1
|
Botermans M, Krom CD, Oplaat C, Swier J, Quaedvlieg W, Roenhorst A, Westenberg M. Complete genome sequence of a putative novel orthotospovirus species identified in Limonium sinuatum from Colombia. Microbiol Resour Announc 2025:e0126324. [PMID: 40293225 DOI: 10.1128/mra.01263-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
We report the complete genome sequence of a putative novel orthotospovirus species in statice (Limonium sinuatum) from Colombia, provisionally named Orthotospovirus limonii (Limonium orthotospovirus 1; LOV1). Its nucleocapsid protein shows less than 64% amino acid identity with other orthotospoviruses. Phylogenetic analyses place LOV1 in the "American clade."
Collapse
Affiliation(s)
- Marleen Botermans
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Christel de Krom
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Carla Oplaat
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Jorik Swier
- Independent Researcher, Wageningen, the Netherlands
| | | | - Annelien Roenhorst
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Marcel Westenberg
- Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| |
Collapse
|
2
|
Deraniyagala AS, Roy A, Tallury S, Sudini HK, Culbreath AK, Bag S. Development of a Multiplex TaqMan Assay for Rapid Detection of Groundnut Bud Necrosis Virus: A Quarantine Pathogen in the USA. Viruses 2025; 17:532. [PMID: 40284975 PMCID: PMC12031075 DOI: 10.3390/v17040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Groundnut bud necrosis orthotospovirus (GBNV), a tripartite single-stranded RNA virus, poses a significant threat to United States agriculture. GBNV is a quarantine pathogen, and its introduction could lead to severe damage to economically important crops, such as groundnuts, tomatoes, potatoes, peas, and soybeans. For the rapid and accurate detection of GBNV at points of entry, TaqMan reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assays were developed and the results validated using conventional reverse transcriptase-polymerase chain reaction (RT-PCR) followed by Sanger sequencing. These assays target highly conserved regions of the nucleocapsid (NP) and movement (MP) proteins within the viral genome. Multiplex GBNV detection assays targeting the NP and MP genes, as well as an internal control plant gene, ACT11, showed efficiency rates between 90% and 100% and R2 values of 0.98 to 0.99, indicating high accuracy and precision. Moreover, there was no significant difference in sensitivity between multiplex and singleplex assays, ensuring reliable detection across various plant tissues. This rapid, sensitive, and specific diagnostic assay will provide a valuable tool at ports of entry to prevent the entry of GBNV into the United States.
Collapse
Affiliation(s)
| | - Avijit Roy
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center (BARC), Unites States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Beltsville, MD 20705, USA
| | - Shyam Tallury
- Plant Genetic Resources Conservation Unit (PGRCU), United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Griffin, GA 30223, USA
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad 502324, Telangana, India
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| |
Collapse
|
3
|
Qi S, Meng LZ, Lou Q, Li Y, Shen Y, Zhang S, Wang X, Zhao P, Wang J, Wang B, Chen X, Zhang C, Du Y, Zhao J, Zhan X, Liang Y. Association of the tomato co-chaperone gene Sldnaj harboring a promoter deletion with susceptibility to Tomato spotted wilt virus (TSWV). HORTICULTURE RESEARCH 2025; 12:uhaf019. [PMID: 40093380 PMCID: PMC11908825 DOI: 10.1093/hr/uhaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/29/2024] [Indexed: 03/19/2025]
Abstract
Tomato spotted wilt virus (TSWV) poses a significant threat as a devastating pathogen to the global production and quality of tomato (Solanum lycopersicum). Mining novel resistance genes within the tomato germplasm is an effective and environmentally friendly approach to combat TSWV. In this study, we investigated the mechanisms underlying high TSWV resistance in a specific tomato line after experimental inoculation, despite not possessing any known TSWV resistance genes. The candidate causal genes of disease resistance traits were finely mapped by constructing different genetic populations and performing bulk segregant analysis sequencing. This approach identified SlDnaJ (Solyc10g081220) as a key locus potentially regulating TSWV resistance. We determined a structural variant of SlDnaJ (designated Sldnaj) containing a 61-bp promoter sequence deletion that was specifically present in the germplasm of the susceptible M82 tomato plant lines. Sldnaj-knockout transgenic plants were significantly more resistant to TSWV than wild-type plants. Up-regulated expression of Sldnaj affected the salicylic acid/jasmonic acid signaling pathway, which induced and promoted the systemic infection of TSWV in M82 susceptible plants. In summary, this study identified a new candidate TSWV susceptibility gene with a natural deletion variation in tomato. These findings provide insights into the molecular mechanism underlying pathogen resistance while offering a target for breeding strategies of tomato with TSWV resistance.
Collapse
Affiliation(s)
- Shiming Qi
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, Gansu 734000, China
| | - Liang Zhe Meng
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqi Lou
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yushun Li
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanbo Shen
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shijie Zhang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Wang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pan Zhao
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Wang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Wang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiubin Chen
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, Gansu 734000, China
| | - Chunmei Zhang
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, Gansu 734000, China
| | - Yu Du
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiantao Zhao
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Xiangqiang Zhan
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Liang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Khan R, He P, Chen X, He P, Ahmed A, Wu Y, Tang G, Tang P, Li X, Munir S, He Y. Bacillus endophytes for sustainable management of tomato spotted wilt virus and yield production. PEST MANAGEMENT SCIENCE 2025; 81:2073-2085. [PMID: 39726211 DOI: 10.1002/ps.8606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Tomato-spotted wilt virus (TSWV) from the Tospovirus genus affects over 1000 plant species, including key crops, and traditional control methods often prove inadequate. This study investigates the effectiveness of Bacillus amyloliquefaciens and Bacillus subtilis in reducing TSWV infection, enhancing plant growth, and strengthening defense in Nicotiana benthamiana. The aim is to assess Bacillus as a sustainable biocontrol alternative, offering an eco-friendly solution for managing TSWV disease in agriculture. RESULTS Here, we report the efficacy of five Bacillus isolates (out of 15 tested) - B. amyloliquefaciens (DJB5, YN48, YN28, Mg6) and B. subtilis L1-21 - significantly reducing TSWV copies per gram in N. benthamiana leaves, using a half-leaf assay. In glasshouse trials, isolates DJB5, YN48, and Mg6 decreased TSWV copies per gram by 75.7%, 83.6%, and 88.2%, with biocontrol efficacy rates of 91.2%, 94.1%, and 95.7% respectively. All the isolates consistently mitigated the symptoms of TSWV, reduced the disease severity, and area under the disease progress curve (AUDPC) at 21 days post-inoculation. Additionally, these isolates enhanced plant growth parameters, including shoot and root length, leaf number, area, and biomass. The application of endophytes in the infected plants activated antioxidant defense enzymes by elevating the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and chitinase. However, defense-related enzymes, such as malondialdehyde (MDA), catalase (CAT), phenylalanine ammonia-lyase (PAL), total phenol, and β-1,3-glucanase decreased as TSWV infection reduced in the leaves. CONCLUSION Our findings indicate that B. amyloliquefaciens isolates, DJB5, YN48, and Mg6, effectively manage TSWV by activating plant defense, reducing virus load, reducing TSWV symptoms, and promoting plant growth. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rizwan Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xiaojiao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Guowen Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Zan N, Li J, Yao J, Wu S, Li J, Chen F, Song B, Song R. Rational design of phytovirucide inhibiting nucleocapsid protein aggregation in tomato spotted wilt virus. Nat Commun 2025; 16:2034. [PMID: 40016246 PMCID: PMC11868578 DOI: 10.1038/s41467-025-57281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Ineffectiveness of managing plant viruses by chemicals has posed serious challenges in crop production. Recently, phase separation has shown to play a key role in viral lifecycle. Using inhibitors that can disturb biomolecular condensates formed by phase separation for virus control has been reported in medical field. However, the applicability of this promising antiviral tactic for plant protection has not been explored. Here, we report an inhibitor, Z9, that targets the tomato spotted wilt virus (TSWV) N protein. Z9 is capable of interacting with the amino acids in the nucleic acid binding region of TSWV N, disrupting the assembly of N and RNA into phase-separated condensates, the reduction of which is detrimental to the stability of the N protein. This study provides a strategy for phase separation-based plant virus control.
Collapse
Affiliation(s)
- Ningning Zan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiahui Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Shang Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jianzhuan Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Feifei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| | - Runjiang Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| |
Collapse
|
6
|
Shehata AHA, Mayfield MA, Sikora EJ, Martin KM. Characterization of soybean vein necrosis virus (SVNV) proteins: Sequence analysis of field strains and comparison of localization patterns in differing cell types. Virology 2025; 604:110450. [PMID: 39983448 DOI: 10.1016/j.virol.2025.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025]
Abstract
Soybean vein necrosis virus (SVNV) is a persistent, propagative, ambisense single-stranded RNA virus in the genus Orthotospovirus, transmitted by Nehydatothrips variabilis. To understand SVNV in the field, 33 samples exhibiting symptoms of SVNV were collected. The N, NSs, and NSm open reading frames (ORFs) were sequenced, revealing amino acid mutations in each gene. The five open reading frames of the SVNV Tennessee strain (N, NSs, NSm, GN, and GC) were fused in frame to GFP for experimentation in both plant and insect cells. N and NSs localize in plants at the cell periphery and nucleus. NSm induces cell death in plant cells, but not in insect cells, where cytoplasmic localization is observed. GN and GC glycoproteins localize to the membranes and display increased cytoplasmic localization in insect cells. The findings of this study contribute to understanding the genes of SVNV and capture sequence changes that have occurred over the past fifteen years.
