
- Jingyi Xiao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuwen Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shengkun Dong
- Southern Laboratory of Ocean Science and Engineering, School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519000, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
46
|
Almawgani AHM, Fathy HM, Elsayed HA, Ali GA, Irfan M, Mehaney A. Periodic and quasi-periodic one-dimensional phononic crystal biosensor: a comprehensive study for optimum sensor design. RSC Adv 2023; 13:11967-11981. [PMID: 37077264 PMCID: PMC10107728 DOI: 10.1039/d3ra01155k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
The resonant acoustic band gap materials have introduced an innovative generation of sensing technology. Based on the local resonant transmitted peaks, this study aims to comprehensively investigate the use of periodic and quasi-periodic one-dimension (1D) layered phononic crystals (PnCs) as a highly sensitive biosensor for the detection and monitoring of sodium iodide (NaI) solution. Meanwhile, a defect layer is introduced defect layer inside the phononic crystal designs to be filled with NaI solution. The proposed biosensor is developed based on the periodic PnCs structure and quasi-periodic PnCs structure. The numerical findings demonstrated that the quasi-periodic PnCs structure provided a wide phononic band gap and a large sensitivity compared to the periodic one. Moreover, many resonance peaks through the transmission spectra are introduced for the quasi-periodic design. The results also show that the resonant peak frequency changes effectively with varying NaI solution concentrations in the third sequence of the quasi-periodic PnCs structure. The sensor can differentiate between concentrations ranging from 0 to 35% with a 5% step, which is extremely satisfying for precise detection and can contribute to a variety of issues in medical applications. Additionally, the sensor provided excellent performance for all the concentrations of the NaI solution. For instance, the sensor has a sensitivity of 959 MHz, a quality factor of 6947, a very low damping factor of 7.19 × 10-5, and a figure of merit of 323.529.
Collapse
Affiliation(s)
- Abdulkarem H M Almawgani
- Electrical Engineering Department, College of Engineering, Najran University Najran Kingdom of Saudi Arabia
| | - Hamza Makhlouf Fathy
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Hussein A Elsayed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Ghassan Ahmed Ali
- Information Systems Department, College of Computer Sciences and Information Systems, Najran University Najran Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University Najran Kingdom of Saudi Arabia
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| |
Collapse
|
47
|
Yang A, Zhang Z, Chaurasiya S, Park AK, Jung A, Lu J, Kim SI, Priceman S, Fong Y, Woo Y. Development of the oncolytic virus, CF33, and its derivatives for peritoneal-directed treatment of gastric cancer peritoneal metastases. J Immunother Cancer 2023; 11:e006280. [PMID: 37019471 PMCID: PMC10083877 DOI: 10.1136/jitc-2022-006280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) that metastasizes to the peritoneum is fatal. CF33 and its genetically modified derivatives show cancer selectivity and oncolytic potency against various solid tumors. CF33-hNIS and CF33-hNIS-antiPDL1 have entered phase I trials for intratumoral and intravenous treatments of unresectable solid tumors (NCT05346484) and triple-negative breast cancer (NCT05081492). Here, we investigated the antitumor activity of CF33-oncolytic viruses (OVs) against GC and CF33-hNIS-antiPDL1 in the intraperitoneal (IP) treatment of GC peritoneal metastases (GCPM). METHODS We infected six human GC cell lines AGS, MKN-45, MKN-74, KATO III, SNU-1, and SNU-16 with CF33, CF33-GFP, or CF33-hNIS-antiPDL1 at various multiplicities of infection (0.01, 0.1, 1.0, and 10.0), and performed viral proliferation and cytotoxicity assays. We used immunofluorescence imaging and flow cytometric analysis to verify virus-encoded gene expression. We evaluated the antitumor activity of CF33-hNIS-antiPDL1 following IP treatment (3×105 pfu × 3 doses) in an SNU-16 human tumor xenograft model using non-invasive bioluminescence imaging. RESULTS CF33-OVs showed dose-dependent infection, replication, and killing of both diffuse and intestinal subtypes of human GC cell lines. Immunofluorescence imaging showed virus-encoded GFP, hNIS, and anti-PD-L1 antibody scFv expression in CF33-OV-infected GC cells. We confirmed GC cell surface PD-L1 blockade by virus-encoded anti-PD-L1 scFv using flow cytometry. In the xenograft model, CF33-hNIS-antiPDL1 (IP; 3×105 pfu × 3 doses) treatment significantly reduced peritoneal tumors (p<0.0001), decreased amount of ascites (62.5% PBS vs 25% CF33-hNIS-antiPDL1) and prolonged animal survival. At day 91, seven out of eight mice were alive in the virus-treated group versus one out of eight in the control group (p<0.01). CONCLUSIONS Our results show that CF33-OVs can deliver functional proteins and demonstrate effective antitumor activity in GCPM models when delivered intraperitoneally. These preclinical results will inform the design of future peritoneal-directed therapy in GCPM patients.
