1
|
Gao X, Liu X, Han Z, Liao H, Li R. Friend or foe? The role of SIRT6 on macrophage polarized to M2 subtype in acute kidney injury to chronic kidney disease. Ren Fail 2025; 47:2482121. [PMID: 40260529 PMCID: PMC12016254 DOI: 10.1080/0886022x.2025.2482121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 04/23/2025] Open
Abstract
Acute kidney injury (AKI) substantially increases the risk of developing and worsening chronic kidney disease (CKD). The shift from AKI to CKD is a complex process that involves various cell types, with macrophages playing a key role in responding to renal injury. M1 and M2 macrophages-the two main types of macrophages-have distinct functions at various stages. M1 macrophages induce kidney damage by secreting pro-inflammatory cytokines immediately after injury, whereas M2 macrophages subsequently facilitate kidney tissue repair. The conversion of macrophages from the M1 to M2 subtype is vital for effective repair after renal injury. However, when M2 macrophages infiltrate persistently, they can paradoxically cause fibrosis, thereby complicating recovery. As a key epigenetic regulatory factor, the deacetylase SIRT6 exerts various biological effects through its enzymatic reactions, including the regulation of cellular metabolism, antioxidant stress response, and inhibition of fibrosis. SIRT6 is expressed in all major types of renal resident cells and is demonstrated to protect the kidneys. SIRT6 promotes the transition from the M1 to M2 subtype; nevertheless, this process poses the risk of fibrosis if macrophages remain in the M2 subtype because of the influence of SIRT6. This review aimed (i) to delve into the intricate role of SIRT6 in macrophage polarization toward the M2 subtype in the context of the progression from AKI to CKD and (ii) to explore potential strategies that may effectively target and mitigate the progression from AKI to CKD.
Collapse
Affiliation(s)
- Xiaoqin Gao
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| |
Collapse
|
2
|
Wu J, Zhang F, Li Z, Gan L, Cao H, Cao H, Hao C, Sun Z, Wang W. Multiple omics-based machine learning reveals specific macrophage sub-clusters in renal ischemia-reperfusion injury and constructs predictive models for transplant outcomes. Comput Biol Chem 2025; 117:108421. [PMID: 40086342 DOI: 10.1016/j.compbiolchem.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is closely associated with numerous severe postoperative complications, including acute rejection, delayed graft function (DGF) and graft failure. Macrophages are central to modulating the aseptic inflammatory response during the IRI process. The objective of this study is to conduct an analysis of the developmental and differentiation characteristics of macrophages in IRI, identify distinct molecules subtypes of IRI, and establish robust predictive strategies for DGF and graft survival. METHOD We analyzed scRNA-Seq data from GEO database to identify macrophage sub-clusters specific to renal IRI, and use the hdWGCNA algorithm to screen gene modules closely associated with this sub-cluster. Integrating these module genes with the results from bulk RNA-Seq differential analysis to obtain hub genes, and delineating the different IRI molecular subtypes through consensus clustering based on the expression profiles of hub genes. Innovatively, the gene expression matrix was transformed into a unique graphic pixel module and applied advanced computer vision processing algorithms to construct a DGF predictive model. Additionally, we also employed 111 combinations of 10 machine learning algorithms to develop a predictive signature for graft survival. Finally, we validated the expression of the key gene ANXA1 in a mouse IRI model using qRT-PCR, WB, and IHC. RESULT This study successfully identified a subset of macrophages closely associated with renal IRI, and cell communication and pseudo-time analysis implied that they may be instrumental in both the maintenance and exacerbation of the IRI process. Utilizing the expression patterns of hub genes, recipients can be clustered into two subtypes (CI and C2) with unique clinical and molecular features. We innovatively applied deep learning algorithms to construct a model for DGF prediction, which can effectively mitigate batch effects among IRI recipients. Compared to other existing models, our model demonstrated superior performance with AUC of 0.816 and 0.845 in the training and validation set. Furthermore, we also used the random survival forest algorithm to develop a high-precision predictive signature for graft failure. The mouse IRI model confirmed a marked upregulation of ANXA1 mRNA and protein expression in renal tissue following IRI. CONCLUSION This study successfully revealed the macrophage sub-cluster closely associated with renal IRI. Two distinct IRI subgroups with different characteristics were identified and robust strategies were constructed for predicting DGF and graft survival, which can offer potential therapeutic targets for the treatment of IRI and reference for early prevention of various postoperative complications.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Zhen Li
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Lijian Gan
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Haoyuan Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China
| | - Changzhen Hao
- Department of Urology, Peking University International Hospital, Beijing, China.
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Li H, Wu Y, Xiang L, Zhao Q, Liu L, Zhu Z, Lin W, Li Z, Yang Y, Ze Y, Zhang L, Fu P, Guo Y, Zhang P, Shao B. A20 attenuates oxidized self-DNA-mediated inflammation in acute kidney injury. Signal Transduct Target Ther 2025; 10:154. [PMID: 40280946 PMCID: PMC12032302 DOI: 10.1038/s41392-025-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 04/29/2025] Open
Abstract
The ubiquitin-editing enzyme A20 is known to regulate inflammation and maintain homeostasis, but its role in self-DNA-mediated inflammation in acute kidney injury (AKI) is not well understood. Here, our study demonstrated that oxidized self-DNA accumulates in the serum of AKI mice and patients. This oxidized self-DNA exacerbates the progression of AKI by activating the cGAS-STING pathway and NLRP3 inflammasome. While inhibition of the STING pathway only slightly attenuates AKI progression, suppression of NLRP3 inflammasome-mediated pyroptosis significantly alleviates AKI progression and improves the survival of AKI mice. Subsequently, we found that Tnfaip3 (encoding A20) is significantly upregulated following oxidized self-DNA treatment. A20 significantly alleviates AKI development by dampening STING signaling pathway and NLRP3-mediated pyroptosis. Moreover, A20-derived peptide (P-II) also significantly alleviates ox-dsDNA-induced pyroptosis and improves the survival and renal injury of AKI mice. Mechanistically, A20 competitively binds with NEK7 and thus inhibiting NLRP3 inflammasome. A20 and P-II interfere with the interaction between NEK7 and NLRP3 through Lys140 of NEK7. Mutation of Lys140 effects on the interaction of NEK7 with A20 and/or NLRP3 complex. Conditional knockout of NEK7 in macrophages or pharmacological inhibition of NEK7 both significantly rescue AKI mouse models. This study reveals a new mechanism by which A20 attenuates oxidized self-DNA-mediated inflammation and provides a new therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Lisha Xiang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Lu Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhixiong Zhu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yang Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Lulu Zhang
- College of Foreign Languages and Cultures, Sichuan University. Sichuan University, Chengdu, Sichuan, PR China
| | - Ping Fu
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Ping Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China.
| | - Bin Shao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Liang BE, Long LS, Wu XY, Huang MY, Lai Y, Yuan X, Wang MH, Li M, Zheng QQ, Zhang HL, Chen MC, Liu ZD, Geng X, Lyu QQ, Wang WD, Liu QH, Liu WZ, Li CL. Alginate oligosaccharide prevents renal ischemia-reperfusion injury in rats via MRC1-mediated pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01545-3. [PMID: 40263568 DOI: 10.1038/s41401-025-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) is a clinical syndrome that is defined as a sudden decline in renal function and characterized by inflammation and tubular injury. Alginate oligosaccharide (AOSC), a natural product obtained from alginate by acidolysis and hydrolysis, shows activities of antioxidant, immunomodulation, and anti-inflammation. In this study, we investigated the potential of AOSC in the treatment of AKI. Renal ischemia-reperfusion (I/R) was induced in male rats by clipping both the renal artery and vein for 45 min followed by reperfusion for 24 h. The rats were treated with AOSC (100 mg/kg, i.g.) before surgery. At the end of the experiments, both kidneys were collected for protein, mRNA measurement, or histological analysis. We showed that AOSC pretreatment significantly improved glomerular and tubular function in the kidney of I/R rats. AOSC markedly inhibited I/R-induced activation of TLR4/MyD88/NF-κB/IL-1β inflammatory signaling and prevented apoptosis in the kidney. In HK2 cells subjected to hypoxia/reoxygenation (H/R) stimulation, AOSC (250-1000 μg/ml) dose-dependently prevented pro-inflammatory responses and cell apoptosis. Transcriptomic analysis revealed that I/R increased the expression levels of mannose receptor type C1 (MRC1) in the kidney, which was markedly inhibited by AOSC. Molecular docking showed that AOSC interacted with E725, N727, E733, T743, S745, and N747 of MRC1 through hydrogen bonds. MRC1 gene knockout significantly improved renal function and attenuated I/R-induced kidney inflammation and apoptosis in mice. In line with this, AOSC failed to prevent I/R-induced kidney injury in MRC1 gene knockout mice. UPLC analysis showed that the protection of AOSC in HK2 cells subjected to H/R was likely attributed to MRC1-mediated intracellular endocytosis. In conclusion, AOSC prevents I/R-induced AKI, which is at least partially mediated by MRC1.
Collapse
Affiliation(s)
- Bai-En Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Luo-Sha Long
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin-Yan Wu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mei-Ying Huang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Yuan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Hui Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Qi Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hai-Ling Zhang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Man-Chun Chen
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen-de Liu
- Haitang (Jiangsu) Biotechnology Co Ltd, Nantong, 226100, China
| | - Xin Geng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Qian-Qian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wei-Dong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Hua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
- Department of Nephrology, Jieyang People's Hospital, Jieyang, 522000, China.