Collapse
Affiliation(s)
- Abdelaal H A Shehata
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States; Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Michael A Mayfield
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Edward J Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.
| |
Collapse
|
7
|
Martin KM, Chen Y, Mayfield MA, Montero-Astúa M, Whitfield AE. Visualizing Tomato Spotted Wilt Virus Protein Localization: Cross-Kingdom Comparisons of Protein-Protein Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:84-96. [PMID: 39436195 DOI: 10.1094/mpmi-09-24-0108-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Tomato spotted wilt virus (TSWV) is an orthotospovirus that infects both plants and insect vectors, and understanding its protein localization and interactions is crucial for unraveling the infection cycle and host-virus interactions. We investigated and compared the localization of TSWV proteins. The localization between plant and insect cells was overall consistent, indicating a similar mechanism is utilized by the virus in both types of cells. However, a change in localization over time was associated with the viral proteins that did not contain signal peptides and transmembrane domains such as N, NSs, and NSm, which only occurred in the plant cells and not in the insect cells. We also tested the localization of the proteins during an active plant infection using free red fluorescent protein (RFP) as a marker to highlight the nucleus and cytoplasm. Voids in the cytoplasm were shown only during infection, and N, NSs, NSm, and to a lesser extent GN and GC were surrounding these areas, suggesting it may be a site of replication or morphogenesis. Furthermore, we tested the interactions of viral proteins using both bimolecular fluorescence complementation (BiFC) and membrane-based yeast two-hybrid (MbY2H) assays. These revealed self-interactions of NSm, N, GN, GC, and NSs. We also identified interactions between different TSWV proteins, indicating their possible roles, such as between NSs and GC and N and GC, which may be necessary during the replication and assembly processes, respectively. This research expands our knowledge of TSWV infection and elaborates on the intricate relationships between viral proteins, cellular dynamics, and host responses. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- K M Martin
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Y Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raliegh, NC, U.S.A
| | - M A Mayfield
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - M Montero-Astúa
- Centro de Investigación en Biología Celular y Molecular (BIBCM) and Escuela de Agronomía, University of Costa Rica, San José, Costa Rica
| | - A E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raliegh, NC, U.S.A
| |
Collapse
|
8
|
LaBonte P, Packer R, McInnes H, Rotenberg D, Whitfield AE. Methods for Thrips Transmission and Maintenance of Tomato Spotted Wilt Virus (TSWV). Methods Mol Biol 2025; 2893:119-136. [PMID: 39671034 DOI: 10.1007/978-1-0716-4338-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Tomato spotted wilt virus (TSWV) is transmitted by insect pests from the Thripidae family, including Frankliniella occidentalis, commonly known as western flower thrips. For experimental purposes, researchers have developed methods for inoculating host plants with TSWV, allowing thrips to acquire TSWV, and verifying thrips acquisition. Plants can be inoculated with TSWV either mechanically or with thrips in the lab, but in nature, the virus is transmitted by thrips. For the study of tospovirus transmission biology and vector-virus interactions, efficient methods for mechanical and thrips transmission are essential. We have optimized these protocols for TSWV and western flower thrips, but they can also be adapted to other tospovirus-vector systems.
Collapse
Affiliation(s)
- Peyton LaBonte
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Ryan Packer
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Holly McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
10
|
Han J, Klobasa W, de Oliveira L, Rotenberg D, Whitfield AE, Lorenzen MD. CRISPR/Cas9-mediated genome editing of Frankliniella occidentalis, the western flower thrips, via embryonic microinjection. INSECT MOLECULAR BIOLOGY 2024; 33:589-600. [PMID: 38676396 DOI: 10.1111/imb.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
The western flower thrips, Frankliniella occidentalis, poses a significant challenge in global agriculture as a notorious pest and a vector of economically significant orthotospoviruses. However, the limited availability of genetic tools for F. occidentalis hampers the advancement of functional genomics and the development of innovative pest control strategies. In this study, we present a robust methodology for generating heritable mutations in F. occidentalis using the CRISPR/Cas9 genome editing system. Two eye-colour genes, white (Fo-w) and cinnabar (Fo-cn), frequently used to assess Cas9 function in insects were identified in the F. occidentalis genome and targeted for knockout through embryonic microinjection of Cas9 complexed with Fo-w or Fo-cn specific guide RNAs. Homozygous Fo-w and Fo-cn knockout lines were established by crossing mutant females and males. The Fo-w knockout line revealed an age-dependent modification of eye-colour phenotype. Specifically, while young larvae exhibit orange-coloured eyes, the colour transitions to bright red as they age. Unexpectedly, loss of Fo-w function also altered body colour, with Fo-w mutants having a lighter coloured body than wild type, suggesting a dual role for Fo-w in thrips. In contrast, individuals from the Fo-cn knockout line consistently displayed bright red eyes throughout all life stages. Molecular analyses validated precise editing of both target genes. This study offers a powerful tool to investigate thrips gene function and paves the way for the development of genetic technologies for population suppression and/or population replacement as a means of mitigating virus transmission by this vector.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - William Klobasa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Lucas de Oliveira
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Marcé D Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Zhang S, Hladky LL, Hasegawa DK. Rapid detection of Impatiens necrotic spot virus from thrips vectors using reverse transcription-recombinase polymerase amplification. Sci Rep 2024; 14:21946. [PMID: 39304692 DOI: 10.1038/s41598-024-73078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
The plant virus, Impatiens necrotic spot virus (INSV), is an economically important pathogen of vegetables, fruits, and ornamental crops. INSV is vectored by the western flower thrips, Frankliniella occidentalis, a small insect pest that is globally distributed. In recent years, INSV outbreaks have reached epidemic levels in the Salinas Valley of California-an agriculturally rich region where most of the lettuce (Lactuca sativa) is produced in the United States. Due to the obligate nature in which virus transmission occurs, new tools that could rapidly detect INSV from thrips vectors would enhance our ability to predict where virus outbreaks may occur. Here, we report on the development of a reverse transcription-recombinase polymerase amplification (RT-RPA) assay that can detect INSV from individual thrips. The assay uses crude extraction methods, is performed at a single temperature of 42 °C, can be completed in 25 min, and provides sensitivity levels that are comparable to other available detection methods. When the assay was used on field populations of thrips, INSV was successfully identified and quantified from individual larvae and adults. The work provides a new cost-effective surveillance tool that can rapidly detect INSV from its insect vector and from plants.
Collapse
Affiliation(s)
- Shulu Zhang
- USDA - Agricultural Research Service, 1636 East Alisal Street, Salinas, CA, 93905, USA
| | - Laura L Hladky
- USDA - Agricultural Research Service, 1636 East Alisal Street, Salinas, CA, 93905, USA
| | - Daniel K Hasegawa
- USDA - Agricultural Research Service, 1636 East Alisal Street, Salinas, CA, 93905, USA.
| |
Collapse
|
12
|
Wang C, Zhu M, Hong H, Li J, Zuo C, Zhang Y, Shi Y, Liu S, Yu H, Yan Y, Chen J, Shangguan L, Zhi A, Chen R, Devendrakumar KT, Tao X. A viral effector blocks the turnover of a plant NLR receptor to trigger a robust immune response. EMBO J 2024; 43:3650-3676. [PMID: 39020150 PMCID: PMC11377725 DOI: 10.1038/s44318-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.
Collapse
Affiliation(s)
- Chunli Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chongkun Zuo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yu Zhang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yajie Shi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Suyu Liu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haohua Yu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Lingna Shangguan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Aiping Zhi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Rongzhen Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Karen Thulasi Devendrakumar
- Department of Botany and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
13
|
Huang W, Wei S, Zhou T, Fan Z, Cao L, Li Z, Guo S. MCMV-infected maize attracts its insect vector Frankliniella occidentalis by inducing β-myrcene. FRONTIERS IN PLANT SCIENCE 2024; 15:1404271. [PMID: 39233912 PMCID: PMC11371577 DOI: 10.3389/fpls.2024.1404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024]
Abstract
Maize lethal necrosis is attributed to the accumulation of maize chlorotic mottle virus (MCMV), an invasive virus transmitted by insect vectors. The western flower thrips (WFT) can shift host to maize, thus promoting the spread of MCMV. However, our understanding of the characteristics and interactions involved in the transmission of MCMV is still limited. This study finds that non-viruliferous WFTs showed a 57.56% higher preference for MCMV-infected maize plants compared to healthy maize plants, while viruliferous WFTs showed a 53.70% higher preference for healthy maize plants compared to MCMV-infected maize plants. We also show for the first time that both adults and larvae of WFT could successfully acquire MCMV after 1 min of acquisition access period (AAP), and after 48 h of AAP, WFT could transmit MCMV in an inoculation access period of 1 h without a latent period. Both adults and larvae of WFT can transmit MCMV for up to 2 days. Furthermore, the decreasing number of viruliferous WFTs and transmission rates as time progressed, together with the transcriptomic evidence, collectively suggest that WFTs transmit MCMV in a semi-persistent method, a mode of transmission requiring minutes to several hours for acquisition access and having a retention time of several hours to a few days. Additionally, β-myrcene can attract WFTs significantly and is detected in Nicotiana benthamiana plants transiently expressing MCMV CP (coat protein), which is consistent with results in MCMV-infected maize plants through the metabolomic profiling and the preference analyses of WFT. Therefore, this study demonstrates the indirect interaction between MCMV and WFT by inducing maize to synthesize β-myrcene to attract insect vectors. The exploration of specific interactions between MCMV and WFT could help to expand the mechanism studies of virus-vector-host plant interaction and put forward a new insight for the combined control of MCMV and WFT through the manipulation of plant volatiles and key insect genes.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tao Zhou
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zaifeng Fan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lijun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaokun Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
14
|
Shahmohammadi N, Khan F, Jin G, Kwon M, Lee D, Kim Y. Tomato Spotted Wilt Virus Suppresses the Antiviral Response of the Insect Vector, Frankliniella occidentalis, by Elevating an Immunosuppressive C18 Oxylipin Level Using Its Virulent Factor, NSs. Cells 2024; 13:1377. [PMID: 39195265 PMCID: PMC11352781 DOI: 10.3390/cells13161377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Orthotospovirus tomatomaculae (tomato spotted wilt virus, TSWV) is transmitted by the western flower thrips, Frankliniella occidentalis. Epoxyoctadecamonoenoic acids (EpOMEs) function as immune-suppressive factors, particularly in insects infected by viral pathogens. These oxylipins are produced by cytochrome P450 monooxygenases (CYPs) and are degraded by soluble epoxide hydrolase (sEH). In this study, we tested the hypothesis that TSWV modulates the EpOME level in the thrips to suppress antiviral responses and enhance its replication. TSWV infection significantly elevated both 9,10-EpOME and 12,13-EpOME levels. Following TSWV infection, the larvae displayed apoptosis in the midgut along with the upregulated expression of four caspase genes. However, the addition of EpOME to the viral treatment notably reduced apoptosis and downregulated caspase gene expressions, which led to a marked increase in TSWV titers. The CYP and sEH genes of F. occidentalis were identified, and their expression manipulation using RNA interference (RNAi) treatments led to significant alternations in the insect's immune responses and TSWV viral titers. To ascertain which viral factor influences the host EpOME levels, specialized RNAi treatments targeting genes encoded by TSWV were administered to larvae infected with TSWV. These treatments demonstrated that NSS expression is pivotal in manipulating the genes involved in EpOME metabolism. These results indicate that NSs of TSWV are crucially linked with the elevation of host insect EpOME levels and play a key role in suppressing the antiviral responses of F. occidentalis.