Collapse
Affiliation(s)
- Annie Yang
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Zhifang Zhang
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Anthony K Park
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Audrey Jung
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Saul Priceman
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
48
|
Lévay B, Lantos A, Sinkovics I, Slezák A, Tóth E, Dohán O. The master role of polarized NIS expression in regulating iodine metabolism in the human body. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:256-261. [PMID: 36913678 PMCID: PMC10689030 DOI: 10.20945/2359-3997000000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/05/2022] [Indexed: 03/15/2023]
Abstract
Objective The aim of this study was to investigate how polarized sodium iodide symporter (NIS) expression may regulate iodide metabolism in vivo. Materials and methods Polarized NIS expression was analyzed in tissues that accumulate iodide by the use of immunohistochemistry and polyclonal antibody against the C-terminal end of human NIS (hNIS). Results Iodide absorption in the human intestine occurs via NIS expressed in the apical membrane. Iodide is secreted into the lumen of the stomach and salivary glands via NIS expressed in the basolateral membrane and then circulates back from the small intestine to the bloodstream via NIS expressed in the apical membrane. Conclusion Polarized NIS expression in the human body regulates intestinal-bloodstream recirculation of iodide, perhaps prolonging the availability of iodide in the bloodstream. This leads to more efficient iodide trapping by the thyroid gland. Understanding the regulation and manipulating gastrointestinal iodide recirculation could increase radioiodine availability during theranostic NIS applications.
Collapse
Affiliation(s)
- Bernadett Lévay
- National Institute of Oncology, Multidisciplinary Head and Neck Cancer Center, Budapest, Hungary,
| | - András Lantos
- National Korányi Institute of Pulmonology, Department of Pathology, Budapest, Hungary
| | - István Sinkovics
- National Institute of Oncology, Department of Nuclear Medicine, Budapest, Hungary
| | - András Slezák
- National Institute of Oncology, Department of Molecular Pathology and Surgical Pathology Center, Budapest, Hungary
| | - Erika Tóth
- National Institute of Oncology, Department of Molecular Pathology and Surgical Pathology Center, Budapest, Hungary
| | - Orsolya Dohán
- Semmelweis University, Department of Internal Medicine and Clinical Oncology, Budapest, Hungary
| |
Collapse
|
49
|
Chakrabarti M, Amzel LM, Lau AY. Sodium/Iodide Symporter Metastable Intermediates Provide Insights into Conformational Transition between Principal Thermodynamic States. J Phys Chem B 2023; 127:1540-1551. [PMID: 36758032 DOI: 10.1021/acs.jpcb.2c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The Sodium/Iodide Symporter (NIS), a 13-helix transmembrane protein found in the thyroid and other tissues, transports iodide, a required constituent of thyroid hormones T3 and T4. Despite extensive experimental information and clinical data, structural details of the intermediate microstates comprising the conformational transition of NIS between its inwardly and outwardly open states remain unresolved. We present data from a combination of enhanced sampling and transition path molecular dynamics (MD) simulations that elucidate the principal intermediate states comprising the inwardly to outwardly open transition of fully bound and apo NIS under an enforced ionic gradient. Our findings suggest that in both the absence and presence of bound physiological ions, NIS principally occupies a proximally inward to inwardly open state. When fully bound, NIS is also found to occupy a rare "inwardly occluded" state. The results of this work provide novel insight into the populations of NIS intermediates and the free energy landscape comprising the conformational transition, adding to a mechanistic understanding of NIS ion transport. Moreover, the knowledge gained from this approach can serve as a basis for studies of NIS mutants to target therapeutic interventions.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., PO Box B, Frederick, Maryland 21702, United States
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
50
|
Kang HS, Grimm SA, Jothi R, Santisteban P, Jetten AM. GLIS3 regulates transcription of thyroid hormone biosynthetic genes in coordination with other thyroid transcription factors. Cell Biosci 2023; 13:32. [PMID: 36793061 PMCID: PMC9930322 DOI: 10.1186/s13578-023-00979-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Loss of the transcription factor GLI-Similar 3 (GLIS3) function causes congenital hypothyroidism (CH) in both humans and mice due to decreased expression of several thyroid hormone (TH) biosynthetic genes in thyroid follicular cells. Whether and to what extent, GLIS3 regulates thyroid gene transcription in coordination with other thyroid transcriptional factors (TFs), such as PAX8, NKX2.1 and FOXE1, is poorly understood. METHODS PAX8, NKX2.1, and FOXE1 ChIP-Seq analysis with mouse thyroid glands and rat thyrocyte PCCl3 cells was performed and compared to that of GLIS3 to analyze the co-regulation of gene transcription in thyroid follicular cells by these TFs. RESULTS Analysis of the PAX8, NKX2.1, and FOXE1 cistromes identified extensive overlaps between these TF binding loci and those of GLIS3 indicating that GLIS3 shares many of the same regulatory regions with PAX8, NKX2.1, and FOXE1, particularly in genes associated with TH biosynthesis, induced by thyroid stimulating hormone (TSH), and suppressed in Glis3KO thyroid glands, including Slc5a5 (Nis), Slc26a4, Cdh16, and Adm2. ChIP-QPCR analysis showed that loss of GLIS3 did not significantly affect PAX8 or NKX2.1 binding and did not cause major alterations in H3K4me3 and H3K27me3 epigenetic signals. CONCLUSIONS Our study indicates that GLIS3 regulates transcription of TH biosynthetic and TSH-inducible genes in thyroid follicular cells in coordination with PAX8, NKX2.1, and FOXE1 by binding within the same regulatory hub. GLIS3 does not cause major changes in chromatin structure at these common regulatory regions. GLIS3 may induce transcriptional activation by enhancing the interaction of these regulatory regions with other enhancers and/or RNA Polymerase II (Pol II) complexes.
Collapse
Affiliation(s)
- Hong Soon Kang
- grid.280664.e0000 0001 2110 5790Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| | - Sara A. Grimm
- grid.280664.e0000 0001 2110 5790Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| | - Raja Jothi
- grid.280664.e0000 0001 2110 5790Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| | - Pilar Santisteban
- grid.5515.40000000119578126Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Anton M. Jetten
- grid.280664.e0000 0001 2110 5790Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709 USA
| |
Collapse
|