| | - Wei-Zhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Chun-Ling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Meng XM, Wang L, Nikolic-Paterson DJ, Lan HY. Innate immune cells in acute and chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00958-x. [PMID: 40263532 DOI: 10.1038/s41581-025-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are inter-related clinical and pathophysiological disorders. Cells of the innate immune system, such as granulocytes and macrophages, can induce AKI through the secretion of pro-inflammatory mediators such as cytokines, chemokines and enzymes, and the release of extracellular traps. In addition, macrophages and dendritic cells can drive the progression of CKD through a wide range of pro-inflammatory and pro-fibrotic mechanisms, and by regulation of the adaptive immune response. However, innate immune cells can also promote kidney repair after acute injury. These actions highlight the multifaceted nature of the way by which innate immune cells respond to signals within the kidney microenvironment, including interaction with the complement and coagulation cascades, cells of the adaptive immune system, intrinsic renal cells and infiltrating mesenchymal cells. The factors and mechanisms that underpin the ability of innate immune cells to contribute to renal injury or repair and to drive the progression of CKD are of great interest for understanding disease processes and for developing new therapeutic approaches to limit AKI and the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre and Monash University Centre for Inflammatory Diseases, Melbourne, Victoria, Australia
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Departments of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong, and Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
6
|
Li H, Ren Q, Shi M, Ma L, Fu P. Lactate metabolism and acute kidney injury. Chin Med J (Engl) 2025; 138:916-924. [PMID: 38802283 PMCID: PMC12037090 DOI: 10.1097/cm9.0000000000003142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 05/29/2024] Open
Abstract
ABSTRACT Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Ren
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shi
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Ma
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Tan RZ, Zhao WJ, Gao J, Lan HY, Liu J, Wang L. SARS-CoV-2 nucleocapsid protein induces a Mincle-dependent macrophage inflammatory response in acute kidney injury. Inflamm Res 2025; 74:64. [PMID: 40244324 DOI: 10.1007/s00011-025-02030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Although the COVID-19 pandemic has receded, the SARS-CoV-2 virus still poses a significant threat to individuals with pre-existing renal conditions, leading to severe acute kidney injury (AKI). However, the underlying mechanisms remain poorly understood. METHODS In this study, we used ultrasound microbubble technology to transfect and overexpress the SARS-CoV-2 nucleocapsid (N) protein in the kidneys of IRI (ischemia-reperfusion injury) and Cis (cisplatin) induced AKI mice. Additionally, we generated macrophage-specific Mincle knockout mice to investigate the amplifying effects of the SARS-CoV-2 N protein on AKI renal injury and the critical regulatory role of macrophage inducible C-type lectin (Mincle). Finally, we employed Mincle-neutralizing antibodies to intervene in the SARS-CoV-2 N-induced exacerbation of kidney injury in AKI. RESULTS We found that the specific overexpression of the SARS-CoV-2 N protein significantly aggravates kidney injury in the context of AKI. Mechanistically, we found that the exacerbation of acute kidney injury by the SARS-CoV-2 N protein is dependent on Mincle, as the SARS-CoV-2 N protein activates Mincle to enhance the Syk/NF-κB signaling pathway, leading to damage and inflammation of renal tubular epithelial cells. This was confirmed in Mincle knockout mice and cells, where Mincle knockout alleviated the renal tubular injury and inflammation caused by SARS-CoV-2 N transfection. Importantly, the use of anti-Mincle neutralizing antibodies could effectively mitigate the acute kidney injury exacerbated by the SARS-CoV-2 N protein. CONCLUSIONS In summary, we identified the SARS-CoV-2 N protein as a key mediator of kidney injury in AKI and demonstrated that it exacerbates the injury through a Mincle-dependent mechanism. Targeting Mincle may represent a novel therapeutic strategy for treating COVID-19-related acute kidney injury.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182# chunhui road, Luzhou, 646000, Sichuan, China
| | - Wen-Jing Zhao
- Department of Nephrology, Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Gao
- Department of Nephrology, Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jian Liu
- Department of Nephrology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182# chunhui road, Luzhou, 646000, Sichuan, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182# chunhui road, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Zhu H, Qin C, Cheng S, Zhang X. Exploring the Relationship Between Immune Cells and Chronic Kidney Disease by Mendelian Randomization, Colocalization Analysis, and SMR. Mediators Inflamm 2025; 2025:4279158. [PMID: 40270514 PMCID: PMC12017953 DOI: 10.1155/mi/4279158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Background: Chronic kidney disease (CKD) impacts millions of individuals annually. Current research suggests that immune factors played a significant role in CKD. However, the potential causal relationship between them remains unclear. Methods: We conducted a comprehensive Mendelian randomization (MR) analysis to assess the potential causal association between 731 immune cells and CKD. Sensitivity analysis was performed to test for heterogeneity and horizontal pleiotropy, including the Cochran Q test, leave-one-out test, MR-Egger intercept analysis, and MR-PRESSO test. The bidirectional MR was utilized to investigate the bidirectional relationship between the immune cells and CKD. Multivariable MR was also conducted to mitigate confounding among immune cells. The colocalization analysis was performed to find the key genes of immune cells. We used the Summary data-based MR (SMR) analysis to generate effect estimates between the cis-eQTL and immune cells. The heterogeneity in dependent instruments (HEIDIs) test was used to test the heterogeneity between dependent instrumental variables. Results: We identified 14 potential pathogenic factors and six potential protective factors through the univariable MR. Moreover, we did not find reverse causation by using the bidirectional MR. We finally identified one risk factor and two protective factors after multivariate MR adjustment for effects between immune cells. CD28 on CD28+ CD45RA+ CD8+ T cell could increase the risk of CKD (Pval: 0.033, OR: 1.112, 95% CI: 1.009-1.227). CD11c on myeloid dendritic cell (DC) could decrease the risk of CKD (Pval: 0.02, OR: 0.854, 95% CI: 0.748-0.975). CD45RA on naive CD4+ T cell could decrease the risk of CKD (Pval: 0.026, OR: 0.918, 95% CI: 0.852-0.990). Importantly, we observed no evidence of heterogeneity and pleiotropy, signifying the robustness of our results. BACH2 (PPH4.abf = 0.999, P_SMR: <0.001, P_HIEDI: 0.132) and HLA-G (PPH4.abf = 0.990, P_SMR: <0.001, P_HIEDI: 0.141) shared the same variant with CD28 on CD28+ CD45RA+ CD8+ T cell. PAQR9 (PPH4.abf = 0.992, P_SMR: <0.001, P_HIEDI: 0.215) shared the same variant with CD11c on myeloid DC. Conclusion: MR identified a potential correlation between CKD and immune cells. Colocalization and SMR found the key genes of immune cells. Our findings offer insights into the prevention and management of CKD. However, further investigation is required to elucidate the precise mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Huiling Zhu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaofan Qin
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Li G, Liu B, Yang H, Zhang D, Wang S, Zhang Z, Zhao Z, Zhang Y, Zhou H, Wang Y. Omega-3 polyunsaturated fatty acids alleviate renal fibrosis in chronic kidney disease by reducing macrophage activation and infiltration through the JAG1-NOTCH1/2 pathway. Int Immunopharmacol 2025; 152:114454. [PMID: 40090087 DOI: 10.1016/j.intimp.2025.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
In recent years, the global incidence of chronic kidney disease (CKD) has been rising. As CKD progresses, it frequently involves inflammatory cell infiltration, contributing to renal fibrosis. Current research indicates that abnormalities in lipid metabolism play a role in this fibrotic process. However, the specific effects of various dietary fatty acids on renal inflammation and fibrosis remains largely unexplored. Our study demonstrates that dietary intake of omega-3 polyunsaturated fatty acids can inhibit macrophage activation and infiltration in a mouse model of unilateral ureteral obstruction (UUO), thus reducing the severity of renal fibrosis. Omega-3 polyunsaturated fatty acids, particularly α-linolenic acid (α-LA), mitigate damage to HK-2 cells and macrophages by targeting the JAG1-NOTCH1/2 pathway and by downregulating the expression of the chemokine MCP-1 and its receptor CCR2. This modulation attenuates macrophage activation and infiltration, reducing the inflammatory response. Furthermore, these fatty acids inhibit fibroblast chemotaxis, reduce fibroblast activation, and mitigate the deposition of extracellular matrix (ECM), thus slowing the progression of renal fibrosis. Our findings underscore the protective effects of omega-3 polyunsaturated fatty acids, such as α-LA, in preventing injury, inhibiting macrophage activation, and alleviating fibrosis. These results suggests that adjusting the dietary balance of fatty acids may offer a promising strategy to enhance the efficacy of CKD treatment.
Collapse
MESH Headings
- Animals
- Fibrosis
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Jagged-1 Protein/metabolism
- Macrophage Activation/drug effects
- Humans
- Mice
- Male
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Receptor, Notch1/metabolism
- Kidney/pathology
- Kidney/drug effects
- Kidney/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Cell Line
- Fatty Acids, Omega-3/pharmacology
- Fatty Acids, Omega-3/therapeutic use
- Ureteral Obstruction/drug therapy
- Ureteral Obstruction/pathology
- Ureteral Obstruction/complications
- Receptor, Notch2/metabolism
- Receptors, CCR2/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shangguo Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zehua Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Hou Y, Liu D, Guo Z, Wei C, Cao F, Xu Y, Feng Q, Liu F. Lactate and Lactylation in AKI-to-CKD: Epigenetic Regulation and Therapeutic Opportunities. Cell Prolif 2025:e70034. [PMID: 40207870 DOI: 10.1111/cpr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate is not only a byproduct of glycolysis, but is also considered an energy source, gluconeogenic precursor, signalling molecule and protein modifier during the process of cellular metabolism. The discovery of lactylation reveals the multifaceted functions of lactate in cellular metabolism and opens new avenues for lactate-related research. Both lactate and lactylation have been implicated in regulating numerous biological processes, including tumour progression, ischemic-hypoxic injury, neurodevelopment and immune-related inflammation. The kidney plays a crucial role in regulating lactate metabolism, influencing lactate levels while also being regulated by lactate. Previous studies have demonstrated the importance of lactate in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease (CKD). This review explores the role of lactate and lactylation in these diseases, comparing the function and metabolic mechanisms of lactate in normal and diseased kidneys from the perspective of lactylation. The key regulatory roles of lactylation in different organs, multiple systems, various pathological states and underlying mechanisms in AKI-to-CKD progression are summarised. Moreover, potential therapeutic targets and future research directions for lactate and lactylation across multiple kidney diseases are identified.
Collapse
Affiliation(s)
- Yi Hou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Zuishuang Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Cien Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fengyu Cao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yue Xu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| |
Collapse
|
11
|
Ma M, Luo Q, Chen L, Liu F, Yin L, Guan B. Novel insights into kidney disease: the scRNA-seq and spatial transcriptomics approaches: a literature review. BMC Nephrol 2025; 26:181. [PMID: 40200175 DOI: 10.1186/s12882-025-04103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
Over the past decade, single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have revolutionized biomedical research, particularly in understanding cellular heterogeneity in kidney diseases. This review summarizes the application and development of scRNA-seq combined with ST in the context of kidney disease. By dissecting cellular heterogeneity at an unprecedented resolution, these advanced techniques have identified novel cell subpopulations and their dynamic interactions within the renal microenvironment. The integration of scRNA-seq with ST has been instrumental in elucidating the cellular and molecular mechanisms underlying kidney development, homeostasis, and disease progression. This approach has not only identified key cellular players in renal pathophysiology but also revealed the spatial organization of cells within the kidney, which is crucial for understanding their functional specialization. This paper highlights the transformative impact of these techniques on renal research that have paved the way for targeted therapeutic interventions and personalized medicine in the management of kidney disease.