Collapse
Affiliation(s)
- Niayesh Shahmohammadi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Minji Kwon
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea; (M.K.); (D.L.)
| | - Donghee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea; (M.K.); (D.L.)
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| |
Collapse
|
15
|
Zhao Y, He Y, Chen X, Li N, Yang T, Hu T, Duan S, Luo X, Jiang L, Chen X, Tao X, Chen J. Different viral effectors hijack TCP17, a key transcription factor for host Auxin synthesis, to promote viral infection. PLoS Pathog 2024; 20:e1012510. [PMID: 39208401 PMCID: PMC11389919 DOI: 10.1371/journal.ppat.1012510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.
Collapse
Affiliation(s)
- Yanxiao Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yong He
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xinyue Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tongqing Yang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Tingting Hu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shujing Duan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xuanjie Luo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaoyang Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Pandi A, Perumal R, John Samuel K, Subramanian J, Malaichamy K. Orthotospovirus iridimaculaflavi (iris yellow spot virus): An emerging threat to onion cultivation and its transmission by Thrips tabaci in India. Microb Pathog 2024; 193:106716. [PMID: 38848932 DOI: 10.1016/j.micpath.2024.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
The yellow spot disease caused by the virus species Orthotospovirus iridimaculaflavi (Iris yellow spot virus-IYSV), belonging to the genus Orthotospovirus, the family Tospoviridae, order Bunyavirales and transmitted by Thrips tabaci Lindeman. At present, emerging as a major threat in onion (Allium cepa) in Tamil Nadu, India. The yellow spot disease incidence was found to be 53-73 % in six districts out of eight major onion-growing districts surveyed in Tamil Nadu during 2021-2023. Among the onion cultivars surveyed, the cultivar CO 5 was the most susceptible to IYSV. The population of thrips was nearly 5-9/plant during vegetative and flowering stages. The thrips infestation was 34-60 %. The tospovirus involved was confirmed as IYSV through DAS-ELISA, followed by molecular confirmation through RT-PCR using the nucleocapsid (N) gene. The predominant thrips species present in onion crops throughout the growing seasons was confirmed as Thrips tabaci based on the nucleotide sequence of the MtCOI gene. The mechanical inoculation of IYSV in different hosts viz., Vigna unguiculata, Gomphrena globosa, Chenopodium amaranticolor, Chenopodium quinoa and Nicotiana benthamiana resulted in chlorotic and necrotic lesion symptoms. The electron microscopic studies with partially purified sap from onion lesions revealed the presence of spherical to pleomorphic particles measuring 100-230 nm diameter. The transmission of IYSV was successful with viruliferous adult Thrips tabaci in cowpea (Cv. CO7), which matured from 1st instar larva fed on infected cowpea leaves (24 h AAP). Small brown necrotic symptoms were produced on inoculated plants after an interval of four weeks. The settling preference of non-viruliferous and viruliferous T. tabaci towards healthy and infected onion leaves resulted in the increased preference of non-viruliferous thrips towards infected (onion-61.33 % and viruliferous thrips towards healthy onion leaves (75.33 %). The study isolates shared 99-100 % identity at a nucleotide and amino acid level with Indian isolates of IYSV in the N gene. The multiple alignment of the amino acid sequence of the N gene of IYSV isolates collected from different locations and IYSV isolates from the database revealed amino acid substitution in the isolate ITPR4. All the IYSV isolates from India exhibited characteristic amino acid substitution of serine at the 6th position in the place of threonine in the isolates from Australia, Japan and USA. The phylogenetic analysis revealed the monophyletic origin of the IYSV isolates in India.
Collapse
Affiliation(s)
- Arunkumar Pandi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Renukadevi Perumal
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | | | - Jeyarani Subramanian
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Kannan Malaichamy
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
17
|
Shen Y, Ye T, Li Z, Kimutai TH, Song H, Dong X, Wan J. Exploiting viral vectors to deliver genome editing reagents in plants. ABIOTECH 2024; 5:247-261. [PMID: 38974861 PMCID: PMC11224180 DOI: 10.1007/s42994-024-00147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/02/2024] [Indexed: 07/09/2024]
Abstract
Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.
Collapse
Affiliation(s)
- Yilin Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Tao Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zihan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Torotwa Herman Kimutai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Hao Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
18
|
Qiao N, Jiang M, Chen Y, Wang X, Chi W, Li S, Zhu X, Sun X. A Sequencing-Based Phylogenetic Analysis of Various Strains of Watermelon Silver Mottle Virus in Northern China and Their One-Step Detection Using Reverse Transcription Loop-Mediated Isothermal Amplification. PLANT DISEASE 2024; 108:1769-1775. [PMID: 38240655 DOI: 10.1094/pdis-09-23-1952-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Watermelon silver mottle virus (WSMoV), a potentially invasive virus, is known to reduce the yield and degrade the quality of infected crops in Cucurbitaceae and Solanaceae families, resulting in significant economic losses in limited areas of several Asian countries. WSMoV, previously detected on various crops in southern China, has now become more prevalent on watermelon and sweet pepper in the northern cities of China for the first time. A sequencing-based phylogenetic analysis has confirmed that the viral strains infecting cucumber, watermelon, and sweet pepper plants in Shandong Province are most closely related to those isolated from Guangdong, Guangxi, and Taiwan, suggesting a farther and continuous spread of WSMoV throughout China. To develop a fast, accurate, and practical protocol for WSMoV detection, we designed a set of primers from the conserved sequence of the WSMoV nucleocapsid protein (N) gene for a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The RT-LAMP assay was performed successfully for 50 min at 61°C and exhibited a highly specific result without cross-reactions with other similar viruses and a sensitivity that is 100-fold higher than that of the traditional RT-PCR. The confirmation of 26 WSMoV suspect samples collected from various regions in Shandong through the RT-LAMP testing has demonstrated that the assay is suitable and practical for detection of WSMoV in both laboratory and field settings.
Collapse
Affiliation(s)
- Ning Qiao
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Miao Jiang
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Yuxing Chen
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xingcui Wang
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Wenjuan Chi
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Shoujie Li
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoan Sun
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, U.S.A. (Retired)
| |
Collapse
|
19
|
Oliver JE, Rotenberg D, Agosto-Shaw K, McInnes HA, Lahre KA, Mulot M, Adkins S, Whitfield AE. Multigenic Hairpin Transgenes in Tomato Confer Resistance to Multiple Orthotospoviruses Including Sw-5 Resistance-Breaking Tomato Spotted Wilt Virus. PHYTOPATHOLOGY 2024; 114:1137-1149. [PMID: 37856697 DOI: 10.1094/phyto-07-23-0256-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Tomato spotted wilt virus (TSWV) and related thrips-borne orthotospoviruses are a threat to food and ornamental crops. Orthotospoviruses have the capacity for rapid genetic change by genome segment reassortment and mutation. Genetic resistance is one of the most effective strategies for managing orthotospoviruses, but there are multiple examples of resistance gene breakdown. Our goal was to develop effective multigenic, broad-spectrum resistance to TSWV and other orthotospoviruses. The most conserved sequences for each open reading frame (ORF) of the TSWV genome were identified, and comparison with other orthotospoviruses revealed sequence conservation within virus clades; some overlapped with domains with well-documented biological functions. We made six hairpin constructs, each of which incorporated sequences matching portions of all five ORFs. Tomato plants expressing the hairpin transgene were challenged with TSWV by thrips and leaf-rub inoculation, and four constructs provided strong protection against TSWV in foliage and fruit. To determine if the hairpin constructs provided protection against other emerging orthotospoviruses, we challenged the plants with tomato chlorotic spot virus and resistance-breaking TSWV and found that the same constructs also provided resistance to these related viruses. Antiviral hairpin constructs are an effective way to protect plants from multiple orthotospoviruses and are an important strategy in the fight against resistance-breaking TSWV and emerging viruses. Targeting of all five viral ORFs is expected to increase the durability of resistance, and combining them with other resistance genes could further extend the utility of this disease control strategy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jonathan E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Karolyn Agosto-Shaw
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Holly A McInnes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Kirsten A Lahre
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Michaël Mulot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Scott Adkins
- U.S. Department of Agriculture-Agricultural Research Service-USHRL, Fort Pierce, FL 34945
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
20
|
Mohana Pradeep RK, Rakesh V, Boopathi N, Siva M, Kousalya S, Nagendran K, Karthikeyan G. Emerging challenges in the management of Orthotospoviruses in Indian agriculture. Virology 2024; 593:110029. [PMID: 38382160 DOI: 10.1016/j.virol.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Orthotospoviruses, a genera of negative-sense ssRNA viruses transmitted by thrips, have gained significant attention in recent years due to their detrimental impact on diverse crops, causing substantial economic losses and posing threats to food security. Orthotospoviruses are characterised by a wide range of symptoms in plants, including chlorotic/necrotic spots, vein banding, and fruit deformation. Seven species, including four definite and three tentative species in the genus Orthotospovirus, have so far been documented on the crops of the Indian subcontinent. Management of Orthotospoviruses under field conditions is challenging since they have a wide host range, adaptation to versatile environmental conditions, a lack of promising resistance sources, and the ubiquitous nature of thrips and their transmission through a propagative manner. Our present review elucidates the significance, molecular biology and evolutionary relationship of Orthotospoviruses; vector population; and possible management strategies for Orthotospoviruses and their vectors in the scenario of the Indian subcontinent.
Collapse
Affiliation(s)
- R K Mohana Pradeep
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - V Rakesh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - N Boopathi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Siva
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - S Kousalya
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - K Nagendran
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Varanasi, 221005, India
| | - G Karthikeyan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
21
|
Huang S, Wang C, Ding Z, Zhao Y, Dai J, Li J, Huang H, Wang T, Zhu M, Feng M, Ji Y, Zhang Z, Tao X. A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity. Nat Commun 2024; 15:3205. [PMID: 38615015 PMCID: PMC11016096 DOI: 10.1038/s41467-024-47364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.
Collapse
Affiliation(s)
- Shen Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chunli Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Zixuan Ding
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yaqian Zhao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Dai
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haining Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Tongkai Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mingfeng Feng
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhongkai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021, China
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
22
|
Zheng Y, Feng Y, Li Z, Wang J. Genome-wide identification of cuticle protein superfamily in Frankliniella occidentalis provide insight into the control of both insect vectors and plant virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22102. [PMID: 38500452 DOI: 10.1002/arch.22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.
Collapse
Affiliation(s)
- Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yinghao Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhejin Li
- College of Biological and Agricultural Sciences, HongHe University, Mengzi, China
| | - Junwen Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Khatun MF, Hwang HS, Kang JH, Lee KY, Kil EJ. Genetic Diversity and DNA Barcoding of Thrips in Bangladesh. INSECTS 2024; 15:107. [PMID: 38392526 PMCID: PMC10888972 DOI: 10.3390/insects15020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Thrips are economically important pests, and some species transmit plant viruses that are widely distributed and can damage vegetables and cash crops. Although few studies on thrips species have been conducted in Bangladesh, the variation and genetic diversity of thrips species remain unknown. In this study, we collected thrips samples from 16 geographical locations throughout the country and determined the nucleotide sequences of the mitochondrial cytochrome c oxidase subunit 1 (mtCOI) gene in 207 thrips individuals. Phylogenetic analysis revealed ten genera (Thrips, Haplothrips, Megalothrips, Scirtothrips, Frankliniella, Dendrothripoides, Astrothrips, Microcephalothrips, Ayyaria, and Bathrips) and 19 species of thrips to inhabit Bangladesh. Among these, ten species had not been previously reported in Bangladesh. Intraspecific genetic variation was diverse for each species. Notably, Thrips palmi was the most genetically diverse species, containing 14 haplotypes. The Mantel test revealed no correlation between genetic and geographical distances. This study revealed that thrips species are expanding their host ranges and geographical distributions, which provides valuable insights into monitoring the diversity of and control strategies for these pests.
Collapse
Affiliation(s)
- Mst Fatema Khatun
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
- Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Hwal-Su Hwang
- Department of Plant Medicine, College of Agriculture and Life Science, Kyungpook National University, Daegu 37224, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Jeong-Hun Kang
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| | - Kyeong-Yeoll Lee
- Department of Plant Medicine, College of Agriculture and Life Science, Kyungpook National University, Daegu 37224, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu 37224, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
24
|
Kamran A, Li Y, Zhang W, Jiao Y, Farooq T, Wang Y, Liu D, Jiang L, Shen L, Wang F, Yang J. Insights into the genetic variability and evolutionary dynamics of tomato spotted wilt orthotospovirus in China. BMC Genomics 2024; 25:40. [PMID: 38191299 PMCID: PMC10773106 DOI: 10.1186/s12864-023-09951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Viral diseases are posing threat to annual production and quality of tobacco in China. Recently, tomato spotted wilt orthotospovirus (TSWV) has been reported to infect three major crops including tobacco. Current study was aimed to investigate the population dynamics and molecular diversity of the TSWV. In the current study, to assess and identify the prevalence and evolutionary history of TSWV in tobacco crops in China, full-length genome sequences of TSWV isolates from tobacco, were identified and analyzed. METHODS After trimming and validation, sequences of new isolates were submitted to GenBank. We identified the full-length genomes of ten TSWV isolates, infecting tobacco plants from various regions of China. Besides these, six isolates were partially sequenced. Phylogenetic analysis was performed to assess the relativeness of newly identified sequences and corresponding sequences from GenBank. Recombination and population dynamics analysis was performed using RDP4, RAT, and statistical estimation. Reassortment analysis was performed using MegaX software. RESULTS Phylogenetic analysis of 41 newly identified sequences, depicted that the majority of the Chinese isolates have separate placement in the tree. RDP4 software predicted that RNA M of newly reported isolate YNKM-2 had a recombinant region spanning from 3111 to 3811 bp. The indication of parental sequences (YNKMXD and YNHHKY) from newly identified isolates, revealed the conservation of local TSWV population. Genetic diversity and population dynamics analysis also support the same trend. RNA M was highlighted to be more capable of mutating or evolving as revealed by data obtained from RDP4, RAT, population dynamics, and phylogenetic analyses. Reassortment analysis revealed that it might have happened in L segment of TSWV isolate YNKMXD (reported herein). CONCLUSION Taken together, this is the first detailed study revealing the pattern of TWSV genetic diversity, and population dynamics helping to better understand the ability of this pathogen to drastically reduce the tobacco production in China. Also, this is a valuable addition to the existing worldwide profile of TSWV, especially in China, where a few studies related to TSWV have been reported including only one complete genome of this virus isolated from tobacco plants.
Collapse
Affiliation(s)
- Ali Kamran
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, 550025, Guiyang, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Wanhong Zhang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Yubin Jiao
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Tahir Farooq
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, China
| | - Yong Wang
- Tobacco Company of Yunnan Province, Liangshan Company, 615000, Xichang, Sichuan, China
| | - Dongyang Liu
- Tobacco Company of Yunnan Province, Liangshan Company, 615000, Xichang, Sichuan, China
| | - Lianqiang Jiang
- Tobacco Company of Yunnan Province, Liangshan Company, 615000, Xichang, Sichuan, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China.
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China.
| |
Collapse
|
25
|
Karlin DG. WIV, a protein domain found in a wide number of arthropod viruses, which probably facilitates infection. J Gen Virol 2024; 105. [PMID: 38193819 DOI: 10.1099/jgv.0.001948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The most powerful approach to detect distant homologues of a protein is based on structure prediction and comparison. Yet this approach is still inapplicable to many viral proteins. Therefore, we applied a powerful sequence-based procedure to identify distant homologues of viral proteins. It relies on three principles: (1) traces of sequence similarity can persist beyond the significance cutoff of homology detection programmes; (2) candidate homologues can be identified among proteins with weak sequence similarity to the query by using 'contextual' information, e.g. taxonomy or type of host infected; (3) these candidate homologues can be validated using highly sensitive profile-profile comparison. As a test case, this approach was applied to a protein without known homologues, encoded by ORF4 of Lake Sinai viruses (which infect bees). We discovered that the ORF4 protein contains a domain that has homologues in proteins from >20 taxa of viruses infecting arthropods. We called this domain 'widespread, intriguing, versatile' (WIV), because it is found in proteins with a wide variety of functions and within varied domain contexts. For example, WIV is found in the NSs protein of tospoviruses, a global threat to food security, which infect plants as well as their arthropod vectors; in the RNA2 ORF1-encoded protein of chronic bee paralysis virus, a widespread virus of bees; and in various proteins of cypoviruses, which infect the silkworm Bombyx mori. Structural modelling with AlphaFold indicated that the WIV domain has a previously unknown fold, and bibliographical evidence suggests that it facilitates infection of arthropods.
Collapse
Affiliation(s)
- David G Karlin
- Division Phytomedicine, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55/57, D-14195 Berlin, Germany
- Independent Researcher, Marseille, France
| |
Collapse
|
26
|
Ordaz NA, Nagalakshmi U, Boiteux LS, Atamian HS, Ullman DE, Dinesh-Kumar SP. The Sw-5b NLR Immune Receptor Induces Early Transcriptional Changes in Response to Thrips and Mechanical Modes of Inoculation of Tomato spotted wilt orthotospovirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:705-715. [PMID: 37432156 DOI: 10.1094/mpmi-03-23-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Norma A Ordaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia-DF, Brazil
| | - Hagop S Atamian
- Biological Sciences program, Schmid College of Science & Technology, Chapman University, Orange, CA 92866, U.S.A
| | - Diane E Ullman
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
27
|
Wu X, Chen S, Zhang Z, Zhang Y, Li P, Chen X, Liu M, Lu Q, Li Z, Wei Z, Xu P. Development of Recombinase Polymerase Amplification Combined with Lateral Flow Strips for Rapid Detection of Cowpea Mild Mottle Virus. THE PLANT PATHOLOGY JOURNAL 2023; 39:486-493. [PMID: 37817494 PMCID: PMC10580057 DOI: 10.5423/ppj.oa.02.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 10/12/2023]
Abstract
Cowpea mild mottle virus (CPMMV) is a global plant virus that poses a threat to the production and quality of legume crops. Early and accurate diagnosis is essential for effective managing CPMMV outbreaks. With the advancement in isothermal recombinase polymerase amplification and lateral flow strips technologies, more rapid and sensitive methods have become available for detecting this pathogen. In this study, we have developed a reverse transcription recombinase polymerase amplification combined with lateral flow strips (RT-RPA-LFS) method for the detection of CPMMV, specifically targeting the CPMMV coat protein (CP) gene. The RT-RPA-LFS assay only requires 20 min at 40°C and demonstrates high specificity. Its detection limit was 10 copies/μl, which is approximately up to 100 times more sensitive than RT-PCR on agarose gel electrophoresis. The developed RT-RPA-LFS method offers a rapid, convenient, and sensitive approach for field detection of CPMMV, which contribute to controlling the spread of the virus.