Collapse
Affiliation(s)
- Mingming Ma
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510632, China
| | - Qiao Luo
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510632, China
| | - Liangmei Chen
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510632, China
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510632, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510632, China.
| | - Baozhang Guan
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, No. 613, West Huangpu Avenue, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Jiao B, An C, Du H, Tran M, Yang D, Zhao Y, Wang P, Hu Z, Zhou D, Wang Y. Genetic deficiency or pharmacological inhibition of cGAS-STING signalling suppresses kidney inflammation and fibrosis. Br J Pharmacol 2025; 182:1741-1762. [PMID: 39833988 DOI: 10.1111/bph.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Chronic kidney disease (CKD) is characterised by inflammation, which can lead to tubular atrophy and fibrosis. The molecular mechanisms are not well understood. In this study, we investigated the functional role of the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signalling in renal inflammation and fibrosis. EXPERIMENTAL APPROACH Mice with global cGAS deficiency or global or myeloid cell-specific STING deficiency or wild-type mice treated with RU.521, a selective cGAS inhibitor, were used to examine the role of cGAS-STING signalling in renal inflammation and fibrosis in a preclinical model of obstructive nephropathy in vivo. Bone marrow-derived macrophages were used to determine whether tubular epithelial cell-derived DNA can activate cGAS-STING signalling in vitro. KEY RESULTS Following obstructive injury, cGAS-STING signalling was activated in the kidneys during the development of renal fibrosis. Mice with deficiency of cGAS or STING exhibited significantly less macrophage proinflammatory activation, myofibroblast formation, total collagen deposition, and extracellular matrix (ECM) protein production in the kidneys following obstructive injury. Pharmacological inhibition of cGAS with RU.521 reduced macrophage proinflammatory activation, suppressed myofibroblast formation, and attenuated kidney fibrosis following obstructive injury. Mechanistically, cGAS-STING signalling in macrophages is activated by double-stranded DNA released from damaged tubular epithelial cells, which induces inflammatory responses. CONCLUSIONS AND IMPLICATIONS Our study identifies the cGAS-STING signalling pathway as a critical regulator of macrophage proinflammatory activation during the development of renal fibrosis. Therefore, inhibition of cGAS-STING signalling may represent a novel therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Duomeng Yang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yuqi Zhao
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California, USA
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Zhaoyong Hu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA
- Renal Section, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
13
|
Shao B, Wang HD, Ren SH, Chen Q, Wang ZB, Xu YN, Liu T, Sun CL, Xiao YY, Jiang HY, Li YC, Zhao PY, Yang GM, Liu X, Ren YF, Wang H. Exosomes derived from a mesenchymal-like endometrial regenerative cells ameliorate renal ischemia reperfusion injury through delivery of CD73. Stem Cell Res Ther 2025; 16:148. [PMID: 40140882 PMCID: PMC11948919 DOI: 10.1186/s13287-025-04275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Renal ischemia reperfusion (I/R) injury is a major contributor to graft dysfunction and inflammation leading to graft loss. The deregulation of purinergic signaling has been implicated in the pathogenesis of renal I/R injury. CD73 and the generation of adenosine during purine metabolism to protect against renal I/R injury. A mesenchymal-like endometrial regenerative cell (ERC) has demonstrated a significant therapeutic effect on renal I/R injury. CD73 is a phenotypic marker of human endometrial regenerative cell exosomes (ERC-Exo). However, its immunosuppressive function in regulating purinergic metabolism has been largely neglected. Here, we investigate the protective effects and mechanism of ERC-Exo against renal I/R injury. METHODS Lentivirus-mediated CRISPR-Cas9 technology was employed to obtain CD73-specific knockout ERC-Exo (CD73-/-ERC-Exo). C57BL/6 mice who underwent unilateral ureteral obstruction were divided into the Untreated, ERC-Exo-treated, and CD73-/-ERC-Exo-treated groups. Renal function and pathological injury were assessed 3 days after renal reperfusion. The infiltration of CD4+ T cells and macrophages was analyzed by flow cytometry and immunofluorescence staining in kidneys. CD73-mediated immunosuppressive activity of ERC-Exo was investigated by bone marrow-derived macrophages (BMDM) co-culture assay in vitro. Flow cytometry determined macrophage polarization. ELISA and Treg proliferation assays detected the function of macrophages. Furthermore, the role of the MAPK pathway in CD73-positive Exo-induced macrophage polarization was also elucidated. RESULTS Compared with Untreated and CD73-/-ERC-Exo-treated groups, CD73-positive Exo effectively improved the serum creatinine (sCr), blood urea nitrogen (BUN), and necrosis and detachment of tubular epithelial cells, necrosis and proteinaceous casts induced by ischemia. CD73 improved the capacity of ERC-Exo on CD4+ T cell differentiation in the renal immune microenvironment. Surprisingly, ERC-Exosomal CD73 significantly decreased the populations of M1 cells but increased the proportions of M2 in kidneys. Furthermore, CD73-positive Exo markedly reduced the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased anti-inflammatory factors (IL-10) level in kidneys. ERC-Exosomal CD73 improved macrophage immunoregulatory function associated with the MAPK pathway (including ERK1/2 and p38 pathways), which exerted a potent therapeutic effect against renal I/R. CONCLUSIONS These data collected insight into how ERC-Exo facilitated the hydrolysis of proinflammatory ATP to immunosuppressive ADO via CD73. CD73 is a critical modulator of the MAPK signaling pathway, inducing a polarization shift of macrophages towards an anti-inflammatory phenotype. This study highlights the significance of ERC-Exosomal CD73 in contributing to the therapeutic effects against renal I/R.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-Cheng Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Fan Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
14
|
Peng Y, Zhang Y, Wang R, Wang X, Liu X, Liao H, Li R. Inonotus obliquus (chaga) ameliorates folic acid-induced renal fibrosis in mice: the crosstalk analysis among PT cells, macrophages and T cells based on single-cell sequencing. Front Pharmacol 2025; 16:1556739. [PMID: 40160460 PMCID: PMC11949929 DOI: 10.3389/fphar.2025.1556739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background Renal fibrosis, characterized by the abnormal accumulation of extracellular matrix in renal tissue and progressive loss of kidney function, is posing a significant challenge in clinical treatment. While several therapeutic options exist, effective treatments remain limited. Inonotus obliquus (Chaga), a traditional medicinal mushroom, has shown promising effects in chronic kidney disease (CKD), yet its cellular and molecular mechanisms remain largely unexplored. Methods We analysed the chemical composition of Chaga using UPLC-MS and predicted its biological targets using PubChem and Swiss Target Prediction. We used single-cell RNA sequencing to study cellular responses in a mouse model of folic acid-induced renal fibrosis, complemented by spatial transcriptomics to map cellular location patterns. Histological assessment was performed using H&E and Masson trichrome staining. Results For the first time, we employed single-cell RNA sequencing technology to investigate Chaga treatment in renal fibrosis. Histological analysis revealed that Chaga treatment significantly reduced renal tubular damage scores [from 5.00 (5.00, 5.00) to 2.00 (2.00, 2.00), p < 0.05] and decreased collagen deposition area (from 11.40% ± 3.01% to 4.06% ± 0.45%, p < 0.05) at day 14. Through analysis of 82,496 kidney cells, we identified 30 distinct cell clusters classified into eight cell types. Key findings include the downregulation of pro-inflammatory M1 macrophages and upregulation of anti-inflammatory M2 macrophages, alongside decreased T cell responses. Single-cell sequencing revealed differential gene expression in proximal tubular subpopulations associated with reduced fibrosis. Pathway and network pharmacology analyses of 60 identified compounds in Chaga and their 675 predicted targets suggested potential effects on immune and fibrotic pathways, particularly affecting Tregs and NKT cells. Cell-to-cell communication analyses revealed potential interactions between proximal tubular cells, macrophages, and T Cells, providing insights into possible mechanisms by which Chaga may ameliorate renal fibrosis. Conclusion Our study provided new insights into the potential therapeutic effects of Chaga in renal fibrosis through single-cell sequencing analysis. Our findings suggest that Chaga may represent a promising candidate for renal fibrosis treatment, though further experimental validation is needed to establish its clinical application.
Collapse
Affiliation(s)
- Yueling Peng
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Yaling Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
- Department of Nephrology, Taiyuan Central Hospital, Taiyuan, China
| | - Rui Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xinyu Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| |
Collapse
|
15
|
Liu Z, Lv R, Guo H, Zhang B, Wang X, Qiang P, Xiong Y, Chang Y, Peng Y, Hao J, Wang X, Shimosawa T, Xu Q, Yang F. Proliferation of renal macrophage via MR/CSF1 pathway induced with aldosterone and inhibited by esaxerenone. Int Immunopharmacol 2025; 149:114208. [PMID: 39923576 DOI: 10.1016/j.intimp.2025.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Macrophage proliferation plays a critical role in kidney injury and repair, but due to their high plasticity and heterogeneity, the origins and subtypes of these proliferating cells remain unclear. This study investigates aldosterone-induced proliferation of renal macrophages, focusing on their origins, subtypes, and regulatory mechanisms using immunofluorescence, flow cytometry, and single-cell sequencing. The findings suggest that both resident and infiltrating macrophages proliferate in response to aldosterone, a significant proportion of which are renal resident macrophages, predominantly of the M1 subtype. The study also identifies the mineralocorticoid receptor/colony stimulation factor-1 (MR/CSF1) pathway as a key regulator of this process. Inhibition of this pathway through antagonists and inhibitors reduces macrophage proliferation and kidney damage, suggesting that targeting MR/CSF1 could be therapeutic against aldosterone-induced renal damage and inflammation.
Collapse
Affiliation(s)
- Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ruyan Lv
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Haixia Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Boya Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xuan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Panpan Qiang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunzhao Xiong
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yi Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunsong Peng
- Nephrology Department, Shijiazhuang Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Juan Hao
- Nephrology Department, Shijiazhuang Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Xiangting Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Fan Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
16
|
Zeng Y, Yuan W, Feng C, Peng L, Xie X, Peng F, Li T, Lin M, Zhang H, Dai H. Trametinib alleviates lipopolysaccharide-induced acute kidney injury by inhibiting macrophage polarization through the PI3K/Akt pathway. Transpl Immunol 2025; 89:102183. [PMID: 39892762 DOI: 10.1016/j.trim.2025.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is a severe condition characterized by dysregulation of pro- and anti-inflammatory responses. Targeting macrophage polarization between pro-inflammatory M1 and anti-inflammatory M2 cells offers a potential therapeutic approach for AKI. Trametinib (TRAM), an inhibitor of the MEK1/2 signaling pathway, was evaluated for its impact on M1/M2 polarization in AKI. METHODS Wild-type (WT) mice were subjected to lipopolysaccharide (LPS)-induced AKI and intraperitoneally treated with dimethyl sulfoxide (DMSO) or TRAM (10 mg/kg) for three days. Renal function was assessed by measuring creatinine levels. While histopathological changes, RNA sequencing data, and serum cytokine levels were analyzed. Macrophage M1/M2 polarization in kidney tissues was examined using flow cytometry and immunohistochemistry. Murine bone marrow-derived macrophages (BMDMs) were polarized to the M1 or M2 phenotype in vivo and treated with or without TRAM (10 μM). M1/M2 polarization was analyzed via flow cytometry, and PI3K/Akt signaling was evaluated by western blotting. RESULTS TRAM significantly improved renal function, as demonstrated by reduced serum creatinine levels (p < 0.01) and ameliorated histopathological damage (p < 0.01). Flow cytometry and immunohistochemistry revealed that TRAM markedly inhibited pro-inflammatory M1 macrophage polarization (p < 0.001). Additionally, TRAM reduced serum level of IFN-γ (p < 0.01) and IL-17 (p < 0.001). In vitro, TRAM suppressed M1 polarization (p < 0.05) by inhibiting the PI3K/Akt signaling pathway. CONCLUSION TRAM mitigated LPS-induced AKI by suppressing M1 macrophage polarization via the PI3K/Akt pathway, highlighting its therapeutic potential for AKI and other inflammatory kidney diseases.