Collapse
Affiliation(s)
- Xinyang Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, Hangzhou 310018, China
| | - Shuting Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zixin Zhang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yihan Zhang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Pingmei Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyi Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Miaomiao Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qian Lu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhongyi Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, Hangzhou 310018, China
| |
Collapse
|
28
|
Zhang Z, Zhang J, Li X, Zhang J, Wang Y, Lu Y. The Plant Virus Tomato Spotted Wilt Orthotospovirus Benefits Its Vector Frankliniella occidentalis by Decreasing Plant Toxic Alkaloids in Host Plant Datura stramonium. Int J Mol Sci 2023; 24:14493. [PMID: 37833941 PMCID: PMC10572871 DOI: 10.3390/ijms241914493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The transmission of insect-borne viruses involves sophisticated interactions between viruses, host plants, and vectors. Chemical compounds play an important role in these interactions. Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However, few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here, we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more attracted to feeding on TSWV-infected D. stramonium; (2) atropine and scopolamine, the main tropane alkaloids in D. stramonium, which are toxic to animals, were down-regulated by TSWV infection of the plant; and (3) F. occidentalis had better biological performance (prolonged adult longevity and increased fecundity, resulting in accelerated population growth) on TSWV-infected D. stramonium than on TSWV non-infected plants. These findings provide in-depth information about the physiological mechanisms responsible for the virus's benefits to its vector by virus infection of plant regulating alkaloid accumulation in the plant.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| | - Jiahui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China;
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China;
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| |
Collapse
|
29
|
Favara GM, de Oliveira FF, Ferro CG, Kraide HD, Carmo EYN, Bello VH, Ribeiro-Junior MR, Krause-Sakate R, Kitajima EW, Rezende JAM. Infection of groundnut ringspot virus in Plumeria pudica characterized by irregular virus distribution and intermittent expression of symptoms. FRONTIERS IN PLANT SCIENCE 2023; 14:1202139. [PMID: 37564383 PMCID: PMC10410559 DOI: 10.3389/fpls.2023.1202139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
Plumeria pudica, known as bridal bouquet, exhibiting characteristic symptoms of orthotospovirus infection were found in different localities in Brazil. Symptoms were restricted to leaves of the middle and lower thirds of a few branches of each plant. Electron microscopy, molecular analyses, and complete genome sequencing identified the orthotospovirus as groundnut ringspot virus (GRSV),member of the species Orthotospovirus arachianuli. The virus was poorly transmitted mechanically to P. pudica. Reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analyses performed using total RNA extracted from leaf blades, primary veins, petioles, and regions of petiole insertion on branches indicated the presence of GRSV, predominantly in the symptomatic leaf blades. Symptomatic branches propagate vegetatively, often resulting in plants expressing GRSV symptoms. In contrast, vegetative propagation of the asymptomatic branches of infected plants predominantly generates plants without GRSV symptoms. The resistance of P. pudica plants to GRSV infection, restricted systemic viral movement, and expression of symptoms in infected plants suggest that this orthotospovirus does not threaten this ornamental plant.
Collapse
Affiliation(s)
- Gabriel Madoglio Favara
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Felipe Franco de Oliveira
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Camila Geovana Ferro
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Heron Delgado Kraide
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Eike Yudi Nishimura Carmo
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Vinicius Henrique Bello
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Marcos Roberto Ribeiro-Junior
- Laboratory of Plant Virology and Virus-Vector-Host Interactions, Department of Plant Protection, Faculdade de Ciências Agronômicas, São Paulo State University, Botucatu, Brazil
| | - Renate Krause-Sakate
- Laboratory of Plant Virology and Virus-Vector-Host Interactions, Department of Plant Protection, Faculdade de Ciências Agronômicas, São Paulo State University, Botucatu, Brazil
| | - Elliot Watanabe Kitajima
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Jorge Alberto Marques Rezende
- Laboratory of Plant Virology, Department of Plant Pathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
30
|
Wu Q, Tong C, Chen Z, Huang S, Zhao X, Hong H, Li J, Feng M, Wang H, Xu M, Yan Y, Cui H, Shen D, Ai G, Xu Y, Li J, Zhang H, Huang C, Zhang Z, Dong S, Wang X, Zhu M, Dinesh-Kumar SP, Tao X. NLRs derepress MED10b- and MED7-mediated repression of jasmonate-dependent transcription to activate immunity. Proc Natl Acad Sci U S A 2023; 120:e2302226120. [PMID: 37399403 PMCID: PMC10334756 DOI: 10.1073/pnas.2302226120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.
Collapse
Affiliation(s)
- Qian Wu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Cong Tong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Zhengqiang Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Shen Huang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xiaohui Zhao
- Salinity Agriculture Research Laboratory, Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng224002, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Mingfeng Feng
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Huiyuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
- Institute of Biotechnology, Zhejiang University, Hangzhou310058, P. R. China
| | - Min Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Hongmin Cui
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Danyu Shen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Yi Xu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Junming Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, P. R. China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai201403, P. R. China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming650021, P. R. China
| | - Zhongkai Zhang
- Yunnan Provincial Key Laboratory of Agri-Biotechnology, Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan650223, P. R. China
| | - Suomeng Dong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Xuan Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center College of Biological Sciences, University of California, Davis, CA95616
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, P. R. China
| |
Collapse
|
31
|
Simko I, Hasegawa DK, Peng H, Zhao R. Genetic and physiological determinants of lettuce partial resistance to Impatiens necrotic spot virus. FRONTIERS IN PLANT SCIENCE 2023; 14:1163683. [PMID: 37360711 PMCID: PMC10285314 DOI: 10.3389/fpls.2023.1163683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Introduction Impatiens necrotic spot virus (INSV) is a major pathogen currently threatening lettuce (Lactuca sativa L.) production in the coastal areas of California. The virus is transmitted by the western flower thrips (Frankliniella occidentalis Pergande). Methods We have tested a diversity panel of almost 500 lettuce accessions for disease incidence (DI) in 12 field experiments performed over 7 years. This set of accessions was also assessed for thrips feeding damage (TFD), the rate of plant development (PD), and the content of chlorophyll (SPAD) and anthocyanins (ACI) to determine their effect on resistance to INSV. In addition, recombinant inbred lines from two biparental mapping populations were also evaluated for DI in field experiments. Results The mean DI in 14 field experiments ranged from 2.1% to 70.4%. A highly significant difference in DI was observed among the tested accessions, with the overall lowest DI detected in the red color cultivars, Outredgeous Selection, Red Splash Cos, Infantry, Sweet Valentine, Annapolis, and Velvet. Multiple linear regression models revealed a small but significant effect (p < 0.005) of the four analyzed determinants on DI. Accessions with lower DI values had slower plant development (PD, r = 0.352), higher ACI content (r = -0.284), lower TFD (r = 0.198), and lower SPAD content (r = 0.125). A genome-wide association study revealed 13 QTLs for DI located on eight out of the nine lettuce chromosomes (the exception was chr. 8). The most frequently detected QTL (qINSV2.1) was located on chr. 2. Several of the QTLs for DI were in the same genomic areas as QTLs for PD, ACI, and SPAD. Additional three QTLs for DI on chr. 5 and 8 were identified using linkage mapping performed on two biparental mapping populations. Conclusions The work highlights the genetic basis of partial resistance to INSV and reveals the relationship between resistance, the host physiology, and the thrips vector. Results of this study are an important steppingstone toward developing cultivars with increased resistance against INSV.
Collapse
Affiliation(s)
- Ivan Simko
- Crop Improvement and Protection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Salinas, CA, United States
| | - Daniel K. Hasegawa
- Crop Improvement and Protection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Salinas, CA, United States
| | - Hui Peng
- Horticultural Sciences Department, Everglades Research and Education Center, University of Florida, Belle Glade, FL, United States
| | - Rebecca Zhao
- Crop Improvement and Protection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Salinas, CA, United States
| |
Collapse
|
32
|
Feng M, Chen M, Yuan Y, Liu Q, Cheng R, Yang T, Li L, Guo R, Dong Y, Chen J, Yang Y, Yan Y, Cui H, Jing D, Kang J, Chen S, Li J, Zhu M, Huang C, Zhang Z, Kormelink R, Tao X. Interspecies/Intergroup Complementation of Orthotospovirus Replication and Movement through Reverse Genetics Systems. J Virol 2023; 97:e0180922. [PMID: 37022194 PMCID: PMC10134808 DOI: 10.1128/jvi.01809-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 04/07/2023] Open
Abstract
Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.
Collapse
Affiliation(s)
- Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Minglong Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yulong Yuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Qinhai Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruixiang Cheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Tongqing Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Luyao Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Rong Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yongxin Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jing Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yawen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuling Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Hongmin Cui
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Dong Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jinrui Kang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shuxian Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jia Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Zhongkai Zhang
- Yunnan Provincial Key Laboratory of Agri-Biotechnology, Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, P. R. China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
33
|
Li J, Zan N, He H, Hu D, Song B. Piperazine Derivatives Containing the α-Ketoamide Moiety Discovered as Potential Anti-Tomato Spotted Wilt Virus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6301-6313. [PMID: 37052574 DOI: 10.1021/acs.jafc.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A total of 35 piperazine derivatives were designed and synthesized, and their activities against tomato spotted wilt virus (TSWV) were evaluated systematically. Compounds 34 and 35 with significant anti-TSWV activity were obtained. Their EC50 values were 62.4 and 59.9 μg/mL, prominently better than the control agents ningnanmycin (113.7 μg/mL) and ribavirin (591.1 μg/mL). To explore the mechanism of the interaction between these compounds and the virus, we demonstrated by agrobacterium-mediated, molecular docking, and microscale thermophoresis (MST) experimental methods that compounds 34 and 35 could inhibit the infection of TSWV by binding with the N protein to prevent the assembly of the virus core structure ribonucleoprotein (RNP), and it also meant that the arginine at 94 of the N protein was the key site of interaction between the compounds and the TSWV N target. Therefore, this study demonstrated the potential for forming antiviral agents from piperazine derivatives containing α-ketoamide moieties.
Collapse
Affiliation(s)
- Jiao Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Ningning Zan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Hongfu He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
34
|
Maurastoni M, Han J, Whitfield AE, Rotenberg D. A call to arms: novel strategies for thrips and tospovirus control. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101033. [PMID: 37030512 DOI: 10.1016/j.cois.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Thrips and the tospoviruses they transmit are some of the most significant threats to food and ornamental crop production globally. Control of the insect and virus is challenging and new strategies are needed. Characterizing the thrips-virus interactome provides new targets for disrupting the transmission cycle. Viral and insect determinants of vector competence are being defined, including the viral attachment protein and its structure as well as thrips proteins that interact with and respond to tospovirus infection. Additional thrips control strategies such as RNA interference need further refinement and field-applicable delivery systems, but they show promise for the knockdown of essential genes for thrips survival and virus transmission. The identification of a toxin that acts to deter thrips oviposition on cotton also presents new opportunities for control of this important pest.
Collapse
Affiliation(s)
- Marlonni Maurastoni
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
35
|
Hasegawa DK, Del Pozo-Valdivia AI. Epidemiology and Economic Impact of Impatiens Necrotic Spot Virus: A Resurging Pathogen Affecting Lettuce in the Salinas Valley of California. PLANT DISEASE 2023; 107:1192-1201. [PMID: 36018552 DOI: 10.1094/pdis-05-22-1248-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Orthotospovirus impatiens necrotic spot virus (INSV) is a thrips-transmitted pathogen of lettuce that has rapidly emerged as a serious threat to production in the Salinas Valley of Monterey County, California. As a first step toward understanding the severity of the virus, we utilized Spatial Analysis by Distance IndicEs (SADIE) to characterize the distribution and progression of INSV outbreaks and thrips infestations in two commercial lettuce fields. In both fields, INSV incidence rapidly increased from 15.86% ± 1.77 to 80.24% ± 2.60 over the course of 7 weeks and aggregated at specific edges in both fields as early as 3 weeks after planting (Ia = 1.63, Pa = 0.0100, and Ia = 1.53, Pa = 0.0300). In one of the fields, thrips populations aggregated in areas that also experienced the most INSV (Ia = 1.2435, Pa = 0.0400, week 3; Ia = 1.4815, Pa < 0.0001, week 6; Ia = 1.5608, Pa < 0.0001, week 9), while in the second field, thrips were distributed randomly despite the aggregated effects that were observed for INSV incidence. Economic analysis estimated that the virus accounted for over $475,000 in losses for the two fields, while stakeholder surveys documented over 750 fields that experienced INSV infection during the 2021 season in Monterey County alone. These studies enhance our knowledge on the epidemiology of thrips and INSV under current lettuce production practices in the Salinas Valley, while elucidating the economic consequences and broader challenges that are associated with managing thrips-transmitted viruses.
Collapse
Affiliation(s)
- Daniel K Hasegawa
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA
| | | |
Collapse
|
36
|
Zhang P, Zhang J, An Q, Wang J, Yi P, Yuan CM, Zhang ZK, Zhao LH, Hu ZX, Hao XJ. Matrine-Type Alkaloids with Anti-Tomato Spotted Wilt Virus Activity from the Root of Sophora tonkinensis Gagnep. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4394-4407. [PMID: 36854107 DOI: 10.1021/acs.jafc.2c09003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a continuation of our research on the development of pesticide active quinolizidine alkaloids (QAs) from the family Fabaceae, the chemical constituents of the root of Sophora tonkinensis Gagnep. were systematically investigated. Seventeen new matrine-type alkaloids (1-17), including one new naturally occurring compound (17), along with 20 known ones were isolated from the EtOH extract of S. tonkinensis. Notably, compound 5 possessed an unprecedented 6/6/5/4/6/6 hexacyclic system. Their structures were confirmed via comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculation, and X-ray crystallography. Biological tests indicated that compounds 1, 4, 10, 12, 13, and 30 displayed significant anti-tomato spotted wilt virus (TSWV) activities compared with the positive control ningnanmycin. Moreover, compound 12 strongly inhibited the expression of the TSWV N, NSs, and NSm genes and TSWV NSs protein in plant host. Furthermore, compounds 4, 10, 12, 20, and 22 exhibited moderate insecticidal activities against TSWV thrip vector (Frankliniella occidentalis).
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ji Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Juan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhong-Kai Zhang
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Li-Hua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Kunming 650201, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| |
Collapse
|
37
|
Liu Q, Zhao C, Sun K, Deng Y, Li Z. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. MOLECULAR PLANT 2023; 16:616-631. [PMID: 36751129 DOI: 10.1016/j.molp.2023.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas genome-editing tools provide unprecedented opportunities for basic plant biology research and crop breeding. However, the lack of robust delivery methods has limited the widespread adoption of these revolutionary technologies in plant science. Here, we report an efficient, non-transgenic CRISPR/Cas delivery platform based on the engineered tomato spotted wilt virus (TSWV), an RNA virus with a host range of over 1000 plant species. We eliminated viral elements essential for insect transmission to liberate genome space for accommodating large genetic cargoes without sacrificing the ability to infect plant hosts. The resulting non-insect-transmissible viral vectors enabled effective and stable in planta delivery of Cas12a and Cas9 nucleases as well as adenine and cytosine base editors. In systemically infected plant tissues, the deconstructed TSWV-derived vectors induced efficient somatic gene mutations and base conversions in multiple crop species with little genotype dependency. Plants with heritable, bi-allelic mutations could be readily regenerated by culturing the virus-infected tissues in vitro without antibiotic selection. Moreover, we showed that antiviral treatment with ribavirin during tissue culture cleared the viral vectors in 100% of regenerated plants and further augmented the recovery of heritable mutations. Because many plants are recalcitrant to stable transformation, the viral delivery system developed in this work provides a promising tool to overcome gene delivery bottlenecks for genome editing in various crop species and elite varieties.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chenglu Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinlu Deng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Qiao N, Liu Y, Liu J, Zhang D, Chi W, Li J, Zhu X, Liu H, Li F. Antagonism of tomato spotted wilt virus against tomato yellow leaf curl virus in Nicotiana benthamiana detected by transcriptome analysis. Genes Genomics 2023; 45:23-37. [PMID: 36371493 DOI: 10.1007/s13258-022-01325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Tomato spot wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV) are highly harmful viruses in agricultural production, which can cause serious economic losses to crops and even devastating consequences for vegetable yield in some countries and regions. Although the two viruses belong to different families and have different transmission vectors, they share most hosts. OBJECTIVE This study aimed to examine the transcriptomic expression of single and mixed inoculations of TSWV and TYLCV, leading to antagonism using high-throughput RNA sequencing. METHODS We confirmed the single and mixed infections of these viruses in Nicotiana benthamiana (N. benthamiana) by artificial inoculation. And the expression changes of related genes and their biological functions and pathways during the mixed infection of TSWV and TYLCV were analyzed by comparative transcriptome. RESULTS Basically, similar symptoms were observed in the plants singly infected with TSWV and co-infected with TYLCV; the symptoms of TYLCV in the co-infected plants were not obvious compared with single TYLCV infections. When inoculated with TYLCV, the accumulation of the virus significantly reduced in single and mixed infections with TSWV; the TSWV accumulated slightly less in co-infection with TYLCV, whereas this reduction was much smaller than that of TYLCV. The results suggested that TSWV had an antagonistic effect on the accumulation of TYLCV in N. benthamiana. It mainly focused on the changes in unique differentially expressed genes (DEGs) caused by the co-infection of TSWV and TYLCV. The eight pathways enriched by upregulated DEGs mainly included amino acid biosynthesis, citrate cycle (or tricarboxylic acid cycle, TCA cycle), and so on. However, only pentose phosphate pathway (PPP) and peptidoglycan biosynthesis could be downregulated in the Kyoto Encyclopedia of Genes and Genomes pathway in which peptidoglycan biosynthesis was involved in upregulated and downregulated pathways. CONCLUSIONS The antagonistic effect of TSWV on TYLCV in N.benthamiana and the change trends and specific pathways of DEGs in this process were found. Our study provided new insights into the host regulation and competition between viruses in response to TSWV and TYLCV mixed infection.