Collapse
Affiliation(s)
- Yingqi Zeng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Minjie Lin
- Academic Affairs Department, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China.
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China.
| |
Collapse
|
17
|
Yang S, Shen Y. The polarization of macrophages participates in the repair after folic acid-induced acute kidney injury. Cell Immunol 2025; 409-410:104929. [PMID: 39933418 DOI: 10.1016/j.cellimm.2025.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Acute kidney injury (AKI) remains a major public health challenge, posing serious threats to human health. Increasing evidence indicates that renal cells undergo significant metabolic alterations following AKI, with inflammatory responses persisting throughout both injury and repair phases. Our previous research has demonstrated that heightened aerobic glycolysis after AKI leads to increased secretion of metabolic byproducts such as lactate, which plays a critical role in tissue repair. However, the relationship between metabolic reprogramming and inflammatory responses, as well as the underlying mechanisms, remain poorly understood. This study aims to clarify the regulatory effects of the glycolytic byproduct lactate on macrophage activation and phenotypic differentiation following AKI. We observed increased expression of M1/M2 macrophages and elevated secretion of inflammatory cytokines after folic acid-induced AKI. Immunofluorescence staining showed co-localization of macrophages with α-SMA. Manipulating lactate levels post-injury led to a decrease in macrophage expression and a reduction in fibroblast activation and proliferation, ultimately impairing renal tissue repair. These findings suggest that targeting lactate as a key regulator of macrophage phenotype differentiation may provide a theoretical and clinical foundation for therapeutic strategies in AKI repair.
Collapse
Affiliation(s)
- Shujie Yang
- Medical School of Nantong University, Nantong City, Jiangsu Province, China; Intensive Care Unit, The People's Hospital of Rugao, Rugao 226500, Jiangsu Province, China
| | - Yan Shen
- Medical School of Nantong University, Nantong City, Jiangsu Province, China; Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
18
|
Huang C, Liang Y, Jiang A, Chen L, Sun C, Luo D, Xia Z, Li L, Jiang Y. Dynamic proteome and phosphoproteome profiling reveals regulatory mechanisms in LPS-stimulated macrophage inflammatory responses. Biochem Biophys Res Commun 2025; 750:151341. [PMID: 39889628 DOI: 10.1016/j.bbrc.2025.151341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Macrophage-mediated acute inflammation is crucial for pathogen clearance and tissue repair, yet the underlying molecular mechanisms remain inadequately understood. The present study focused on the dynamic profiles of the proteome and phosphoproteome of macrophages exposed to lipopolysaccharide within 1 h. Gene Set Enrichment Analysis (GSEA) identified significantly enriched pathways in fatty acid metabolism and translation during the early inflammatory phase. Further trend analysis of the differentially expressed proteins revealed patterns associated with translation regulation such as translation initiation. Importantly, the nascent chain experiment demonstrated no significant changes in overall gene translation levels during this phase. These data indicate that macrophages maintain intracellular protein homeostasis through translational regulation, with post-translational modifications (PTMs) playing a crucial role in the rapid cellular response to pathogen invasion. Phosphorylation is a key PTM that regulates protein functions in almost all cellular processes. Time-resolved phosphoproteome analysis identified 367 differentially expressed phosphopeptides involved in immune-related pathways that resist infection. Additionally, weighted gene co-expression network analysis (WGCNA) discovered core modules that regulate translation-related processes such as RNA export from nucleus. Moreover, conjoint analysis of the proteome and phosphoproteome identified the hub protein EF1B that exhibited the largest fold change and is also involved in translation. Our data not only provide a more comprehensive understanding of the dynamic molecular networks of acute macrophage inflammation but also provide a systematic proteomic resource for further studies.
Collapse
Affiliation(s)
- Chenyang Huang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuying Liang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Aolin Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Chang Sun
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dongrong Luo
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaofan Xia
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Lei Li
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China; Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Antiviral Drugs, Henan Key Laboratory of Critical Care Medicine, Henan International Joint Laboratory of Infection and Immunology, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China; Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China; Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China.
| |
Collapse
|
19
|
Yao Q, Zhang X, Wang L, Li J, Lv J, Chen J, Chen D. Therapeutic potential of p-coumaric acid in alleviating renal fibrosis through inhibition of M2 macrophage infiltration and cellular communication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156507. [PMID: 39978279 DOI: 10.1016/j.phymed.2025.156507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND p-coumaric acid (p-CA), a hydroxycinnamic acid derivative, is recognized for its antioxidant and anti-inflammatory properties; however, its pharmacological effects on renal fibrosis remain insufficiently explored. PURPOSE This study aimed to evaluate the therapeutic potential of p-CA in renal fibrosis and elucidate its underlying mechanisms through extensive molecular and cellular analyses. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS) was employed to analyze metabolic alterations associated with renal fibrosis induced by unilateral ureteral obstruction (UUO). Immune cell dynamics were assessed using cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq). Further validation was performed using flow cytometry, Western blot (WB), quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC), and immunofluorescence (IF) to evaluate the renoprotective effects of p-CA at the cellular and molecular levels. RESULTS p-CA levels were significantly reduced in fibrotic renal tissues. Administration of exogenous p-CA restored renal function, alleviated tissue damage, and inhibited G2/M cell cycle arrest and epithelial-mesenchymal transition (EMT) in tubular epithelial cells (TECs). CyTOF and scRNA-seq analyses revealed that p-CA treatment decreased M2 macrophage proliferation, intercellular communication, and differentiation in fibrotic kidney tissues, resulting in reduced renal fibrosis. Additional experimental validations confirmed that p-CA specifically targeted M2 macrophages, suppressing their contribution to fibrotic progression. CONCLUSIONS p-CA exerts renoprotective effects by targeting M2 macrophages, disrupting their interaction with TECs, and attenuating fibrotic progression. These findings underscore the potential of p-CA as a novel therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Xinyi Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Lefeng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Jingyi Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Junhao Lv
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China.
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 PR China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, 310003, PR China; National Key Clinical Department of Kidney Diseases, Hangzhou, 310003, PR China; Institute of Nephropathy, Zhejiang University, Hangzhou, 310003, PR China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, 310003, PR China.
| |
Collapse
|
20
|
Li Y, Xing Y, Liu N, Liu B, Wang Z. SOX9: a key transcriptional regulator in organ fibrosis. Front Pharmacol 2025; 16:1507282. [PMID: 39974732 PMCID: PMC11835943 DOI: 10.3389/fphar.2025.1507282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The SOX9 gene locus is not only extensive but also intricate, and it could promote fibrosis in different organs or tissues, including cardiac fibrosis, liver fibrosis, kidney fibrosis, pulmonary fibrosis, as well as other organ fibrosis. Many disorders are associated with the process of fibrosis; moreover, fibrosis is a common symptom of chronic inflammatory diseases, characterized by the accumulation of excessive components in the extracellular matrix through different signaling pathways. The advanced stage of the fibrotic process leads to organ dysfunction and, ultimately, death. In this review, we first give an overview of the original structure and functions of SOX9. Second, we will discuss the role of SOX9 in fibrosis in various organs or tissues. Third, we describe and reveal the possibility of SOX9 as an antifibrotic treatment target. Finally, we will focus on the application of novel technologies for SOX9 and the subsequent investigation of fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Zhihui Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
22
|
Hanna M, Akabawy AMA, Khalifa MM, Elbaset MA, Imam RA, Seddiek H. Intracellular iron accumulation throughout the progression of sepsis influences the phenotype and function of activated macrophages in renal tissue damage. Front Physiol 2025; 16:1430946. [PMID: 39949667 PMCID: PMC11821637 DOI: 10.3389/fphys.2025.1430946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Sepsis, the most common cause of acute kidney injury, remains a major socioeconomic burden. A dysregulated immune response leads to progressive organ dysfunction. Although numerous inflammatory pathways were described, most are still vague and need to be studied in terms of the mechanisms to improve the therapeutic intervention. We tackled the relationship between intracellular iron overload and macrophage polarization within 6, 24, and 72 h of sepsis induction. In our study, sepsis-induced kidney injury was caused by using the cecal ligation and puncture (CLP) model. Our results indicated severe renal tissue damage with a progressive increase in serum BUN and creatinine with architectural tissue damage and positive PAS staining. There was increased expression of CD8+ CD68+ M1 macrophage markers with upregulation of iNOS and co-expression of CD163+. Alternatively, Arg1+ Fizz1+ M2 macrophage markers were downregulated with increased iNOS/Arg1 ratio. TFR1, cubilin, and DMT1, as iron transport systems, were increased compared to sham but were significant after 72 h, while ZIP8 showed no significant change. There was a correlation between iron overload and M1 macrophage polarization with CD163+ phenotype, together with fibrotic changes. The intracellular iron overload with downregulation of ferritin was strongly related to macrophage polarization that was exaggerated at 72 h. Finally, early introduced therapy to target free iron during sepsis is a proposed novel solution for protecting the renal tissue from acute injury due to macrophage activation that may end up with chronic kidney injury, if not mortality.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Hanan Seddiek
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Jiang B, Liu J, Qu Z, Wang Y, Wang Y, Li Z, Jin X, Lao Y, He R, Yang S. Mechanism of dihydroartemisinin in the treatment of ischaemia/reperfusion-induced acute kidney injury via network pharmacology, molecular dynamics simulation and experiments. Int Immunopharmacol 2025; 144:113705. [PMID: 39626534 DOI: 10.1016/j.intimp.2024.113705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE To investigate whether dihydroartemisinin (DHA) attenuates ischaemia-reperfusion injury (IRI)-induced acute kidney injury (AKI) in mice by inhibiting oxidative stress and inflammation and to explore its potential molecular mechanisms. MATERIALS AND METHODS Network pharmacology analysis was used to screen relevant targets, and molecular docking of DHA with core targets was performed. Molecular dynamics simulation of the target with the lowest binding free energy, NQO1-DHA.The renal protective effect of DHA on the IRI-induced AKI mouse model was evaluated. The expression levels of NQO1, Nrf2 and other proteins were detected by Western blotting. The expression levels of Nrf2 and others were detected by immunohistochemistry (IHC) and immunofluorescence (IF). RESULTS Through network pharmacological analysis, we obtained that PI3K/AKT and MAPK signaling pathway may be related to DHA in the treatment of AKI.Molecular dynamics simulation indicated that NQO1 is an important target protein for DHA to exert nephroprotective effects.Moreover, the potential molecular mechanisms were verified by experiments.DHA reduced the serum creatinine (Scr) and urea nitrogen (BUN) levels in AKI mice, significantly improved AKI pathology, alleviated oxidative stress and inflammatory injury, which may be related to its activation of the Nrf2 pathway and regulation of macrophage polarization. CONCLUSIONS Through network pharmacology, molecular dynamics simulation and experimental validation, we initially investigated that DHA alleviate AKI by ameliorating oxidative stress and inflammatory damage, which may be related to its activation of the Nrf2 pathway and the regulation of macrophage polarisation, which lays the foundation for subsequent in-depth study of the specific mechanism of action.