Collapse
Affiliation(s)
- Ning Qiao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China.,College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China
| | - Yongguang Liu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Jie Liu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Dezhen Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Wenjuan Chi
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Jintang Li
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.
| | - Fajun Li
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| |
Collapse
|
39
|
Shi J, Zhou J, Jiang F, Li Z, Zhu S. The effects of the E3 ubiquitin-protein ligase UBR7 of Frankliniella occidentalis on the ability of insects to acquire and transmit TSWV. PeerJ 2023; 11:e15385. [PMID: 37187513 PMCID: PMC10178284 DOI: 10.7717/peerj.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The interactions between plant viruses and insect vectors are very complex. In recent years, RNA sequencing data have been used to elucidate critical genes of Tomato spotted wilt ortho-tospovirus (TSWV) and Frankliniella occidentalis (F. occidentalis). However, very little is known about the essential genes involved in thrips acquisition and transmission of TSWV. Based on transcriptome data of F. occidentalis infected with TSWV, we verified the complete sequence of the E3 ubiquitin-protein ligase UBR7 gene (UBR7), which is closely related to virus transmission. Additionally, we found that UBR7 belongs to the E3 ubiquitin-protein ligase family that is highly expressed in adulthood in F. occidentalis. UBR7 could interfere with virus replication and thus affect the transmission efficiency of F. occidentalis. With low URB7 expression, TSWV transmission efficiency decreased, while TSWV acquisition efficiency was unaffected. Moreover, the direct interaction between UBR7 and the nucleocapsid (N) protein of TSWV was investigated through surface plasmon resonance and GST pull-down. In conclusion, we found that UBR7 is a crucial protein for TSWV transmission by F. occidentalis, as it directly interacts with TSWV N. This study provides a new direction for developing green pesticides targeting E3 ubiquitin to control TSWV and F. occidentalis.
Collapse
Affiliation(s)
- Junxia Shi
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junxian Zhou
- Agricultural Technology Service Center of Yunyang County, Chongqing, China
| | - Fan Jiang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Zhihong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuifang Zhu
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
40
|
Abstract
Arctic permafrost is thawing due to global warming, with unknown consequences on the microbial inhabitants or associated viruses. DNA viruses have previously been shown to be abundant and active in thawing permafrost, but little is known about RNA viruses in these systems. To address this knowledge gap, we assessed the composition of RNA viruses in thawed permafrost samples that were incubated for 97 days at 4°C to simulate thaw conditions. A diverse RNA viral community was assembled from metatranscriptome data including double-stranded RNA viruses, dominated by Reoviridae and Hypoviridae, and negative and positive single-stranded RNA viruses, with relatively high representations of Rhabdoviridae and Leviviridae, respectively. Sequences corresponding to potential plant and human pathogens were also detected. The detected RNA viruses primarily targeted dominant eukaryotic taxa in the samples (e.g., fungi, Metazoa and Viridiplantae) and the viral community structures were significantly associated with predicted host populations. These results indicate that RNA viruses are linked to eukaryotic host dynamics. Several of the RNA viral sequences contained auxiliary metabolic genes encoding proteins involved in carbon utilization (e.g., polygalacturosase), implying their potential roles in carbon cycling in thawed permafrost. IMPORTANCE Permafrost is thawing at a rapid pace in the Arctic with largely unknown consequences on ecological processes that are fundamental to Arctic ecosystems. This is the first study to determine the composition of RNA viruses in thawed permafrost. Other recent studies have characterized DNA viruses in thawing permafrost, but the majority of DNA viruses are bacteriophages that target bacterial hosts. By contrast RNA viruses primarily target eukaryotic hosts and thus represent potential pathogenic threats to humans, animals, and plants. Here, we find that RNA viruses in permafrost are novel and distinct from those in other habitats studied to date. The COVID-19 pandemic has heightened awareness of the importance of potential environmental reservoirs of emerging RNA viral pathogens. We demonstrate that some potential pathogens were detected after an experimental thawing regime. These results are important for understanding critical viral-host interactions and provide a better understanding of the ecological roles that RNA viruses play as permafrost thaws.
Collapse
|
41
|
Tao M, Wan Y, Zheng X, Qian K, Merchant A, Xu B, Zhang Y, Zhou X, Wu Q. Tomato spotted wilt orthotospovirus shifts sex ratio toward males in the western flower thrips, Frankliniella occidentalis, by down-regulating a FSCB-like gene. PEST MANAGEMENT SCIENCE 2022; 78:5014-5023. [PMID: 36054039 DOI: 10.1002/ps.7125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant viruses can facilitate their transmission by modulating the sex ratios of their insect vectors. Previously, we found that exposure to tomato spotted wilt orthotospovirus (TSWV) in the western flower thrips, Frankliniella occidentalis, led to a male-biased sex ratio in the offspring. TSWV, a generalist pathogen with a broad host range, is transmitted primarily by F. occidentalis in a circulative-propagative manner. Here, we integrated proteomic tools with RNAi to comprehensively investigate the genetic basis underlying the shift in vector sex ratio induced by the virus. RESULTS Proteomic analysis exhibited 104 differentially expressed proteins between F. occidentalis adult males with and without TSWV. The expression of the fiber sheath CABYR-binding-like (FSCB) protein, namely FoFSCB-like, a sperm-specific protein associated with sperm capacitation and motility, was decreased by 46%. The predicted FoFSCB-like protein includes 10 classic Pro-X-X-Pro motifs and 42 phosphorylation sites, which are key features for sperm capacitation. FoFSCB-like expression was gradually increased during the development and peaked at the pupal stage. After exposure to TSWV, FoFSCB-like expression was substantially down-regulated. Nanoparticle-mediated RNAi substantially suppressed FoFSCB-like expression and led to a significant male bias in the offspring. CONCLUSION These combined results suggest that down-regulation of FoFSCB-like in virus-exposed thrips leads to a male-biased sex ratio in the offspring. This study not only advances our understanding of virus-vector interactions, but also identifies a potential target for the genetic management of F. occidentalis, the primary vector of TSWV, by manipulating male fertility. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
Seed Transmission of Tomato Spotted Wilt Orthotospovirus in Peppers. Viruses 2022; 14:v14091873. [PMID: 36146680 PMCID: PMC9504465 DOI: 10.3390/v14091873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Tomato spotted wilt orthotospovirus (TSWV) severely damaged agricultural production in many places around the world. It is generally believed that TSWV transmits among plants via their insect vector. In this study, we provide evidence on the seed-borne transmission of TSWV in pepper (Capsicum annuum L.) plants. RT-PCR, RT-qPCR, and transmission electron microscopy data demonstrate the seed transmission ability of TSWV in peppers. Endosperm, but not the embryo, is the abundant virus-containing seed organ. TSWV can also be detected in the second generation of newly germinated seedlings from virus-containing seed germination experiments. Our data are useful for researchers, certification agencies, the seed industry, and policy makers when considering the importance of TSWV in vegetable production all over the world.
Collapse
|
43
|
Fletcher SJ, Peters JR, Olaya C, Persley DM, Dietzgen RG, Carroll BJ, Pappu H, Mitter N. Tospoviruses Induce Small Interfering RNAs Targeting Viral Sequences and Endogenous Transcripts in Solanaceous Plants. Pathogens 2022; 11:pathogens11070745. [PMID: 35889991 PMCID: PMC9317859 DOI: 10.3390/pathogens11070745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Tospoviruses infect numerous crop species worldwide, causing significant losses throughout the supply chain. As a defence mechanism, plants use RNA interference (RNAi) to generate virus-derived small-interfering RNAs (vsiRNAs), which target viral transcripts for degradation. Small RNA sequencing and in silico analysis of capsicum and N. benthamiana infected by tomato spotted wilt virus (TSWV) or capsicum chlorosis virus (CaCV) demonstrated the presence of abundant vsiRNAs, with host-specific differences evident for each pathosystem. Despite the biogenesis of vsiRNAs in capsicum and N. benthamiana, TSWV and CaCV viral loads were readily detectable. In response to tospovirus infection, the solanaceous host species also generated highly abundant virus-activated small interfering RNAs (vasiRNAs) against many endogenous transcripts, except for an N. benthamiana accession lacking a functional RDR1 gene. Strong enrichment for ribosomal protein-encoding genes and for many genes involved in protein processing in the endoplasmic reticulum suggested co-localisation of viral and endogenous transcripts as a basis for initiating vasiRNA biogenesis. RNA-seq and RT-qPCR-based analyses of target transcript expression revealed an inconsistent role for vasiRNAs in modulating gene expression in N. benthamiana, which may be characteristic of this tospovirus-host pathosystem.
Collapse
Affiliation(s)
- Stephen J. Fletcher
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
| | - Jonathan R. Peters
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
| | - Cristian Olaya
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA;
| | - Denis M. Persley
- Queensland Department of Agriculture and Fisheries, AgriScience Queensland, EcoSciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia;
| | - Ralf G. Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia;
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia;
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA;
- Correspondence: (H.P.); (N.M.)
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
- Correspondence: (H.P.); (N.M.)