Collapse
Affiliation(s)
- Beibei Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiahui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ziyi Qu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yanqing Wang
- Department of Anatomy,School of Basic Medical Sciences,Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yunlan Lao
- Central Hospital of Guangdong Provincial Nongken, Guangdong, China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
26
|
Xiang T, Wang X, Huang S, Zhou K, Fei S, Zhou B, Yue K, Li Q, Xue S, Dai Y, Zhang J, Ni H, Sun C, Huang X. Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156324. [PMID: 39700636 DOI: 10.1016/j.phymed.2024.156324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Macrophage-myofibroblast transition (MMT) plays a significant role in the progression of renal fibrosis in chronic kidney disease (CKD), making inhibition of MMT a promising therapeutic strategy. Pyruvate kinase M2 (PKM2) and its metabolite lactate are implicated in the pathogenesis of renal fibrosis; however, the mechanisms through which they contribute to this process remain poorly understood. PURPOSE To investigate the effects of PKM2 inhibition by shikonin on renal fibrosis and the underly mechanisms. METHODS Mice were subjected to unilateral ureteral obstruction (UUO) to establish a CKD model. Renal fibrosis was assessed using histochemistry and western blotting. The MMT and histone lactylation levels were evaluated by immunofluorescence and western blotting. The interaction between the Tgfb1 promoter and lactylated histone H3 (K18) was examined using chromatin Immunoprecipitation (ChIP). RESULTS PKM2 expression was significantly elevated in the renal tubular cells of UUO mouse kidneys, resulting in increased pyruvate and lactate production. Similarly, lactate levels were elevated in TGF-β1-treated TCMK-1 cells and in the serum of CKD patients. In UUO mice, treatment with shikonin, a potent PKM2 inhibitor, effectively reduced lactate production, alleviated renal fibrosis, decreased TGF-β1 expression, and suppressed the MMT process. Mechanistic studies revealed that lactate treatment stimulates Tgfb1 expression in TCMK-1 cells. Consequently, TGF-β1 in conditioned media from lactate-treated TCMK-1 cells promoted M2 macrophage polarization and upregulated fibrotic gene expression in RAW264.7 cells. Pharmacological intervention demonstrated that TGF-β1 activates the Smad3 pathway to drive the MMT process. In TCMK-1 cells, both lactate treatment and PKM2 overexpression induced Tgfb1 expression by promoting histone H3K18 lactylation. CONCLUSIONS Our findings indicate that PKM2-induced excessive lactate production renal tubular cells contributes to renal fibrosis. Lactate promotes histone lactylation, leading to TGF-β1 expression in these cells, which subsequently activates the Smad3 pathway in macrophages, driving the MMT and fibrosis in the kidney. Therefore, targeting PKM2, as with shikonin treatment, may represent an effective therapeutic strategy for managing renal fibrosis in CKD.
Collapse
Affiliation(s)
- Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Xijian Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Shujiao Huang
- Xinglin College, Nantong University, Nantong, 226001, China
| | - Kexin Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Shengnan Xue
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Yongyi Dai
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Haoran Ni
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
27
|
Janosevic D, De Luca T, Eadon MT. The Kidney Precision Medicine Project and Single-Cell Biology of the Injured Proximal Tubule. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:7-22. [PMID: 39332674 PMCID: PMC11686451 DOI: 10.1016/j.ajpath.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has led to major advances in our understanding of proximal tubule subtypes in health and disease. The proximal tubule serves essential functions in overall homeostasis, but pathologic or physiological perturbations can affect its transcriptomic signature and corresponding tasks. These alterations in proximal tubular cells are often described within a scRNA-seq atlas as cell states, which are pathophysiological subclassifications based on molecular and morphologic changes in a cell's response to that injury compared with its native state. This review describes the major cell states defined in the Kidney Precision Medicine Project's scRNA-seq atlas. It then identifies the overlap between the Kidney Precision Medicine Project and other seminal works that may use different nomenclature or cluster proximal tubule cells at different resolutions to define cell state subtypes. The goal is for the reader to understand the key transcriptomic markers of important cellular injury and regeneration processes across this highly dynamic and evolving field.
Collapse
Affiliation(s)
- Danielle Janosevic
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas De Luca
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
28
|
Yu SMW, King E, Fribourg M, Hartzell S, Tsou L, Gee L, D'Agati VD, Thurman JM, He JC, Cravedi P. A Newly Identified Protective Role of C5a Receptor 1 in Kidney Tubules against Toxin-Induced Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:126-142. [PMID: 39427763 PMCID: PMC11686444 DOI: 10.1016/j.ajpath.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Acute kidney injury (AKI) remains a major reason for hospitalization with limited therapeutic options. Although complement activation is implicated in AKI, the role of C5a receptor 1 (C5aR1) in kidney tubular cells is unclear. Herein, aristolochic acid nephropathy (AAN) and folic acid nephropathy (FAN) models were used to establish the role of C5aR1 in kidney tubules during AKI in germline C5ar1-/-, myeloid cell-specific, and kidney tubule-specific C5ar1 knockout mice. After aristolochic acid and folic acid injection, C5ar1-/- mice had increased AKI severity and a higher degree of tubular injury. Macrophage depletion in C5ar1-/- mice or myeloid cell-specific C5ar1 deletion did not affect the outcomes of aristolochic acid-induced AKI. RNA-sequencing data from renal tubular epithelial cells (RTECs) showed that C5ar1 deletion was associated with the down-regulation of mitochondrial metabolism and ATP production transcriptional pathways. Metabolic studies confirmed reduced mitochondrial membrane potential at baseline and increased mitochondrial oxidative stress after injury in C5ar1-/- RTECs. Moreover, C5ar1-/- RTECs had enhanced glycolysis, glucose uptake, and lactate production on injury, corroborated by metabolomics analysis of kidneys from AAN mice. Kidney tubule-specific C5ar1 knockout mice recapitulated exacerbated AKI observed in C5ar1-/- mice in AAN and FAN. These data indicate that C5aR1 signaling in kidney tubules exerts renoprotective effects against toxin-induced AKI by limiting overt glycolysis and maintaining mitochondrial function, thereby revealing a novel link between the complement system and tubular cell metabolism.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| | - Emily King
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Miguel Fribourg
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Susan Hartzell
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Liam Tsou
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Logan Gee
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Joshua M Thurman
- Medicine-Renal Med Diseases/Hypertension, Colorado University, Aurora, Colorado
| | - John Cijiang He
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York; James J. Peters Department of Veterans Affairs Medical Center, New York, New York
| | - Paolo Cravedi
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| |
Collapse
|
29
|
Han H, Gao Y, Chen B, Xu H, Shi C, Wang X, Liang Y, Wu Z, Wang Z, Bai Y, Wu C. Nrf2 inhibits M1 macrophage polarization to ameliorate renal ischemia-reperfusion injury through antagonizing NF-κB signaling. Int Immunopharmacol 2024; 143:113310. [PMID: 39383788 DOI: 10.1016/j.intimp.2024.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is a condition that arises from a sudden interruption of the blood flow to the kidney for a period of time followed by restoration of the blood supply. This process contributes to acute kidney injury (AKI), increases morbidity and mortality, and is a major risk factor for chronic kidney disease (CKD). Nuclear factor erythroid-derived 2-like 2 (Nrf2) has been shown to exhibit strong anti-oxidative and anti-inflammatory effects, which are reciprocally regulated by the pro-inflammatory actions of nuclear factor-kappa B (NF-κB) signaling. In this study, we established a model of AKI caused by renal IRI in mice lacking the Nrf2 gene (KO-Nrf2) and mice pre-injected with ML385 (Nrf2 inhibitor). In addition, LPS- or IL-4-induced M1- or M2-type polarized macrophages (RAW264.7), respectively, were also treated with Nrf2 activation and inhibition. The results demonstrated a more pronounced activation of the NF-κB signaling pathway in the Nrf2 inhibition model, accompanied by a more severe inflammatory effect. In cultured macrophages and renal IRI mice, Nrf2 inhibition activated M1 macrophage polarization, thereby increasing the release of proinflammatory cell factors (iNOS and TNF-α) and aggravating renal IRI. Notably, the inhibitory effect of Nrf2 on M1 macrophage polarization was related to the downregulation of the NF-κB signaling pathway activity, resulting in partial relief of renal IRI. Consequently, our findings indicated that Nrf2 inhibits M1 macrophage polarization to ameliorate renal IRI through antagonizing NF-κB signaling. Targeted activation of Nrf2 may be one of the important strategies for renal IRI treatment.
Collapse
Affiliation(s)
- Hui Han
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuanyuan Gao
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Boxuan Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Hongjie Xu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chenghao Shi
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital, Wenzhou Medical University, Ruian 325200, Zhejiang Province, China
| | - Yihan Liang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Zhixuan Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Ziqiong Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Cunzao Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
30
|
Tian M, Tang M, Chen C, Lin Y, Chen H, Xu Y. Macrophage Infiltration Correlated with IFI16, EGR1 and MX1 Expression in Renal Tubular Epithelial Cells Within Lupus Nephritis-Associated Tubulointerstitial Injury via Bioinformatics Analysis. J Inflamm Res 2024; 17:11469-11483. [PMID: 39735896 PMCID: PMC11681807 DOI: 10.2147/jir.s489087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Objective A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells. Methods The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT. Finally, Western blotting, quantitative real-time polymerase chain reaction, and multiple immunofluorescence methods were used to confirm the significance of these feature genes in MRL/lpr mice and patients with LN. Results Seventeen DEGs were identified, of which 11 were considerably upregulated and six were markedly downregulated. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment in pertussis, complement and coagulation cascades, systemic lupus erythematosus, and other pathways. Based on the machine learning results, we identified IFI16, EGR1 and MX1 were key diagnostic genes for tubulointerstitial injury associated with LN. Immune cell infiltration analysis revealed that IFI16, EGR1 and MX1 were associated with M1 macrophages. Finally, the association between IFI16, EGR1, MX1 and macrophages in MRL/lpr mice and patients with LN were verified. Conclusion This study suggests that IFI16, EGR1 and MX1 which are highly expressed in renal tubular epithelial cells in LN and are associated with macrophage infiltration, may be a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ming Tian
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Min Tang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yufang Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hong Chen
- Department of Pathology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| |
Collapse
|
31
|
Gu H, Chen Z, Du N, Yang S, Yu Y, Du Y. The Effects of Aldosterone on Hypertension-Associated Kidney Injury in a Tg-hAS Mouse Model. BIOLOGY 2024; 13:1084. [PMID: 39765751 PMCID: PMC11673120 DOI: 10.3390/biology13121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Hypertension remains a global health challenge due to its high prevalence and association with premature morbidity and mortality. Aldosterone, a mineralocorticoid hormone, and its receptor, the mineralocorticoid receptor (MR), are highly implicated in hypertension pathogenesis. Aldosterone synthase is the sole enzyme responsible for producing aldosterone in humans. We established transgenic mice carrying the human aldosterone synthase gene (cyp11B2) and showed dramatically increased levels of aldosterone in female hemizygotes. High-salt diets persistently increased blood pressure in these mice, and salt-induced hypertension was significantly ameliorated by reducing aldosterone levels via an aldosterone synthase inhibitor or blocking MR via an MR inhibitor. Since both hypertension and hyperaldosteronism specifically induce chronic kidney disease, in this model, we demonstrated that chronic high-salt diets induced hypertension in this mouse line and resulted in kidney inflammation and injury. Both the aldosterone synthase inhibitor and the MR antagonist markedly blocked high-salt-diet-mediated kidney injury. Thus, this transgenic mouse line can be used to study the pathogenic mechanisms underlying aldosterone and its receptor and to screen therapeutic compounds for aldosterone-mediated hypertension and related complications, such as kidney disease, in humans.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Z.C.); (S.Y.); (Y.Y.)
| | - Zhe Chen
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Z.C.); (S.Y.); (Y.Y.)
| | - Nicole Du
- Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Sisi Yang
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Z.C.); (S.Y.); (Y.Y.)
| | - Yongqi Yu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Z.C.); (S.Y.); (Y.Y.)