| |
Collapse
|
44
|
Bragard C, Baptista P, Chatzivassiliou E, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Dehnen‐Schmutz K, Migheli Q, Vloutoglou I, Czwienczek E, Streissl F, Carluccio AV, Chiumenti M, Di Serio F, Rubino L, Reignault PL. Pest categorisation of Capsicum chlorosis virus. EFSA J 2022; 20:e07337. [PMID: 35734283 PMCID: PMC9194764 DOI: 10.2903/j.efsa.2022.7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Plant Health conducted a pest categorisation of Capsicum chlorosis virus (CaCV) for the EU territory. The identity of CaCV, a member of the genus Orthotospovirus (family Tospoviridae), is established and reliable detection and identification methods are available. The pathogen is not included in the EU Commission Implementing Regulation 2019/2072. CaCV has been reported in Australia, China, India, Iran, Taiwan, Thailand and USA (Hawaii). In the EU, it has been reported once in Greece (Crete Island). The NPPO of Greece reported that CaCV is no longer present in Greece. CaCV infects plant species in the family Solanaceae (i.e. pepper, tomato) and several species of other families, including ornamentals. It may induce severe symptoms on its hosts, mainly on leaves and fruits, which may become unmarketable. The virus is transmitted in a persistent propagative mode by the thrips Ceratothripoides claratris, Frankliniella schultzei, Microcephalothrips abdominalis and Thrips palmi. C. claratris and T. palmi are EU quarantine pests. M. abdominalis is known to be present in several EU member states and it is not regulated in the EU. Plants for planting, parts of plants, fruits and cut flowers of CaCV hosts, and viruliferous thrips were identified as the most relevant pathways for the entry of CaCV into the EU. Cultivated and wild hosts of CaCV are distributed across the EU. Should the pest enter and establish in the EU territory, impact on the production of cultivated hosts is expected. Phytosanitary measures are available to prevent entry and spread of the virus in the EU. CaCV fulfils the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
45
|
Wang Y, Luo Y, Hu D, Song B. Design, Synthesis, Anti-Tomato Spotted Wilt Virus Activity, and Mechanism of Action of Thienopyrimidine-Containing Dithioacetal Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6015-6025. [PMID: 35576166 DOI: 10.1021/acs.jafc.2c00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, there is insufficient viricide to effectively control tomato spotted wilt virus (TSWV). To address this pending issue, a series of thienopyrimidine-containing dithioacetal derivatives were prepared and tested for their anti-TSWV activities. A subsequent three-dimensional quantitative structure-activity relationship was constructed to indicate the development of optimal compound 35. The obtained compound 35 had excellent anti-TSWV curative, protective, and inactivating activities (63.0, 56.6, and 74.1%, respectively), and the EC50 values of protective and inactivating activities of compound 35 were 252.8 and 113.5 mg/L, respectively, better than those of ningnanmycin (284.8 and 144.7 mg/L) and xiangcaoliusuobingmi (624.9 and 300.0 mg/L). In addition, the anti-TSWV activity of compound 35 was associated with defense-related enzyme activities, enhanced photosynthesis, and reduced stress response, thereby enhancing disease resistance.
Collapse
Affiliation(s)
- Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuqin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
46
|
Chen J, Zheng L, Shi X, Zhang S, Tan X, Zhao X, Lu B, Ye Q, Miao S, Liu Y, Zhang D. The nonstructural protein NSs encoded by tomato zonate spot virus suppresses RNA silencing by interacting with NbSGS3. MOLECULAR PLANT PATHOLOGY 2022; 23:707-719. [PMID: 35184365 PMCID: PMC8995058 DOI: 10.1111/mpp.13192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/21/2023]
Abstract
Viral suppressors of RNA silencing (VSRs) are encoded by diverse viruses to counteract the RNA silencing-mediated defence mounted by the virus-infected host cells. In this study, we identified the NSs protein encoded by tomato zonate spot virus (TZSV) as a potent VSR, and used a potato virus X (PVX)-based heterologous expression system to demonstrate TZSV NSs as a viral pathogenicity factor that intensified PVX symptoms in Nicotiana benthamiana. We then used a yeast two-hybrid screen to identify the suppressor of gene silencing 3 protein of N. benthamiana (NbSGS3), a known component of the plant RNA silencing pathway, as an interaction partner of TZSV NSs. We verified this interaction in plant cells with bimolecular fluorescence complementation, subcellular colocalization, and co-immunoprecipitation. We further revealed that the NSs-NbSGS3 interaction correlated with the VSR activity of TZSV NSs. TZSV NSs reduced the concentration of NbSGS3 protein in plant cells, probably through the ubiquitination and autophagy pathways. Interestingly, TZSV infection, but not NSs overexpression, significantly up-regulated the NbSGS3 transcript levels. Our data indicate that TZSV NSs suppresses RNA silencing of the host plant and enhances TZSV pathogenicity through its interaction with NbSGS3. This study reveals a novel molecular mechanism of NSs-mediated suppression of plant host antiviral defence.
Collapse
Affiliation(s)
- Jianbin Chen
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Limin Zheng
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Xiaobin Shi
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Songbai Zhang
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Xinqiu Tan
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Xingyue Zhao
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Bingxin Lu
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Qian Ye
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Shuyue Miao
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Yong Liu
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Deyong Zhang
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| |
Collapse
|
47
|
Huang H, Zuo C, Zhao Y, Huang S, Wang T, Zhu M, Li J, Tao X. Determination of key residues in tospoviral NSm required for Sw-5b recognition, their potential ability to overcome resistance, and the effective resistance provided by improved Sw-5b mutants. MOLECULAR PLANT PATHOLOGY 2022; 23:622-633. [PMID: 34962031 PMCID: PMC8995064 DOI: 10.1111/mpp.13182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/03/2023]
Abstract
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115-135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A , NSmW121A , NSmD122A , NSmR124A , and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A , NSmW121A , or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q , which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Chongkun Zuo
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
48
|
Mahanta DK, Jangra S, Priti, Ghosh A, Sharma PK, Iquebal MA, Jaiswal S, Baranwal VK, Kalia VK, Chander S. Groundnut Bud Necrosis Virus Modulates the Expression of Innate Immune, Endocytosis, and Cuticle Development-Associated Genes to Circulate and Propagate in Its Vector, Thrips palmi. Front Microbiol 2022; 13:773238. [PMID: 35369489 PMCID: PMC8969747 DOI: 10.3389/fmicb.2022.773238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Thrips palmi (Thysanoptera: Thripidae) is the predominant tospovirus vector in Asia-Pacific region. It transmits economically damaging groundnut bud necrosis virus (GBNV, family Tospoviridae) in a persistent propagative manner. Thrips serve as the alternate host, and virus reservoirs making tospovirus management very challenging. Insecticides and host plant resistance remain ineffective in managing thrips–tospoviruses. Recent genomic approaches have led to understanding the molecular interactions of thrips–tospoviruses and identifying novel genetic targets. However, most of the studies are limited to Frankliniella species and tomato spotted wilt virus (TSWV). Amidst the limited information available on T. palmi–tospovirus relationships, the present study is the first report of the transcriptome-wide response of T. palmi associated with GBNV infection. The differential expression analyses of the triplicate transcriptome of viruliferous vs. nonviruliferous adult T. palmi identified a total of 2,363 (1,383 upregulated and 980 downregulated) significant transcripts. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed the abundance of differentially expressed genes (DEGs) involved in innate immune response, endocytosis, cuticle development, and receptor binding and signaling that mediate the virus invasion and multiplication in the vector system. Also, the gene regulatory network (GRN) of most significant DEGs showed the genes like ABC transporter, cytochrome P450, endocuticle structural glycoprotein, gamma-aminobutyric acid (GABA) receptor, heat shock protein 70, larval and pupal cuticle proteins, nephrin, proline-rich protein, sperm-associated antigen, UHRF1-binding protein, serpin, tyrosine–protein kinase receptor, etc., were enriched with higher degrees of interactions. Further, the expression of the candidate genes in response to GBNV infection was validated in reverse transcriptase-quantitative real-time PCR (RT-qPCR). This study leads to an understanding of molecular interactions between T. palmi and GBNV and suggests potential genetic targets for generic pest control.
Collapse
|
49
|
Viruses Infecting Greenhood Orchids (Pterostylidinae) in Eastern Australia. Viruses 2022; 14:v14020365. [PMID: 35215958 PMCID: PMC8876172 DOI: 10.3390/v14020365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/16/2023] Open
Abstract
The Australasian biogeographic realm is a major centre of diversity for orchids, with every subfamily of the Orchidaceae represented and high levels of endemism at the species rank. It is hypothesised that there is a commensurate diversity of viruses infecting this group of plants. In this study, we have utilised high-throughput sequencing to survey for viruses infecting greenhood orchids (Pterostylidinae) in New South Wales and the Australian Capital Territory. The main aim of this study was to characterise Pterostylis blotch virus (PtBV), a previously reported but uncharacterised virus that had been tentatively classified in the genus Orthotospovirus. This classification was confirmed by genome sequencing, and phylogenetic analyses suggested that PtBV is representative of a new species that is possibly indigenous to Australia as it does not belong to either the American or Eurasian clades of orthotospoviruses. Apart from PtBV, putative new viruses in the genera Alphaendornavirus, Amalgavirus, Polerovirus and Totivirus were discovered, and complete genome sequences were obtained for each virus. It is concluded that the polerovirus is likely an example of an introduced virus infecting a native plant species in its natural habitat, as this virus is probably vectored by an aphid, and Australia has a depauperate native aphid fauna that does not include any species that are host-adapted to orchids.
Collapse
|
50
|
Tsai WA, Shafiei-Peters JR, Mitter N, Dietzgen RG. Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens 2022; 11:pathogens11020200. [PMID: 35215143 PMCID: PMC8879237 DOI: 10.3390/pathogens11020200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Capsicum, an important vegetable crop in Queensland, Australia, is vulnerable to both elevated temperatures and capsicum chlorosis virus (CaCV). Thus, it is imperative to understand the genetic responses of capsicum plants (Capsicum annuum) to CaCV under elevated temperature conditions. Here, we challenged susceptible plants (cv. Yolo Wonder) with CaCV and investigated the effects of elevated temperature on symptom expression, the accumulation of virus-derived short interfering RNA (vsiRNA) and viral RNA, and the expression of plant defense-associated genes. CaCV-inoculated plants initially showed more severe symptoms and higher viral concentrations at a higher temperature (HT, 35 °C) than at ambient temperature (AT, 25 °C). However, symptom recovery and reduced viral RNA accumulation were seen in the CaCV-infected plants grown at HT at later stages of infection. We also observed that HT enhanced the accumulation of vsiRNAs and that, concurrently, RNA interference (RNAi)-related genes, including Dicer-like2 (DCL2), DCL4, RNA-dependent RNA polymerase 1 (RdRp1), RdRp6, and Argonaute2 (AGO2), were upregulated early during infection. Moreover, continuous high levels of vsiRNAs were observed during later stages of CaCV infection at HT. Overall, our investigation suggests that HT facilitates CaCV replication during early infection stages. However, this appears to lead to an early onset of antiviral RNA silencing, resulting in a subsequent recovery from CaCV in systemic leaves.
Collapse
|