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Z.C.); (S.Y.); (Y.Y.)
| |
Collapse
|
32
|
Zhang JN, Gong R, Lu BT, Wang YQ, Chong Y, Wang XT, Lai QQ, Cao YH, Zhao MY. Integrated Analysis of Gene Expression and Immune Cell Infiltration Reveals Dysregulated Genes and miRNAs in Acute Kidney Injury. Mol Biotechnol 2024:10.1007/s12033-024-01344-x. [PMID: 39661223 DOI: 10.1007/s12033-024-01344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Acute Kidney Injury (AKI) is a multifaceted condition characterised by rapid deterioration of renal function, often precipitated by diverse etiologies. A comprehensive understanding of the molecular underpinnings of AKI is pivotal for identifying potential diagnostic markers and therapeutic targets. This study utilised bioinformatics to elucidate gene expression and immune infiltration in AKI. Publicly available mRNA and miRNA datasets were harnessed to discern differentially expressed genes (DEGs) and miRNAs in AKI. The CIBERSORT algorithm was employed to quantify immune cell infiltration in AKI samples. Functional enrichment analyses were conducted to unravel the implicated biological processes. Furthermore, the expression of identified genes and miRNAs was validated by quantitative real-time PCR in an AKI model. Our study revealed significant dysregulation of three genes (Aspn, Clec2h, Tmigd1) and two miRNAs (mmu-miR-21a-3p, mmu-miR-223-3p) in AKI, each with p < 0.0001. These molecular markers are implicated in immune responses, tissue remodelling, and inflammation. We observed notable disturbances in specific immune cells, including activated and immature dendritic cells, M1 macrophages, and subsets of T cells (Treg, Th1, Th17). These alterations correlated significantly with AKI pathology, with dendritic cells and M1 macrophages showing p < 0.01, and T cell subsets demonstrating p < 0.05. These results highlight the intricate involvement of the immune system in AKI and indicate significant enrichment of pathways related to immune response, inflammation, and tissue remodelling, pointing to their pivotal roles in AKI pathophysiology. Our study underscored the significance of immune cell infiltration and dysregulated gene and miRNA expression in AKI. The identified genes (Clec2h, Aspn, and Tmigd1) and miRNAs (mmu-miR-21a-3p and mmu-miR-223-3p) offer potential diagnostic markers and therapeutic avenues for AKI. Subsequent investigations targeting these genes and miRNAs, along with the elucidated pathways, may augment the clinical management and outcomes for AKI patients.
Collapse
Affiliation(s)
- Jian-Nan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Rui Gong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430022, China
| | - Bai-Tao Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yi-Qi Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yang Chong
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Xin-Tong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Qi-Qi Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yan-Hui Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| | - Ming-Yan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
33
|
Zhang L, Wang Z, Wu Y, Zhang B, Wang Z, Chen S, Meng X, Yu P, Zhou S. RasGRP4 aggravates ischemia-reperfusion injury in diabetic kidneys by mediating communication between macrophages and T cells. JCI Insight 2024; 10:e187653. [PMID: 39656542 PMCID: PMC11790033 DOI: 10.1172/jci.insight.187653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Diabetes mellitus (DM) is acknowledged as an independent risk factor for acute kidney injury. Ras guanine nucleotide-releasing protein-4 (RasGRP4) exerts a notable role in modulating immune-inflammatory responses and kidney disease progression in diabetes. Herein, we delved into the specific role and mechanism of RasGRP4 in diabetic renal ischemia-reperfusion injury. Diabetes was induced by a high-fat diet and streptozocin (STZ) injections, followed by creating an ischemia-reperfusion kidney injury via renal pedicle clamping and reperfusion. In vitro, a high glucose and hypoxia-reoxygenation modeled cellular inflammatory injury. We found RasGRP4-KO mice, compared with C57BL/6J (WT) mice, showed markedly less renal dysfunction and fibrosis in diabetic ischemia-reperfusion injury. There was a significant decrease in the renal infiltration of M1 macrophages and Th17 cells, along with downregulated IL-17 pathway proteins and effectors. In vitro, RasGRP4 deletion restrained M1 macrophage polarization and Th17 cell differentiation, inhibiting the IL-17 signaling pathway in HK-2 cells. Hyperglycemia intensified renal inflammation state. Together, RasGRP4, through the regulation of interactions among M1 macrophages, CD4+ T cells, and HK-2 cells, formed a cascade that intensified the inflammatory storm activity, ultimately exacerbating the inflammatory injury of diabetic ischemia-reperfusion kidneys. DM intensified this inflammatory injury mechanism, worsening the injury from renal ischemia-reperfusion.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zhanglong Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Yunqi Wu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Binshan Zhang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zhongli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Sisi Chen
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Xuying Meng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Pei Yu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Saijun Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases,Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| |
Collapse
|
34
|
Guo Q, Li P, Chen M, Yu Y, Wan Y, Zhang Z, Ren C, Shen L, Liu X, He D, Zhang Y, Wei G, Zhang D. Exosomes From Human Umbilical Cord Stem Cells Suppress Macrophage-to-myofibroblast Transition, Alleviating Renal Fibrosis. Inflammation 2024; 47:2094-2107. [PMID: 38662165 DOI: 10.1007/s10753-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Renal fibrosis, a progressive scarring of the kidney, lacks effective treatment. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSC-Exos) hold promise for treating kidney diseases due to their anti-inflammatory properties. This study investigates their potential to lessen renal fibrosis by targeting macrophage-to-myofibroblast transformation (MMT), a key driver of fibrosis. We employed a mouse model of unilateral ureteral obstruction (UUO) and cultured cells exposed to transforming growth factor-β (TGF-β) to mimic MMT. HucMSC-Exos were administered to UUO mice, and their effects on kidney function and fibrosis were assessed. Additionally, RNA sequencing and cellular analysis were performed to elucidate the mechanisms by which HucMSC-Exos inhibit MMT. HucMSC-Exos treatment significantly reduced kidney damage and fibrosis in UUO mice. They downregulated markers of fibrosis (Collagen I, vimentin, alpha-smooth muscle actin) and suppressed MMT (α-SMA + F4/80 + cells). Furthermore, ARNTL, a specific molecule, emerged as a potential target of HucMSC-Exos in hindering MMT and consequently preventing fibrosis. HucMSC-Exos effectively lessen renal fibrosis by suppressing MMT, suggesting a novel therapeutic strategy for managing kidney damage and fibrosis.
Collapse
Affiliation(s)
- Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Ping Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Meiling Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yonghong Wan
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
35
|
Huang L, Wu Y, Sai W, Wang Y, Feng G, Lu Y, Chen F, Huang X, Zhao H, Gu Z, Yang B. HBSP inhibits tubular cell pyroptosis and apoptosis, promotes macrophage M2 polarization, and protects LPS-induced acute kidney injury. J Cell Mol Med 2024; 28:e70202. [PMID: 39584501 PMCID: PMC11586777 DOI: 10.1111/jcmm.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis-associated acute kidney injury (AKI) has high morbidity and mortality, but without cause-specific treatment. Erythropoietin derived Helix B surface peptide (HBSP) alleviates AKI, whereas its underlying mechanisms remain to be further explored. Here, the effects of HBSP on pyroptosis, apoptosis, macrophage polarization and repair were investigated in lipopolysaccharide (LPS)-induced AKI mouse model and cultured kidney epithelial cells. Systemic inflammation, compromised renal function and histology were demonstrated in LPS-treated mice, with upregulated pyroptotic and apoptotic key proteins in the kidneys including GSDMD-N, cleaved IL-1β, IL-18 and caspase-3. These proteins were localized in tubular areas and colocalized with aquaporin-1 (AQP1), with increased F4/80+ M1 macrophages. However, HBSP mitigated pyroptosis, apoptosis and inflammation, and promoted macrophage M2 polarization. In addition, HMGB1 and erythropoietin receptor (EPOR) were increased by LPS and decreased by HBSP, both of which were positively correlated with pyroptotic and apoptotic proteins. Moreover, HBSP reduced TNF-α and IL-6 mRNA levels, as well as pyroptosis and apoptosis in LPS-stimulated TCMK-1 cells. In conclusion, HBSP inhibited tubular pyroptosis and apoptosis, EPOR expression, promoted macrophage M2 polarization, and protected against LPS-induced AKI. These findings provide new mechanistic insights into the renoprotection of HBSP, and facilitate its potential for clinical applications and therapeutic strategies in sepsis-associated AKI.
Collapse
Affiliation(s)
- Lili Huang
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Department of Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Yuanyuan Wu
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Department of Pathology, Medical SchoolNantong UniversityNantongChina
| | - Wenli Sai
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Clinical Medical Research CenterAffiliated Hospital of Nantong UniversityNantongChina
| | - Yanan Wang
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Department of NephrologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Guijuan Feng
- Department of StomatologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Yuqing Lu
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Department of NephrologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Fei Chen
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Department of NephrologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Xinzhong Huang
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Department of NephrologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Hongsheng Zhao
- Department of Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong UniversityNantong UniversityNantongChina
| | - Bin Yang
- Nantong‐Leicester Joint Institute of Kidney ScienceAffiliated Hospital of Nantong UniversityNantongChina
- Department of NephrologyAffiliated Hospital of Nantong UniversityNantongChina
- Department of Cardiovascular Sciences, College of Life Sciences, University Hospitals of Leicester NHS TrustUniversity of LeicesterLeicesterUK
| |
Collapse
|
36
|
Chen H, Song J, Zeng L, Zha J, Zhu J, Chen A, Liu Y, Dong Z, Chen G. Dietary sodium modulates mTORC1-dependent trained immunity in macrophages to accelerate CKD development. Biochem Pharmacol 2024; 229:116505. [PMID: 39181336 DOI: 10.1016/j.bcp.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45+F4/80+ macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Song
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anqun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
37
|
Wang P, Chen W, li B, Yang S, Li W, Zhao S, Ning J, Zhou X, Cheng F. Exosomes on the development and progression of renal fibrosis. Cell Prolif 2024; 57:e13677. [PMID: 38898750 PMCID: PMC11533081 DOI: 10.1111/cpr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.
Collapse
Affiliation(s)
- Peihan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wu Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Bojun li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Songyuan Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wei Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Sheng Zhao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xiangjun Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
38
|
Qing J, Li C, Zhi H, Zhang L, Wu J, Li Y. Exploring macrophage heterogeneity in IgA nephropathy: Mechanisms of renal impairment and current therapeutic targets. Int Immunopharmacol 2024; 140:112748. [PMID: 39106714 DOI: 10.1016/j.intimp.2024.112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
The lack of understanding of the mechanism of renal injury in IgA nephropathy (IgAN) hinders the development of personalized treatment plans and targeted therapies. Improved insight into the cause of renal dysfunction in IgAN is necessary to enhance the effectiveness of strategies for slowing the progression of the disease. This study examined single cell RNA sequencing (scRNA seq) and bulk-RNA seq data and found that the gene expression of renal intrinsic cells (RIC) was significantly changed in patients with renal impairment, with a primary focus on energy metabolism. We discovered a clear metabolic reprogramming of RIC during renal function impairment (RF) using the 'scMetabolism' package, which manifested as a weakening of oxidative phosphorylation, alterations in fatty acid metabolism, and changes in glycolysis. Cellular communication analysis revealed that communication between macrophages (Ma) and RIC became more active and impacted cell function through the ligand-receptor-transcription factor (L-R-TF) axis in patients with RF. Our studies showed a notable upsurge in the expression of gene CLU and the infiltration of CLU+ Ma in patients with RF. CLU is a multifunctional protein, extensively involved in processes such as cell apoptosis and immune responses. Data obtained from the Nephroseq V5 database and multiplex immunohistochemistry (mIHC) were used to validate the findings, which were found to be robustly correlated with estimated glomerular filtration rate (eGFR) of the IgAN patients, as demonstrated by linear regression (LR). This study provides new insights into the cellular and molecular changes that occur in IgAN during renal impairment, revealing that elevated expression of CLU and CLU+ Ma percolation are common features in patients with RF. These findings offer potential targets and strategies for personalized management and targeted therapy of IgAN.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Changqun Li
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Lijuan Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Junnan Wu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Hejin Municipal People's Hospital, Yuncheng 043300, China.
| |
Collapse
|
39
|
Kanai M, Nishino T, Daassi D, Kimura A, Liao CW, Javanfekr Shahri Z, Wakimoto A, Gogoleva N, Usui T, Morito N, Arita M, Takahashi S, Hamada M. MAFB in Macrophages Regulates Prostaglandin E2-Mediated Lipid Mediator Class Switch through ALOX15 in Ischemic Acute Kidney Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1212-1224. [PMID: 39230290 PMCID: PMC11457724 DOI: 10.4049/jimmunol.2300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Monocytes and macrophages express the transcription factor MAFB (V-maf musculoaponeurotic fibrosarcoma oncogene homolog B) and protect against ischemic acute kidney injury (AKI). However, the mechanism through which MAFB alleviates AKI in macrophages remains unclear. In this study, we induced AKI in macrophage lineage-specific Mafb-deficient mice (C57BL/6J) using the ischemia-reperfusion injury model to analyze these mechanisms. Our results showed that MAFB regulates the expression of Alox15 (arachidonate 15-lipoxygenase) in macrophages during ischemic AKI. The expression of ALOX15 was significantly decreased at the mRNA and protein levels in macrophages that infiltrated the kidneys of macrophage-specific Mafb-deficient mice at 24 h after ischemia-reperfusion injury. ALOX15 promotes the resolution of inflammation under acute conditions by producing specialized proresolving mediators by oxidizing essential fatty acids. Therefore, MAFB in macrophages promotes the resolution of inflammation in ischemic AKI by regulating the expression of Alox15. Moreover, MAFB expression in macrophages is upregulated via the COX-2/PGE2/EP4 pathway in ischemic AKI. Our in vitro assay showed that MAFB regulates the expression of Alox15 under the COX-2/PGE2/EP4 pathway in macrophages. PGE2 mediates the lipid mediator (LM) class switch from inflammatory LMs to specialized proresolving mediators. Therefore, MAFB plays a key role in the PGE2-mediated LM class switch by regulating the expression of Alox15. Our study identified a previously unknown mechanism by which MAFB in macrophages alleviates ischemic AKI and provides new insights into regulating the LM class switch in acute inflammatory conditions.
Collapse
Affiliation(s)
- Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Teppei Nishino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Dhouha Daassi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akari Kimura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiaki Usui
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoki Morito
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; and
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
40
|
Golmohammadi M, Ivraghi MS, Hasan EK, Huldani H, Zamanian MY, Rouzbahani S, Mustafa YF, Al-Hasnawi SS, Alazbjee AAA, Khalajimoqim F, Khalaj F. Protective effects of pioglitazone in renal ischemia-reperfusion injury (RIRI): focus on oxidative stress and inflammation. Clin Exp Nephrol 2024; 28:955-968. [PMID: 38935212 DOI: 10.1007/s10157-024-02525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | - Huldani Huldani
- Department of Physiology, Faculty of Medicine Lambung, Mangkurat University, South Kalimantan, Banjarmasin, Indonesia
| | - Mohammad Yasin Zamanian
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Shiva Rouzbahani
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Department of Community Medicine and Family Physician, School of Medicine, Isfahan University of Medical Sciences, Hezar Jarib Blvd, Isfahan, Iran
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Faranak Khalajimoqim
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Zhang Y, Tang T, Wang B, Wen Y, Feng Y, Yin Q, Jiang W, Zhang Y, Li Z, Wu M, Wu Q, Song J, Crowley SD, Lan H, Lv L, Liu B. Identification of a Novel ECM Remodeling Macrophage Subset in AKI to CKD Transition by Integrative Spatial and Single-Cell Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309752. [PMID: 39119903 PMCID: PMC11481374 DOI: 10.1002/advs.202309752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/14/2024] [Indexed: 08/10/2024]
Abstract
The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.
Collapse
Affiliation(s)
- Yi‐Lin Zhang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Tao‐Tao Tang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Bin Wang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Yi Wen
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Ye Feng
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
- Department of MedicineDivision of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Qing Yin
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Wei Jiang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Yue Zhang
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Zuo‐Lin Li
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Min Wu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Qiu‐Li Wu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Jing Song
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Steven D. Crowley
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNC27705USA
| | - Hui‐Yao Lan
- Departments of Medicine & TherapeuticsLi Ka Shing Institute of Health Sciencesand Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong999077China
| | - Lin‐Li Lv
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| | - Bi‐Cheng Liu
- Institute of NephrologyZhong Da HospitalSoutheast University School of MedicineNanjingJiangsu210009China
| |
Collapse
|
42
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
43
|
Liu B, Li F, Wang Y, Gao X, Li Y, Wang Y, Zhou H. APP-CD74 axis mediates endothelial cell-macrophage communication to promote kidney injury and fibrosis. Front Pharmacol 2024; 15:1437113. [PMID: 39351084 PMCID: PMC11439715 DOI: 10.3389/fphar.2024.1437113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 10/04/2024] Open
Abstract
Background Kidney injuries often carry a grim prognosis, marked by fibrosis development, renal function loss, and macrophage involvement. Despite extensive research on macrophage polarization and its effects on other cells, like fibroblasts, limited attention has been paid to the influence of non-immune cells on macrophages. This study aims to address this gap by shedding light on the intricate dynamics and diversity of macrophages during renal injury and repair. Methods During the initial research phase, the complexity of intercellular communication in the context of kidney injury was revealed using a publicly available single-cell RNA sequencing library of the unilateral ureteral obstruction (UUO) model. Subsequently, we confirmed our findings using an independent dataset from a renal ischemia-reperfusion injury (IRI) model. We treated two different types of endothelial cells with TGF-β and co-cultured their supernatants with macrophages, establishing an endothelial cell and macrophage co-culture system. We also established a UUO and an IRI mouse model. Western blot analysis, flow cytometry, immunohistochemistry and immunofluorescence staining were used to validate our results at multiple levels. Results Our analysis revealed significant changes in the heterogeneity of macrophage subsets during both injury processes. Amyloid β precursor protein (APP)-CD74 axis mediated endothelial-macrophage intercellular communication plays a dominant role. In the in vitro co-culture system, TGF-β triggers endothelial APP expression, which subsequently enhances CD74 expression in macrophages. Flow cytometry corroborated these findings. Additionally, APP and CD74 expression were significantly increased in the UUO and IRI mouse models. Immunofluorescence techniques demonstrated the co-localization of F4/80 and CD74 in vivo. Conclusion Our study unravels a compelling molecular mechanism, elucidating how endothelium-mediated regulation shapes macrophage function during renal repair. The identified APP-CD74 signaling axis emerges as a promising target for optimizing renal recovery post-injury and preventing the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Faping Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxiong Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
44
|
Yang A, Wu CH, Matsuo S, Umene R, Nakamura Y, Inoue T. Activation of the α7nAChR by GTS-21 mitigates septic tubular cell injury and modulates macrophage infiltration. Int Immunopharmacol 2024; 138:112555. [PMID: 38943973 DOI: 10.1016/j.intimp.2024.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The most common and serious complication among hospitalized and critically ill patients is sepsis-associated acute kidney damage (S-AKI), which raises the risk of comorbidities and is linked to a high mortality rate. Cholinergic anti-inflammatory pathway (CAP), an anti-inflammatory pathway mediated by the vagus nerve, acetylcholine, and α7 nicotinic acetylcholine receptors (α7nAChRs), offers new perspectives for the treatment of S-AKI. In this study, we investigated the role of CAP and α7nAChR in kidney injury by employing an LPS-induced septic kidney injury mouse model and GTS-21 intervention. C57BL/6 mice were injected with LPS, with or without GTS-21, in different subgroups. Kidney function was assessed by plasma creatinine, histology, and markers of kidney injury 24 h after intervention. The results demonstrated that GTS-21 could inhibit the systemic inflammatory response and directly protect the tubular cell injury from LPS. To explore the novel gene involved in this response, RNA sequencing of the renal proximal tubular epithelial cell (HK-2), pretreated with LPS and GTS-21, was conducted. The results indicate that GTS-21 administration reduces LPS-induced cytokines and chemokines secretion by HK-2, including CCL20, a potent chemokine attracting monocytes/macrophages. Furthermore, a macrophage transmigration assay revealed that GTS-21 inhibits macrophage transmigration by downregulating the expression of CCL20 in HK-2 cells. In conclusion, GTS-21, as an α7nAChR agonist, emerges as a noteworthy and versatile treatment for S-AKI. Its dual function of directly protecting renal tubular cells and regulating inflammatory responses represents a major advancement in the treatment of sepsis-induced AKI. This finding might pave the way for novel approaches to improving patient outcomes and reducing death rates in sepsis-related complications.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University.
| | - Sayumi Matsuo
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University.
| |
Collapse
|
45
|
Liu H, Deng H, Huang H, Cao J, Wang X, Zhou Z, Zhong Z, Chen D, Peng G. Canine mesenchymal stem cell-derived exosomes attenuate renal ischemia-reperfusion injury through miR-146a-regulated macrophage polarization. Front Vet Sci 2024; 11:1456855. [PMID: 39315083 PMCID: PMC11417097 DOI: 10.3389/fvets.2024.1456855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction The most common factor leading to renal failure or death is renal IR (ischemia-reperfusion). Studies have shown that mesenchymal stem cells (MSCs) and their exosomes have potential therapeutic effects for IR injury by inhibiting M1 macrophage polarization and inflammation. In this study, the protective effect and anti-inflammatory mechanism of adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) after renal IR were investigated. Method Initially, ADMSC-Exos were intravenously injected into IR experimental beagles, and the subsequent assessment focused on inflammatory damage and macrophage phenotype. Furthermore, an in vitro inflammatory model was established by inducing DH82 cells with LPS. The impact on inflammation and macrophage phenotype was then evaluated using ADMSC and regulatory miR-146a. Results Following the administration of ADMSC-Exos in IR canines, a shift from M1 to M2 macrophage polarization was observed. Similarly, in vitro experiments demonstrated that ADMSC-Exos enhanced the transformation of LPS-induced macrophages from M1 to M2 type. Notably, the promotion of macrophage polarization by ADMSC-Exos was found to be attenuated upon the inhibition of miR-146a in ADMSC-Exos. Conclusion These findings suggest that miR-146a plays a significant role in facilitating the transition of LPS-induced macrophages from M1 to M2 phenotype. As a result, the modulation of macrophage polarization by ADMSC-Exos is achieved via the encapsulation and conveyance of miR-146a, leading to diminished infiltration of inflammatory cells in renal tissue and mitigation of the inflammatory reaction following canine renal IR.
Collapse
Affiliation(s)
- HaiFeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiahui Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
46
|
Torrico S, Hotter G, Muñoz Á, Calle P, García M, Poch E, Játiva S. PBMC therapy reduces cell death and tissue fibrosis after acute kidney injury by modulating the pattern of monocyte/macrophage survival in tissue. Biomed Pharmacother 2024; 178:117186. [PMID: 39067165 DOI: 10.1016/j.biopha.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, we investigated if the therapeutic potential of peripheral blood mononuclear cell (PBMC) therapy in a murine model of ischemic AKI is related with the survival pattern of monocyte/macrophages in tissue. CD-1 mice were subjected to bilateral renal ischemia followed by reperfusion to induce AKI. M2-polarized PBMCs isolated from CD-1 mice were administered intravenously at different time points post-injury. Our results demonstrate that early administration of PBMC therapy attenuates renal tissue damage, reduces tissue cell death and prevents fibrosis development. Reduction of tissue pyroptosis was observed by reduction on NLRP3 inflammasome activation and decreasing IL-1beta and Caspase-1 expression in the kidney. Furthermore, the therapy was shown to mitigate ferroptosis by inducing GPX4 overexpression. Early administration of PBMCs increased the survival pattern of renal tissue-macrophages, promoting a "pro-survival phenotype" resulting in decreased pyroptotic marker NLRP3, IL-1beta and Caspase 1 and increased anti-ferroptotic gene GPX4. Conversely, delayed administration of PBMC therapy exhibits diminished efficacy in preventing cell death and fibrosis in tissue and provoked a decrease in the pro-survival phenotype of both monocyte /macrophages in tissue. Our findings highlight the therapeutic potential of PBMC therapy in mitigating AKI and preventing CKD progression by modulating tissue-resident macrophage survival and reducing their cell death pathways. The fact that the effectiveness of the therapy depends on the time of administration after the injury underscores the importance of early intervention in AKI management.
Collapse
Affiliation(s)
- Selene Torrico
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain; Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Zaragoza 50018, Spain
| | - Ángeles Muñoz
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Priscila Calle
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Miriam García
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Esteban Poch
- Nefrologia i Trasplantament Renal, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona 08036, Spain
| | - Soraya Játiva
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain.
| |
Collapse
|
47
|
Deluque AL, de Almeida LF, Oliveira BM, Souza CS, Maciel ALD, Francescato HDC, Giovanini C, Costa RS, Coimbra TM. Paricalcitol prevents MAPK pathway activation and inflammation in adriamycin-induced kidney injury in rats. J Pathol Transl Med 2024; 58:219-228. [PMID: 39183499 PMCID: PMC11424196 DOI: 10.4132/jptm.2024.07.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Activation of the mitogen-activated protein kinase (MAPK) pathway induces uncontrolled cell proliferation in response to inflammatory stimuli. Adriamycin (ADR)-induced nephropathy (ADRN) in rats triggers MAPK activation and pro-inflammatory mechanisms by increasing cytokine secretion, similar to chronic kidney disease (CKD). Activation of the vitamin D receptor (VDR) plays a crucial role in suppressing the expression of inflammatory markers in the kidney and may contribute to reducing cellular proliferation. This study evaluated the effect of pre-treatment with paricalcitol on ADRN in renal inflammation mechanisms. METHODS Male Sprague-Dawley rats were implanted with an osmotic minipump containing activated vitamin D (paricalcitol, Zemplar, 6 ng/day) or vehicle (NaCl 0.9%). Two days after implantation, ADR (Fauldoxo, 3.5 mg/kg) or vehicle (NaCl 0.9%) was injected. The rats were divided into four experimental groups: control, n = 6; paricalcitol, n = 6; ADR, n = 7 and, ADR + paricalcitol, n = 7. RESULTS VDR activation was demonstrated by increased CYP24A1 in renal tissue. Paricalcitol prevented macrophage infiltration in the glomeruli, cortex, and outer medulla, prevented secretion of tumor necrosis factor-α, and interleukin-1β, increased arginase I and decreased arginase II tissue expressions, effects associated with attenuation of MAPK pathways, increased zonula occludens-1, and reduced cell proliferation associated with proliferating cell nuclear antigen expression. Paricalcitol treatment decreased the stromal cell-derived factor 1α/chemokine C-X-C receptor type 4/β-catenin pathway. CONCLUSIONS Paricalcitol plays a renoprotective role by modulating renal inflammation and cell proliferation. These results highlight potential targets for treating CKD.
Collapse
Affiliation(s)
- Amanda Lima Deluque
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Ferreira de Almeida
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Beatriz Magalhães Oliveira
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cláudia Silva Souza
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Lívia Dias Maciel
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Heloísa Della Coletta Francescato
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cleonice Giovanini
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Roberto Silva Costa
- Laboratory of Renal Pathology, Division of Nephrology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Terezila Machado Coimbra
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
48
|
Miao J, Wei C, Wang HL, Li YQ, Yu XM, Yang X, Su HW, Li P, Wang L. Mechanism of Chaihuang-Yishen formula to attenuate renal fibrosis in the treatment of chronic kidney disease: Insights from network pharmacology and experimental validation. Heliyon 2024; 10:e35728. [PMID: 39220918 PMCID: PMC11365344 DOI: 10.1016/j.heliyon.2024.e35728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Renal fibrosis represents a pivotal characteristic of chronic kidney disease (CKD), for which effective interventions are currently lacking. The Src kinase activates the phosphatidylinositol-3 kinases (PI3K)/Akt1 pathway to promote renal fibrosis, casting a promising target for anti-fibrosis treatment. Chaihuang-Yishen formula (CHYS), a traditional Chinese medicinal prescription, has a validated efficacy in the treatment of CKD, however, with the underlying mechanism unresolved. This study aimed to uncover the pharmacological mechanisms mediating the effect of CHYS in treating renal fibrosis using network pharmacology followed by experimental validation. The chemical compounds of CHYS were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database or published literature, followed by the prediction of their targets using SwissTargetPrediction software. Disease (CKD/renal fibrosis)-related targets were retrieved from the Genecards database. Protein-protein interaction (PPI) network was generated using the drug-disease common targets and visualized in Cytoscape software. The drug-disease targets were further subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses by Metascape software. Additionally, the compound-target-pathway network was established in Cytosape to identify key compounds, targets, and pathways. Network pharmacology analysis screened out 96 active compounds and 837 potential targets within the 7 herbal/animal medicines of CHYS, among which 237 drug-disease common targets were identified. GO and KEGG analysis revealed the enrichment of fibrosis-related biological processes and pathways among the 237 common targets. Compound-target-pathway network analysis highlighted protein kinases Src and Akt1 as the top two targets associated with the anti-renal fibrosis effects of CHYS. In UUO mice, treatment with CHYS attenuates renal fibrosis, accompanied by suppressed expression and phosphorylation activation of Src. Unlike Src, CHYS reduced Akt1 phosphorylation without affecting its expression. In summary, network pharmacology and in vivo evidence suggest that CHYS exerts its anti-renal fibrosis effects, at least in part, by inhibiting the Src/Akt1 signaling axis.
Collapse
Affiliation(s)
- Jie Miao
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Cong Wei
- The Clinical Laboratory of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Qing Li
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin-Ming Yu
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiu Yang
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hong-Wei Su
- The Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
49
|
Delrue C, Speeckaert R, Moresco RN, Speeckaert MM. Cyclic Adenosine Monophosphate Signaling in Chronic Kidney Disease: Molecular Targets and Therapeutic Potentials. Int J Mol Sci 2024; 25:9441. [PMID: 39273390 PMCID: PMC11395066 DOI: 10.3390/ijms25179441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a steady decline in kidney function and affects roughly 10% of the world's population. This review focuses on the critical function of cyclic adenosine monophosphate (cAMP) signaling in CKD, specifically how it influences both protective and pathogenic processes in the kidney. cAMP, a critical secondary messenger, controls a variety of cellular functions, including transcription, metabolism, mitochondrial homeostasis, cell proliferation, and apoptosis. Its compartmentalization inside cellular microdomains ensures accurate signaling. In kidney physiology, cAMP is required for hormone-regulated activities, particularly in the collecting duct, where it promotes water reabsorption through vasopressin signaling. Several illnesses, including Fabry disease, renal cell carcinoma, nephrogenic diabetes insipidus, Bartter syndrome, Liddle syndrome, diabetic nephropathy, autosomal dominant polycystic kidney disease, and renal tubular acidosis, have been linked to dysfunction in the cAMP system. Both cAMP analogs and phosphodiesterase inhibitors have the potential to improve kidney function and reduce kidney damage. Future research should focus on developing targeted PDE inhibitors for the treatment of CKD.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
50
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|